xref: /linux/drivers/gpu/drm/i915/gvt/gtt.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if (size == 0)
57 		return vgpu_gmadr_is_valid(vgpu, addr);
58 
59 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 		return true;
62 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 		return true;
65 
66 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 		     addr, size);
68 	return false;
69 }
70 
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75 
76 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 		     "invalid guest gmadr %llx\n", g_addr))
78 		return -EACCES;
79 
80 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
82 			  + (g_addr - vgpu_aperture_offset(vgpu));
83 	else
84 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
85 			  + (g_addr - vgpu_hidden_offset(vgpu));
86 	return 0;
87 }
88 
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 		     "invalid host gmadr %llx\n", h_addr))
96 		return -EACCES;
97 
98 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
100 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 	else
102 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
103 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 	return 0;
105 }
106 
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 			     unsigned long *h_index)
109 {
110 	u64 h_addr;
111 	int ret;
112 
113 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 				       &h_addr);
115 	if (ret)
116 		return ret;
117 
118 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 	return 0;
120 }
121 
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 			     unsigned long *g_index)
124 {
125 	u64 g_addr;
126 	int ret;
127 
128 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 				       &g_addr);
130 	if (ret)
131 		return ret;
132 
133 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 	return 0;
135 }
136 
137 #define gtt_type_is_entry(type) \
138 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141 
142 #define gtt_type_is_pt(type) \
143 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144 
145 #define gtt_type_is_pte_pt(type) \
146 	(type == GTT_TYPE_PPGTT_PTE_PT)
147 
148 #define gtt_type_is_root_pointer(type) \
149 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150 
151 #define gtt_init_entry(e, t, p, v) do { \
152 	(e)->type = t; \
153 	(e)->pdev = p; \
154 	memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156 
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172 
173 struct gtt_type_table_entry {
174 	int entry_type;
175 	int pt_type;
176 	int next_pt_type;
177 	int pse_entry_type;
178 };
179 
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 	[type] = { \
182 		.entry_type = e_type, \
183 		.pt_type = cpt_type, \
184 		.next_pt_type = npt_type, \
185 		.pse_entry_type = pse_type, \
186 	}
187 
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 			GTT_TYPE_INVALID,
192 			GTT_TYPE_PPGTT_PML4_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 			GTT_TYPE_PPGTT_PML4_ENTRY,
196 			GTT_TYPE_PPGTT_PML4_PT,
197 			GTT_TYPE_PPGTT_PDP_PT,
198 			GTT_TYPE_INVALID),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 			GTT_TYPE_PPGTT_PML4_ENTRY,
201 			GTT_TYPE_PPGTT_PML4_PT,
202 			GTT_TYPE_PPGTT_PDP_PT,
203 			GTT_TYPE_INVALID),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 			GTT_TYPE_INVALID,
212 			GTT_TYPE_PPGTT_PDE_PT,
213 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 			GTT_TYPE_PPGTT_PDP_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_PT,
217 			GTT_TYPE_PPGTT_PDE_PT,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PDE_ENTRY,
221 			GTT_TYPE_PPGTT_PDE_PT,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_ENTRY,
226 			GTT_TYPE_PPGTT_PDE_PT,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 	/* We take IPS bit as 'PSE' for PTE level. */
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 			GTT_TYPE_PPGTT_PTE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 			GTT_TYPE_PPGTT_PTE_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 			GTT_TYPE_PPGTT_PDE_ENTRY,
247 			GTT_TYPE_PPGTT_PDE_PT,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 			GTT_TYPE_PPGTT_PDP_ENTRY,
252 			GTT_TYPE_PPGTT_PDP_PT,
253 			GTT_TYPE_INVALID,
254 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 			GTT_TYPE_GGTT_PTE,
257 			GTT_TYPE_INVALID,
258 			GTT_TYPE_INVALID,
259 			GTT_TYPE_INVALID),
260 };
261 
262 static inline int get_next_pt_type(int type)
263 {
264 	return gtt_type_table[type].next_pt_type;
265 }
266 
267 static inline int get_pt_type(int type)
268 {
269 	return gtt_type_table[type].pt_type;
270 }
271 
272 static inline int get_entry_type(int type)
273 {
274 	return gtt_type_table[type].entry_type;
275 }
276 
277 static inline int get_pse_type(int type)
278 {
279 	return gtt_type_table[type].pse_entry_type;
280 }
281 
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285 
286 	return readq(addr);
287 }
288 
289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 	mmio_hw_access_pre(gt);
292 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 	mmio_hw_access_post(gt);
294 }
295 
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299 
300 	writeq(pte, addr);
301 }
302 
303 static inline int gtt_get_entry64(void *pt,
304 		struct intel_gvt_gtt_entry *e,
305 		unsigned long index, bool hypervisor_access, unsigned long gpa,
306 		struct intel_vgpu *vgpu)
307 {
308 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 	int ret;
310 
311 	if (WARN_ON(info->gtt_entry_size != 8))
312 		return -EINVAL;
313 
314 	if (hypervisor_access) {
315 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 				(index << info->gtt_entry_size_shift),
317 				&e->val64, 8);
318 		if (WARN_ON(ret))
319 			return ret;
320 	} else if (!pt) {
321 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 	} else {
323 		e->val64 = *((u64 *)pt + index);
324 	}
325 	return 0;
326 }
327 
328 static inline int gtt_set_entry64(void *pt,
329 		struct intel_gvt_gtt_entry *e,
330 		unsigned long index, bool hypervisor_access, unsigned long gpa,
331 		struct intel_vgpu *vgpu)
332 {
333 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 	int ret;
335 
336 	if (WARN_ON(info->gtt_entry_size != 8))
337 		return -EINVAL;
338 
339 	if (hypervisor_access) {
340 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 				(index << info->gtt_entry_size_shift),
342 				&e->val64, 8);
343 		if (WARN_ON(ret))
344 			return ret;
345 	} else if (!pt) {
346 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 	} else {
348 		*((u64 *)pt + index) = e->val64;
349 	}
350 	return 0;
351 }
352 
353 #define GTT_HAW 46
354 
355 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
359 
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362 
363 #define GTT_64K_PTE_STRIDE 16
364 
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 	unsigned long pfn;
368 
369 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 	else
376 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 	return pfn;
378 }
379 
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 		e->val64 &= ~ADDR_1G_MASK;
384 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 		e->val64 &= ~ADDR_2M_MASK;
387 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 		e->val64 &= ~ADDR_64K_MASK;
390 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 	} else {
392 		e->val64 &= ~ADDR_4K_MASK;
393 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 	}
395 
396 	e->val64 |= (pfn << PAGE_SHIFT);
397 }
398 
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 	return !!(e->val64 & _PAGE_PSE);
402 }
403 
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 	if (gen8_gtt_test_pse(e)) {
407 		switch (e->type) {
408 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 			e->val64 &= ~_PAGE_PSE;
410 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 			break;
412 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 			e->val64 &= ~_PAGE_PSE;
415 			break;
416 		default:
417 			WARN_ON(1);
418 		}
419 	}
420 }
421 
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 		return false;
426 
427 	return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429 
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 		return;
434 
435 	e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437 
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 	/*
441 	 * i915 writes PDP root pointer registers without present bit,
442 	 * it also works, so we need to treat root pointer entry
443 	 * specifically.
444 	 */
445 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 		return (e->val64 != 0);
448 	else
449 		return (e->val64 & _PAGE_PRESENT);
450 }
451 
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 	e->val64 &= ~_PAGE_PRESENT;
455 }
456 
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 	e->val64 |= _PAGE_PRESENT;
460 }
461 
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466 
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471 
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476 
477 /*
478  * Per-platform GMA routines.
479  */
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483 
484 	trace_gma_index(__func__, gma, x);
485 	return x;
486 }
487 
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 	unsigned long x = (exp); \
492 	trace_gma_index(__func__, gma, x); \
493 	return x; \
494 }
495 
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501 
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 	.get_entry = gtt_get_entry64,
504 	.set_entry = gtt_set_entry64,
505 	.clear_present = gtt_entry_clear_present,
506 	.set_present = gtt_entry_set_present,
507 	.test_present = gen8_gtt_test_present,
508 	.test_pse = gen8_gtt_test_pse,
509 	.clear_pse = gen8_gtt_clear_pse,
510 	.clear_ips = gen8_gtt_clear_ips,
511 	.test_ips = gen8_gtt_test_ips,
512 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
513 	.set_64k_splited = gen8_gtt_set_64k_splited,
514 	.test_64k_splited = gen8_gtt_test_64k_splited,
515 	.get_pfn = gen8_gtt_get_pfn,
516 	.set_pfn = gen8_gtt_set_pfn,
517 };
518 
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 	.gma_to_pte_index = gen8_gma_to_pte_index,
522 	.gma_to_pde_index = gen8_gma_to_pde_index,
523 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527 
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 	struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 	switch (entry->type) {
533 	case GTT_TYPE_PPGTT_PDE_ENTRY:
534 	case GTT_TYPE_PPGTT_PDP_ENTRY:
535 		if (pte_ops->test_pse(entry))
536 			entry->type = get_pse_type(entry->type);
537 		break;
538 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 		if (ips)
540 			entry->type = get_pse_type(entry->type);
541 		break;
542 	default:
543 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 	}
545 
546 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548 
549 /*
550  * MM helpers.
551  */
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 		struct intel_gvt_gtt_entry *entry, unsigned long index,
554 		bool guest)
555 {
556 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557 
558 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559 
560 	entry->type = mm->ppgtt_mm.root_entry_type;
561 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 			   mm->ppgtt_mm.shadow_pdps,
563 			   entry, index, false, 0, mm->vgpu);
564 	update_entry_type_for_real(pte_ops, entry, false);
565 }
566 
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 		struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 	_ppgtt_get_root_entry(mm, entry, index, true);
571 }
572 
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 		struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 	_ppgtt_get_root_entry(mm, entry, index, false);
577 }
578 
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 		struct intel_gvt_gtt_entry *entry, unsigned long index,
581 		bool guest)
582 {
583 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584 
585 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 			   mm->ppgtt_mm.shadow_pdps,
587 			   entry, index, false, 0, mm->vgpu);
588 }
589 
590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591 		struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 	_ppgtt_set_root_entry(mm, entry, index, true);
594 }
595 
596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597 		struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 	_ppgtt_set_root_entry(mm, entry, index, false);
600 }
601 
602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603 		struct intel_gvt_gtt_entry *entry, unsigned long index)
604 {
605 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
606 
607 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
608 
609 	entry->type = GTT_TYPE_GGTT_PTE;
610 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
611 			   false, 0, mm->vgpu);
612 }
613 
614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615 		struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618 
619 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620 
621 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
622 			   false, 0, mm->vgpu);
623 }
624 
625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626 		struct intel_gvt_gtt_entry *entry, unsigned long index)
627 {
628 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
629 
630 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
631 
632 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
633 }
634 
635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636 		struct intel_gvt_gtt_entry *entry, unsigned long index)
637 {
638 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
639 
640 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
641 
642 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
643 }
644 
645 /*
646  * PPGTT shadow page table helpers.
647  */
648 static inline int ppgtt_spt_get_entry(
649 		struct intel_vgpu_ppgtt_spt *spt,
650 		void *page_table, int type,
651 		struct intel_gvt_gtt_entry *e, unsigned long index,
652 		bool guest)
653 {
654 	struct intel_gvt *gvt = spt->vgpu->gvt;
655 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
656 	int ret;
657 
658 	e->type = get_entry_type(type);
659 
660 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
661 		return -EINVAL;
662 
663 	ret = ops->get_entry(page_table, e, index, guest,
664 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
665 			spt->vgpu);
666 	if (ret)
667 		return ret;
668 
669 	update_entry_type_for_real(ops, e, guest ?
670 				   spt->guest_page.pde_ips : false);
671 
672 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673 		    type, e->type, index, e->val64);
674 	return 0;
675 }
676 
677 static inline int ppgtt_spt_set_entry(
678 		struct intel_vgpu_ppgtt_spt *spt,
679 		void *page_table, int type,
680 		struct intel_gvt_gtt_entry *e, unsigned long index,
681 		bool guest)
682 {
683 	struct intel_gvt *gvt = spt->vgpu->gvt;
684 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
685 
686 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
687 		return -EINVAL;
688 
689 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690 		    type, e->type, index, e->val64);
691 
692 	return ops->set_entry(page_table, e, index, guest,
693 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
694 			spt->vgpu);
695 }
696 
697 #define ppgtt_get_guest_entry(spt, e, index) \
698 	ppgtt_spt_get_entry(spt, NULL, \
699 		spt->guest_page.type, e, index, true)
700 
701 #define ppgtt_set_guest_entry(spt, e, index) \
702 	ppgtt_spt_set_entry(spt, NULL, \
703 		spt->guest_page.type, e, index, true)
704 
705 #define ppgtt_get_shadow_entry(spt, e, index) \
706 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707 		spt->shadow_page.type, e, index, false)
708 
709 #define ppgtt_set_shadow_entry(spt, e, index) \
710 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711 		spt->shadow_page.type, e, index, false)
712 
713 static void *alloc_spt(gfp_t gfp_mask)
714 {
715 	struct intel_vgpu_ppgtt_spt *spt;
716 
717 	spt = kzalloc(sizeof(*spt), gfp_mask);
718 	if (!spt)
719 		return NULL;
720 
721 	spt->shadow_page.page = alloc_page(gfp_mask);
722 	if (!spt->shadow_page.page) {
723 		kfree(spt);
724 		return NULL;
725 	}
726 	return spt;
727 }
728 
729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 	__free_page(spt->shadow_page.page);
732 	kfree(spt);
733 }
734 
735 static int detach_oos_page(struct intel_vgpu *vgpu,
736 		struct intel_vgpu_oos_page *oos_page);
737 
738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740 	struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
741 
742 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
743 
744 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745 		       PCI_DMA_BIDIRECTIONAL);
746 
747 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
748 
749 	if (spt->guest_page.gfn) {
750 		if (spt->guest_page.oos_page)
751 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
752 
753 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
754 	}
755 
756 	list_del_init(&spt->post_shadow_list);
757 	free_spt(spt);
758 }
759 
760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
761 {
762 	struct intel_vgpu_ppgtt_spt *spt, *spn;
763 	struct radix_tree_iter iter;
764 	LIST_HEAD(all_spt);
765 	void __rcu **slot;
766 
767 	rcu_read_lock();
768 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769 		spt = radix_tree_deref_slot(slot);
770 		list_move(&spt->post_shadow_list, &all_spt);
771 	}
772 	rcu_read_unlock();
773 
774 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
775 		ppgtt_free_spt(spt);
776 }
777 
778 static int ppgtt_handle_guest_write_page_table_bytes(
779 		struct intel_vgpu_ppgtt_spt *spt,
780 		u64 pa, void *p_data, int bytes);
781 
782 static int ppgtt_write_protection_handler(
783 		struct intel_vgpu_page_track *page_track,
784 		u64 gpa, void *data, int bytes)
785 {
786 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
787 
788 	int ret;
789 
790 	if (bytes != 4 && bytes != 8)
791 		return -EINVAL;
792 
793 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
794 	if (ret)
795 		return ret;
796 	return ret;
797 }
798 
799 /* Find a spt by guest gfn. */
800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801 		struct intel_vgpu *vgpu, unsigned long gfn)
802 {
803 	struct intel_vgpu_page_track *track;
804 
805 	track = intel_vgpu_find_page_track(vgpu, gfn);
806 	if (track && track->handler == ppgtt_write_protection_handler)
807 		return track->priv_data;
808 
809 	return NULL;
810 }
811 
812 /* Find the spt by shadow page mfn. */
813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814 		struct intel_vgpu *vgpu, unsigned long mfn)
815 {
816 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
817 }
818 
819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
820 
821 /* Allocate shadow page table without guest page. */
822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
824 {
825 	struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
826 	struct intel_vgpu_ppgtt_spt *spt = NULL;
827 	dma_addr_t daddr;
828 	int ret;
829 
830 retry:
831 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
832 	if (!spt) {
833 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
834 			goto retry;
835 
836 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837 		return ERR_PTR(-ENOMEM);
838 	}
839 
840 	spt->vgpu = vgpu;
841 	atomic_set(&spt->refcount, 1);
842 	INIT_LIST_HEAD(&spt->post_shadow_list);
843 
844 	/*
845 	 * Init shadow_page.
846 	 */
847 	spt->shadow_page.type = type;
848 	daddr = dma_map_page(kdev, spt->shadow_page.page,
849 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
850 	if (dma_mapping_error(kdev, daddr)) {
851 		gvt_vgpu_err("fail to map dma addr\n");
852 		ret = -EINVAL;
853 		goto err_free_spt;
854 	}
855 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
857 
858 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
859 	if (ret)
860 		goto err_unmap_dma;
861 
862 	return spt;
863 
864 err_unmap_dma:
865 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
866 err_free_spt:
867 	free_spt(spt);
868 	return ERR_PTR(ret);
869 }
870 
871 /* Allocate shadow page table associated with specific gfn. */
872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874 		unsigned long gfn, bool guest_pde_ips)
875 {
876 	struct intel_vgpu_ppgtt_spt *spt;
877 	int ret;
878 
879 	spt = ppgtt_alloc_spt(vgpu, type);
880 	if (IS_ERR(spt))
881 		return spt;
882 
883 	/*
884 	 * Init guest_page.
885 	 */
886 	ret = intel_vgpu_register_page_track(vgpu, gfn,
887 			ppgtt_write_protection_handler, spt);
888 	if (ret) {
889 		ppgtt_free_spt(spt);
890 		return ERR_PTR(ret);
891 	}
892 
893 	spt->guest_page.type = type;
894 	spt->guest_page.gfn = gfn;
895 	spt->guest_page.pde_ips = guest_pde_ips;
896 
897 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
898 
899 	return spt;
900 }
901 
902 #define pt_entry_size_shift(spt) \
903 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
904 
905 #define pt_entries(spt) \
906 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
907 
908 #define for_each_present_guest_entry(spt, e, i) \
909 	for (i = 0; i < pt_entries(spt); \
910 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911 		if (!ppgtt_get_guest_entry(spt, e, i) && \
912 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
913 
914 #define for_each_present_shadow_entry(spt, e, i) \
915 	for (i = 0; i < pt_entries(spt); \
916 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
918 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
919 
920 #define for_each_shadow_entry(spt, e, i) \
921 	for (i = 0; i < pt_entries(spt); \
922 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923 		if (!ppgtt_get_shadow_entry(spt, e, i))
924 
925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
926 {
927 	int v = atomic_read(&spt->refcount);
928 
929 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930 	atomic_inc(&spt->refcount);
931 }
932 
933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
934 {
935 	int v = atomic_read(&spt->refcount);
936 
937 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938 	return atomic_dec_return(&spt->refcount);
939 }
940 
941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
942 
943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944 		struct intel_gvt_gtt_entry *e)
945 {
946 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948 	struct intel_vgpu_ppgtt_spt *s;
949 	enum intel_gvt_gtt_type cur_pt_type;
950 
951 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
952 
953 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955 		cur_pt_type = get_next_pt_type(e->type);
956 
957 		if (!gtt_type_is_pt(cur_pt_type) ||
958 				!gtt_type_is_pt(cur_pt_type + 1)) {
959 			drm_WARN(&i915->drm, 1,
960 				 "Invalid page table type, cur_pt_type is: %d\n",
961 				 cur_pt_type);
962 			return -EINVAL;
963 		}
964 
965 		cur_pt_type += 1;
966 
967 		if (ops->get_pfn(e) ==
968 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
969 			return 0;
970 	}
971 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
972 	if (!s) {
973 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
974 				ops->get_pfn(e));
975 		return -ENXIO;
976 	}
977 	return ppgtt_invalidate_spt(s);
978 }
979 
980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981 		struct intel_gvt_gtt_entry *entry)
982 {
983 	struct intel_vgpu *vgpu = spt->vgpu;
984 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
985 	unsigned long pfn;
986 	int type;
987 
988 	pfn = ops->get_pfn(entry);
989 	type = spt->shadow_page.type;
990 
991 	/* Uninitialized spte or unshadowed spte. */
992 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
993 		return;
994 
995 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
996 }
997 
998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
999 {
1000 	struct intel_vgpu *vgpu = spt->vgpu;
1001 	struct intel_gvt_gtt_entry e;
1002 	unsigned long index;
1003 	int ret;
1004 
1005 	trace_spt_change(spt->vgpu->id, "die", spt,
1006 			spt->guest_page.gfn, spt->shadow_page.type);
1007 
1008 	if (ppgtt_put_spt(spt) > 0)
1009 		return 0;
1010 
1011 	for_each_present_shadow_entry(spt, &e, index) {
1012 		switch (e.type) {
1013 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014 			gvt_vdbg_mm("invalidate 4K entry\n");
1015 			ppgtt_invalidate_pte(spt, &e);
1016 			break;
1017 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018 			/* We don't setup 64K shadow entry so far. */
1019 			WARN(1, "suspicious 64K gtt entry\n");
1020 			continue;
1021 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022 			gvt_vdbg_mm("invalidate 2M entry\n");
1023 			continue;
1024 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025 			WARN(1, "GVT doesn't support 1GB page\n");
1026 			continue;
1027 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1028 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1029 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1030 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1032 					spt->vgpu, &e);
1033 			if (ret)
1034 				goto fail;
1035 			break;
1036 		default:
1037 			GEM_BUG_ON(1);
1038 		}
1039 	}
1040 
1041 	trace_spt_change(spt->vgpu->id, "release", spt,
1042 			 spt->guest_page.gfn, spt->shadow_page.type);
1043 	ppgtt_free_spt(spt);
1044 	return 0;
1045 fail:
1046 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047 			spt, e.val64, e.type);
1048 	return ret;
1049 }
1050 
1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052 {
1053 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054 
1055 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1056 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058 
1059 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060 	} else if (INTEL_GEN(dev_priv) >= 11) {
1061 		/* 64K paging only controlled by IPS bit in PTE now. */
1062 		return true;
1063 	} else
1064 		return false;
1065 }
1066 
1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068 
1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071 {
1072 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1074 	bool ips = false;
1075 	int ret;
1076 
1077 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078 
1079 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081 
1082 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083 	if (spt) {
1084 		ppgtt_get_spt(spt);
1085 
1086 		if (ips != spt->guest_page.pde_ips) {
1087 			spt->guest_page.pde_ips = ips;
1088 
1089 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1090 			clear_page(spt->shadow_page.vaddr);
1091 			ret = ppgtt_populate_spt(spt);
1092 			if (ret) {
1093 				ppgtt_put_spt(spt);
1094 				goto err;
1095 			}
1096 		}
1097 	} else {
1098 		int type = get_next_pt_type(we->type);
1099 
1100 		if (!gtt_type_is_pt(type)) {
1101 			ret = -EINVAL;
1102 			goto err;
1103 		}
1104 
1105 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106 		if (IS_ERR(spt)) {
1107 			ret = PTR_ERR(spt);
1108 			goto err;
1109 		}
1110 
1111 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112 		if (ret)
1113 			goto err_free_spt;
1114 
1115 		ret = ppgtt_populate_spt(spt);
1116 		if (ret)
1117 			goto err_free_spt;
1118 
1119 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120 				 spt->shadow_page.type);
1121 	}
1122 	return spt;
1123 
1124 err_free_spt:
1125 	ppgtt_free_spt(spt);
1126 	spt = NULL;
1127 err:
1128 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129 		     spt, we->val64, we->type);
1130 	return ERR_PTR(ret);
1131 }
1132 
1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135 {
1136 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137 
1138 	se->type = ge->type;
1139 	se->val64 = ge->val64;
1140 
1141 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143 		ops->clear_ips(se);
1144 
1145 	ops->set_pfn(se, s->shadow_page.mfn);
1146 }
1147 
1148 /**
1149  * Check if can do 2M page
1150  * @vgpu: target vgpu
1151  * @entry: target pfn's gtt entry
1152  *
1153  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1154  * negtive if found err.
1155  */
1156 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157 	struct intel_gvt_gtt_entry *entry)
1158 {
1159 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1160 	unsigned long pfn;
1161 
1162 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1163 		return 0;
1164 
1165 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1166 	if (pfn == INTEL_GVT_INVALID_ADDR)
1167 		return -EINVAL;
1168 
1169 	return PageTransHuge(pfn_to_page(pfn));
1170 }
1171 
1172 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1173 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1174 	struct intel_gvt_gtt_entry *se)
1175 {
1176 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1177 	struct intel_vgpu_ppgtt_spt *sub_spt;
1178 	struct intel_gvt_gtt_entry sub_se;
1179 	unsigned long start_gfn;
1180 	dma_addr_t dma_addr;
1181 	unsigned long sub_index;
1182 	int ret;
1183 
1184 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1185 
1186 	start_gfn = ops->get_pfn(se);
1187 
1188 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1189 	if (IS_ERR(sub_spt))
1190 		return PTR_ERR(sub_spt);
1191 
1192 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1193 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1194 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1195 		if (ret) {
1196 			ppgtt_invalidate_spt(spt);
1197 			return ret;
1198 		}
1199 		sub_se.val64 = se->val64;
1200 
1201 		/* Copy the PAT field from PDE. */
1202 		sub_se.val64 &= ~_PAGE_PAT;
1203 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1204 
1205 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1206 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1207 	}
1208 
1209 	/* Clear dirty field. */
1210 	se->val64 &= ~_PAGE_DIRTY;
1211 
1212 	ops->clear_pse(se);
1213 	ops->clear_ips(se);
1214 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1215 	ppgtt_set_shadow_entry(spt, se, index);
1216 	return 0;
1217 }
1218 
1219 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1220 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1221 	struct intel_gvt_gtt_entry *se)
1222 {
1223 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224 	struct intel_gvt_gtt_entry entry = *se;
1225 	unsigned long start_gfn;
1226 	dma_addr_t dma_addr;
1227 	int i, ret;
1228 
1229 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1230 
1231 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1232 
1233 	start_gfn = ops->get_pfn(se);
1234 
1235 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1236 	ops->set_64k_splited(&entry);
1237 
1238 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1239 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1240 					start_gfn + i, PAGE_SIZE, &dma_addr);
1241 		if (ret)
1242 			return ret;
1243 
1244 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1245 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1246 	}
1247 	return 0;
1248 }
1249 
1250 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1251 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1252 	struct intel_gvt_gtt_entry *ge)
1253 {
1254 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1255 	struct intel_gvt_gtt_entry se = *ge;
1256 	unsigned long gfn, page_size = PAGE_SIZE;
1257 	dma_addr_t dma_addr;
1258 	int ret;
1259 
1260 	if (!pte_ops->test_present(ge))
1261 		return 0;
1262 
1263 	gfn = pte_ops->get_pfn(ge);
1264 
1265 	switch (ge->type) {
1266 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1267 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1268 		break;
1269 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1270 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1271 		/*
1272 		 * The layout of 64K page is special, the page size is
1273 		 * controlled by uper PDE. To be simple, we always split
1274 		 * 64K page to smaller 4K pages in shadow PT.
1275 		 */
1276 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1277 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1278 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1279 		ret = is_2MB_gtt_possible(vgpu, ge);
1280 		if (ret == 0)
1281 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1282 		else if (ret < 0)
1283 			return ret;
1284 		page_size = I915_GTT_PAGE_SIZE_2M;
1285 		break;
1286 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1287 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1288 		return -EINVAL;
1289 	default:
1290 		GEM_BUG_ON(1);
1291 	}
1292 
1293 	/* direct shadow */
1294 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1295 						      &dma_addr);
1296 	if (ret)
1297 		return -ENXIO;
1298 
1299 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1300 	ppgtt_set_shadow_entry(spt, &se, index);
1301 	return 0;
1302 }
1303 
1304 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1305 {
1306 	struct intel_vgpu *vgpu = spt->vgpu;
1307 	struct intel_gvt *gvt = vgpu->gvt;
1308 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1309 	struct intel_vgpu_ppgtt_spt *s;
1310 	struct intel_gvt_gtt_entry se, ge;
1311 	unsigned long gfn, i;
1312 	int ret;
1313 
1314 	trace_spt_change(spt->vgpu->id, "born", spt,
1315 			 spt->guest_page.gfn, spt->shadow_page.type);
1316 
1317 	for_each_present_guest_entry(spt, &ge, i) {
1318 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1319 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1320 			if (IS_ERR(s)) {
1321 				ret = PTR_ERR(s);
1322 				goto fail;
1323 			}
1324 			ppgtt_get_shadow_entry(spt, &se, i);
1325 			ppgtt_generate_shadow_entry(&se, s, &ge);
1326 			ppgtt_set_shadow_entry(spt, &se, i);
1327 		} else {
1328 			gfn = ops->get_pfn(&ge);
1329 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1330 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1331 				ppgtt_set_shadow_entry(spt, &se, i);
1332 				continue;
1333 			}
1334 
1335 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1336 			if (ret)
1337 				goto fail;
1338 		}
1339 	}
1340 	return 0;
1341 fail:
1342 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1343 			spt, ge.val64, ge.type);
1344 	return ret;
1345 }
1346 
1347 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1348 		struct intel_gvt_gtt_entry *se, unsigned long index)
1349 {
1350 	struct intel_vgpu *vgpu = spt->vgpu;
1351 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1352 	int ret;
1353 
1354 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1355 			       spt->shadow_page.type, se->val64, index);
1356 
1357 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1358 		    se->type, index, se->val64);
1359 
1360 	if (!ops->test_present(se))
1361 		return 0;
1362 
1363 	if (ops->get_pfn(se) ==
1364 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1365 		return 0;
1366 
1367 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1368 		struct intel_vgpu_ppgtt_spt *s =
1369 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1370 		if (!s) {
1371 			gvt_vgpu_err("fail to find guest page\n");
1372 			ret = -ENXIO;
1373 			goto fail;
1374 		}
1375 		ret = ppgtt_invalidate_spt(s);
1376 		if (ret)
1377 			goto fail;
1378 	} else {
1379 		/* We don't setup 64K shadow entry so far. */
1380 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1381 		     "suspicious 64K entry\n");
1382 		ppgtt_invalidate_pte(spt, se);
1383 	}
1384 
1385 	return 0;
1386 fail:
1387 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1388 			spt, se->val64, se->type);
1389 	return ret;
1390 }
1391 
1392 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1393 		struct intel_gvt_gtt_entry *we, unsigned long index)
1394 {
1395 	struct intel_vgpu *vgpu = spt->vgpu;
1396 	struct intel_gvt_gtt_entry m;
1397 	struct intel_vgpu_ppgtt_spt *s;
1398 	int ret;
1399 
1400 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1401 			       we->val64, index);
1402 
1403 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1404 		    we->type, index, we->val64);
1405 
1406 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1407 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1408 		if (IS_ERR(s)) {
1409 			ret = PTR_ERR(s);
1410 			goto fail;
1411 		}
1412 		ppgtt_get_shadow_entry(spt, &m, index);
1413 		ppgtt_generate_shadow_entry(&m, s, we);
1414 		ppgtt_set_shadow_entry(spt, &m, index);
1415 	} else {
1416 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1417 		if (ret)
1418 			goto fail;
1419 	}
1420 	return 0;
1421 fail:
1422 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1423 		spt, we->val64, we->type);
1424 	return ret;
1425 }
1426 
1427 static int sync_oos_page(struct intel_vgpu *vgpu,
1428 		struct intel_vgpu_oos_page *oos_page)
1429 {
1430 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1431 	struct intel_gvt *gvt = vgpu->gvt;
1432 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1433 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1434 	struct intel_gvt_gtt_entry old, new;
1435 	int index;
1436 	int ret;
1437 
1438 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1439 			 spt, spt->guest_page.type);
1440 
1441 	old.type = new.type = get_entry_type(spt->guest_page.type);
1442 	old.val64 = new.val64 = 0;
1443 
1444 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1445 				info->gtt_entry_size_shift); index++) {
1446 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1447 		ops->get_entry(NULL, &new, index, true,
1448 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1449 
1450 		if (old.val64 == new.val64
1451 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1452 			continue;
1453 
1454 		trace_oos_sync(vgpu->id, oos_page->id,
1455 				spt, spt->guest_page.type,
1456 				new.val64, index);
1457 
1458 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1459 		if (ret)
1460 			return ret;
1461 
1462 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1463 	}
1464 
1465 	spt->guest_page.write_cnt = 0;
1466 	list_del_init(&spt->post_shadow_list);
1467 	return 0;
1468 }
1469 
1470 static int detach_oos_page(struct intel_vgpu *vgpu,
1471 		struct intel_vgpu_oos_page *oos_page)
1472 {
1473 	struct intel_gvt *gvt = vgpu->gvt;
1474 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1475 
1476 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1477 			 spt, spt->guest_page.type);
1478 
1479 	spt->guest_page.write_cnt = 0;
1480 	spt->guest_page.oos_page = NULL;
1481 	oos_page->spt = NULL;
1482 
1483 	list_del_init(&oos_page->vm_list);
1484 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1485 
1486 	return 0;
1487 }
1488 
1489 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1490 		struct intel_vgpu_ppgtt_spt *spt)
1491 {
1492 	struct intel_gvt *gvt = spt->vgpu->gvt;
1493 	int ret;
1494 
1495 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1496 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1497 			oos_page->mem, I915_GTT_PAGE_SIZE);
1498 	if (ret)
1499 		return ret;
1500 
1501 	oos_page->spt = spt;
1502 	spt->guest_page.oos_page = oos_page;
1503 
1504 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1505 
1506 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1507 			 spt, spt->guest_page.type);
1508 	return 0;
1509 }
1510 
1511 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1512 {
1513 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1514 	int ret;
1515 
1516 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1517 	if (ret)
1518 		return ret;
1519 
1520 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1521 			 spt, spt->guest_page.type);
1522 
1523 	list_del_init(&oos_page->vm_list);
1524 	return sync_oos_page(spt->vgpu, oos_page);
1525 }
1526 
1527 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1528 {
1529 	struct intel_gvt *gvt = spt->vgpu->gvt;
1530 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1531 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532 	int ret;
1533 
1534 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1535 
1536 	if (list_empty(&gtt->oos_page_free_list_head)) {
1537 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1538 			struct intel_vgpu_oos_page, list);
1539 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1540 		if (ret)
1541 			return ret;
1542 		ret = detach_oos_page(spt->vgpu, oos_page);
1543 		if (ret)
1544 			return ret;
1545 	} else
1546 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1547 			struct intel_vgpu_oos_page, list);
1548 	return attach_oos_page(oos_page, spt);
1549 }
1550 
1551 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1552 {
1553 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1554 
1555 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1556 		return -EINVAL;
1557 
1558 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1559 			 spt, spt->guest_page.type);
1560 
1561 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1562 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1563 }
1564 
1565 /**
1566  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1567  * @vgpu: a vGPU
1568  *
1569  * This function is called before submitting a guest workload to host,
1570  * to sync all the out-of-synced shadow for vGPU
1571  *
1572  * Returns:
1573  * Zero on success, negative error code if failed.
1574  */
1575 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1576 {
1577 	struct list_head *pos, *n;
1578 	struct intel_vgpu_oos_page *oos_page;
1579 	int ret;
1580 
1581 	if (!enable_out_of_sync)
1582 		return 0;
1583 
1584 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1585 		oos_page = container_of(pos,
1586 				struct intel_vgpu_oos_page, vm_list);
1587 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1588 		if (ret)
1589 			return ret;
1590 	}
1591 	return 0;
1592 }
1593 
1594 /*
1595  * The heart of PPGTT shadow page table.
1596  */
1597 static int ppgtt_handle_guest_write_page_table(
1598 		struct intel_vgpu_ppgtt_spt *spt,
1599 		struct intel_gvt_gtt_entry *we, unsigned long index)
1600 {
1601 	struct intel_vgpu *vgpu = spt->vgpu;
1602 	int type = spt->shadow_page.type;
1603 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1604 	struct intel_gvt_gtt_entry old_se;
1605 	int new_present;
1606 	int i, ret;
1607 
1608 	new_present = ops->test_present(we);
1609 
1610 	/*
1611 	 * Adding the new entry first and then removing the old one, that can
1612 	 * guarantee the ppgtt table is validated during the window between
1613 	 * adding and removal.
1614 	 */
1615 	ppgtt_get_shadow_entry(spt, &old_se, index);
1616 
1617 	if (new_present) {
1618 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1619 		if (ret)
1620 			goto fail;
1621 	}
1622 
1623 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1624 	if (ret)
1625 		goto fail;
1626 
1627 	if (!new_present) {
1628 		/* For 64KB splited entries, we need clear them all. */
1629 		if (ops->test_64k_splited(&old_se) &&
1630 		    !(index % GTT_64K_PTE_STRIDE)) {
1631 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1632 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1633 				ops->clear_64k_splited(&old_se);
1634 				ops->set_pfn(&old_se,
1635 					vgpu->gtt.scratch_pt[type].page_mfn);
1636 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1637 			}
1638 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1639 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1640 			ops->clear_pse(&old_se);
1641 			ops->set_pfn(&old_se,
1642 				     vgpu->gtt.scratch_pt[type].page_mfn);
1643 			ppgtt_set_shadow_entry(spt, &old_se, index);
1644 		} else {
1645 			ops->set_pfn(&old_se,
1646 				     vgpu->gtt.scratch_pt[type].page_mfn);
1647 			ppgtt_set_shadow_entry(spt, &old_se, index);
1648 		}
1649 	}
1650 
1651 	return 0;
1652 fail:
1653 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1654 			spt, we->val64, we->type);
1655 	return ret;
1656 }
1657 
1658 
1659 
1660 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1661 {
1662 	return enable_out_of_sync
1663 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1664 		&& spt->guest_page.write_cnt >= 2;
1665 }
1666 
1667 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1668 		unsigned long index)
1669 {
1670 	set_bit(index, spt->post_shadow_bitmap);
1671 	if (!list_empty(&spt->post_shadow_list))
1672 		return;
1673 
1674 	list_add_tail(&spt->post_shadow_list,
1675 			&spt->vgpu->gtt.post_shadow_list_head);
1676 }
1677 
1678 /**
1679  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1680  * @vgpu: a vGPU
1681  *
1682  * This function is called before submitting a guest workload to host,
1683  * to flush all the post shadows for a vGPU.
1684  *
1685  * Returns:
1686  * Zero on success, negative error code if failed.
1687  */
1688 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1689 {
1690 	struct list_head *pos, *n;
1691 	struct intel_vgpu_ppgtt_spt *spt;
1692 	struct intel_gvt_gtt_entry ge;
1693 	unsigned long index;
1694 	int ret;
1695 
1696 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1697 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1698 				post_shadow_list);
1699 
1700 		for_each_set_bit(index, spt->post_shadow_bitmap,
1701 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1702 			ppgtt_get_guest_entry(spt, &ge, index);
1703 
1704 			ret = ppgtt_handle_guest_write_page_table(spt,
1705 							&ge, index);
1706 			if (ret)
1707 				return ret;
1708 			clear_bit(index, spt->post_shadow_bitmap);
1709 		}
1710 		list_del_init(&spt->post_shadow_list);
1711 	}
1712 	return 0;
1713 }
1714 
1715 static int ppgtt_handle_guest_write_page_table_bytes(
1716 		struct intel_vgpu_ppgtt_spt *spt,
1717 		u64 pa, void *p_data, int bytes)
1718 {
1719 	struct intel_vgpu *vgpu = spt->vgpu;
1720 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1721 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1722 	struct intel_gvt_gtt_entry we, se;
1723 	unsigned long index;
1724 	int ret;
1725 
1726 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1727 
1728 	ppgtt_get_guest_entry(spt, &we, index);
1729 
1730 	/*
1731 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1732 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1733 	 * ignored.
1734 	 */
1735 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1736 	    (index % GTT_64K_PTE_STRIDE)) {
1737 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1738 			    index);
1739 		return 0;
1740 	}
1741 
1742 	if (bytes == info->gtt_entry_size) {
1743 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1744 		if (ret)
1745 			return ret;
1746 	} else {
1747 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1748 			int type = spt->shadow_page.type;
1749 
1750 			ppgtt_get_shadow_entry(spt, &se, index);
1751 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1752 			if (ret)
1753 				return ret;
1754 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1755 			ppgtt_set_shadow_entry(spt, &se, index);
1756 		}
1757 		ppgtt_set_post_shadow(spt, index);
1758 	}
1759 
1760 	if (!enable_out_of_sync)
1761 		return 0;
1762 
1763 	spt->guest_page.write_cnt++;
1764 
1765 	if (spt->guest_page.oos_page)
1766 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1767 				false, 0, vgpu);
1768 
1769 	if (can_do_out_of_sync(spt)) {
1770 		if (!spt->guest_page.oos_page)
1771 			ppgtt_allocate_oos_page(spt);
1772 
1773 		ret = ppgtt_set_guest_page_oos(spt);
1774 		if (ret < 0)
1775 			return ret;
1776 	}
1777 	return 0;
1778 }
1779 
1780 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1781 {
1782 	struct intel_vgpu *vgpu = mm->vgpu;
1783 	struct intel_gvt *gvt = vgpu->gvt;
1784 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1785 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1786 	struct intel_gvt_gtt_entry se;
1787 	int index;
1788 
1789 	if (!mm->ppgtt_mm.shadowed)
1790 		return;
1791 
1792 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1793 		ppgtt_get_shadow_root_entry(mm, &se, index);
1794 
1795 		if (!ops->test_present(&se))
1796 			continue;
1797 
1798 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1799 		se.val64 = 0;
1800 		ppgtt_set_shadow_root_entry(mm, &se, index);
1801 
1802 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1803 				       NULL, se.type, se.val64, index);
1804 	}
1805 
1806 	mm->ppgtt_mm.shadowed = false;
1807 }
1808 
1809 
1810 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1811 {
1812 	struct intel_vgpu *vgpu = mm->vgpu;
1813 	struct intel_gvt *gvt = vgpu->gvt;
1814 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1815 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1816 	struct intel_vgpu_ppgtt_spt *spt;
1817 	struct intel_gvt_gtt_entry ge, se;
1818 	int index, ret;
1819 
1820 	if (mm->ppgtt_mm.shadowed)
1821 		return 0;
1822 
1823 	mm->ppgtt_mm.shadowed = true;
1824 
1825 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1826 		ppgtt_get_guest_root_entry(mm, &ge, index);
1827 
1828 		if (!ops->test_present(&ge))
1829 			continue;
1830 
1831 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1832 				       ge.type, ge.val64, index);
1833 
1834 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1835 		if (IS_ERR(spt)) {
1836 			gvt_vgpu_err("fail to populate guest root pointer\n");
1837 			ret = PTR_ERR(spt);
1838 			goto fail;
1839 		}
1840 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1841 		ppgtt_set_shadow_root_entry(mm, &se, index);
1842 
1843 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1844 				       NULL, se.type, se.val64, index);
1845 	}
1846 
1847 	return 0;
1848 fail:
1849 	invalidate_ppgtt_mm(mm);
1850 	return ret;
1851 }
1852 
1853 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1854 {
1855 	struct intel_vgpu_mm *mm;
1856 
1857 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1858 	if (!mm)
1859 		return NULL;
1860 
1861 	mm->vgpu = vgpu;
1862 	kref_init(&mm->ref);
1863 	atomic_set(&mm->pincount, 0);
1864 
1865 	return mm;
1866 }
1867 
1868 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1869 {
1870 	kfree(mm);
1871 }
1872 
1873 /**
1874  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1875  * @vgpu: a vGPU
1876  * @root_entry_type: ppgtt root entry type
1877  * @pdps: guest pdps.
1878  *
1879  * This function is used to create a ppgtt mm object for a vGPU.
1880  *
1881  * Returns:
1882  * Zero on success, negative error code in pointer if failed.
1883  */
1884 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1885 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1886 {
1887 	struct intel_gvt *gvt = vgpu->gvt;
1888 	struct intel_vgpu_mm *mm;
1889 	int ret;
1890 
1891 	mm = vgpu_alloc_mm(vgpu);
1892 	if (!mm)
1893 		return ERR_PTR(-ENOMEM);
1894 
1895 	mm->type = INTEL_GVT_MM_PPGTT;
1896 
1897 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1898 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1899 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1900 
1901 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1902 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1903 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1904 
1905 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1906 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1907 	else
1908 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1909 		       sizeof(mm->ppgtt_mm.guest_pdps));
1910 
1911 	ret = shadow_ppgtt_mm(mm);
1912 	if (ret) {
1913 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1914 		vgpu_free_mm(mm);
1915 		return ERR_PTR(ret);
1916 	}
1917 
1918 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1919 
1920 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1921 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1922 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1923 
1924 	return mm;
1925 }
1926 
1927 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1928 {
1929 	struct intel_vgpu_mm *mm;
1930 	unsigned long nr_entries;
1931 
1932 	mm = vgpu_alloc_mm(vgpu);
1933 	if (!mm)
1934 		return ERR_PTR(-ENOMEM);
1935 
1936 	mm->type = INTEL_GVT_MM_GGTT;
1937 
1938 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1939 	mm->ggtt_mm.virtual_ggtt =
1940 		vzalloc(array_size(nr_entries,
1941 				   vgpu->gvt->device_info.gtt_entry_size));
1942 	if (!mm->ggtt_mm.virtual_ggtt) {
1943 		vgpu_free_mm(mm);
1944 		return ERR_PTR(-ENOMEM);
1945 	}
1946 
1947 	return mm;
1948 }
1949 
1950 /**
1951  * _intel_vgpu_mm_release - destroy a mm object
1952  * @mm_ref: a kref object
1953  *
1954  * This function is used to destroy a mm object for vGPU
1955  *
1956  */
1957 void _intel_vgpu_mm_release(struct kref *mm_ref)
1958 {
1959 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1960 
1961 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1962 		gvt_err("vgpu mm pin count bug detected\n");
1963 
1964 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1965 		list_del(&mm->ppgtt_mm.list);
1966 
1967 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1968 		list_del(&mm->ppgtt_mm.lru_list);
1969 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1970 
1971 		invalidate_ppgtt_mm(mm);
1972 	} else {
1973 		vfree(mm->ggtt_mm.virtual_ggtt);
1974 	}
1975 
1976 	vgpu_free_mm(mm);
1977 }
1978 
1979 /**
1980  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1981  * @mm: a vGPU mm object
1982  *
1983  * This function is called when user doesn't want to use a vGPU mm object
1984  */
1985 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1986 {
1987 	atomic_dec_if_positive(&mm->pincount);
1988 }
1989 
1990 /**
1991  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1992  * @mm: target vgpu mm
1993  *
1994  * This function is called when user wants to use a vGPU mm object. If this
1995  * mm object hasn't been shadowed yet, the shadow will be populated at this
1996  * time.
1997  *
1998  * Returns:
1999  * Zero on success, negative error code if failed.
2000  */
2001 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2002 {
2003 	int ret;
2004 
2005 	atomic_inc(&mm->pincount);
2006 
2007 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2008 		ret = shadow_ppgtt_mm(mm);
2009 		if (ret)
2010 			return ret;
2011 
2012 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2013 		list_move_tail(&mm->ppgtt_mm.lru_list,
2014 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2015 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2022 {
2023 	struct intel_vgpu_mm *mm;
2024 	struct list_head *pos, *n;
2025 
2026 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2027 
2028 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2029 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2030 
2031 		if (atomic_read(&mm->pincount))
2032 			continue;
2033 
2034 		list_del_init(&mm->ppgtt_mm.lru_list);
2035 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2036 		invalidate_ppgtt_mm(mm);
2037 		return 1;
2038 	}
2039 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2040 	return 0;
2041 }
2042 
2043 /*
2044  * GMA translation APIs.
2045  */
2046 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2047 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2048 {
2049 	struct intel_vgpu *vgpu = mm->vgpu;
2050 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2051 	struct intel_vgpu_ppgtt_spt *s;
2052 
2053 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2054 	if (!s)
2055 		return -ENXIO;
2056 
2057 	if (!guest)
2058 		ppgtt_get_shadow_entry(s, e, index);
2059 	else
2060 		ppgtt_get_guest_entry(s, e, index);
2061 	return 0;
2062 }
2063 
2064 /**
2065  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2066  * @mm: mm object. could be a PPGTT or GGTT mm object
2067  * @gma: graphics memory address in this mm object
2068  *
2069  * This function is used to translate a graphics memory address in specific
2070  * graphics memory space to guest physical address.
2071  *
2072  * Returns:
2073  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2074  */
2075 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2076 {
2077 	struct intel_vgpu *vgpu = mm->vgpu;
2078 	struct intel_gvt *gvt = vgpu->gvt;
2079 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2080 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2081 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2082 	unsigned long gma_index[4];
2083 	struct intel_gvt_gtt_entry e;
2084 	int i, levels = 0;
2085 	int ret;
2086 
2087 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2088 		   mm->type != INTEL_GVT_MM_PPGTT);
2089 
2090 	if (mm->type == INTEL_GVT_MM_GGTT) {
2091 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2092 			goto err;
2093 
2094 		ggtt_get_guest_entry(mm, &e,
2095 			gma_ops->gma_to_ggtt_pte_index(gma));
2096 
2097 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2098 			+ (gma & ~I915_GTT_PAGE_MASK);
2099 
2100 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2101 	} else {
2102 		switch (mm->ppgtt_mm.root_entry_type) {
2103 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2104 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2105 
2106 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2107 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2108 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2109 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2110 			levels = 4;
2111 			break;
2112 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2113 			ppgtt_get_shadow_root_entry(mm, &e,
2114 					gma_ops->gma_to_l3_pdp_index(gma));
2115 
2116 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2117 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2118 			levels = 2;
2119 			break;
2120 		default:
2121 			GEM_BUG_ON(1);
2122 		}
2123 
2124 		/* walk the shadow page table and get gpa from guest entry */
2125 		for (i = 0; i < levels; i++) {
2126 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2127 				(i == levels - 1));
2128 			if (ret)
2129 				goto err;
2130 
2131 			if (!pte_ops->test_present(&e)) {
2132 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2133 				goto err;
2134 			}
2135 		}
2136 
2137 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2138 					(gma & ~I915_GTT_PAGE_MASK);
2139 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2140 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2141 	}
2142 
2143 	return gpa;
2144 err:
2145 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2146 	return INTEL_GVT_INVALID_ADDR;
2147 }
2148 
2149 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2150 	unsigned int off, void *p_data, unsigned int bytes)
2151 {
2152 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2153 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2154 	unsigned long index = off >> info->gtt_entry_size_shift;
2155 	unsigned long gma;
2156 	struct intel_gvt_gtt_entry e;
2157 
2158 	if (bytes != 4 && bytes != 8)
2159 		return -EINVAL;
2160 
2161 	gma = index << I915_GTT_PAGE_SHIFT;
2162 	if (!intel_gvt_ggtt_validate_range(vgpu,
2163 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2164 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2165 		memset(p_data, 0, bytes);
2166 		return 0;
2167 	}
2168 
2169 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2170 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2171 			bytes);
2172 	return 0;
2173 }
2174 
2175 /**
2176  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2177  * @vgpu: a vGPU
2178  * @off: register offset
2179  * @p_data: data will be returned to guest
2180  * @bytes: data length
2181  *
2182  * This function is used to emulate the GTT MMIO register read
2183  *
2184  * Returns:
2185  * Zero on success, error code if failed.
2186  */
2187 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2188 	void *p_data, unsigned int bytes)
2189 {
2190 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2191 	int ret;
2192 
2193 	if (bytes != 4 && bytes != 8)
2194 		return -EINVAL;
2195 
2196 	off -= info->gtt_start_offset;
2197 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2198 	return ret;
2199 }
2200 
2201 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2202 		struct intel_gvt_gtt_entry *entry)
2203 {
2204 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2205 	unsigned long pfn;
2206 
2207 	pfn = pte_ops->get_pfn(entry);
2208 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2209 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2210 						pfn << PAGE_SHIFT);
2211 }
2212 
2213 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2214 	void *p_data, unsigned int bytes)
2215 {
2216 	struct intel_gvt *gvt = vgpu->gvt;
2217 	const struct intel_gvt_device_info *info = &gvt->device_info;
2218 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2219 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2220 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2221 	unsigned long gma, gfn;
2222 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2223 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2224 	dma_addr_t dma_addr;
2225 	int ret;
2226 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2227 	bool partial_update = false;
2228 
2229 	if (bytes != 4 && bytes != 8)
2230 		return -EINVAL;
2231 
2232 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2233 
2234 	/* the VM may configure the whole GM space when ballooning is used */
2235 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2236 		return 0;
2237 
2238 	e.type = GTT_TYPE_GGTT_PTE;
2239 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2240 			bytes);
2241 
2242 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2243 	 * write, save the first 4 bytes in a list and update virtual
2244 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2245 	 */
2246 	if (bytes < info->gtt_entry_size) {
2247 		bool found = false;
2248 
2249 		list_for_each_entry_safe(pos, n,
2250 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2251 			if (g_gtt_index == pos->offset >>
2252 					info->gtt_entry_size_shift) {
2253 				if (off != pos->offset) {
2254 					/* the second partial part*/
2255 					int last_off = pos->offset &
2256 						(info->gtt_entry_size - 1);
2257 
2258 					memcpy((void *)&e.val64 + last_off,
2259 						(void *)&pos->data + last_off,
2260 						bytes);
2261 
2262 					list_del(&pos->list);
2263 					kfree(pos);
2264 					found = true;
2265 					break;
2266 				}
2267 
2268 				/* update of the first partial part */
2269 				pos->data = e.val64;
2270 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2271 				return 0;
2272 			}
2273 		}
2274 
2275 		if (!found) {
2276 			/* the first partial part */
2277 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2278 			if (!partial_pte)
2279 				return -ENOMEM;
2280 			partial_pte->offset = off;
2281 			partial_pte->data = e.val64;
2282 			list_add_tail(&partial_pte->list,
2283 				&ggtt_mm->ggtt_mm.partial_pte_list);
2284 			partial_update = true;
2285 		}
2286 	}
2287 
2288 	if (!partial_update && (ops->test_present(&e))) {
2289 		gfn = ops->get_pfn(&e);
2290 		m.val64 = e.val64;
2291 		m.type = e.type;
2292 
2293 		/* one PTE update may be issued in multiple writes and the
2294 		 * first write may not construct a valid gfn
2295 		 */
2296 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2297 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2298 			goto out;
2299 		}
2300 
2301 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2302 							PAGE_SIZE, &dma_addr);
2303 		if (ret) {
2304 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2305 			/* guest driver may read/write the entry when partial
2306 			 * update the entry in this situation p2m will fail
2307 			 * settting the shadow entry to point to a scratch page
2308 			 */
2309 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2310 		} else
2311 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2312 	} else {
2313 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2314 		ops->clear_present(&m);
2315 	}
2316 
2317 out:
2318 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2319 
2320 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2321 	ggtt_invalidate_pte(vgpu, &e);
2322 
2323 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2324 	ggtt_invalidate(gvt->gt);
2325 	return 0;
2326 }
2327 
2328 /*
2329  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2330  * @vgpu: a vGPU
2331  * @off: register offset
2332  * @p_data: data from guest write
2333  * @bytes: data length
2334  *
2335  * This function is used to emulate the GTT MMIO register write
2336  *
2337  * Returns:
2338  * Zero on success, error code if failed.
2339  */
2340 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2341 		unsigned int off, void *p_data, unsigned int bytes)
2342 {
2343 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2344 	int ret;
2345 	struct intel_vgpu_submission *s = &vgpu->submission;
2346 	struct intel_engine_cs *engine;
2347 	int i;
2348 
2349 	if (bytes != 4 && bytes != 8)
2350 		return -EINVAL;
2351 
2352 	off -= info->gtt_start_offset;
2353 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2354 
2355 	/* if ggtt of last submitted context is written,
2356 	 * that context is probably got unpinned.
2357 	 * Set last shadowed ctx to invalid.
2358 	 */
2359 	for_each_engine(engine, vgpu->gvt->gt, i) {
2360 		if (!s->last_ctx[i].valid)
2361 			continue;
2362 
2363 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2364 			s->last_ctx[i].valid = false;
2365 	}
2366 	return ret;
2367 }
2368 
2369 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2370 		enum intel_gvt_gtt_type type)
2371 {
2372 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2373 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2374 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2375 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2376 				vgpu->gvt->device_info.gtt_entry_size_shift;
2377 	void *scratch_pt;
2378 	int i;
2379 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2380 	dma_addr_t daddr;
2381 
2382 	if (drm_WARN_ON(&i915->drm,
2383 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2384 		return -EINVAL;
2385 
2386 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2387 	if (!scratch_pt) {
2388 		gvt_vgpu_err("fail to allocate scratch page\n");
2389 		return -ENOMEM;
2390 	}
2391 
2392 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2393 			4096, PCI_DMA_BIDIRECTIONAL);
2394 	if (dma_mapping_error(dev, daddr)) {
2395 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2396 		__free_page(virt_to_page(scratch_pt));
2397 		return -ENOMEM;
2398 	}
2399 	gtt->scratch_pt[type].page_mfn =
2400 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2401 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2402 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2403 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2404 
2405 	/* Build the tree by full filled the scratch pt with the entries which
2406 	 * point to the next level scratch pt or scratch page. The
2407 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2408 	 * 'type' pt.
2409 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2410 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2411 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2412 	 */
2413 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2414 		struct intel_gvt_gtt_entry se;
2415 
2416 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2417 		se.type = get_entry_type(type - 1);
2418 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2419 
2420 		/* The entry parameters like present/writeable/cache type
2421 		 * set to the same as i915's scratch page tree.
2422 		 */
2423 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2424 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2425 			se.val64 |= PPAT_CACHED;
2426 
2427 		for (i = 0; i < page_entry_num; i++)
2428 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2429 	}
2430 
2431 	return 0;
2432 }
2433 
2434 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2435 {
2436 	int i;
2437 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2438 	dma_addr_t daddr;
2439 
2440 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2441 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2442 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2443 					I915_GTT_PAGE_SHIFT);
2444 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2445 			__free_page(vgpu->gtt.scratch_pt[i].page);
2446 			vgpu->gtt.scratch_pt[i].page = NULL;
2447 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2448 		}
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2455 {
2456 	int i, ret;
2457 
2458 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2459 		ret = alloc_scratch_pages(vgpu, i);
2460 		if (ret)
2461 			goto err;
2462 	}
2463 
2464 	return 0;
2465 
2466 err:
2467 	release_scratch_page_tree(vgpu);
2468 	return ret;
2469 }
2470 
2471 /**
2472  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2473  * @vgpu: a vGPU
2474  *
2475  * This function is used to initialize per-vGPU graphics memory virtualization
2476  * components.
2477  *
2478  * Returns:
2479  * Zero on success, error code if failed.
2480  */
2481 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2482 {
2483 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2484 
2485 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2486 
2487 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2488 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2489 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2490 
2491 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2492 	if (IS_ERR(gtt->ggtt_mm)) {
2493 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2494 		return PTR_ERR(gtt->ggtt_mm);
2495 	}
2496 
2497 	intel_vgpu_reset_ggtt(vgpu, false);
2498 
2499 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2500 
2501 	return create_scratch_page_tree(vgpu);
2502 }
2503 
2504 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2505 {
2506 	struct list_head *pos, *n;
2507 	struct intel_vgpu_mm *mm;
2508 
2509 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2510 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2511 		intel_vgpu_destroy_mm(mm);
2512 	}
2513 
2514 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2515 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2516 
2517 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2518 		gvt_err("Why we still has spt not freed?\n");
2519 		ppgtt_free_all_spt(vgpu);
2520 	}
2521 }
2522 
2523 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2524 {
2525 	struct intel_gvt_partial_pte *pos, *next;
2526 
2527 	list_for_each_entry_safe(pos, next,
2528 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2529 				 list) {
2530 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2531 			pos->offset, pos->data);
2532 		kfree(pos);
2533 	}
2534 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2535 	vgpu->gtt.ggtt_mm = NULL;
2536 }
2537 
2538 /**
2539  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2540  * @vgpu: a vGPU
2541  *
2542  * This function is used to clean up per-vGPU graphics memory virtualization
2543  * components.
2544  *
2545  * Returns:
2546  * Zero on success, error code if failed.
2547  */
2548 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2549 {
2550 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2551 	intel_vgpu_destroy_ggtt_mm(vgpu);
2552 	release_scratch_page_tree(vgpu);
2553 }
2554 
2555 static void clean_spt_oos(struct intel_gvt *gvt)
2556 {
2557 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2558 	struct list_head *pos, *n;
2559 	struct intel_vgpu_oos_page *oos_page;
2560 
2561 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2562 		"someone is still using oos page\n");
2563 
2564 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2565 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2566 		list_del(&oos_page->list);
2567 		free_page((unsigned long)oos_page->mem);
2568 		kfree(oos_page);
2569 	}
2570 }
2571 
2572 static int setup_spt_oos(struct intel_gvt *gvt)
2573 {
2574 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2575 	struct intel_vgpu_oos_page *oos_page;
2576 	int i;
2577 	int ret;
2578 
2579 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2580 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2581 
2582 	for (i = 0; i < preallocated_oos_pages; i++) {
2583 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2584 		if (!oos_page) {
2585 			ret = -ENOMEM;
2586 			goto fail;
2587 		}
2588 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2589 		if (!oos_page->mem) {
2590 			ret = -ENOMEM;
2591 			kfree(oos_page);
2592 			goto fail;
2593 		}
2594 
2595 		INIT_LIST_HEAD(&oos_page->list);
2596 		INIT_LIST_HEAD(&oos_page->vm_list);
2597 		oos_page->id = i;
2598 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2599 	}
2600 
2601 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2602 
2603 	return 0;
2604 fail:
2605 	clean_spt_oos(gvt);
2606 	return ret;
2607 }
2608 
2609 /**
2610  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2611  * @vgpu: a vGPU
2612  * @pdps: pdp root array
2613  *
2614  * This function is used to find a PPGTT mm object from mm object pool
2615  *
2616  * Returns:
2617  * pointer to mm object on success, NULL if failed.
2618  */
2619 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2620 		u64 pdps[])
2621 {
2622 	struct intel_vgpu_mm *mm;
2623 	struct list_head *pos;
2624 
2625 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2626 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2627 
2628 		switch (mm->ppgtt_mm.root_entry_type) {
2629 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2630 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2631 				return mm;
2632 			break;
2633 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2634 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2635 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2636 				return mm;
2637 			break;
2638 		default:
2639 			GEM_BUG_ON(1);
2640 		}
2641 	}
2642 	return NULL;
2643 }
2644 
2645 /**
2646  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2647  * @vgpu: a vGPU
2648  * @root_entry_type: ppgtt root entry type
2649  * @pdps: guest pdps
2650  *
2651  * This function is used to find or create a PPGTT mm object from a guest.
2652  *
2653  * Returns:
2654  * Zero on success, negative error code if failed.
2655  */
2656 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2657 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2658 {
2659 	struct intel_vgpu_mm *mm;
2660 
2661 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2662 	if (mm) {
2663 		intel_vgpu_mm_get(mm);
2664 	} else {
2665 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2666 		if (IS_ERR(mm))
2667 			gvt_vgpu_err("fail to create mm\n");
2668 	}
2669 	return mm;
2670 }
2671 
2672 /**
2673  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2674  * @vgpu: a vGPU
2675  * @pdps: guest pdps
2676  *
2677  * This function is used to find a PPGTT mm object from a guest and destroy it.
2678  *
2679  * Returns:
2680  * Zero on success, negative error code if failed.
2681  */
2682 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2683 {
2684 	struct intel_vgpu_mm *mm;
2685 
2686 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2687 	if (!mm) {
2688 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2689 		return -EINVAL;
2690 	}
2691 	intel_vgpu_mm_put(mm);
2692 	return 0;
2693 }
2694 
2695 /**
2696  * intel_gvt_init_gtt - initialize mm components of a GVT device
2697  * @gvt: GVT device
2698  *
2699  * This function is called at the initialization stage, to initialize
2700  * the mm components of a GVT device.
2701  *
2702  * Returns:
2703  * zero on success, negative error code if failed.
2704  */
2705 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2706 {
2707 	int ret;
2708 	void *page;
2709 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2710 	dma_addr_t daddr;
2711 
2712 	gvt_dbg_core("init gtt\n");
2713 
2714 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2715 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2716 
2717 	page = (void *)get_zeroed_page(GFP_KERNEL);
2718 	if (!page) {
2719 		gvt_err("fail to allocate scratch ggtt page\n");
2720 		return -ENOMEM;
2721 	}
2722 
2723 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2724 			4096, PCI_DMA_BIDIRECTIONAL);
2725 	if (dma_mapping_error(dev, daddr)) {
2726 		gvt_err("fail to dmamap scratch ggtt page\n");
2727 		__free_page(virt_to_page(page));
2728 		return -ENOMEM;
2729 	}
2730 
2731 	gvt->gtt.scratch_page = virt_to_page(page);
2732 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2733 
2734 	if (enable_out_of_sync) {
2735 		ret = setup_spt_oos(gvt);
2736 		if (ret) {
2737 			gvt_err("fail to initialize SPT oos\n");
2738 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2739 			__free_page(gvt->gtt.scratch_page);
2740 			return ret;
2741 		}
2742 	}
2743 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2744 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2745 	return 0;
2746 }
2747 
2748 /**
2749  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2750  * @gvt: GVT device
2751  *
2752  * This function is called at the driver unloading stage, to clean up the
2753  * the mm components of a GVT device.
2754  *
2755  */
2756 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2757 {
2758 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2759 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2760 					I915_GTT_PAGE_SHIFT);
2761 
2762 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2763 
2764 	__free_page(gvt->gtt.scratch_page);
2765 
2766 	if (enable_out_of_sync)
2767 		clean_spt_oos(gvt);
2768 }
2769 
2770 /**
2771  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2772  * @vgpu: a vGPU
2773  *
2774  * This function is called when invalidate all PPGTT instances of a vGPU.
2775  *
2776  */
2777 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2778 {
2779 	struct list_head *pos, *n;
2780 	struct intel_vgpu_mm *mm;
2781 
2782 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2783 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2784 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2785 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2786 			list_del_init(&mm->ppgtt_mm.lru_list);
2787 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2788 			if (mm->ppgtt_mm.shadowed)
2789 				invalidate_ppgtt_mm(mm);
2790 		}
2791 	}
2792 }
2793 
2794 /**
2795  * intel_vgpu_reset_ggtt - reset the GGTT entry
2796  * @vgpu: a vGPU
2797  * @invalidate_old: invalidate old entries
2798  *
2799  * This function is called at the vGPU create stage
2800  * to reset all the GGTT entries.
2801  *
2802  */
2803 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2804 {
2805 	struct intel_gvt *gvt = vgpu->gvt;
2806 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2807 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2808 	struct intel_gvt_gtt_entry old_entry;
2809 	u32 index;
2810 	u32 num_entries;
2811 
2812 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2813 	pte_ops->set_present(&entry);
2814 
2815 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2816 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2817 	while (num_entries--) {
2818 		if (invalidate_old) {
2819 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2820 			ggtt_invalidate_pte(vgpu, &old_entry);
2821 		}
2822 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2823 	}
2824 
2825 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2826 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2827 	while (num_entries--) {
2828 		if (invalidate_old) {
2829 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2830 			ggtt_invalidate_pte(vgpu, &old_entry);
2831 		}
2832 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2833 	}
2834 
2835 	ggtt_invalidate(gvt->gt);
2836 }
2837 
2838 /**
2839  * intel_vgpu_reset_gtt - reset the all GTT related status
2840  * @vgpu: a vGPU
2841  *
2842  * This function is called from vfio core to reset reset all
2843  * GTT related status, including GGTT, PPGTT, scratch page.
2844  *
2845  */
2846 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2847 {
2848 	/* Shadow pages are only created when there is no page
2849 	 * table tracking data, so remove page tracking data after
2850 	 * removing the shadow pages.
2851 	 */
2852 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2853 	intel_vgpu_reset_ggtt(vgpu, true);
2854 }
2855