xref: /linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43 
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 	if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 			&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 		gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 				addr, size);
54 		return false;
55 	}
56 	return true;
57 }
58 
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 		 "invalid guest gmadr %llx\n", g_addr))
64 		return -EACCES;
65 
66 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
68 			  + (g_addr - vgpu_aperture_offset(vgpu));
69 	else
70 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
71 			  + (g_addr - vgpu_hidden_offset(vgpu));
72 	return 0;
73 }
74 
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 		 "invalid host gmadr %llx\n", h_addr))
80 		return -EACCES;
81 
82 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
84 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 	else
86 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
87 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 	return 0;
89 }
90 
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 			     unsigned long *h_index)
93 {
94 	u64 h_addr;
95 	int ret;
96 
97 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
98 				       &h_addr);
99 	if (ret)
100 		return ret;
101 
102 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
103 	return 0;
104 }
105 
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 			     unsigned long *g_index)
108 {
109 	u64 g_addr;
110 	int ret;
111 
112 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
113 				       &g_addr);
114 	if (ret)
115 		return ret;
116 
117 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
118 	return 0;
119 }
120 
121 #define gtt_type_is_entry(type) \
122 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125 
126 #define gtt_type_is_pt(type) \
127 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128 
129 #define gtt_type_is_pte_pt(type) \
130 	(type == GTT_TYPE_PPGTT_PTE_PT)
131 
132 #define gtt_type_is_root_pointer(type) \
133 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134 
135 #define gtt_init_entry(e, t, p, v) do { \
136 	(e)->type = t; \
137 	(e)->pdev = p; \
138 	memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140 
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156 
157 struct gtt_type_table_entry {
158 	int entry_type;
159 	int pt_type;
160 	int next_pt_type;
161 	int pse_entry_type;
162 };
163 
164 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
165 	[type] = { \
166 		.entry_type = e_type, \
167 		.pt_type = cpt_type, \
168 		.next_pt_type = npt_type, \
169 		.pse_entry_type = pse_type, \
170 	}
171 
172 static struct gtt_type_table_entry gtt_type_table[] = {
173 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
174 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
175 			GTT_TYPE_INVALID,
176 			GTT_TYPE_PPGTT_PML4_PT,
177 			GTT_TYPE_INVALID),
178 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
179 			GTT_TYPE_PPGTT_PML4_ENTRY,
180 			GTT_TYPE_PPGTT_PML4_PT,
181 			GTT_TYPE_PPGTT_PDP_PT,
182 			GTT_TYPE_INVALID),
183 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
184 			GTT_TYPE_PPGTT_PML4_ENTRY,
185 			GTT_TYPE_PPGTT_PML4_PT,
186 			GTT_TYPE_PPGTT_PDP_PT,
187 			GTT_TYPE_INVALID),
188 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
189 			GTT_TYPE_PPGTT_PDP_ENTRY,
190 			GTT_TYPE_PPGTT_PDP_PT,
191 			GTT_TYPE_PPGTT_PDE_PT,
192 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
193 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
194 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
195 			GTT_TYPE_INVALID,
196 			GTT_TYPE_PPGTT_PDE_PT,
197 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
198 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
199 			GTT_TYPE_PPGTT_PDP_ENTRY,
200 			GTT_TYPE_PPGTT_PDP_PT,
201 			GTT_TYPE_PPGTT_PDE_PT,
202 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
203 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
204 			GTT_TYPE_PPGTT_PDE_ENTRY,
205 			GTT_TYPE_PPGTT_PDE_PT,
206 			GTT_TYPE_PPGTT_PTE_PT,
207 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
208 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
209 			GTT_TYPE_PPGTT_PDE_ENTRY,
210 			GTT_TYPE_PPGTT_PDE_PT,
211 			GTT_TYPE_PPGTT_PTE_PT,
212 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
213 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
214 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
215 			GTT_TYPE_PPGTT_PTE_PT,
216 			GTT_TYPE_INVALID,
217 			GTT_TYPE_INVALID),
218 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
219 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
220 			GTT_TYPE_PPGTT_PTE_PT,
221 			GTT_TYPE_INVALID,
222 			GTT_TYPE_INVALID),
223 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
224 			GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_PT,
226 			GTT_TYPE_INVALID,
227 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
228 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
229 			GTT_TYPE_PPGTT_PDP_ENTRY,
230 			GTT_TYPE_PPGTT_PDP_PT,
231 			GTT_TYPE_INVALID,
232 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
233 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
234 			GTT_TYPE_GGTT_PTE,
235 			GTT_TYPE_INVALID,
236 			GTT_TYPE_INVALID,
237 			GTT_TYPE_INVALID),
238 };
239 
240 static inline int get_next_pt_type(int type)
241 {
242 	return gtt_type_table[type].next_pt_type;
243 }
244 
245 static inline int get_pt_type(int type)
246 {
247 	return gtt_type_table[type].pt_type;
248 }
249 
250 static inline int get_entry_type(int type)
251 {
252 	return gtt_type_table[type].entry_type;
253 }
254 
255 static inline int get_pse_type(int type)
256 {
257 	return gtt_type_table[type].pse_entry_type;
258 }
259 
260 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
261 {
262 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
263 
264 	return readq(addr);
265 }
266 
267 static void gtt_invalidate(struct drm_i915_private *dev_priv)
268 {
269 	mmio_hw_access_pre(dev_priv);
270 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
271 	mmio_hw_access_post(dev_priv);
272 }
273 
274 static void write_pte64(struct drm_i915_private *dev_priv,
275 		unsigned long index, u64 pte)
276 {
277 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
278 
279 	writeq(pte, addr);
280 }
281 
282 static inline int gtt_get_entry64(void *pt,
283 		struct intel_gvt_gtt_entry *e,
284 		unsigned long index, bool hypervisor_access, unsigned long gpa,
285 		struct intel_vgpu *vgpu)
286 {
287 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288 	int ret;
289 
290 	if (WARN_ON(info->gtt_entry_size != 8))
291 		return -EINVAL;
292 
293 	if (hypervisor_access) {
294 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
295 				(index << info->gtt_entry_size_shift),
296 				&e->val64, 8);
297 		if (WARN_ON(ret))
298 			return ret;
299 	} else if (!pt) {
300 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
301 	} else {
302 		e->val64 = *((u64 *)pt + index);
303 	}
304 	return 0;
305 }
306 
307 static inline int gtt_set_entry64(void *pt,
308 		struct intel_gvt_gtt_entry *e,
309 		unsigned long index, bool hypervisor_access, unsigned long gpa,
310 		struct intel_vgpu *vgpu)
311 {
312 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
313 	int ret;
314 
315 	if (WARN_ON(info->gtt_entry_size != 8))
316 		return -EINVAL;
317 
318 	if (hypervisor_access) {
319 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
320 				(index << info->gtt_entry_size_shift),
321 				&e->val64, 8);
322 		if (WARN_ON(ret))
323 			return ret;
324 	} else if (!pt) {
325 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
326 	} else {
327 		*((u64 *)pt + index) = e->val64;
328 	}
329 	return 0;
330 }
331 
332 #define GTT_HAW 46
333 
334 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30)) - 1) << 30)
335 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21)) - 1) << 21)
336 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12)) - 1) << 12)
337 
338 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
339 {
340 	unsigned long pfn;
341 
342 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
343 		pfn = (e->val64 & ADDR_1G_MASK) >> 12;
344 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
345 		pfn = (e->val64 & ADDR_2M_MASK) >> 12;
346 	else
347 		pfn = (e->val64 & ADDR_4K_MASK) >> 12;
348 	return pfn;
349 }
350 
351 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
352 {
353 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
354 		e->val64 &= ~ADDR_1G_MASK;
355 		pfn &= (ADDR_1G_MASK >> 12);
356 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
357 		e->val64 &= ~ADDR_2M_MASK;
358 		pfn &= (ADDR_2M_MASK >> 12);
359 	} else {
360 		e->val64 &= ~ADDR_4K_MASK;
361 		pfn &= (ADDR_4K_MASK >> 12);
362 	}
363 
364 	e->val64 |= (pfn << 12);
365 }
366 
367 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
368 {
369 	/* Entry doesn't have PSE bit. */
370 	if (get_pse_type(e->type) == GTT_TYPE_INVALID)
371 		return false;
372 
373 	e->type = get_entry_type(e->type);
374 	if (!(e->val64 & BIT(7)))
375 		return false;
376 
377 	e->type = get_pse_type(e->type);
378 	return true;
379 }
380 
381 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
382 {
383 	/*
384 	 * i915 writes PDP root pointer registers without present bit,
385 	 * it also works, so we need to treat root pointer entry
386 	 * specifically.
387 	 */
388 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
389 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
390 		return (e->val64 != 0);
391 	else
392 		return (e->val64 & BIT(0));
393 }
394 
395 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
396 {
397 	e->val64 &= ~BIT(0);
398 }
399 
400 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
401 {
402 	e->val64 |= BIT(0);
403 }
404 
405 /*
406  * Per-platform GMA routines.
407  */
408 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
409 {
410 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
411 
412 	trace_gma_index(__func__, gma, x);
413 	return x;
414 }
415 
416 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
417 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
418 { \
419 	unsigned long x = (exp); \
420 	trace_gma_index(__func__, gma, x); \
421 	return x; \
422 }
423 
424 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
425 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
426 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
427 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
428 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
429 
430 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
431 	.get_entry = gtt_get_entry64,
432 	.set_entry = gtt_set_entry64,
433 	.clear_present = gtt_entry_clear_present,
434 	.set_present = gtt_entry_set_present,
435 	.test_present = gen8_gtt_test_present,
436 	.test_pse = gen8_gtt_test_pse,
437 	.get_pfn = gen8_gtt_get_pfn,
438 	.set_pfn = gen8_gtt_set_pfn,
439 };
440 
441 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
442 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
443 	.gma_to_pte_index = gen8_gma_to_pte_index,
444 	.gma_to_pde_index = gen8_gma_to_pde_index,
445 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
446 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
447 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
448 };
449 
450 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
451 		struct intel_gvt_gtt_entry *m)
452 {
453 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
454 	unsigned long gfn, mfn;
455 
456 	*m = *p;
457 
458 	if (!ops->test_present(p))
459 		return 0;
460 
461 	gfn = ops->get_pfn(p);
462 
463 	mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
464 	if (mfn == INTEL_GVT_INVALID_ADDR) {
465 		gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
466 		return -ENXIO;
467 	}
468 
469 	ops->set_pfn(m, mfn);
470 	return 0;
471 }
472 
473 /*
474  * MM helpers.
475  */
476 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
477 		void *page_table, struct intel_gvt_gtt_entry *e,
478 		unsigned long index)
479 {
480 	struct intel_gvt *gvt = mm->vgpu->gvt;
481 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
482 	int ret;
483 
484 	e->type = mm->page_table_entry_type;
485 
486 	ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
487 	if (ret)
488 		return ret;
489 
490 	ops->test_pse(e);
491 	return 0;
492 }
493 
494 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
495 		void *page_table, struct intel_gvt_gtt_entry *e,
496 		unsigned long index)
497 {
498 	struct intel_gvt *gvt = mm->vgpu->gvt;
499 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
500 
501 	return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
502 }
503 
504 /*
505  * PPGTT shadow page table helpers.
506  */
507 static inline int ppgtt_spt_get_entry(
508 		struct intel_vgpu_ppgtt_spt *spt,
509 		void *page_table, int type,
510 		struct intel_gvt_gtt_entry *e, unsigned long index,
511 		bool guest)
512 {
513 	struct intel_gvt *gvt = spt->vgpu->gvt;
514 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
515 	int ret;
516 
517 	e->type = get_entry_type(type);
518 
519 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
520 		return -EINVAL;
521 
522 	ret = ops->get_entry(page_table, e, index, guest,
523 			spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
524 			spt->vgpu);
525 	if (ret)
526 		return ret;
527 
528 	ops->test_pse(e);
529 	return 0;
530 }
531 
532 static inline int ppgtt_spt_set_entry(
533 		struct intel_vgpu_ppgtt_spt *spt,
534 		void *page_table, int type,
535 		struct intel_gvt_gtt_entry *e, unsigned long index,
536 		bool guest)
537 {
538 	struct intel_gvt *gvt = spt->vgpu->gvt;
539 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
540 
541 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
542 		return -EINVAL;
543 
544 	return ops->set_entry(page_table, e, index, guest,
545 			spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
546 			spt->vgpu);
547 }
548 
549 #define ppgtt_get_guest_entry(spt, e, index) \
550 	ppgtt_spt_get_entry(spt, NULL, \
551 		spt->guest_page_type, e, index, true)
552 
553 #define ppgtt_set_guest_entry(spt, e, index) \
554 	ppgtt_spt_set_entry(spt, NULL, \
555 		spt->guest_page_type, e, index, true)
556 
557 #define ppgtt_get_shadow_entry(spt, e, index) \
558 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
559 		spt->shadow_page.type, e, index, false)
560 
561 #define ppgtt_set_shadow_entry(spt, e, index) \
562 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
563 		spt->shadow_page.type, e, index, false)
564 
565 /**
566  * intel_vgpu_init_page_track - init a page track data structure
567  * @vgpu: a vGPU
568  * @t: a page track data structure
569  * @gfn: guest memory page frame number
570  * @handler: the function will be called when target guest memory page has
571  * been modified.
572  *
573  * This function is called when a user wants to prepare a page track data
574  * structure to track a guest memory page.
575  *
576  * Returns:
577  * Zero on success, negative error code if failed.
578  */
579 int intel_vgpu_init_page_track(struct intel_vgpu *vgpu,
580 		struct intel_vgpu_page_track *t,
581 		unsigned long gfn,
582 		int (*handler)(void *, u64, void *, int),
583 		void *data)
584 {
585 	INIT_HLIST_NODE(&t->node);
586 
587 	t->tracked = false;
588 	t->gfn = gfn;
589 	t->handler = handler;
590 	t->data = data;
591 
592 	hash_add(vgpu->gtt.tracked_guest_page_hash_table, &t->node, t->gfn);
593 	return 0;
594 }
595 
596 /**
597  * intel_vgpu_clean_page_track - release a page track data structure
598  * @vgpu: a vGPU
599  * @t: a page track data structure
600  *
601  * This function is called before a user frees a page track data structure.
602  */
603 void intel_vgpu_clean_page_track(struct intel_vgpu *vgpu,
604 		struct intel_vgpu_page_track *t)
605 {
606 	if (!hlist_unhashed(&t->node))
607 		hash_del(&t->node);
608 
609 	if (t->tracked)
610 		intel_gvt_hypervisor_disable_page_track(vgpu, t);
611 }
612 
613 /**
614  * intel_vgpu_find_tracked_page - find a tracked guest page
615  * @vgpu: a vGPU
616  * @gfn: guest memory page frame number
617  *
618  * This function is called when the emulation layer wants to figure out if a
619  * trapped GFN is a tracked guest page.
620  *
621  * Returns:
622  * Pointer to page track data structure, NULL if not found.
623  */
624 struct intel_vgpu_page_track *intel_vgpu_find_tracked_page(
625 		struct intel_vgpu *vgpu, unsigned long gfn)
626 {
627 	struct intel_vgpu_page_track *t;
628 
629 	hash_for_each_possible(vgpu->gtt.tracked_guest_page_hash_table,
630 			t, node, gfn) {
631 		if (t->gfn == gfn)
632 			return t;
633 	}
634 	return NULL;
635 }
636 
637 static int init_guest_page(struct intel_vgpu *vgpu,
638 		struct intel_vgpu_guest_page *p,
639 		unsigned long gfn,
640 		int (*handler)(void *, u64, void *, int),
641 		void *data)
642 {
643 	p->oos_page = NULL;
644 	p->write_cnt = 0;
645 
646 	return intel_vgpu_init_page_track(vgpu, &p->track, gfn, handler, data);
647 }
648 
649 static int detach_oos_page(struct intel_vgpu *vgpu,
650 		struct intel_vgpu_oos_page *oos_page);
651 
652 static void clean_guest_page(struct intel_vgpu *vgpu,
653 		struct intel_vgpu_guest_page *p)
654 {
655 	if (p->oos_page)
656 		detach_oos_page(vgpu, p->oos_page);
657 
658 	intel_vgpu_clean_page_track(vgpu, &p->track);
659 }
660 
661 static inline int init_shadow_page(struct intel_vgpu *vgpu,
662 		struct intel_vgpu_shadow_page *p, int type, bool hash)
663 {
664 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
665 	dma_addr_t daddr;
666 
667 	daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
668 	if (dma_mapping_error(kdev, daddr)) {
669 		gvt_vgpu_err("fail to map dma addr\n");
670 		return -EINVAL;
671 	}
672 
673 	p->vaddr = page_address(p->page);
674 	p->type = type;
675 
676 	INIT_HLIST_NODE(&p->node);
677 
678 	p->mfn = daddr >> I915_GTT_PAGE_SHIFT;
679 	if (hash)
680 		hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
681 	return 0;
682 }
683 
684 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
685 		struct intel_vgpu_shadow_page *p)
686 {
687 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
688 
689 	dma_unmap_page(kdev, p->mfn << I915_GTT_PAGE_SHIFT, 4096,
690 			PCI_DMA_BIDIRECTIONAL);
691 
692 	if (!hlist_unhashed(&p->node))
693 		hash_del(&p->node);
694 }
695 
696 static inline struct intel_vgpu_shadow_page *find_shadow_page(
697 		struct intel_vgpu *vgpu, unsigned long mfn)
698 {
699 	struct intel_vgpu_shadow_page *p;
700 
701 	hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
702 		p, node, mfn) {
703 		if (p->mfn == mfn)
704 			return p;
705 	}
706 	return NULL;
707 }
708 
709 #define page_track_to_guest_page(ptr) \
710 	container_of(ptr, struct intel_vgpu_guest_page, track)
711 
712 #define guest_page_to_ppgtt_spt(ptr) \
713 	container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
714 
715 #define shadow_page_to_ppgtt_spt(ptr) \
716 	container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
717 
718 static void *alloc_spt(gfp_t gfp_mask)
719 {
720 	struct intel_vgpu_ppgtt_spt *spt;
721 
722 	spt = kzalloc(sizeof(*spt), gfp_mask);
723 	if (!spt)
724 		return NULL;
725 
726 	spt->shadow_page.page = alloc_page(gfp_mask);
727 	if (!spt->shadow_page.page) {
728 		kfree(spt);
729 		return NULL;
730 	}
731 	return spt;
732 }
733 
734 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
735 {
736 	__free_page(spt->shadow_page.page);
737 	kfree(spt);
738 }
739 
740 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
741 {
742 	trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
743 
744 	clean_shadow_page(spt->vgpu, &spt->shadow_page);
745 	clean_guest_page(spt->vgpu, &spt->guest_page);
746 	list_del_init(&spt->post_shadow_list);
747 
748 	free_spt(spt);
749 }
750 
751 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
752 {
753 	struct hlist_node *n;
754 	struct intel_vgpu_shadow_page *sp;
755 	int i;
756 
757 	hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
758 		ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
759 }
760 
761 static int ppgtt_handle_guest_write_page_table_bytes(
762 		struct intel_vgpu_guest_page *gpt,
763 		u64 pa, void *p_data, int bytes);
764 
765 static int ppgtt_write_protection_handler(void *data, u64 pa,
766 		void *p_data, int bytes)
767 {
768 	struct intel_vgpu_page_track *t = data;
769 	struct intel_vgpu_guest_page *p = page_track_to_guest_page(t);
770 	int ret;
771 
772 	if (bytes != 4 && bytes != 8)
773 		return -EINVAL;
774 
775 	if (!t->tracked)
776 		return -EINVAL;
777 
778 	ret = ppgtt_handle_guest_write_page_table_bytes(p,
779 		pa, p_data, bytes);
780 	if (ret)
781 		return ret;
782 	return ret;
783 }
784 
785 static int reclaim_one_mm(struct intel_gvt *gvt);
786 
787 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
788 		struct intel_vgpu *vgpu, int type, unsigned long gfn)
789 {
790 	struct intel_vgpu_ppgtt_spt *spt = NULL;
791 	int ret;
792 
793 retry:
794 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
795 	if (!spt) {
796 		if (reclaim_one_mm(vgpu->gvt))
797 			goto retry;
798 
799 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
800 		return ERR_PTR(-ENOMEM);
801 	}
802 
803 	spt->vgpu = vgpu;
804 	spt->guest_page_type = type;
805 	atomic_set(&spt->refcount, 1);
806 	INIT_LIST_HEAD(&spt->post_shadow_list);
807 
808 	/*
809 	 * TODO: guest page type may be different with shadow page type,
810 	 *	 when we support PSE page in future.
811 	 */
812 	ret = init_shadow_page(vgpu, &spt->shadow_page, type, true);
813 	if (ret) {
814 		gvt_vgpu_err("fail to initialize shadow page for spt\n");
815 		goto err;
816 	}
817 
818 	ret = init_guest_page(vgpu, &spt->guest_page,
819 			gfn, ppgtt_write_protection_handler, NULL);
820 	if (ret) {
821 		gvt_vgpu_err("fail to initialize guest page for spt\n");
822 		goto err;
823 	}
824 
825 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
826 	return spt;
827 err:
828 	ppgtt_free_shadow_page(spt);
829 	return ERR_PTR(ret);
830 }
831 
832 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
833 		struct intel_vgpu *vgpu, unsigned long mfn)
834 {
835 	struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
836 
837 	if (p)
838 		return shadow_page_to_ppgtt_spt(p);
839 
840 	gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
841 	return NULL;
842 }
843 
844 #define pt_entry_size_shift(spt) \
845 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
846 
847 #define pt_entries(spt) \
848 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
849 
850 #define for_each_present_guest_entry(spt, e, i) \
851 	for (i = 0; i < pt_entries(spt); i++) \
852 		if (!ppgtt_get_guest_entry(spt, e, i) && \
853 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
854 
855 #define for_each_present_shadow_entry(spt, e, i) \
856 	for (i = 0; i < pt_entries(spt); i++) \
857 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
858 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
859 
860 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
861 {
862 	int v = atomic_read(&spt->refcount);
863 
864 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
865 
866 	atomic_inc(&spt->refcount);
867 }
868 
869 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
870 
871 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
872 		struct intel_gvt_gtt_entry *e)
873 {
874 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
875 	struct intel_vgpu_ppgtt_spt *s;
876 	intel_gvt_gtt_type_t cur_pt_type;
877 
878 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
879 		return -EINVAL;
880 
881 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
882 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
883 		cur_pt_type = get_next_pt_type(e->type) + 1;
884 		if (ops->get_pfn(e) ==
885 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
886 			return 0;
887 	}
888 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
889 	if (!s) {
890 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
891 				ops->get_pfn(e));
892 		return -ENXIO;
893 	}
894 	return ppgtt_invalidate_shadow_page(s);
895 }
896 
897 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
898 {
899 	struct intel_vgpu *vgpu = spt->vgpu;
900 	struct intel_gvt_gtt_entry e;
901 	unsigned long index;
902 	int ret;
903 	int v = atomic_read(&spt->refcount);
904 
905 	trace_spt_change(spt->vgpu->id, "die", spt,
906 			spt->guest_page.track.gfn, spt->shadow_page.type);
907 
908 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
909 
910 	if (atomic_dec_return(&spt->refcount) > 0)
911 		return 0;
912 
913 	if (gtt_type_is_pte_pt(spt->shadow_page.type))
914 		goto release;
915 
916 	for_each_present_shadow_entry(spt, &e, index) {
917 		if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
918 			gvt_vgpu_err("GVT doesn't support pse bit for now\n");
919 			return -EINVAL;
920 		}
921 		ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
922 				spt->vgpu, &e);
923 		if (ret)
924 			goto fail;
925 	}
926 release:
927 	trace_spt_change(spt->vgpu->id, "release", spt,
928 			spt->guest_page.track.gfn, spt->shadow_page.type);
929 	ppgtt_free_shadow_page(spt);
930 	return 0;
931 fail:
932 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
933 			spt, e.val64, e.type);
934 	return ret;
935 }
936 
937 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
938 
939 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
940 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
941 {
942 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
943 	struct intel_vgpu_ppgtt_spt *s = NULL;
944 	struct intel_vgpu_guest_page *g;
945 	struct intel_vgpu_page_track *t;
946 	int ret;
947 
948 	if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
949 		ret = -EINVAL;
950 		goto fail;
951 	}
952 
953 	t = intel_vgpu_find_tracked_page(vgpu, ops->get_pfn(we));
954 	if (t) {
955 		g = page_track_to_guest_page(t);
956 		s = guest_page_to_ppgtt_spt(g);
957 		ppgtt_get_shadow_page(s);
958 	} else {
959 		int type = get_next_pt_type(we->type);
960 
961 		s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
962 		if (IS_ERR(s)) {
963 			ret = PTR_ERR(s);
964 			goto fail;
965 		}
966 
967 		ret = intel_gvt_hypervisor_enable_page_track(vgpu,
968 				&s->guest_page.track);
969 		if (ret)
970 			goto fail;
971 
972 		ret = ppgtt_populate_shadow_page(s);
973 		if (ret)
974 			goto fail;
975 
976 		trace_spt_change(vgpu->id, "new", s, s->guest_page.track.gfn,
977 			s->shadow_page.type);
978 	}
979 	return s;
980 fail:
981 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
982 			s, we->val64, we->type);
983 	return ERR_PTR(ret);
984 }
985 
986 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
987 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
988 {
989 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
990 
991 	se->type = ge->type;
992 	se->val64 = ge->val64;
993 
994 	ops->set_pfn(se, s->shadow_page.mfn);
995 }
996 
997 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
998 {
999 	struct intel_vgpu *vgpu = spt->vgpu;
1000 	struct intel_vgpu_ppgtt_spt *s;
1001 	struct intel_gvt_gtt_entry se, ge;
1002 	unsigned long i;
1003 	int ret;
1004 
1005 	trace_spt_change(spt->vgpu->id, "born", spt,
1006 			spt->guest_page.track.gfn, spt->shadow_page.type);
1007 
1008 	if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
1009 		for_each_present_guest_entry(spt, &ge, i) {
1010 			ret = gtt_entry_p2m(vgpu, &ge, &se);
1011 			if (ret)
1012 				goto fail;
1013 			ppgtt_set_shadow_entry(spt, &se, i);
1014 		}
1015 		return 0;
1016 	}
1017 
1018 	for_each_present_guest_entry(spt, &ge, i) {
1019 		if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
1020 			gvt_vgpu_err("GVT doesn't support pse bit now\n");
1021 			ret = -EINVAL;
1022 			goto fail;
1023 		}
1024 
1025 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1026 		if (IS_ERR(s)) {
1027 			ret = PTR_ERR(s);
1028 			goto fail;
1029 		}
1030 		ppgtt_get_shadow_entry(spt, &se, i);
1031 		ppgtt_generate_shadow_entry(&se, s, &ge);
1032 		ppgtt_set_shadow_entry(spt, &se, i);
1033 	}
1034 	return 0;
1035 fail:
1036 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1037 			spt, ge.val64, ge.type);
1038 	return ret;
1039 }
1040 
1041 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
1042 		struct intel_gvt_gtt_entry *se, unsigned long index)
1043 {
1044 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1045 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1046 	struct intel_vgpu *vgpu = spt->vgpu;
1047 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1048 	int ret;
1049 
1050 	trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1051 			 index);
1052 
1053 	if (!ops->test_present(se))
1054 		return 0;
1055 
1056 	if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1057 		return 0;
1058 
1059 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1060 		struct intel_vgpu_ppgtt_spt *s =
1061 			ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1062 		if (!s) {
1063 			gvt_vgpu_err("fail to find guest page\n");
1064 			ret = -ENXIO;
1065 			goto fail;
1066 		}
1067 		ret = ppgtt_invalidate_shadow_page(s);
1068 		if (ret)
1069 			goto fail;
1070 	}
1071 	return 0;
1072 fail:
1073 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1074 			spt, se->val64, se->type);
1075 	return ret;
1076 }
1077 
1078 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1079 		struct intel_gvt_gtt_entry *we, unsigned long index)
1080 {
1081 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1082 	struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1083 	struct intel_vgpu *vgpu = spt->vgpu;
1084 	struct intel_gvt_gtt_entry m;
1085 	struct intel_vgpu_ppgtt_spt *s;
1086 	int ret;
1087 
1088 	trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1089 		we->val64, index);
1090 
1091 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1092 		s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1093 		if (IS_ERR(s)) {
1094 			ret = PTR_ERR(s);
1095 			goto fail;
1096 		}
1097 		ppgtt_get_shadow_entry(spt, &m, index);
1098 		ppgtt_generate_shadow_entry(&m, s, we);
1099 		ppgtt_set_shadow_entry(spt, &m, index);
1100 	} else {
1101 		ret = gtt_entry_p2m(vgpu, we, &m);
1102 		if (ret)
1103 			goto fail;
1104 		ppgtt_set_shadow_entry(spt, &m, index);
1105 	}
1106 	return 0;
1107 fail:
1108 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1109 		spt, we->val64, we->type);
1110 	return ret;
1111 }
1112 
1113 static int sync_oos_page(struct intel_vgpu *vgpu,
1114 		struct intel_vgpu_oos_page *oos_page)
1115 {
1116 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1117 	struct intel_gvt *gvt = vgpu->gvt;
1118 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1119 	struct intel_vgpu_ppgtt_spt *spt =
1120 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1121 	struct intel_gvt_gtt_entry old, new, m;
1122 	int index;
1123 	int ret;
1124 
1125 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1126 			oos_page->guest_page, spt->guest_page_type);
1127 
1128 	old.type = new.type = get_entry_type(spt->guest_page_type);
1129 	old.val64 = new.val64 = 0;
1130 
1131 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1132 				info->gtt_entry_size_shift); index++) {
1133 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1134 		ops->get_entry(NULL, &new, index, true,
1135 			oos_page->guest_page->track.gfn << PAGE_SHIFT, vgpu);
1136 
1137 		if (old.val64 == new.val64
1138 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1139 			continue;
1140 
1141 		trace_oos_sync(vgpu->id, oos_page->id,
1142 				oos_page->guest_page, spt->guest_page_type,
1143 				new.val64, index);
1144 
1145 		ret = gtt_entry_p2m(vgpu, &new, &m);
1146 		if (ret)
1147 			return ret;
1148 
1149 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1150 		ppgtt_set_shadow_entry(spt, &m, index);
1151 	}
1152 
1153 	oos_page->guest_page->write_cnt = 0;
1154 	list_del_init(&spt->post_shadow_list);
1155 	return 0;
1156 }
1157 
1158 static int detach_oos_page(struct intel_vgpu *vgpu,
1159 		struct intel_vgpu_oos_page *oos_page)
1160 {
1161 	struct intel_gvt *gvt = vgpu->gvt;
1162 	struct intel_vgpu_ppgtt_spt *spt =
1163 		guest_page_to_ppgtt_spt(oos_page->guest_page);
1164 
1165 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1166 			oos_page->guest_page, spt->guest_page_type);
1167 
1168 	oos_page->guest_page->write_cnt = 0;
1169 	oos_page->guest_page->oos_page = NULL;
1170 	oos_page->guest_page = NULL;
1171 
1172 	list_del_init(&oos_page->vm_list);
1173 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1174 
1175 	return 0;
1176 }
1177 
1178 static int attach_oos_page(struct intel_vgpu *vgpu,
1179 		struct intel_vgpu_oos_page *oos_page,
1180 		struct intel_vgpu_guest_page *gpt)
1181 {
1182 	struct intel_gvt *gvt = vgpu->gvt;
1183 	int ret;
1184 
1185 	ret = intel_gvt_hypervisor_read_gpa(vgpu,
1186 			gpt->track.gfn << I915_GTT_PAGE_SHIFT,
1187 			oos_page->mem, I915_GTT_PAGE_SIZE);
1188 	if (ret)
1189 		return ret;
1190 
1191 	oos_page->guest_page = gpt;
1192 	gpt->oos_page = oos_page;
1193 
1194 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1195 
1196 	trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1197 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1198 	return 0;
1199 }
1200 
1201 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1202 		struct intel_vgpu_guest_page *gpt)
1203 {
1204 	int ret;
1205 
1206 	ret = intel_gvt_hypervisor_enable_page_track(vgpu, &gpt->track);
1207 	if (ret)
1208 		return ret;
1209 
1210 	trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1211 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1212 
1213 	list_del_init(&gpt->oos_page->vm_list);
1214 	return sync_oos_page(vgpu, gpt->oos_page);
1215 }
1216 
1217 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1218 		struct intel_vgpu_guest_page *gpt)
1219 {
1220 	struct intel_gvt *gvt = vgpu->gvt;
1221 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1222 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1223 	int ret;
1224 
1225 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1226 
1227 	if (list_empty(&gtt->oos_page_free_list_head)) {
1228 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1229 			struct intel_vgpu_oos_page, list);
1230 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1231 		if (ret)
1232 			return ret;
1233 		ret = detach_oos_page(vgpu, oos_page);
1234 		if (ret)
1235 			return ret;
1236 	} else
1237 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1238 			struct intel_vgpu_oos_page, list);
1239 	return attach_oos_page(vgpu, oos_page, gpt);
1240 }
1241 
1242 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1243 		struct intel_vgpu_guest_page *gpt)
1244 {
1245 	struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1246 
1247 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1248 		return -EINVAL;
1249 
1250 	trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1251 			gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1252 
1253 	list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1254 	return intel_gvt_hypervisor_disable_page_track(vgpu, &gpt->track);
1255 }
1256 
1257 /**
1258  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1259  * @vgpu: a vGPU
1260  *
1261  * This function is called before submitting a guest workload to host,
1262  * to sync all the out-of-synced shadow for vGPU
1263  *
1264  * Returns:
1265  * Zero on success, negative error code if failed.
1266  */
1267 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1268 {
1269 	struct list_head *pos, *n;
1270 	struct intel_vgpu_oos_page *oos_page;
1271 	int ret;
1272 
1273 	if (!enable_out_of_sync)
1274 		return 0;
1275 
1276 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1277 		oos_page = container_of(pos,
1278 				struct intel_vgpu_oos_page, vm_list);
1279 		ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1280 		if (ret)
1281 			return ret;
1282 	}
1283 	return 0;
1284 }
1285 
1286 /*
1287  * The heart of PPGTT shadow page table.
1288  */
1289 static int ppgtt_handle_guest_write_page_table(
1290 		struct intel_vgpu_guest_page *gpt,
1291 		struct intel_gvt_gtt_entry *we, unsigned long index)
1292 {
1293 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1294 	struct intel_vgpu *vgpu = spt->vgpu;
1295 	int type = spt->shadow_page.type;
1296 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1297 	struct intel_gvt_gtt_entry se;
1298 
1299 	int ret;
1300 	int new_present;
1301 
1302 	new_present = ops->test_present(we);
1303 
1304 	/*
1305 	 * Adding the new entry first and then removing the old one, that can
1306 	 * guarantee the ppgtt table is validated during the window between
1307 	 * adding and removal.
1308 	 */
1309 	ppgtt_get_shadow_entry(spt, &se, index);
1310 
1311 	if (new_present) {
1312 		ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1313 		if (ret)
1314 			goto fail;
1315 	}
1316 
1317 	ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1318 	if (ret)
1319 		goto fail;
1320 
1321 	if (!new_present) {
1322 		ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1323 		ppgtt_set_shadow_entry(spt, &se, index);
1324 	}
1325 
1326 	return 0;
1327 fail:
1328 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1329 			spt, we->val64, we->type);
1330 	return ret;
1331 }
1332 
1333 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1334 {
1335 	return enable_out_of_sync
1336 		&& gtt_type_is_pte_pt(
1337 			guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1338 		&& gpt->write_cnt >= 2;
1339 }
1340 
1341 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1342 		unsigned long index)
1343 {
1344 	set_bit(index, spt->post_shadow_bitmap);
1345 	if (!list_empty(&spt->post_shadow_list))
1346 		return;
1347 
1348 	list_add_tail(&spt->post_shadow_list,
1349 			&spt->vgpu->gtt.post_shadow_list_head);
1350 }
1351 
1352 /**
1353  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1354  * @vgpu: a vGPU
1355  *
1356  * This function is called before submitting a guest workload to host,
1357  * to flush all the post shadows for a vGPU.
1358  *
1359  * Returns:
1360  * Zero on success, negative error code if failed.
1361  */
1362 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1363 {
1364 	struct list_head *pos, *n;
1365 	struct intel_vgpu_ppgtt_spt *spt;
1366 	struct intel_gvt_gtt_entry ge;
1367 	unsigned long index;
1368 	int ret;
1369 
1370 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1371 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1372 				post_shadow_list);
1373 
1374 		for_each_set_bit(index, spt->post_shadow_bitmap,
1375 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1376 			ppgtt_get_guest_entry(spt, &ge, index);
1377 
1378 			ret = ppgtt_handle_guest_write_page_table(
1379 					&spt->guest_page, &ge, index);
1380 			if (ret)
1381 				return ret;
1382 			clear_bit(index, spt->post_shadow_bitmap);
1383 		}
1384 		list_del_init(&spt->post_shadow_list);
1385 	}
1386 	return 0;
1387 }
1388 
1389 static int ppgtt_handle_guest_write_page_table_bytes(
1390 		struct intel_vgpu_guest_page *gpt,
1391 		u64 pa, void *p_data, int bytes)
1392 {
1393 	struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1394 	struct intel_vgpu *vgpu = spt->vgpu;
1395 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1396 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1397 	struct intel_gvt_gtt_entry we, se;
1398 	unsigned long index;
1399 	int ret;
1400 
1401 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1402 
1403 	ppgtt_get_guest_entry(spt, &we, index);
1404 
1405 	ops->test_pse(&we);
1406 
1407 	if (bytes == info->gtt_entry_size) {
1408 		ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1409 		if (ret)
1410 			return ret;
1411 	} else {
1412 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1413 			int type = spt->shadow_page.type;
1414 
1415 			ppgtt_get_shadow_entry(spt, &se, index);
1416 			ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1417 			if (ret)
1418 				return ret;
1419 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1420 			ppgtt_set_shadow_entry(spt, &se, index);
1421 		}
1422 		ppgtt_set_post_shadow(spt, index);
1423 	}
1424 
1425 	if (!enable_out_of_sync)
1426 		return 0;
1427 
1428 	gpt->write_cnt++;
1429 
1430 	if (gpt->oos_page)
1431 		ops->set_entry(gpt->oos_page->mem, &we, index,
1432 				false, 0, vgpu);
1433 
1434 	if (can_do_out_of_sync(gpt)) {
1435 		if (!gpt->oos_page)
1436 			ppgtt_allocate_oos_page(vgpu, gpt);
1437 
1438 		ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1439 		if (ret < 0)
1440 			return ret;
1441 	}
1442 	return 0;
1443 }
1444 
1445 /*
1446  * mm page table allocation policy for bdw+
1447  *  - for ggtt, only virtual page table will be allocated.
1448  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1449  */
1450 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1451 {
1452 	struct intel_vgpu *vgpu = mm->vgpu;
1453 	struct intel_gvt *gvt = vgpu->gvt;
1454 	const struct intel_gvt_device_info *info = &gvt->device_info;
1455 	void *mem;
1456 
1457 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1458 		mm->page_table_entry_cnt = 4;
1459 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1460 			info->gtt_entry_size;
1461 		mem = kzalloc(mm->has_shadow_page_table ?
1462 			mm->page_table_entry_size * 2
1463 				: mm->page_table_entry_size, GFP_KERNEL);
1464 		if (!mem)
1465 			return -ENOMEM;
1466 		mm->virtual_page_table = mem;
1467 		if (!mm->has_shadow_page_table)
1468 			return 0;
1469 		mm->shadow_page_table = mem + mm->page_table_entry_size;
1470 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1471 		mm->page_table_entry_cnt =
1472 			(gvt_ggtt_gm_sz(gvt) >> I915_GTT_PAGE_SHIFT);
1473 		mm->page_table_entry_size = mm->page_table_entry_cnt *
1474 			info->gtt_entry_size;
1475 		mem = vzalloc(mm->page_table_entry_size);
1476 		if (!mem)
1477 			return -ENOMEM;
1478 		mm->virtual_page_table = mem;
1479 	}
1480 	return 0;
1481 }
1482 
1483 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1484 {
1485 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1486 		kfree(mm->virtual_page_table);
1487 	} else if (mm->type == INTEL_GVT_MM_GGTT) {
1488 		if (mm->virtual_page_table)
1489 			vfree(mm->virtual_page_table);
1490 	}
1491 	mm->virtual_page_table = mm->shadow_page_table = NULL;
1492 }
1493 
1494 static void invalidate_mm(struct intel_vgpu_mm *mm)
1495 {
1496 	struct intel_vgpu *vgpu = mm->vgpu;
1497 	struct intel_gvt *gvt = vgpu->gvt;
1498 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1499 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1500 	struct intel_gvt_gtt_entry se;
1501 	int i;
1502 
1503 	if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1504 		return;
1505 
1506 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1507 		ppgtt_get_shadow_root_entry(mm, &se, i);
1508 		if (!ops->test_present(&se))
1509 			continue;
1510 		ppgtt_invalidate_shadow_page_by_shadow_entry(
1511 				vgpu, &se);
1512 		se.val64 = 0;
1513 		ppgtt_set_shadow_root_entry(mm, &se, i);
1514 
1515 		trace_gpt_change(vgpu->id, "destroy root pointer",
1516 				NULL, se.type, se.val64, i);
1517 	}
1518 	mm->shadowed = false;
1519 }
1520 
1521 /**
1522  * intel_vgpu_destroy_mm - destroy a mm object
1523  * @mm: a kref object
1524  *
1525  * This function is used to destroy a mm object for vGPU
1526  *
1527  */
1528 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1529 {
1530 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1531 	struct intel_vgpu *vgpu = mm->vgpu;
1532 	struct intel_gvt *gvt = vgpu->gvt;
1533 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1534 
1535 	if (!mm->initialized)
1536 		goto out;
1537 
1538 	list_del(&mm->list);
1539 	list_del(&mm->lru_list);
1540 
1541 	if (mm->has_shadow_page_table)
1542 		invalidate_mm(mm);
1543 
1544 	gtt->mm_free_page_table(mm);
1545 out:
1546 	kfree(mm);
1547 }
1548 
1549 static int shadow_mm(struct intel_vgpu_mm *mm)
1550 {
1551 	struct intel_vgpu *vgpu = mm->vgpu;
1552 	struct intel_gvt *gvt = vgpu->gvt;
1553 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1554 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1555 	struct intel_vgpu_ppgtt_spt *spt;
1556 	struct intel_gvt_gtt_entry ge, se;
1557 	int i;
1558 	int ret;
1559 
1560 	if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1561 		return 0;
1562 
1563 	mm->shadowed = true;
1564 
1565 	for (i = 0; i < mm->page_table_entry_cnt; i++) {
1566 		ppgtt_get_guest_root_entry(mm, &ge, i);
1567 		if (!ops->test_present(&ge))
1568 			continue;
1569 
1570 		trace_gpt_change(vgpu->id, __func__, NULL,
1571 				ge.type, ge.val64, i);
1572 
1573 		spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1574 		if (IS_ERR(spt)) {
1575 			gvt_vgpu_err("fail to populate guest root pointer\n");
1576 			ret = PTR_ERR(spt);
1577 			goto fail;
1578 		}
1579 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1580 		ppgtt_set_shadow_root_entry(mm, &se, i);
1581 
1582 		trace_gpt_change(vgpu->id, "populate root pointer",
1583 				NULL, se.type, se.val64, i);
1584 	}
1585 	return 0;
1586 fail:
1587 	invalidate_mm(mm);
1588 	return ret;
1589 }
1590 
1591 /**
1592  * intel_vgpu_create_mm - create a mm object for a vGPU
1593  * @vgpu: a vGPU
1594  * @mm_type: mm object type, should be PPGTT or GGTT
1595  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1596  *	to populate shadow later.
1597  * @page_table_level: describe the page table level of the mm object
1598  * @pde_base_index: pde root pointer base in GGTT MMIO.
1599  *
1600  * This function is used to create a mm object for a vGPU.
1601  *
1602  * Returns:
1603  * Zero on success, negative error code in pointer if failed.
1604  */
1605 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1606 		int mm_type, void *virtual_page_table, int page_table_level,
1607 		u32 pde_base_index)
1608 {
1609 	struct intel_gvt *gvt = vgpu->gvt;
1610 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1611 	struct intel_vgpu_mm *mm;
1612 	int ret;
1613 
1614 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1615 	if (!mm) {
1616 		ret = -ENOMEM;
1617 		goto fail;
1618 	}
1619 
1620 	mm->type = mm_type;
1621 
1622 	if (page_table_level == 1)
1623 		mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1624 	else if (page_table_level == 3)
1625 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1626 	else if (page_table_level == 4)
1627 		mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1628 	else {
1629 		WARN_ON(1);
1630 		ret = -EINVAL;
1631 		goto fail;
1632 	}
1633 
1634 	mm->page_table_level = page_table_level;
1635 	mm->pde_base_index = pde_base_index;
1636 
1637 	mm->vgpu = vgpu;
1638 	mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1639 
1640 	kref_init(&mm->ref);
1641 	atomic_set(&mm->pincount, 0);
1642 	INIT_LIST_HEAD(&mm->list);
1643 	INIT_LIST_HEAD(&mm->lru_list);
1644 	list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1645 
1646 	ret = gtt->mm_alloc_page_table(mm);
1647 	if (ret) {
1648 		gvt_vgpu_err("fail to allocate page table for mm\n");
1649 		goto fail;
1650 	}
1651 
1652 	mm->initialized = true;
1653 
1654 	if (virtual_page_table)
1655 		memcpy(mm->virtual_page_table, virtual_page_table,
1656 				mm->page_table_entry_size);
1657 
1658 	if (mm->has_shadow_page_table) {
1659 		ret = shadow_mm(mm);
1660 		if (ret)
1661 			goto fail;
1662 		list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1663 	}
1664 	return mm;
1665 fail:
1666 	gvt_vgpu_err("fail to create mm\n");
1667 	if (mm)
1668 		intel_gvt_mm_unreference(mm);
1669 	return ERR_PTR(ret);
1670 }
1671 
1672 /**
1673  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1674  * @mm: a vGPU mm object
1675  *
1676  * This function is called when user doesn't want to use a vGPU mm object
1677  */
1678 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1679 {
1680 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1681 		return;
1682 
1683 	atomic_dec(&mm->pincount);
1684 }
1685 
1686 /**
1687  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1688  * @vgpu: a vGPU
1689  *
1690  * This function is called when user wants to use a vGPU mm object. If this
1691  * mm object hasn't been shadowed yet, the shadow will be populated at this
1692  * time.
1693  *
1694  * Returns:
1695  * Zero on success, negative error code if failed.
1696  */
1697 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1698 {
1699 	int ret;
1700 
1701 	if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1702 		return 0;
1703 
1704 	if (!mm->shadowed) {
1705 		ret = shadow_mm(mm);
1706 		if (ret)
1707 			return ret;
1708 	}
1709 
1710 	atomic_inc(&mm->pincount);
1711 	list_del_init(&mm->lru_list);
1712 	list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1713 	return 0;
1714 }
1715 
1716 static int reclaim_one_mm(struct intel_gvt *gvt)
1717 {
1718 	struct intel_vgpu_mm *mm;
1719 	struct list_head *pos, *n;
1720 
1721 	list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1722 		mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1723 
1724 		if (mm->type != INTEL_GVT_MM_PPGTT)
1725 			continue;
1726 		if (atomic_read(&mm->pincount))
1727 			continue;
1728 
1729 		list_del_init(&mm->lru_list);
1730 		invalidate_mm(mm);
1731 		return 1;
1732 	}
1733 	return 0;
1734 }
1735 
1736 /*
1737  * GMA translation APIs.
1738  */
1739 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1740 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1741 {
1742 	struct intel_vgpu *vgpu = mm->vgpu;
1743 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1744 	struct intel_vgpu_ppgtt_spt *s;
1745 
1746 	if (WARN_ON(!mm->has_shadow_page_table))
1747 		return -EINVAL;
1748 
1749 	s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1750 	if (!s)
1751 		return -ENXIO;
1752 
1753 	if (!guest)
1754 		ppgtt_get_shadow_entry(s, e, index);
1755 	else
1756 		ppgtt_get_guest_entry(s, e, index);
1757 	return 0;
1758 }
1759 
1760 /**
1761  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1762  * @mm: mm object. could be a PPGTT or GGTT mm object
1763  * @gma: graphics memory address in this mm object
1764  *
1765  * This function is used to translate a graphics memory address in specific
1766  * graphics memory space to guest physical address.
1767  *
1768  * Returns:
1769  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1770  */
1771 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1772 {
1773 	struct intel_vgpu *vgpu = mm->vgpu;
1774 	struct intel_gvt *gvt = vgpu->gvt;
1775 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1776 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1777 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1778 	unsigned long gma_index[4];
1779 	struct intel_gvt_gtt_entry e;
1780 	int i, index;
1781 	int ret;
1782 
1783 	if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1784 		return INTEL_GVT_INVALID_ADDR;
1785 
1786 	if (mm->type == INTEL_GVT_MM_GGTT) {
1787 		if (!vgpu_gmadr_is_valid(vgpu, gma))
1788 			goto err;
1789 
1790 		ret = ggtt_get_guest_entry(mm, &e,
1791 				gma_ops->gma_to_ggtt_pte_index(gma));
1792 		if (ret)
1793 			goto err;
1794 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1795 			+ (gma & ~I915_GTT_PAGE_MASK);
1796 
1797 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1798 		return gpa;
1799 	}
1800 
1801 	switch (mm->page_table_level) {
1802 	case 4:
1803 		ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1804 		if (ret)
1805 			goto err;
1806 		gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1807 		gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1808 		gma_index[2] = gma_ops->gma_to_pde_index(gma);
1809 		gma_index[3] = gma_ops->gma_to_pte_index(gma);
1810 		index = 4;
1811 		break;
1812 	case 3:
1813 		ret = ppgtt_get_shadow_root_entry(mm, &e,
1814 				gma_ops->gma_to_l3_pdp_index(gma));
1815 		if (ret)
1816 			goto err;
1817 		gma_index[0] = gma_ops->gma_to_pde_index(gma);
1818 		gma_index[1] = gma_ops->gma_to_pte_index(gma);
1819 		index = 2;
1820 		break;
1821 	case 2:
1822 		ret = ppgtt_get_shadow_root_entry(mm, &e,
1823 				gma_ops->gma_to_pde_index(gma));
1824 		if (ret)
1825 			goto err;
1826 		gma_index[0] = gma_ops->gma_to_pte_index(gma);
1827 		index = 1;
1828 		break;
1829 	default:
1830 		WARN_ON(1);
1831 		goto err;
1832 	}
1833 
1834 	/* walk into the shadow page table and get gpa from guest entry */
1835 	for (i = 0; i < index; i++) {
1836 		ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1837 			(i == index - 1));
1838 		if (ret)
1839 			goto err;
1840 
1841 		if (!pte_ops->test_present(&e)) {
1842 			gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1843 			goto err;
1844 		}
1845 	}
1846 
1847 	gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1848 		+ (gma & ~I915_GTT_PAGE_MASK);
1849 
1850 	trace_gma_translate(vgpu->id, "ppgtt", 0,
1851 			mm->page_table_level, gma, gpa);
1852 	return gpa;
1853 err:
1854 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1855 	return INTEL_GVT_INVALID_ADDR;
1856 }
1857 
1858 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1859 	unsigned int off, void *p_data, unsigned int bytes)
1860 {
1861 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1862 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1863 	unsigned long index = off >> info->gtt_entry_size_shift;
1864 	struct intel_gvt_gtt_entry e;
1865 
1866 	if (bytes != 4 && bytes != 8)
1867 		return -EINVAL;
1868 
1869 	ggtt_get_guest_entry(ggtt_mm, &e, index);
1870 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1871 			bytes);
1872 	return 0;
1873 }
1874 
1875 /**
1876  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1877  * @vgpu: a vGPU
1878  * @off: register offset
1879  * @p_data: data will be returned to guest
1880  * @bytes: data length
1881  *
1882  * This function is used to emulate the GTT MMIO register read
1883  *
1884  * Returns:
1885  * Zero on success, error code if failed.
1886  */
1887 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1888 	void *p_data, unsigned int bytes)
1889 {
1890 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1891 	int ret;
1892 
1893 	if (bytes != 4 && bytes != 8)
1894 		return -EINVAL;
1895 
1896 	off -= info->gtt_start_offset;
1897 	ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1898 	return ret;
1899 }
1900 
1901 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1902 	void *p_data, unsigned int bytes)
1903 {
1904 	struct intel_gvt *gvt = vgpu->gvt;
1905 	const struct intel_gvt_device_info *info = &gvt->device_info;
1906 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1907 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1908 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1909 	unsigned long gma;
1910 	struct intel_gvt_gtt_entry e, m;
1911 	int ret;
1912 
1913 	if (bytes != 4 && bytes != 8)
1914 		return -EINVAL;
1915 
1916 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1917 
1918 	/* the VM may configure the whole GM space when ballooning is used */
1919 	if (!vgpu_gmadr_is_valid(vgpu, gma))
1920 		return 0;
1921 
1922 	ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1923 
1924 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1925 			bytes);
1926 
1927 	if (ops->test_present(&e)) {
1928 		ret = gtt_entry_p2m(vgpu, &e, &m);
1929 		if (ret) {
1930 			gvt_vgpu_err("fail to translate guest gtt entry\n");
1931 			/* guest driver may read/write the entry when partial
1932 			 * update the entry in this situation p2m will fail
1933 			 * settting the shadow entry to point to a scratch page
1934 			 */
1935 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1936 		}
1937 	} else {
1938 		m = e;
1939 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1940 	}
1941 
1942 	ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1943 	gtt_invalidate(gvt->dev_priv);
1944 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1945 	return 0;
1946 }
1947 
1948 /*
1949  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1950  * @vgpu: a vGPU
1951  * @off: register offset
1952  * @p_data: data from guest write
1953  * @bytes: data length
1954  *
1955  * This function is used to emulate the GTT MMIO register write
1956  *
1957  * Returns:
1958  * Zero on success, error code if failed.
1959  */
1960 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1961 	void *p_data, unsigned int bytes)
1962 {
1963 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1964 	int ret;
1965 
1966 	if (bytes != 4 && bytes != 8)
1967 		return -EINVAL;
1968 
1969 	off -= info->gtt_start_offset;
1970 	ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1971 	return ret;
1972 }
1973 
1974 int intel_vgpu_write_protect_handler(struct intel_vgpu *vgpu, u64 pa,
1975 				     void *p_data, unsigned int bytes)
1976 {
1977 	struct intel_gvt *gvt = vgpu->gvt;
1978 	int ret = 0;
1979 
1980 	if (atomic_read(&vgpu->gtt.n_tracked_guest_page)) {
1981 		struct intel_vgpu_page_track *t;
1982 
1983 		mutex_lock(&gvt->lock);
1984 
1985 		t = intel_vgpu_find_tracked_page(vgpu, pa >> PAGE_SHIFT);
1986 		if (t) {
1987 			if (unlikely(vgpu->failsafe)) {
1988 				/* remove write protection to prevent furture traps */
1989 				intel_vgpu_clean_page_track(vgpu, t);
1990 			} else {
1991 				ret = t->handler(t, pa, p_data, bytes);
1992 				if (ret) {
1993 					gvt_err("guest page write error %d, "
1994 						"gfn 0x%lx, pa 0x%llx, "
1995 						"var 0x%x, len %d\n",
1996 						ret, t->gfn, pa,
1997 						*(u32 *)p_data, bytes);
1998 				}
1999 			}
2000 		}
2001 		mutex_unlock(&gvt->lock);
2002 	}
2003 	return ret;
2004 }
2005 
2006 
2007 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2008 		intel_gvt_gtt_type_t type)
2009 {
2010 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2011 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2012 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2013 				vgpu->gvt->device_info.gtt_entry_size_shift;
2014 	void *scratch_pt;
2015 	int i;
2016 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2017 	dma_addr_t daddr;
2018 
2019 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2020 		return -EINVAL;
2021 
2022 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2023 	if (!scratch_pt) {
2024 		gvt_vgpu_err("fail to allocate scratch page\n");
2025 		return -ENOMEM;
2026 	}
2027 
2028 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2029 			4096, PCI_DMA_BIDIRECTIONAL);
2030 	if (dma_mapping_error(dev, daddr)) {
2031 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2032 		__free_page(virt_to_page(scratch_pt));
2033 		return -ENOMEM;
2034 	}
2035 	gtt->scratch_pt[type].page_mfn =
2036 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2037 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2038 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2039 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2040 
2041 	/* Build the tree by full filled the scratch pt with the entries which
2042 	 * point to the next level scratch pt or scratch page. The
2043 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2044 	 * 'type' pt.
2045 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2046 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2047 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2048 	 */
2049 	if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
2050 		struct intel_gvt_gtt_entry se;
2051 
2052 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2053 		se.type = get_entry_type(type - 1);
2054 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2055 
2056 		/* The entry parameters like present/writeable/cache type
2057 		 * set to the same as i915's scratch page tree.
2058 		 */
2059 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2060 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2061 			se.val64 |= PPAT_CACHED;
2062 
2063 		for (i = 0; i < page_entry_num; i++)
2064 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2071 {
2072 	int i;
2073 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2074 	dma_addr_t daddr;
2075 
2076 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2077 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2078 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2079 					I915_GTT_PAGE_SHIFT);
2080 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2081 			__free_page(vgpu->gtt.scratch_pt[i].page);
2082 			vgpu->gtt.scratch_pt[i].page = NULL;
2083 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2084 		}
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2091 {
2092 	int i, ret;
2093 
2094 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2095 		ret = alloc_scratch_pages(vgpu, i);
2096 		if (ret)
2097 			goto err;
2098 	}
2099 
2100 	return 0;
2101 
2102 err:
2103 	release_scratch_page_tree(vgpu);
2104 	return ret;
2105 }
2106 
2107 /**
2108  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2109  * @vgpu: a vGPU
2110  *
2111  * This function is used to initialize per-vGPU graphics memory virtualization
2112  * components.
2113  *
2114  * Returns:
2115  * Zero on success, error code if failed.
2116  */
2117 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2118 {
2119 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2120 	struct intel_vgpu_mm *ggtt_mm;
2121 
2122 	hash_init(gtt->tracked_guest_page_hash_table);
2123 	hash_init(gtt->shadow_page_hash_table);
2124 
2125 	INIT_LIST_HEAD(&gtt->mm_list_head);
2126 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2127 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2128 
2129 	intel_vgpu_reset_ggtt(vgpu);
2130 
2131 	ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2132 			NULL, 1, 0);
2133 	if (IS_ERR(ggtt_mm)) {
2134 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2135 		return PTR_ERR(ggtt_mm);
2136 	}
2137 
2138 	gtt->ggtt_mm = ggtt_mm;
2139 
2140 	return create_scratch_page_tree(vgpu);
2141 }
2142 
2143 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2144 {
2145 	struct list_head *pos, *n;
2146 	struct intel_vgpu_mm *mm;
2147 
2148 	list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2149 		mm = container_of(pos, struct intel_vgpu_mm, list);
2150 		if (mm->type == type) {
2151 			vgpu->gvt->gtt.mm_free_page_table(mm);
2152 			list_del(&mm->list);
2153 			list_del(&mm->lru_list);
2154 			kfree(mm);
2155 		}
2156 	}
2157 }
2158 
2159 /**
2160  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2161  * @vgpu: a vGPU
2162  *
2163  * This function is used to clean up per-vGPU graphics memory virtualization
2164  * components.
2165  *
2166  * Returns:
2167  * Zero on success, error code if failed.
2168  */
2169 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2170 {
2171 	ppgtt_free_all_shadow_page(vgpu);
2172 	release_scratch_page_tree(vgpu);
2173 
2174 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2175 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2176 }
2177 
2178 static void clean_spt_oos(struct intel_gvt *gvt)
2179 {
2180 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2181 	struct list_head *pos, *n;
2182 	struct intel_vgpu_oos_page *oos_page;
2183 
2184 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2185 		"someone is still using oos page\n");
2186 
2187 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2188 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2189 		list_del(&oos_page->list);
2190 		kfree(oos_page);
2191 	}
2192 }
2193 
2194 static int setup_spt_oos(struct intel_gvt *gvt)
2195 {
2196 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2197 	struct intel_vgpu_oos_page *oos_page;
2198 	int i;
2199 	int ret;
2200 
2201 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2202 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2203 
2204 	for (i = 0; i < preallocated_oos_pages; i++) {
2205 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2206 		if (!oos_page) {
2207 			ret = -ENOMEM;
2208 			goto fail;
2209 		}
2210 
2211 		INIT_LIST_HEAD(&oos_page->list);
2212 		INIT_LIST_HEAD(&oos_page->vm_list);
2213 		oos_page->id = i;
2214 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2215 	}
2216 
2217 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2218 
2219 	return 0;
2220 fail:
2221 	clean_spt_oos(gvt);
2222 	return ret;
2223 }
2224 
2225 /**
2226  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2227  * @vgpu: a vGPU
2228  * @page_table_level: PPGTT page table level
2229  * @root_entry: PPGTT page table root pointers
2230  *
2231  * This function is used to find a PPGTT mm object from mm object pool
2232  *
2233  * Returns:
2234  * pointer to mm object on success, NULL if failed.
2235  */
2236 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2237 		int page_table_level, void *root_entry)
2238 {
2239 	struct list_head *pos;
2240 	struct intel_vgpu_mm *mm;
2241 	u64 *src, *dst;
2242 
2243 	list_for_each(pos, &vgpu->gtt.mm_list_head) {
2244 		mm = container_of(pos, struct intel_vgpu_mm, list);
2245 		if (mm->type != INTEL_GVT_MM_PPGTT)
2246 			continue;
2247 
2248 		if (mm->page_table_level != page_table_level)
2249 			continue;
2250 
2251 		src = root_entry;
2252 		dst = mm->virtual_page_table;
2253 
2254 		if (page_table_level == 3) {
2255 			if (src[0] == dst[0]
2256 					&& src[1] == dst[1]
2257 					&& src[2] == dst[2]
2258 					&& src[3] == dst[3])
2259 				return mm;
2260 		} else {
2261 			if (src[0] == dst[0])
2262 				return mm;
2263 		}
2264 	}
2265 	return NULL;
2266 }
2267 
2268 /**
2269  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2270  * g2v notification
2271  * @vgpu: a vGPU
2272  * @page_table_level: PPGTT page table level
2273  *
2274  * This function is used to create a PPGTT mm object from a guest to GVT-g
2275  * notification.
2276  *
2277  * Returns:
2278  * Zero on success, negative error code if failed.
2279  */
2280 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2281 		int page_table_level)
2282 {
2283 	u64 *pdp = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
2284 	struct intel_vgpu_mm *mm;
2285 
2286 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2287 		return -EINVAL;
2288 
2289 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2290 	if (mm) {
2291 		intel_gvt_mm_reference(mm);
2292 	} else {
2293 		mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2294 				pdp, page_table_level, 0);
2295 		if (IS_ERR(mm)) {
2296 			gvt_vgpu_err("fail to create mm\n");
2297 			return PTR_ERR(mm);
2298 		}
2299 	}
2300 	return 0;
2301 }
2302 
2303 /**
2304  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2305  * g2v notification
2306  * @vgpu: a vGPU
2307  * @page_table_level: PPGTT page table level
2308  *
2309  * This function is used to create a PPGTT mm object from a guest to GVT-g
2310  * notification.
2311  *
2312  * Returns:
2313  * Zero on success, negative error code if failed.
2314  */
2315 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2316 		int page_table_level)
2317 {
2318 	u64 *pdp = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
2319 	struct intel_vgpu_mm *mm;
2320 
2321 	if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2322 		return -EINVAL;
2323 
2324 	mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2325 	if (!mm) {
2326 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2327 		return -EINVAL;
2328 	}
2329 	intel_gvt_mm_unreference(mm);
2330 	return 0;
2331 }
2332 
2333 /**
2334  * intel_gvt_init_gtt - initialize mm components of a GVT device
2335  * @gvt: GVT device
2336  *
2337  * This function is called at the initialization stage, to initialize
2338  * the mm components of a GVT device.
2339  *
2340  * Returns:
2341  * zero on success, negative error code if failed.
2342  */
2343 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2344 {
2345 	int ret;
2346 	void *page;
2347 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2348 	dma_addr_t daddr;
2349 
2350 	gvt_dbg_core("init gtt\n");
2351 
2352 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2353 		|| IS_KABYLAKE(gvt->dev_priv)) {
2354 		gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2355 		gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2356 		gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2357 		gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2358 	} else {
2359 		return -ENODEV;
2360 	}
2361 
2362 	page = (void *)get_zeroed_page(GFP_KERNEL);
2363 	if (!page) {
2364 		gvt_err("fail to allocate scratch ggtt page\n");
2365 		return -ENOMEM;
2366 	}
2367 
2368 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2369 			4096, PCI_DMA_BIDIRECTIONAL);
2370 	if (dma_mapping_error(dev, daddr)) {
2371 		gvt_err("fail to dmamap scratch ggtt page\n");
2372 		__free_page(virt_to_page(page));
2373 		return -ENOMEM;
2374 	}
2375 
2376 	gvt->gtt.scratch_page = virt_to_page(page);
2377 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2378 
2379 	if (enable_out_of_sync) {
2380 		ret = setup_spt_oos(gvt);
2381 		if (ret) {
2382 			gvt_err("fail to initialize SPT oos\n");
2383 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2384 			__free_page(gvt->gtt.scratch_page);
2385 			return ret;
2386 		}
2387 	}
2388 	INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2389 	return 0;
2390 }
2391 
2392 /**
2393  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2394  * @gvt: GVT device
2395  *
2396  * This function is called at the driver unloading stage, to clean up the
2397  * the mm components of a GVT device.
2398  *
2399  */
2400 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2401 {
2402 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2403 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2404 					I915_GTT_PAGE_SHIFT);
2405 
2406 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2407 
2408 	__free_page(gvt->gtt.scratch_page);
2409 
2410 	if (enable_out_of_sync)
2411 		clean_spt_oos(gvt);
2412 }
2413 
2414 /**
2415  * intel_vgpu_reset_ggtt - reset the GGTT entry
2416  * @vgpu: a vGPU
2417  *
2418  * This function is called at the vGPU create stage
2419  * to reset all the GGTT entries.
2420  *
2421  */
2422 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2423 {
2424 	struct intel_gvt *gvt = vgpu->gvt;
2425 	struct drm_i915_private *dev_priv = gvt->dev_priv;
2426 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2427 	u32 index;
2428 	u32 offset;
2429 	u32 num_entries;
2430 	struct intel_gvt_gtt_entry e;
2431 
2432 	memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2433 	e.type = GTT_TYPE_GGTT_PTE;
2434 	ops->set_pfn(&e, gvt->gtt.scratch_mfn);
2435 	e.val64 |= _PAGE_PRESENT;
2436 
2437 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2438 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2439 	for (offset = 0; offset < num_entries; offset++)
2440 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2441 
2442 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2443 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2444 	for (offset = 0; offset < num_entries; offset++)
2445 		ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2446 
2447 	gtt_invalidate(dev_priv);
2448 }
2449 
2450 /**
2451  * intel_vgpu_reset_gtt - reset the all GTT related status
2452  * @vgpu: a vGPU
2453  *
2454  * This function is called from vfio core to reset reset all
2455  * GTT related status, including GGTT, PPGTT, scratch page.
2456  *
2457  */
2458 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2459 {
2460 	ppgtt_free_all_shadow_page(vgpu);
2461 
2462 	/* Shadow pages are only created when there is no page
2463 	 * table tracking data, so remove page tracking data after
2464 	 * removing the shadow pages.
2465 	 */
2466 	intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2467 
2468 	intel_vgpu_reset_ggtt(vgpu);
2469 }
2470