1 /* 2 * GTT virtualization 3 * 4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 23 * SOFTWARE. 24 * 25 * Authors: 26 * Zhi Wang <zhi.a.wang@intel.com> 27 * Zhenyu Wang <zhenyuw@linux.intel.com> 28 * Xiao Zheng <xiao.zheng@intel.com> 29 * 30 * Contributors: 31 * Min He <min.he@intel.com> 32 * Bing Niu <bing.niu@intel.com> 33 * 34 */ 35 36 #include "i915_drv.h" 37 #include "gvt.h" 38 #include "i915_pvinfo.h" 39 #include "trace.h" 40 41 static bool enable_out_of_sync = false; 42 static int preallocated_oos_pages = 8192; 43 44 /* 45 * validate a gm address and related range size, 46 * translate it to host gm address 47 */ 48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 49 { 50 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size 51 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) { 52 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n", 53 addr, size); 54 return false; 55 } 56 return true; 57 } 58 59 /* translate a guest gmadr to host gmadr */ 60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 61 { 62 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), 63 "invalid guest gmadr %llx\n", g_addr)) 64 return -EACCES; 65 66 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 67 *h_addr = vgpu_aperture_gmadr_base(vgpu) 68 + (g_addr - vgpu_aperture_offset(vgpu)); 69 else 70 *h_addr = vgpu_hidden_gmadr_base(vgpu) 71 + (g_addr - vgpu_hidden_offset(vgpu)); 72 return 0; 73 } 74 75 /* translate a host gmadr to guest gmadr */ 76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 77 { 78 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), 79 "invalid host gmadr %llx\n", h_addr)) 80 return -EACCES; 81 82 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 83 *g_addr = vgpu_aperture_gmadr_base(vgpu) 84 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 85 else 86 *g_addr = vgpu_hidden_gmadr_base(vgpu) 87 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 88 return 0; 89 } 90 91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 92 unsigned long *h_index) 93 { 94 u64 h_addr; 95 int ret; 96 97 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT, 98 &h_addr); 99 if (ret) 100 return ret; 101 102 *h_index = h_addr >> GTT_PAGE_SHIFT; 103 return 0; 104 } 105 106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 107 unsigned long *g_index) 108 { 109 u64 g_addr; 110 int ret; 111 112 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT, 113 &g_addr); 114 if (ret) 115 return ret; 116 117 *g_index = g_addr >> GTT_PAGE_SHIFT; 118 return 0; 119 } 120 121 #define gtt_type_is_entry(type) \ 122 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 123 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 124 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 125 126 #define gtt_type_is_pt(type) \ 127 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 128 129 #define gtt_type_is_pte_pt(type) \ 130 (type == GTT_TYPE_PPGTT_PTE_PT) 131 132 #define gtt_type_is_root_pointer(type) \ 133 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 134 135 #define gtt_init_entry(e, t, p, v) do { \ 136 (e)->type = t; \ 137 (e)->pdev = p; \ 138 memcpy(&(e)->val64, &v, sizeof(v)); \ 139 } while (0) 140 141 /* 142 * Mappings between GTT_TYPE* enumerations. 143 * Following information can be found according to the given type: 144 * - type of next level page table 145 * - type of entry inside this level page table 146 * - type of entry with PSE set 147 * 148 * If the given type doesn't have such a kind of information, 149 * e.g. give a l4 root entry type, then request to get its PSE type, 150 * give a PTE page table type, then request to get its next level page 151 * table type, as we know l4 root entry doesn't have a PSE bit, 152 * and a PTE page table doesn't have a next level page table type, 153 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 154 * page table. 155 */ 156 157 struct gtt_type_table_entry { 158 int entry_type; 159 int next_pt_type; 160 int pse_entry_type; 161 }; 162 163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \ 164 [type] = { \ 165 .entry_type = e_type, \ 166 .next_pt_type = npt_type, \ 167 .pse_entry_type = pse_type, \ 168 } 169 170 static struct gtt_type_table_entry gtt_type_table[] = { 171 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 172 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 173 GTT_TYPE_PPGTT_PML4_PT, 174 GTT_TYPE_INVALID), 175 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 176 GTT_TYPE_PPGTT_PML4_ENTRY, 177 GTT_TYPE_PPGTT_PDP_PT, 178 GTT_TYPE_INVALID), 179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 180 GTT_TYPE_PPGTT_PML4_ENTRY, 181 GTT_TYPE_PPGTT_PDP_PT, 182 GTT_TYPE_INVALID), 183 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 184 GTT_TYPE_PPGTT_PDP_ENTRY, 185 GTT_TYPE_PPGTT_PDE_PT, 186 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 187 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 188 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 189 GTT_TYPE_PPGTT_PDE_PT, 190 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 192 GTT_TYPE_PPGTT_PDP_ENTRY, 193 GTT_TYPE_PPGTT_PDE_PT, 194 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 196 GTT_TYPE_PPGTT_PDE_ENTRY, 197 GTT_TYPE_PPGTT_PTE_PT, 198 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 200 GTT_TYPE_PPGTT_PDE_ENTRY, 201 GTT_TYPE_PPGTT_PTE_PT, 202 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 203 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 204 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 205 GTT_TYPE_INVALID, 206 GTT_TYPE_INVALID), 207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 208 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 209 GTT_TYPE_INVALID, 210 GTT_TYPE_INVALID), 211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 212 GTT_TYPE_PPGTT_PDE_ENTRY, 213 GTT_TYPE_INVALID, 214 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 216 GTT_TYPE_PPGTT_PDP_ENTRY, 217 GTT_TYPE_INVALID, 218 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 220 GTT_TYPE_GGTT_PTE, 221 GTT_TYPE_INVALID, 222 GTT_TYPE_INVALID), 223 }; 224 225 static inline int get_next_pt_type(int type) 226 { 227 return gtt_type_table[type].next_pt_type; 228 } 229 230 static inline int get_entry_type(int type) 231 { 232 return gtt_type_table[type].entry_type; 233 } 234 235 static inline int get_pse_type(int type) 236 { 237 return gtt_type_table[type].pse_entry_type; 238 } 239 240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) 241 { 242 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 243 244 return readq(addr); 245 } 246 247 static void gtt_invalidate(struct drm_i915_private *dev_priv) 248 { 249 mmio_hw_access_pre(dev_priv); 250 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 251 mmio_hw_access_post(dev_priv); 252 } 253 254 static void write_pte64(struct drm_i915_private *dev_priv, 255 unsigned long index, u64 pte) 256 { 257 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 258 259 writeq(pte, addr); 260 } 261 262 static inline int gtt_get_entry64(void *pt, 263 struct intel_gvt_gtt_entry *e, 264 unsigned long index, bool hypervisor_access, unsigned long gpa, 265 struct intel_vgpu *vgpu) 266 { 267 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 268 int ret; 269 270 if (WARN_ON(info->gtt_entry_size != 8)) 271 return -EINVAL; 272 273 if (hypervisor_access) { 274 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 275 (index << info->gtt_entry_size_shift), 276 &e->val64, 8); 277 if (WARN_ON(ret)) 278 return ret; 279 } else if (!pt) { 280 e->val64 = read_pte64(vgpu->gvt->dev_priv, index); 281 } else { 282 e->val64 = *((u64 *)pt + index); 283 } 284 return 0; 285 } 286 287 static inline int gtt_set_entry64(void *pt, 288 struct intel_gvt_gtt_entry *e, 289 unsigned long index, bool hypervisor_access, unsigned long gpa, 290 struct intel_vgpu *vgpu) 291 { 292 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 293 int ret; 294 295 if (WARN_ON(info->gtt_entry_size != 8)) 296 return -EINVAL; 297 298 if (hypervisor_access) { 299 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 300 (index << info->gtt_entry_size_shift), 301 &e->val64, 8); 302 if (WARN_ON(ret)) 303 return ret; 304 } else if (!pt) { 305 write_pte64(vgpu->gvt->dev_priv, index, e->val64); 306 } else { 307 *((u64 *)pt + index) = e->val64; 308 } 309 return 0; 310 } 311 312 #define GTT_HAW 46 313 314 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30)) - 1) << 30) 315 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21)) - 1) << 21) 316 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12)) - 1) << 12) 317 318 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 319 { 320 unsigned long pfn; 321 322 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 323 pfn = (e->val64 & ADDR_1G_MASK) >> 12; 324 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 325 pfn = (e->val64 & ADDR_2M_MASK) >> 12; 326 else 327 pfn = (e->val64 & ADDR_4K_MASK) >> 12; 328 return pfn; 329 } 330 331 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 332 { 333 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 334 e->val64 &= ~ADDR_1G_MASK; 335 pfn &= (ADDR_1G_MASK >> 12); 336 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 337 e->val64 &= ~ADDR_2M_MASK; 338 pfn &= (ADDR_2M_MASK >> 12); 339 } else { 340 e->val64 &= ~ADDR_4K_MASK; 341 pfn &= (ADDR_4K_MASK >> 12); 342 } 343 344 e->val64 |= (pfn << 12); 345 } 346 347 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 348 { 349 /* Entry doesn't have PSE bit. */ 350 if (get_pse_type(e->type) == GTT_TYPE_INVALID) 351 return false; 352 353 e->type = get_entry_type(e->type); 354 if (!(e->val64 & (1 << 7))) 355 return false; 356 357 e->type = get_pse_type(e->type); 358 return true; 359 } 360 361 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 362 { 363 /* 364 * i915 writes PDP root pointer registers without present bit, 365 * it also works, so we need to treat root pointer entry 366 * specifically. 367 */ 368 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 369 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 370 return (e->val64 != 0); 371 else 372 return (e->val64 & (1 << 0)); 373 } 374 375 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 376 { 377 e->val64 &= ~(1 << 0); 378 } 379 380 /* 381 * Per-platform GMA routines. 382 */ 383 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 384 { 385 unsigned long x = (gma >> GTT_PAGE_SHIFT); 386 387 trace_gma_index(__func__, gma, x); 388 return x; 389 } 390 391 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 392 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 393 { \ 394 unsigned long x = (exp); \ 395 trace_gma_index(__func__, gma, x); \ 396 return x; \ 397 } 398 399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 402 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 403 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 404 405 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 406 .get_entry = gtt_get_entry64, 407 .set_entry = gtt_set_entry64, 408 .clear_present = gtt_entry_clear_present, 409 .test_present = gen8_gtt_test_present, 410 .test_pse = gen8_gtt_test_pse, 411 .get_pfn = gen8_gtt_get_pfn, 412 .set_pfn = gen8_gtt_set_pfn, 413 }; 414 415 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 416 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 417 .gma_to_pte_index = gen8_gma_to_pte_index, 418 .gma_to_pde_index = gen8_gma_to_pde_index, 419 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 420 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 421 .gma_to_pml4_index = gen8_gma_to_pml4_index, 422 }; 423 424 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p, 425 struct intel_gvt_gtt_entry *m) 426 { 427 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 428 unsigned long gfn, mfn; 429 430 *m = *p; 431 432 if (!ops->test_present(p)) 433 return 0; 434 435 gfn = ops->get_pfn(p); 436 437 mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn); 438 if (mfn == INTEL_GVT_INVALID_ADDR) { 439 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn); 440 return -ENXIO; 441 } 442 443 ops->set_pfn(m, mfn); 444 return 0; 445 } 446 447 /* 448 * MM helpers. 449 */ 450 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm, 451 void *page_table, struct intel_gvt_gtt_entry *e, 452 unsigned long index) 453 { 454 struct intel_gvt *gvt = mm->vgpu->gvt; 455 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 456 int ret; 457 458 e->type = mm->page_table_entry_type; 459 460 ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu); 461 if (ret) 462 return ret; 463 464 ops->test_pse(e); 465 return 0; 466 } 467 468 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm, 469 void *page_table, struct intel_gvt_gtt_entry *e, 470 unsigned long index) 471 { 472 struct intel_gvt *gvt = mm->vgpu->gvt; 473 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 474 475 return ops->set_entry(page_table, e, index, false, 0, mm->vgpu); 476 } 477 478 /* 479 * PPGTT shadow page table helpers. 480 */ 481 static inline int ppgtt_spt_get_entry( 482 struct intel_vgpu_ppgtt_spt *spt, 483 void *page_table, int type, 484 struct intel_gvt_gtt_entry *e, unsigned long index, 485 bool guest) 486 { 487 struct intel_gvt *gvt = spt->vgpu->gvt; 488 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 489 int ret; 490 491 e->type = get_entry_type(type); 492 493 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 494 return -EINVAL; 495 496 ret = ops->get_entry(page_table, e, index, guest, 497 spt->guest_page.gfn << GTT_PAGE_SHIFT, 498 spt->vgpu); 499 if (ret) 500 return ret; 501 502 ops->test_pse(e); 503 return 0; 504 } 505 506 static inline int ppgtt_spt_set_entry( 507 struct intel_vgpu_ppgtt_spt *spt, 508 void *page_table, int type, 509 struct intel_gvt_gtt_entry *e, unsigned long index, 510 bool guest) 511 { 512 struct intel_gvt *gvt = spt->vgpu->gvt; 513 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 514 515 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 516 return -EINVAL; 517 518 return ops->set_entry(page_table, e, index, guest, 519 spt->guest_page.gfn << GTT_PAGE_SHIFT, 520 spt->vgpu); 521 } 522 523 #define ppgtt_get_guest_entry(spt, e, index) \ 524 ppgtt_spt_get_entry(spt, NULL, \ 525 spt->guest_page_type, e, index, true) 526 527 #define ppgtt_set_guest_entry(spt, e, index) \ 528 ppgtt_spt_set_entry(spt, NULL, \ 529 spt->guest_page_type, e, index, true) 530 531 #define ppgtt_get_shadow_entry(spt, e, index) \ 532 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 533 spt->shadow_page.type, e, index, false) 534 535 #define ppgtt_set_shadow_entry(spt, e, index) \ 536 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 537 spt->shadow_page.type, e, index, false) 538 539 /** 540 * intel_vgpu_init_guest_page - init a guest page data structure 541 * @vgpu: a vGPU 542 * @p: a guest page data structure 543 * @gfn: guest memory page frame number 544 * @handler: function will be called when target guest memory page has 545 * been modified. 546 * 547 * This function is called when user wants to track a guest memory page. 548 * 549 * Returns: 550 * Zero on success, negative error code if failed. 551 */ 552 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu, 553 struct intel_vgpu_guest_page *p, 554 unsigned long gfn, 555 int (*handler)(void *, u64, void *, int), 556 void *data) 557 { 558 INIT_HLIST_NODE(&p->node); 559 560 p->writeprotection = false; 561 p->gfn = gfn; 562 p->handler = handler; 563 p->data = data; 564 p->oos_page = NULL; 565 p->write_cnt = 0; 566 567 hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn); 568 return 0; 569 } 570 571 static int detach_oos_page(struct intel_vgpu *vgpu, 572 struct intel_vgpu_oos_page *oos_page); 573 574 /** 575 * intel_vgpu_clean_guest_page - release the resource owned by guest page data 576 * structure 577 * @vgpu: a vGPU 578 * @p: a tracked guest page 579 * 580 * This function is called when user tries to stop tracking a guest memory 581 * page. 582 */ 583 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu, 584 struct intel_vgpu_guest_page *p) 585 { 586 if (!hlist_unhashed(&p->node)) 587 hash_del(&p->node); 588 589 if (p->oos_page) 590 detach_oos_page(vgpu, p->oos_page); 591 592 if (p->writeprotection) 593 intel_gvt_hypervisor_unset_wp_page(vgpu, p); 594 } 595 596 /** 597 * intel_vgpu_find_guest_page - find a guest page data structure by GFN. 598 * @vgpu: a vGPU 599 * @gfn: guest memory page frame number 600 * 601 * This function is called when emulation logic wants to know if a trapped GFN 602 * is a tracked guest page. 603 * 604 * Returns: 605 * Pointer to guest page data structure, NULL if failed. 606 */ 607 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page( 608 struct intel_vgpu *vgpu, unsigned long gfn) 609 { 610 struct intel_vgpu_guest_page *p; 611 612 hash_for_each_possible(vgpu->gtt.guest_page_hash_table, 613 p, node, gfn) { 614 if (p->gfn == gfn) 615 return p; 616 } 617 return NULL; 618 } 619 620 static inline int init_shadow_page(struct intel_vgpu *vgpu, 621 struct intel_vgpu_shadow_page *p, int type) 622 { 623 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; 624 dma_addr_t daddr; 625 626 daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL); 627 if (dma_mapping_error(kdev, daddr)) { 628 gvt_vgpu_err("fail to map dma addr\n"); 629 return -EINVAL; 630 } 631 632 p->vaddr = page_address(p->page); 633 p->type = type; 634 635 INIT_HLIST_NODE(&p->node); 636 637 p->mfn = daddr >> GTT_PAGE_SHIFT; 638 hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn); 639 return 0; 640 } 641 642 static inline void clean_shadow_page(struct intel_vgpu *vgpu, 643 struct intel_vgpu_shadow_page *p) 644 { 645 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; 646 647 dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096, 648 PCI_DMA_BIDIRECTIONAL); 649 650 if (!hlist_unhashed(&p->node)) 651 hash_del(&p->node); 652 } 653 654 static inline struct intel_vgpu_shadow_page *find_shadow_page( 655 struct intel_vgpu *vgpu, unsigned long mfn) 656 { 657 struct intel_vgpu_shadow_page *p; 658 659 hash_for_each_possible(vgpu->gtt.shadow_page_hash_table, 660 p, node, mfn) { 661 if (p->mfn == mfn) 662 return p; 663 } 664 return NULL; 665 } 666 667 #define guest_page_to_ppgtt_spt(ptr) \ 668 container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page) 669 670 #define shadow_page_to_ppgtt_spt(ptr) \ 671 container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page) 672 673 static void *alloc_spt(gfp_t gfp_mask) 674 { 675 struct intel_vgpu_ppgtt_spt *spt; 676 677 spt = kzalloc(sizeof(*spt), gfp_mask); 678 if (!spt) 679 return NULL; 680 681 spt->shadow_page.page = alloc_page(gfp_mask); 682 if (!spt->shadow_page.page) { 683 kfree(spt); 684 return NULL; 685 } 686 return spt; 687 } 688 689 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 690 { 691 __free_page(spt->shadow_page.page); 692 kfree(spt); 693 } 694 695 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 696 { 697 trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type); 698 699 clean_shadow_page(spt->vgpu, &spt->shadow_page); 700 intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page); 701 list_del_init(&spt->post_shadow_list); 702 703 free_spt(spt); 704 } 705 706 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu) 707 { 708 struct hlist_node *n; 709 struct intel_vgpu_shadow_page *sp; 710 int i; 711 712 hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node) 713 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp)); 714 } 715 716 static int ppgtt_handle_guest_write_page_table_bytes(void *gp, 717 u64 pa, void *p_data, int bytes); 718 719 static int ppgtt_write_protection_handler(void *gp, u64 pa, 720 void *p_data, int bytes) 721 { 722 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp; 723 int ret; 724 725 if (bytes != 4 && bytes != 8) 726 return -EINVAL; 727 728 if (!gpt->writeprotection) 729 return -EINVAL; 730 731 ret = ppgtt_handle_guest_write_page_table_bytes(gp, 732 pa, p_data, bytes); 733 if (ret) 734 return ret; 735 return ret; 736 } 737 738 static int reclaim_one_mm(struct intel_gvt *gvt); 739 740 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page( 741 struct intel_vgpu *vgpu, int type, unsigned long gfn) 742 { 743 struct intel_vgpu_ppgtt_spt *spt = NULL; 744 int ret; 745 746 retry: 747 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 748 if (!spt) { 749 if (reclaim_one_mm(vgpu->gvt)) 750 goto retry; 751 752 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 753 return ERR_PTR(-ENOMEM); 754 } 755 756 spt->vgpu = vgpu; 757 spt->guest_page_type = type; 758 atomic_set(&spt->refcount, 1); 759 INIT_LIST_HEAD(&spt->post_shadow_list); 760 761 /* 762 * TODO: guest page type may be different with shadow page type, 763 * when we support PSE page in future. 764 */ 765 ret = init_shadow_page(vgpu, &spt->shadow_page, type); 766 if (ret) { 767 gvt_vgpu_err("fail to initialize shadow page for spt\n"); 768 goto err; 769 } 770 771 ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page, 772 gfn, ppgtt_write_protection_handler, NULL); 773 if (ret) { 774 gvt_vgpu_err("fail to initialize guest page for spt\n"); 775 goto err; 776 } 777 778 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 779 return spt; 780 err: 781 ppgtt_free_shadow_page(spt); 782 return ERR_PTR(ret); 783 } 784 785 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page( 786 struct intel_vgpu *vgpu, unsigned long mfn) 787 { 788 struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn); 789 790 if (p) 791 return shadow_page_to_ppgtt_spt(p); 792 793 gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn); 794 return NULL; 795 } 796 797 #define pt_entry_size_shift(spt) \ 798 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 799 800 #define pt_entries(spt) \ 801 (GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 802 803 #define for_each_present_guest_entry(spt, e, i) \ 804 for (i = 0; i < pt_entries(spt); i++) \ 805 if (!ppgtt_get_guest_entry(spt, e, i) && \ 806 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 807 808 #define for_each_present_shadow_entry(spt, e, i) \ 809 for (i = 0; i < pt_entries(spt); i++) \ 810 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 811 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 812 813 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 814 { 815 int v = atomic_read(&spt->refcount); 816 817 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 818 819 atomic_inc(&spt->refcount); 820 } 821 822 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt); 823 824 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu, 825 struct intel_gvt_gtt_entry *e) 826 { 827 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 828 struct intel_vgpu_ppgtt_spt *s; 829 intel_gvt_gtt_type_t cur_pt_type; 830 831 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type)))) 832 return -EINVAL; 833 834 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 835 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 836 cur_pt_type = get_next_pt_type(e->type) + 1; 837 if (ops->get_pfn(e) == 838 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 839 return 0; 840 } 841 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e)); 842 if (!s) { 843 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 844 ops->get_pfn(e)); 845 return -ENXIO; 846 } 847 return ppgtt_invalidate_shadow_page(s); 848 } 849 850 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 851 { 852 struct intel_vgpu *vgpu = spt->vgpu; 853 struct intel_gvt_gtt_entry e; 854 unsigned long index; 855 int ret; 856 int v = atomic_read(&spt->refcount); 857 858 trace_spt_change(spt->vgpu->id, "die", spt, 859 spt->guest_page.gfn, spt->shadow_page.type); 860 861 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 862 863 if (atomic_dec_return(&spt->refcount) > 0) 864 return 0; 865 866 if (gtt_type_is_pte_pt(spt->shadow_page.type)) 867 goto release; 868 869 for_each_present_shadow_entry(spt, &e, index) { 870 if (!gtt_type_is_pt(get_next_pt_type(e.type))) { 871 gvt_vgpu_err("GVT doesn't support pse bit for now\n"); 872 return -EINVAL; 873 } 874 ret = ppgtt_invalidate_shadow_page_by_shadow_entry( 875 spt->vgpu, &e); 876 if (ret) 877 goto fail; 878 } 879 release: 880 trace_spt_change(spt->vgpu->id, "release", spt, 881 spt->guest_page.gfn, spt->shadow_page.type); 882 ppgtt_free_shadow_page(spt); 883 return 0; 884 fail: 885 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 886 spt, e.val64, e.type); 887 return ret; 888 } 889 890 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt); 891 892 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry( 893 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 894 { 895 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 896 struct intel_vgpu_ppgtt_spt *s = NULL; 897 struct intel_vgpu_guest_page *g; 898 int ret; 899 900 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) { 901 ret = -EINVAL; 902 goto fail; 903 } 904 905 g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we)); 906 if (g) { 907 s = guest_page_to_ppgtt_spt(g); 908 ppgtt_get_shadow_page(s); 909 } else { 910 int type = get_next_pt_type(we->type); 911 912 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we)); 913 if (IS_ERR(s)) { 914 ret = PTR_ERR(s); 915 goto fail; 916 } 917 918 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page); 919 if (ret) 920 goto fail; 921 922 ret = ppgtt_populate_shadow_page(s); 923 if (ret) 924 goto fail; 925 926 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn, 927 s->shadow_page.type); 928 } 929 return s; 930 fail: 931 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 932 s, we->val64, we->type); 933 return ERR_PTR(ret); 934 } 935 936 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 937 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 938 { 939 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 940 941 se->type = ge->type; 942 se->val64 = ge->val64; 943 944 ops->set_pfn(se, s->shadow_page.mfn); 945 } 946 947 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt) 948 { 949 struct intel_vgpu *vgpu = spt->vgpu; 950 struct intel_vgpu_ppgtt_spt *s; 951 struct intel_gvt_gtt_entry se, ge; 952 unsigned long i; 953 int ret; 954 955 trace_spt_change(spt->vgpu->id, "born", spt, 956 spt->guest_page.gfn, spt->shadow_page.type); 957 958 if (gtt_type_is_pte_pt(spt->shadow_page.type)) { 959 for_each_present_guest_entry(spt, &ge, i) { 960 ret = gtt_entry_p2m(vgpu, &ge, &se); 961 if (ret) 962 goto fail; 963 ppgtt_set_shadow_entry(spt, &se, i); 964 } 965 return 0; 966 } 967 968 for_each_present_guest_entry(spt, &ge, i) { 969 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) { 970 gvt_vgpu_err("GVT doesn't support pse bit now\n"); 971 ret = -EINVAL; 972 goto fail; 973 } 974 975 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge); 976 if (IS_ERR(s)) { 977 ret = PTR_ERR(s); 978 goto fail; 979 } 980 ppgtt_get_shadow_entry(spt, &se, i); 981 ppgtt_generate_shadow_entry(&se, s, &ge); 982 ppgtt_set_shadow_entry(spt, &se, i); 983 } 984 return 0; 985 fail: 986 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 987 spt, ge.val64, ge.type); 988 return ret; 989 } 990 991 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt, 992 struct intel_gvt_gtt_entry *se, unsigned long index) 993 { 994 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 995 struct intel_vgpu_shadow_page *sp = &spt->shadow_page; 996 struct intel_vgpu *vgpu = spt->vgpu; 997 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 998 int ret; 999 1000 trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64, 1001 index); 1002 1003 if (!ops->test_present(se)) 1004 return 0; 1005 1006 if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn) 1007 return 0; 1008 1009 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1010 struct intel_vgpu_ppgtt_spt *s = 1011 ppgtt_find_shadow_page(vgpu, ops->get_pfn(se)); 1012 if (!s) { 1013 gvt_vgpu_err("fail to find guest page\n"); 1014 ret = -ENXIO; 1015 goto fail; 1016 } 1017 ret = ppgtt_invalidate_shadow_page(s); 1018 if (ret) 1019 goto fail; 1020 } 1021 return 0; 1022 fail: 1023 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1024 spt, se->val64, se->type); 1025 return ret; 1026 } 1027 1028 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt, 1029 struct intel_gvt_gtt_entry *we, unsigned long index) 1030 { 1031 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 1032 struct intel_vgpu_shadow_page *sp = &spt->shadow_page; 1033 struct intel_vgpu *vgpu = spt->vgpu; 1034 struct intel_gvt_gtt_entry m; 1035 struct intel_vgpu_ppgtt_spt *s; 1036 int ret; 1037 1038 trace_gpt_change(spt->vgpu->id, "add", spt, sp->type, 1039 we->val64, index); 1040 1041 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1042 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we); 1043 if (IS_ERR(s)) { 1044 ret = PTR_ERR(s); 1045 goto fail; 1046 } 1047 ppgtt_get_shadow_entry(spt, &m, index); 1048 ppgtt_generate_shadow_entry(&m, s, we); 1049 ppgtt_set_shadow_entry(spt, &m, index); 1050 } else { 1051 ret = gtt_entry_p2m(vgpu, we, &m); 1052 if (ret) 1053 goto fail; 1054 ppgtt_set_shadow_entry(spt, &m, index); 1055 } 1056 return 0; 1057 fail: 1058 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1059 spt, we->val64, we->type); 1060 return ret; 1061 } 1062 1063 static int sync_oos_page(struct intel_vgpu *vgpu, 1064 struct intel_vgpu_oos_page *oos_page) 1065 { 1066 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1067 struct intel_gvt *gvt = vgpu->gvt; 1068 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1069 struct intel_vgpu_ppgtt_spt *spt = 1070 guest_page_to_ppgtt_spt(oos_page->guest_page); 1071 struct intel_gvt_gtt_entry old, new, m; 1072 int index; 1073 int ret; 1074 1075 trace_oos_change(vgpu->id, "sync", oos_page->id, 1076 oos_page->guest_page, spt->guest_page_type); 1077 1078 old.type = new.type = get_entry_type(spt->guest_page_type); 1079 old.val64 = new.val64 = 0; 1080 1081 for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift); 1082 index++) { 1083 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1084 ops->get_entry(NULL, &new, index, true, 1085 oos_page->guest_page->gfn << PAGE_SHIFT, vgpu); 1086 1087 if (old.val64 == new.val64 1088 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1089 continue; 1090 1091 trace_oos_sync(vgpu->id, oos_page->id, 1092 oos_page->guest_page, spt->guest_page_type, 1093 new.val64, index); 1094 1095 ret = gtt_entry_p2m(vgpu, &new, &m); 1096 if (ret) 1097 return ret; 1098 1099 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1100 ppgtt_set_shadow_entry(spt, &m, index); 1101 } 1102 1103 oos_page->guest_page->write_cnt = 0; 1104 list_del_init(&spt->post_shadow_list); 1105 return 0; 1106 } 1107 1108 static int detach_oos_page(struct intel_vgpu *vgpu, 1109 struct intel_vgpu_oos_page *oos_page) 1110 { 1111 struct intel_gvt *gvt = vgpu->gvt; 1112 struct intel_vgpu_ppgtt_spt *spt = 1113 guest_page_to_ppgtt_spt(oos_page->guest_page); 1114 1115 trace_oos_change(vgpu->id, "detach", oos_page->id, 1116 oos_page->guest_page, spt->guest_page_type); 1117 1118 oos_page->guest_page->write_cnt = 0; 1119 oos_page->guest_page->oos_page = NULL; 1120 oos_page->guest_page = NULL; 1121 1122 list_del_init(&oos_page->vm_list); 1123 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1124 1125 return 0; 1126 } 1127 1128 static int attach_oos_page(struct intel_vgpu *vgpu, 1129 struct intel_vgpu_oos_page *oos_page, 1130 struct intel_vgpu_guest_page *gpt) 1131 { 1132 struct intel_gvt *gvt = vgpu->gvt; 1133 int ret; 1134 1135 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT, 1136 oos_page->mem, GTT_PAGE_SIZE); 1137 if (ret) 1138 return ret; 1139 1140 oos_page->guest_page = gpt; 1141 gpt->oos_page = oos_page; 1142 1143 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1144 1145 trace_oos_change(vgpu->id, "attach", gpt->oos_page->id, 1146 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); 1147 return 0; 1148 } 1149 1150 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu, 1151 struct intel_vgpu_guest_page *gpt) 1152 { 1153 int ret; 1154 1155 ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt); 1156 if (ret) 1157 return ret; 1158 1159 trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id, 1160 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); 1161 1162 list_del_init(&gpt->oos_page->vm_list); 1163 return sync_oos_page(vgpu, gpt->oos_page); 1164 } 1165 1166 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu, 1167 struct intel_vgpu_guest_page *gpt) 1168 { 1169 struct intel_gvt *gvt = vgpu->gvt; 1170 struct intel_gvt_gtt *gtt = &gvt->gtt; 1171 struct intel_vgpu_oos_page *oos_page = gpt->oos_page; 1172 int ret; 1173 1174 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1175 1176 if (list_empty(>t->oos_page_free_list_head)) { 1177 oos_page = container_of(gtt->oos_page_use_list_head.next, 1178 struct intel_vgpu_oos_page, list); 1179 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page); 1180 if (ret) 1181 return ret; 1182 ret = detach_oos_page(vgpu, oos_page); 1183 if (ret) 1184 return ret; 1185 } else 1186 oos_page = container_of(gtt->oos_page_free_list_head.next, 1187 struct intel_vgpu_oos_page, list); 1188 return attach_oos_page(vgpu, oos_page, gpt); 1189 } 1190 1191 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu, 1192 struct intel_vgpu_guest_page *gpt) 1193 { 1194 struct intel_vgpu_oos_page *oos_page = gpt->oos_page; 1195 1196 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1197 return -EINVAL; 1198 1199 trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id, 1200 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type); 1201 1202 list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head); 1203 return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt); 1204 } 1205 1206 /** 1207 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1208 * @vgpu: a vGPU 1209 * 1210 * This function is called before submitting a guest workload to host, 1211 * to sync all the out-of-synced shadow for vGPU 1212 * 1213 * Returns: 1214 * Zero on success, negative error code if failed. 1215 */ 1216 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1217 { 1218 struct list_head *pos, *n; 1219 struct intel_vgpu_oos_page *oos_page; 1220 int ret; 1221 1222 if (!enable_out_of_sync) 1223 return 0; 1224 1225 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1226 oos_page = container_of(pos, 1227 struct intel_vgpu_oos_page, vm_list); 1228 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page); 1229 if (ret) 1230 return ret; 1231 } 1232 return 0; 1233 } 1234 1235 /* 1236 * The heart of PPGTT shadow page table. 1237 */ 1238 static int ppgtt_handle_guest_write_page_table( 1239 struct intel_vgpu_guest_page *gpt, 1240 struct intel_gvt_gtt_entry *we, unsigned long index) 1241 { 1242 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 1243 struct intel_vgpu *vgpu = spt->vgpu; 1244 int type = spt->shadow_page.type; 1245 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1246 struct intel_gvt_gtt_entry se; 1247 1248 int ret; 1249 int new_present; 1250 1251 new_present = ops->test_present(we); 1252 1253 /* 1254 * Adding the new entry first and then removing the old one, that can 1255 * guarantee the ppgtt table is validated during the window between 1256 * adding and removal. 1257 */ 1258 ppgtt_get_shadow_entry(spt, &se, index); 1259 1260 if (new_present) { 1261 ret = ppgtt_handle_guest_entry_add(gpt, we, index); 1262 if (ret) 1263 goto fail; 1264 } 1265 1266 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index); 1267 if (ret) 1268 goto fail; 1269 1270 if (!new_present) { 1271 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1272 ppgtt_set_shadow_entry(spt, &se, index); 1273 } 1274 1275 return 0; 1276 fail: 1277 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1278 spt, we->val64, we->type); 1279 return ret; 1280 } 1281 1282 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt) 1283 { 1284 return enable_out_of_sync 1285 && gtt_type_is_pte_pt( 1286 guest_page_to_ppgtt_spt(gpt)->guest_page_type) 1287 && gpt->write_cnt >= 2; 1288 } 1289 1290 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1291 unsigned long index) 1292 { 1293 set_bit(index, spt->post_shadow_bitmap); 1294 if (!list_empty(&spt->post_shadow_list)) 1295 return; 1296 1297 list_add_tail(&spt->post_shadow_list, 1298 &spt->vgpu->gtt.post_shadow_list_head); 1299 } 1300 1301 /** 1302 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1303 * @vgpu: a vGPU 1304 * 1305 * This function is called before submitting a guest workload to host, 1306 * to flush all the post shadows for a vGPU. 1307 * 1308 * Returns: 1309 * Zero on success, negative error code if failed. 1310 */ 1311 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1312 { 1313 struct list_head *pos, *n; 1314 struct intel_vgpu_ppgtt_spt *spt; 1315 struct intel_gvt_gtt_entry ge; 1316 unsigned long index; 1317 int ret; 1318 1319 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1320 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1321 post_shadow_list); 1322 1323 for_each_set_bit(index, spt->post_shadow_bitmap, 1324 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1325 ppgtt_get_guest_entry(spt, &ge, index); 1326 1327 ret = ppgtt_handle_guest_write_page_table( 1328 &spt->guest_page, &ge, index); 1329 if (ret) 1330 return ret; 1331 clear_bit(index, spt->post_shadow_bitmap); 1332 } 1333 list_del_init(&spt->post_shadow_list); 1334 } 1335 return 0; 1336 } 1337 1338 static int ppgtt_handle_guest_write_page_table_bytes(void *gp, 1339 u64 pa, void *p_data, int bytes) 1340 { 1341 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp; 1342 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt); 1343 struct intel_vgpu *vgpu = spt->vgpu; 1344 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1345 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1346 struct intel_gvt_gtt_entry we, se; 1347 unsigned long index; 1348 int ret; 1349 1350 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1351 1352 ppgtt_get_guest_entry(spt, &we, index); 1353 1354 ops->test_pse(&we); 1355 1356 if (bytes == info->gtt_entry_size) { 1357 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index); 1358 if (ret) 1359 return ret; 1360 } else { 1361 if (!test_bit(index, spt->post_shadow_bitmap)) { 1362 int type = spt->shadow_page.type; 1363 1364 ppgtt_get_shadow_entry(spt, &se, index); 1365 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index); 1366 if (ret) 1367 return ret; 1368 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1369 ppgtt_set_shadow_entry(spt, &se, index); 1370 } 1371 ppgtt_set_post_shadow(spt, index); 1372 } 1373 1374 if (!enable_out_of_sync) 1375 return 0; 1376 1377 gpt->write_cnt++; 1378 1379 if (gpt->oos_page) 1380 ops->set_entry(gpt->oos_page->mem, &we, index, 1381 false, 0, vgpu); 1382 1383 if (can_do_out_of_sync(gpt)) { 1384 if (!gpt->oos_page) 1385 ppgtt_allocate_oos_page(vgpu, gpt); 1386 1387 ret = ppgtt_set_guest_page_oos(vgpu, gpt); 1388 if (ret < 0) 1389 return ret; 1390 } 1391 return 0; 1392 } 1393 1394 /* 1395 * mm page table allocation policy for bdw+ 1396 * - for ggtt, only virtual page table will be allocated. 1397 * - for ppgtt, dedicated virtual/shadow page table will be allocated. 1398 */ 1399 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm) 1400 { 1401 struct intel_vgpu *vgpu = mm->vgpu; 1402 struct intel_gvt *gvt = vgpu->gvt; 1403 const struct intel_gvt_device_info *info = &gvt->device_info; 1404 void *mem; 1405 1406 if (mm->type == INTEL_GVT_MM_PPGTT) { 1407 mm->page_table_entry_cnt = 4; 1408 mm->page_table_entry_size = mm->page_table_entry_cnt * 1409 info->gtt_entry_size; 1410 mem = kzalloc(mm->has_shadow_page_table ? 1411 mm->page_table_entry_size * 2 1412 : mm->page_table_entry_size, GFP_KERNEL); 1413 if (!mem) 1414 return -ENOMEM; 1415 mm->virtual_page_table = mem; 1416 if (!mm->has_shadow_page_table) 1417 return 0; 1418 mm->shadow_page_table = mem + mm->page_table_entry_size; 1419 } else if (mm->type == INTEL_GVT_MM_GGTT) { 1420 mm->page_table_entry_cnt = 1421 (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT); 1422 mm->page_table_entry_size = mm->page_table_entry_cnt * 1423 info->gtt_entry_size; 1424 mem = vzalloc(mm->page_table_entry_size); 1425 if (!mem) 1426 return -ENOMEM; 1427 mm->virtual_page_table = mem; 1428 } 1429 return 0; 1430 } 1431 1432 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm) 1433 { 1434 if (mm->type == INTEL_GVT_MM_PPGTT) { 1435 kfree(mm->virtual_page_table); 1436 } else if (mm->type == INTEL_GVT_MM_GGTT) { 1437 if (mm->virtual_page_table) 1438 vfree(mm->virtual_page_table); 1439 } 1440 mm->virtual_page_table = mm->shadow_page_table = NULL; 1441 } 1442 1443 static void invalidate_mm(struct intel_vgpu_mm *mm) 1444 { 1445 struct intel_vgpu *vgpu = mm->vgpu; 1446 struct intel_gvt *gvt = vgpu->gvt; 1447 struct intel_gvt_gtt *gtt = &gvt->gtt; 1448 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1449 struct intel_gvt_gtt_entry se; 1450 int i; 1451 1452 if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed)) 1453 return; 1454 1455 for (i = 0; i < mm->page_table_entry_cnt; i++) { 1456 ppgtt_get_shadow_root_entry(mm, &se, i); 1457 if (!ops->test_present(&se)) 1458 continue; 1459 ppgtt_invalidate_shadow_page_by_shadow_entry( 1460 vgpu, &se); 1461 se.val64 = 0; 1462 ppgtt_set_shadow_root_entry(mm, &se, i); 1463 1464 trace_gpt_change(vgpu->id, "destroy root pointer", 1465 NULL, se.type, se.val64, i); 1466 } 1467 mm->shadowed = false; 1468 } 1469 1470 /** 1471 * intel_vgpu_destroy_mm - destroy a mm object 1472 * @mm: a kref object 1473 * 1474 * This function is used to destroy a mm object for vGPU 1475 * 1476 */ 1477 void intel_vgpu_destroy_mm(struct kref *mm_ref) 1478 { 1479 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1480 struct intel_vgpu *vgpu = mm->vgpu; 1481 struct intel_gvt *gvt = vgpu->gvt; 1482 struct intel_gvt_gtt *gtt = &gvt->gtt; 1483 1484 if (!mm->initialized) 1485 goto out; 1486 1487 list_del(&mm->list); 1488 list_del(&mm->lru_list); 1489 1490 if (mm->has_shadow_page_table) 1491 invalidate_mm(mm); 1492 1493 gtt->mm_free_page_table(mm); 1494 out: 1495 kfree(mm); 1496 } 1497 1498 static int shadow_mm(struct intel_vgpu_mm *mm) 1499 { 1500 struct intel_vgpu *vgpu = mm->vgpu; 1501 struct intel_gvt *gvt = vgpu->gvt; 1502 struct intel_gvt_gtt *gtt = &gvt->gtt; 1503 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1504 struct intel_vgpu_ppgtt_spt *spt; 1505 struct intel_gvt_gtt_entry ge, se; 1506 int i; 1507 int ret; 1508 1509 if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed)) 1510 return 0; 1511 1512 mm->shadowed = true; 1513 1514 for (i = 0; i < mm->page_table_entry_cnt; i++) { 1515 ppgtt_get_guest_root_entry(mm, &ge, i); 1516 if (!ops->test_present(&ge)) 1517 continue; 1518 1519 trace_gpt_change(vgpu->id, __func__, NULL, 1520 ge.type, ge.val64, i); 1521 1522 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge); 1523 if (IS_ERR(spt)) { 1524 gvt_vgpu_err("fail to populate guest root pointer\n"); 1525 ret = PTR_ERR(spt); 1526 goto fail; 1527 } 1528 ppgtt_generate_shadow_entry(&se, spt, &ge); 1529 ppgtt_set_shadow_root_entry(mm, &se, i); 1530 1531 trace_gpt_change(vgpu->id, "populate root pointer", 1532 NULL, se.type, se.val64, i); 1533 } 1534 return 0; 1535 fail: 1536 invalidate_mm(mm); 1537 return ret; 1538 } 1539 1540 /** 1541 * intel_vgpu_create_mm - create a mm object for a vGPU 1542 * @vgpu: a vGPU 1543 * @mm_type: mm object type, should be PPGTT or GGTT 1544 * @virtual_page_table: page table root pointers. Could be NULL if user wants 1545 * to populate shadow later. 1546 * @page_table_level: describe the page table level of the mm object 1547 * @pde_base_index: pde root pointer base in GGTT MMIO. 1548 * 1549 * This function is used to create a mm object for a vGPU. 1550 * 1551 * Returns: 1552 * Zero on success, negative error code in pointer if failed. 1553 */ 1554 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu, 1555 int mm_type, void *virtual_page_table, int page_table_level, 1556 u32 pde_base_index) 1557 { 1558 struct intel_gvt *gvt = vgpu->gvt; 1559 struct intel_gvt_gtt *gtt = &gvt->gtt; 1560 struct intel_vgpu_mm *mm; 1561 int ret; 1562 1563 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1564 if (!mm) { 1565 ret = -ENOMEM; 1566 goto fail; 1567 } 1568 1569 mm->type = mm_type; 1570 1571 if (page_table_level == 1) 1572 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE; 1573 else if (page_table_level == 3) 1574 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; 1575 else if (page_table_level == 4) 1576 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; 1577 else { 1578 WARN_ON(1); 1579 ret = -EINVAL; 1580 goto fail; 1581 } 1582 1583 mm->page_table_level = page_table_level; 1584 mm->pde_base_index = pde_base_index; 1585 1586 mm->vgpu = vgpu; 1587 mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT); 1588 1589 kref_init(&mm->ref); 1590 atomic_set(&mm->pincount, 0); 1591 INIT_LIST_HEAD(&mm->list); 1592 INIT_LIST_HEAD(&mm->lru_list); 1593 list_add_tail(&mm->list, &vgpu->gtt.mm_list_head); 1594 1595 ret = gtt->mm_alloc_page_table(mm); 1596 if (ret) { 1597 gvt_vgpu_err("fail to allocate page table for mm\n"); 1598 goto fail; 1599 } 1600 1601 mm->initialized = true; 1602 1603 if (virtual_page_table) 1604 memcpy(mm->virtual_page_table, virtual_page_table, 1605 mm->page_table_entry_size); 1606 1607 if (mm->has_shadow_page_table) { 1608 ret = shadow_mm(mm); 1609 if (ret) 1610 goto fail; 1611 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head); 1612 } 1613 return mm; 1614 fail: 1615 gvt_vgpu_err("fail to create mm\n"); 1616 if (mm) 1617 intel_gvt_mm_unreference(mm); 1618 return ERR_PTR(ret); 1619 } 1620 1621 /** 1622 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1623 * @mm: a vGPU mm object 1624 * 1625 * This function is called when user doesn't want to use a vGPU mm object 1626 */ 1627 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1628 { 1629 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT)) 1630 return; 1631 1632 atomic_dec(&mm->pincount); 1633 } 1634 1635 /** 1636 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1637 * @vgpu: a vGPU 1638 * 1639 * This function is called when user wants to use a vGPU mm object. If this 1640 * mm object hasn't been shadowed yet, the shadow will be populated at this 1641 * time. 1642 * 1643 * Returns: 1644 * Zero on success, negative error code if failed. 1645 */ 1646 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 1647 { 1648 int ret; 1649 1650 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT)) 1651 return 0; 1652 1653 if (!mm->shadowed) { 1654 ret = shadow_mm(mm); 1655 if (ret) 1656 return ret; 1657 } 1658 1659 atomic_inc(&mm->pincount); 1660 list_del_init(&mm->lru_list); 1661 list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head); 1662 return 0; 1663 } 1664 1665 static int reclaim_one_mm(struct intel_gvt *gvt) 1666 { 1667 struct intel_vgpu_mm *mm; 1668 struct list_head *pos, *n; 1669 1670 list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) { 1671 mm = container_of(pos, struct intel_vgpu_mm, lru_list); 1672 1673 if (mm->type != INTEL_GVT_MM_PPGTT) 1674 continue; 1675 if (atomic_read(&mm->pincount)) 1676 continue; 1677 1678 list_del_init(&mm->lru_list); 1679 invalidate_mm(mm); 1680 return 1; 1681 } 1682 return 0; 1683 } 1684 1685 /* 1686 * GMA translation APIs. 1687 */ 1688 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 1689 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 1690 { 1691 struct intel_vgpu *vgpu = mm->vgpu; 1692 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1693 struct intel_vgpu_ppgtt_spt *s; 1694 1695 if (WARN_ON(!mm->has_shadow_page_table)) 1696 return -EINVAL; 1697 1698 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e)); 1699 if (!s) 1700 return -ENXIO; 1701 1702 if (!guest) 1703 ppgtt_get_shadow_entry(s, e, index); 1704 else 1705 ppgtt_get_guest_entry(s, e, index); 1706 return 0; 1707 } 1708 1709 /** 1710 * intel_vgpu_gma_to_gpa - translate a gma to GPA 1711 * @mm: mm object. could be a PPGTT or GGTT mm object 1712 * @gma: graphics memory address in this mm object 1713 * 1714 * This function is used to translate a graphics memory address in specific 1715 * graphics memory space to guest physical address. 1716 * 1717 * Returns: 1718 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 1719 */ 1720 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 1721 { 1722 struct intel_vgpu *vgpu = mm->vgpu; 1723 struct intel_gvt *gvt = vgpu->gvt; 1724 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 1725 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 1726 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 1727 unsigned long gma_index[4]; 1728 struct intel_gvt_gtt_entry e; 1729 int i, index; 1730 int ret; 1731 1732 if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT) 1733 return INTEL_GVT_INVALID_ADDR; 1734 1735 if (mm->type == INTEL_GVT_MM_GGTT) { 1736 if (!vgpu_gmadr_is_valid(vgpu, gma)) 1737 goto err; 1738 1739 ret = ggtt_get_guest_entry(mm, &e, 1740 gma_ops->gma_to_ggtt_pte_index(gma)); 1741 if (ret) 1742 goto err; 1743 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT) 1744 + (gma & ~GTT_PAGE_MASK); 1745 1746 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 1747 return gpa; 1748 } 1749 1750 switch (mm->page_table_level) { 1751 case 4: 1752 ret = ppgtt_get_shadow_root_entry(mm, &e, 0); 1753 if (ret) 1754 goto err; 1755 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 1756 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 1757 gma_index[2] = gma_ops->gma_to_pde_index(gma); 1758 gma_index[3] = gma_ops->gma_to_pte_index(gma); 1759 index = 4; 1760 break; 1761 case 3: 1762 ret = ppgtt_get_shadow_root_entry(mm, &e, 1763 gma_ops->gma_to_l3_pdp_index(gma)); 1764 if (ret) 1765 goto err; 1766 gma_index[0] = gma_ops->gma_to_pde_index(gma); 1767 gma_index[1] = gma_ops->gma_to_pte_index(gma); 1768 index = 2; 1769 break; 1770 case 2: 1771 ret = ppgtt_get_shadow_root_entry(mm, &e, 1772 gma_ops->gma_to_pde_index(gma)); 1773 if (ret) 1774 goto err; 1775 gma_index[0] = gma_ops->gma_to_pte_index(gma); 1776 index = 1; 1777 break; 1778 default: 1779 WARN_ON(1); 1780 goto err; 1781 } 1782 1783 /* walk into the shadow page table and get gpa from guest entry */ 1784 for (i = 0; i < index; i++) { 1785 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 1786 (i == index - 1)); 1787 if (ret) 1788 goto err; 1789 1790 if (!pte_ops->test_present(&e)) { 1791 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 1792 goto err; 1793 } 1794 } 1795 1796 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT) 1797 + (gma & ~GTT_PAGE_MASK); 1798 1799 trace_gma_translate(vgpu->id, "ppgtt", 0, 1800 mm->page_table_level, gma, gpa); 1801 return gpa; 1802 err: 1803 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 1804 return INTEL_GVT_INVALID_ADDR; 1805 } 1806 1807 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu, 1808 unsigned int off, void *p_data, unsigned int bytes) 1809 { 1810 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 1811 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1812 unsigned long index = off >> info->gtt_entry_size_shift; 1813 struct intel_gvt_gtt_entry e; 1814 1815 if (bytes != 4 && bytes != 8) 1816 return -EINVAL; 1817 1818 ggtt_get_guest_entry(ggtt_mm, &e, index); 1819 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 1820 bytes); 1821 return 0; 1822 } 1823 1824 /** 1825 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 1826 * @vgpu: a vGPU 1827 * @off: register offset 1828 * @p_data: data will be returned to guest 1829 * @bytes: data length 1830 * 1831 * This function is used to emulate the GTT MMIO register read 1832 * 1833 * Returns: 1834 * Zero on success, error code if failed. 1835 */ 1836 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 1837 void *p_data, unsigned int bytes) 1838 { 1839 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1840 int ret; 1841 1842 if (bytes != 4 && bytes != 8) 1843 return -EINVAL; 1844 1845 off -= info->gtt_start_offset; 1846 ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes); 1847 return ret; 1848 } 1849 1850 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 1851 void *p_data, unsigned int bytes) 1852 { 1853 struct intel_gvt *gvt = vgpu->gvt; 1854 const struct intel_gvt_device_info *info = &gvt->device_info; 1855 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 1856 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1857 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 1858 unsigned long gma; 1859 struct intel_gvt_gtt_entry e, m; 1860 int ret; 1861 1862 if (bytes != 4 && bytes != 8) 1863 return -EINVAL; 1864 1865 gma = g_gtt_index << GTT_PAGE_SHIFT; 1866 1867 /* the VM may configure the whole GM space when ballooning is used */ 1868 if (!vgpu_gmadr_is_valid(vgpu, gma)) 1869 return 0; 1870 1871 ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index); 1872 1873 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 1874 bytes); 1875 1876 if (ops->test_present(&e)) { 1877 ret = gtt_entry_p2m(vgpu, &e, &m); 1878 if (ret) { 1879 gvt_vgpu_err("fail to translate guest gtt entry\n"); 1880 /* guest driver may read/write the entry when partial 1881 * update the entry in this situation p2m will fail 1882 * settting the shadow entry to point to a scratch page 1883 */ 1884 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn); 1885 } 1886 } else { 1887 m = e; 1888 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn); 1889 } 1890 1891 ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index); 1892 gtt_invalidate(gvt->dev_priv); 1893 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 1894 return 0; 1895 } 1896 1897 /* 1898 * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write 1899 * @vgpu: a vGPU 1900 * @off: register offset 1901 * @p_data: data from guest write 1902 * @bytes: data length 1903 * 1904 * This function is used to emulate the GTT MMIO register write 1905 * 1906 * Returns: 1907 * Zero on success, error code if failed. 1908 */ 1909 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 1910 void *p_data, unsigned int bytes) 1911 { 1912 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1913 int ret; 1914 1915 if (bytes != 4 && bytes != 8) 1916 return -EINVAL; 1917 1918 off -= info->gtt_start_offset; 1919 ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes); 1920 return ret; 1921 } 1922 1923 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 1924 intel_gvt_gtt_type_t type) 1925 { 1926 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 1927 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1928 int page_entry_num = GTT_PAGE_SIZE >> 1929 vgpu->gvt->device_info.gtt_entry_size_shift; 1930 void *scratch_pt; 1931 int i; 1932 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 1933 dma_addr_t daddr; 1934 1935 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 1936 return -EINVAL; 1937 1938 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 1939 if (!scratch_pt) { 1940 gvt_vgpu_err("fail to allocate scratch page\n"); 1941 return -ENOMEM; 1942 } 1943 1944 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 1945 4096, PCI_DMA_BIDIRECTIONAL); 1946 if (dma_mapping_error(dev, daddr)) { 1947 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 1948 __free_page(virt_to_page(scratch_pt)); 1949 return -ENOMEM; 1950 } 1951 gtt->scratch_pt[type].page_mfn = 1952 (unsigned long)(daddr >> GTT_PAGE_SHIFT); 1953 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 1954 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 1955 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 1956 1957 /* Build the tree by full filled the scratch pt with the entries which 1958 * point to the next level scratch pt or scratch page. The 1959 * scratch_pt[type] indicate the scratch pt/scratch page used by the 1960 * 'type' pt. 1961 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 1962 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 1963 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 1964 */ 1965 if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) { 1966 struct intel_gvt_gtt_entry se; 1967 1968 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 1969 se.type = get_entry_type(type - 1); 1970 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 1971 1972 /* The entry parameters like present/writeable/cache type 1973 * set to the same as i915's scratch page tree. 1974 */ 1975 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 1976 if (type == GTT_TYPE_PPGTT_PDE_PT) 1977 se.val64 |= PPAT_CACHED; 1978 1979 for (i = 0; i < page_entry_num; i++) 1980 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 1981 } 1982 1983 return 0; 1984 } 1985 1986 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 1987 { 1988 int i; 1989 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 1990 dma_addr_t daddr; 1991 1992 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 1993 if (vgpu->gtt.scratch_pt[i].page != NULL) { 1994 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 1995 GTT_PAGE_SHIFT); 1996 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 1997 __free_page(vgpu->gtt.scratch_pt[i].page); 1998 vgpu->gtt.scratch_pt[i].page = NULL; 1999 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2000 } 2001 } 2002 2003 return 0; 2004 } 2005 2006 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2007 { 2008 int i, ret; 2009 2010 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2011 ret = alloc_scratch_pages(vgpu, i); 2012 if (ret) 2013 goto err; 2014 } 2015 2016 return 0; 2017 2018 err: 2019 release_scratch_page_tree(vgpu); 2020 return ret; 2021 } 2022 2023 /** 2024 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2025 * @vgpu: a vGPU 2026 * 2027 * This function is used to initialize per-vGPU graphics memory virtualization 2028 * components. 2029 * 2030 * Returns: 2031 * Zero on success, error code if failed. 2032 */ 2033 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2034 { 2035 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2036 struct intel_vgpu_mm *ggtt_mm; 2037 2038 hash_init(gtt->guest_page_hash_table); 2039 hash_init(gtt->shadow_page_hash_table); 2040 2041 INIT_LIST_HEAD(>t->mm_list_head); 2042 INIT_LIST_HEAD(>t->oos_page_list_head); 2043 INIT_LIST_HEAD(>t->post_shadow_list_head); 2044 2045 intel_vgpu_reset_ggtt(vgpu); 2046 2047 ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT, 2048 NULL, 1, 0); 2049 if (IS_ERR(ggtt_mm)) { 2050 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2051 return PTR_ERR(ggtt_mm); 2052 } 2053 2054 gtt->ggtt_mm = ggtt_mm; 2055 2056 return create_scratch_page_tree(vgpu); 2057 } 2058 2059 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type) 2060 { 2061 struct list_head *pos, *n; 2062 struct intel_vgpu_mm *mm; 2063 2064 list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) { 2065 mm = container_of(pos, struct intel_vgpu_mm, list); 2066 if (mm->type == type) { 2067 vgpu->gvt->gtt.mm_free_page_table(mm); 2068 list_del(&mm->list); 2069 list_del(&mm->lru_list); 2070 kfree(mm); 2071 } 2072 } 2073 } 2074 2075 /** 2076 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2077 * @vgpu: a vGPU 2078 * 2079 * This function is used to clean up per-vGPU graphics memory virtualization 2080 * components. 2081 * 2082 * Returns: 2083 * Zero on success, error code if failed. 2084 */ 2085 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2086 { 2087 ppgtt_free_all_shadow_page(vgpu); 2088 release_scratch_page_tree(vgpu); 2089 2090 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT); 2091 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT); 2092 } 2093 2094 static void clean_spt_oos(struct intel_gvt *gvt) 2095 { 2096 struct intel_gvt_gtt *gtt = &gvt->gtt; 2097 struct list_head *pos, *n; 2098 struct intel_vgpu_oos_page *oos_page; 2099 2100 WARN(!list_empty(>t->oos_page_use_list_head), 2101 "someone is still using oos page\n"); 2102 2103 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2104 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2105 list_del(&oos_page->list); 2106 kfree(oos_page); 2107 } 2108 } 2109 2110 static int setup_spt_oos(struct intel_gvt *gvt) 2111 { 2112 struct intel_gvt_gtt *gtt = &gvt->gtt; 2113 struct intel_vgpu_oos_page *oos_page; 2114 int i; 2115 int ret; 2116 2117 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2118 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2119 2120 for (i = 0; i < preallocated_oos_pages; i++) { 2121 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2122 if (!oos_page) { 2123 ret = -ENOMEM; 2124 goto fail; 2125 } 2126 2127 INIT_LIST_HEAD(&oos_page->list); 2128 INIT_LIST_HEAD(&oos_page->vm_list); 2129 oos_page->id = i; 2130 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2131 } 2132 2133 gvt_dbg_mm("%d oos pages preallocated\n", i); 2134 2135 return 0; 2136 fail: 2137 clean_spt_oos(gvt); 2138 return ret; 2139 } 2140 2141 /** 2142 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2143 * @vgpu: a vGPU 2144 * @page_table_level: PPGTT page table level 2145 * @root_entry: PPGTT page table root pointers 2146 * 2147 * This function is used to find a PPGTT mm object from mm object pool 2148 * 2149 * Returns: 2150 * pointer to mm object on success, NULL if failed. 2151 */ 2152 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2153 int page_table_level, void *root_entry) 2154 { 2155 struct list_head *pos; 2156 struct intel_vgpu_mm *mm; 2157 u64 *src, *dst; 2158 2159 list_for_each(pos, &vgpu->gtt.mm_list_head) { 2160 mm = container_of(pos, struct intel_vgpu_mm, list); 2161 if (mm->type != INTEL_GVT_MM_PPGTT) 2162 continue; 2163 2164 if (mm->page_table_level != page_table_level) 2165 continue; 2166 2167 src = root_entry; 2168 dst = mm->virtual_page_table; 2169 2170 if (page_table_level == 3) { 2171 if (src[0] == dst[0] 2172 && src[1] == dst[1] 2173 && src[2] == dst[2] 2174 && src[3] == dst[3]) 2175 return mm; 2176 } else { 2177 if (src[0] == dst[0]) 2178 return mm; 2179 } 2180 } 2181 return NULL; 2182 } 2183 2184 /** 2185 * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from 2186 * g2v notification 2187 * @vgpu: a vGPU 2188 * @page_table_level: PPGTT page table level 2189 * 2190 * This function is used to create a PPGTT mm object from a guest to GVT-g 2191 * notification. 2192 * 2193 * Returns: 2194 * Zero on success, negative error code if failed. 2195 */ 2196 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu, 2197 int page_table_level) 2198 { 2199 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0])); 2200 struct intel_vgpu_mm *mm; 2201 2202 if (WARN_ON((page_table_level != 4) && (page_table_level != 3))) 2203 return -EINVAL; 2204 2205 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp); 2206 if (mm) { 2207 intel_gvt_mm_reference(mm); 2208 } else { 2209 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT, 2210 pdp, page_table_level, 0); 2211 if (IS_ERR(mm)) { 2212 gvt_vgpu_err("fail to create mm\n"); 2213 return PTR_ERR(mm); 2214 } 2215 } 2216 return 0; 2217 } 2218 2219 /** 2220 * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from 2221 * g2v notification 2222 * @vgpu: a vGPU 2223 * @page_table_level: PPGTT page table level 2224 * 2225 * This function is used to create a PPGTT mm object from a guest to GVT-g 2226 * notification. 2227 * 2228 * Returns: 2229 * Zero on success, negative error code if failed. 2230 */ 2231 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu, 2232 int page_table_level) 2233 { 2234 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0])); 2235 struct intel_vgpu_mm *mm; 2236 2237 if (WARN_ON((page_table_level != 4) && (page_table_level != 3))) 2238 return -EINVAL; 2239 2240 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp); 2241 if (!mm) { 2242 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2243 return -EINVAL; 2244 } 2245 intel_gvt_mm_unreference(mm); 2246 return 0; 2247 } 2248 2249 /** 2250 * intel_gvt_init_gtt - initialize mm components of a GVT device 2251 * @gvt: GVT device 2252 * 2253 * This function is called at the initialization stage, to initialize 2254 * the mm components of a GVT device. 2255 * 2256 * Returns: 2257 * zero on success, negative error code if failed. 2258 */ 2259 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2260 { 2261 int ret; 2262 void *page; 2263 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2264 dma_addr_t daddr; 2265 2266 gvt_dbg_core("init gtt\n"); 2267 2268 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv) 2269 || IS_KABYLAKE(gvt->dev_priv)) { 2270 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2271 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2272 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table; 2273 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table; 2274 } else { 2275 return -ENODEV; 2276 } 2277 2278 page = (void *)get_zeroed_page(GFP_KERNEL); 2279 if (!page) { 2280 gvt_err("fail to allocate scratch ggtt page\n"); 2281 return -ENOMEM; 2282 } 2283 2284 daddr = dma_map_page(dev, virt_to_page(page), 0, 2285 4096, PCI_DMA_BIDIRECTIONAL); 2286 if (dma_mapping_error(dev, daddr)) { 2287 gvt_err("fail to dmamap scratch ggtt page\n"); 2288 __free_page(virt_to_page(page)); 2289 return -ENOMEM; 2290 } 2291 gvt->gtt.scratch_ggtt_page = virt_to_page(page); 2292 gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT); 2293 2294 if (enable_out_of_sync) { 2295 ret = setup_spt_oos(gvt); 2296 if (ret) { 2297 gvt_err("fail to initialize SPT oos\n"); 2298 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2299 __free_page(gvt->gtt.scratch_ggtt_page); 2300 return ret; 2301 } 2302 } 2303 INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head); 2304 return 0; 2305 } 2306 2307 /** 2308 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2309 * @gvt: GVT device 2310 * 2311 * This function is called at the driver unloading stage, to clean up the 2312 * the mm components of a GVT device. 2313 * 2314 */ 2315 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2316 { 2317 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2318 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn << 2319 GTT_PAGE_SHIFT); 2320 2321 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2322 2323 __free_page(gvt->gtt.scratch_ggtt_page); 2324 2325 if (enable_out_of_sync) 2326 clean_spt_oos(gvt); 2327 } 2328 2329 /** 2330 * intel_vgpu_reset_ggtt - reset the GGTT entry 2331 * @vgpu: a vGPU 2332 * 2333 * This function is called at the vGPU create stage 2334 * to reset all the GGTT entries. 2335 * 2336 */ 2337 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu) 2338 { 2339 struct intel_gvt *gvt = vgpu->gvt; 2340 struct drm_i915_private *dev_priv = gvt->dev_priv; 2341 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2342 u32 index; 2343 u32 offset; 2344 u32 num_entries; 2345 struct intel_gvt_gtt_entry e; 2346 2347 memset(&e, 0, sizeof(struct intel_gvt_gtt_entry)); 2348 e.type = GTT_TYPE_GGTT_PTE; 2349 ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn); 2350 e.val64 |= _PAGE_PRESENT; 2351 2352 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2353 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2354 for (offset = 0; offset < num_entries; offset++) 2355 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu); 2356 2357 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2358 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2359 for (offset = 0; offset < num_entries; offset++) 2360 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu); 2361 2362 gtt_invalidate(dev_priv); 2363 } 2364 2365 /** 2366 * intel_vgpu_reset_gtt - reset the all GTT related status 2367 * @vgpu: a vGPU 2368 * 2369 * This function is called from vfio core to reset reset all 2370 * GTT related status, including GGTT, PPGTT, scratch page. 2371 * 2372 */ 2373 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2374 { 2375 int i; 2376 2377 ppgtt_free_all_shadow_page(vgpu); 2378 2379 /* Shadow pages are only created when there is no page 2380 * table tracking data, so remove page tracking data after 2381 * removing the shadow pages. 2382 */ 2383 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT); 2384 2385 intel_vgpu_reset_ggtt(vgpu); 2386 2387 /* clear scratch page for security */ 2388 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2389 if (vgpu->gtt.scratch_pt[i].page != NULL) 2390 memset(page_address(vgpu->gtt.scratch_pt[i].page), 2391 0, PAGE_SIZE); 2392 } 2393 } 2394