1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 #include "i915_drv.h" 39 #include "gvt.h" 40 #include "i915_pvinfo.h" 41 #include "trace.h" 42 43 #define INVALID_OP (~0U) 44 45 #define OP_LEN_MI 9 46 #define OP_LEN_2D 10 47 #define OP_LEN_3D_MEDIA 16 48 #define OP_LEN_MFX_VC 16 49 #define OP_LEN_VEBOX 16 50 51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 52 53 struct sub_op_bits { 54 int hi; 55 int low; 56 }; 57 struct decode_info { 58 char *name; 59 int op_len; 60 int nr_sub_op; 61 struct sub_op_bits *sub_op; 62 }; 63 64 #define MAX_CMD_BUDGET 0x7fffffff 65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 68 69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 72 73 /* Render Command Map */ 74 75 /* MI_* command Opcode (28:23) */ 76 #define OP_MI_NOOP 0x0 77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 78 #define OP_MI_USER_INTERRUPT 0x2 79 #define OP_MI_WAIT_FOR_EVENT 0x3 80 #define OP_MI_FLUSH 0x4 81 #define OP_MI_ARB_CHECK 0x5 82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 83 #define OP_MI_REPORT_HEAD 0x7 84 #define OP_MI_ARB_ON_OFF 0x8 85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 86 #define OP_MI_BATCH_BUFFER_END 0xA 87 #define OP_MI_SUSPEND_FLUSH 0xB 88 #define OP_MI_PREDICATE 0xC /* IVB+ */ 89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 90 #define OP_MI_SET_APPID 0xE /* IVB+ */ 91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 93 #define OP_MI_DISPLAY_FLIP 0x14 94 #define OP_MI_SEMAPHORE_MBOX 0x16 95 #define OP_MI_SET_CONTEXT 0x18 96 #define OP_MI_MATH 0x1A 97 #define OP_MI_URB_CLEAR 0x19 98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 100 101 #define OP_MI_STORE_DATA_IMM 0x20 102 #define OP_MI_STORE_DATA_INDEX 0x21 103 #define OP_MI_LOAD_REGISTER_IMM 0x22 104 #define OP_MI_UPDATE_GTT 0x23 105 #define OP_MI_STORE_REGISTER_MEM 0x24 106 #define OP_MI_FLUSH_DW 0x26 107 #define OP_MI_CLFLUSH 0x27 108 #define OP_MI_REPORT_PERF_COUNT 0x28 109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 114 #define OP_MI_2E 0x2E /* BDW+ */ 115 #define OP_MI_2F 0x2F /* BDW+ */ 116 #define OP_MI_BATCH_BUFFER_START 0x31 117 118 /* Bit definition for dword 0 */ 119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 120 121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 122 123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 127 128 /* 2D command: Opcode (28:22) */ 129 #define OP_2D(x) ((2<<7) | x) 130 131 #define OP_XY_SETUP_BLT OP_2D(0x1) 132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 134 #define OP_XY_PIXEL_BLT OP_2D(0x24) 135 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 136 #define OP_XY_TEXT_BLT OP_2D(0x26) 137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 138 #define OP_XY_COLOR_BLT OP_2D(0x50) 139 #define OP_XY_PAT_BLT OP_2D(0x51) 140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 143 #define OP_XY_FULL_BLT OP_2D(0x55) 144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 155 156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 159 160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 161 162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 165 166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 167 168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 169 170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 175 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 176 177 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 178 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 179 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 180 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 181 182 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 183 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 184 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 185 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 186 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 187 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 188 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 189 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 190 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 191 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 193 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 194 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 195 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 196 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 197 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 198 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 199 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 200 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 201 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 202 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 203 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 204 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 205 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 206 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 207 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 208 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 209 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 212 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 224 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 225 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 226 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 227 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 228 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 229 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 230 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 231 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 232 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 233 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 234 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 235 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 236 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 237 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 238 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 248 249 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 250 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 251 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 252 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 253 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 254 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 255 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 256 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 257 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 258 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 259 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 260 261 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 263 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 264 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 267 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 268 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 269 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 271 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 272 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 274 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 275 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 281 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 282 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 284 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 286 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 287 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 288 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 289 290 /* VCCP Command Parser */ 291 292 /* 293 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 294 * git://anongit.freedesktop.org/vaapi/intel-driver 295 * src/i965_defines.h 296 * 297 */ 298 299 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 300 (3 << 13 | \ 301 (pipeline) << 11 | \ 302 (op) << 8 | \ 303 (sub_opa) << 5 | \ 304 (sub_opb)) 305 306 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 307 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 308 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 311 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 312 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 313 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 314 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 315 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 316 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 317 318 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 319 320 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 321 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 322 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 323 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 324 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 325 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 327 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 328 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 329 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 330 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 331 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 332 333 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 334 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 335 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 336 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 337 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 338 339 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 340 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 341 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 342 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 343 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 344 345 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 346 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 347 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 348 349 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 350 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 351 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 352 353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 354 (3 << 13 | \ 355 (pipeline) << 11 | \ 356 (op) << 8 | \ 357 (sub_opa) << 5 | \ 358 (sub_opb)) 359 360 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 361 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 362 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 363 364 struct parser_exec_state; 365 366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 367 368 #define GVT_CMD_HASH_BITS 7 369 370 /* which DWords need address fix */ 371 #define ADDR_FIX_1(x1) (1 << (x1)) 372 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 373 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 374 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 375 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 376 377 struct cmd_info { 378 char *name; 379 u32 opcode; 380 381 #define F_LEN_MASK (1U<<0) 382 #define F_LEN_CONST 1U 383 #define F_LEN_VAR 0U 384 385 /* 386 * command has its own ip advance logic 387 * e.g. MI_BATCH_START, MI_BATCH_END 388 */ 389 #define F_IP_ADVANCE_CUSTOM (1<<1) 390 391 #define F_POST_HANDLE (1<<2) 392 u32 flag; 393 394 #define R_RCS (1 << RCS) 395 #define R_VCS1 (1 << VCS) 396 #define R_VCS2 (1 << VCS2) 397 #define R_VCS (R_VCS1 | R_VCS2) 398 #define R_BCS (1 << BCS) 399 #define R_VECS (1 << VECS) 400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 401 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 402 uint16_t rings; 403 404 /* devices that support this cmd: SNB/IVB/HSW/... */ 405 uint16_t devices; 406 407 /* which DWords are address that need fix up. 408 * bit 0 means a 32-bit non address operand in command 409 * bit 1 means address operand, which could be 32-bit 410 * or 64-bit depending on different architectures.( 411 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 412 * No matter the address length, each address only takes 413 * one bit in the bitmap. 414 */ 415 uint16_t addr_bitmap; 416 417 /* flag == F_LEN_CONST : command length 418 * flag == F_LEN_VAR : length bias bits 419 * Note: length is in DWord 420 */ 421 uint8_t len; 422 423 parser_cmd_handler handler; 424 }; 425 426 struct cmd_entry { 427 struct hlist_node hlist; 428 struct cmd_info *info; 429 }; 430 431 enum { 432 RING_BUFFER_INSTRUCTION, 433 BATCH_BUFFER_INSTRUCTION, 434 BATCH_BUFFER_2ND_LEVEL, 435 }; 436 437 enum { 438 GTT_BUFFER, 439 PPGTT_BUFFER 440 }; 441 442 struct parser_exec_state { 443 struct intel_vgpu *vgpu; 444 int ring_id; 445 446 int buf_type; 447 448 /* batch buffer address type */ 449 int buf_addr_type; 450 451 /* graphics memory address of ring buffer start */ 452 unsigned long ring_start; 453 unsigned long ring_size; 454 unsigned long ring_head; 455 unsigned long ring_tail; 456 457 /* instruction graphics memory address */ 458 unsigned long ip_gma; 459 460 /* mapped va of the instr_gma */ 461 void *ip_va; 462 void *rb_va; 463 464 void *ret_bb_va; 465 /* next instruction when return from batch buffer to ring buffer */ 466 unsigned long ret_ip_gma_ring; 467 468 /* next instruction when return from 2nd batch buffer to batch buffer */ 469 unsigned long ret_ip_gma_bb; 470 471 /* batch buffer address type (GTT or PPGTT) 472 * used when ret from 2nd level batch buffer 473 */ 474 int saved_buf_addr_type; 475 bool is_ctx_wa; 476 477 struct cmd_info *info; 478 479 struct intel_vgpu_workload *workload; 480 }; 481 482 #define gmadr_dw_number(s) \ 483 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 484 485 static unsigned long bypass_scan_mask = 0; 486 487 /* ring ALL, type = 0 */ 488 static struct sub_op_bits sub_op_mi[] = { 489 {31, 29}, 490 {28, 23}, 491 }; 492 493 static struct decode_info decode_info_mi = { 494 "MI", 495 OP_LEN_MI, 496 ARRAY_SIZE(sub_op_mi), 497 sub_op_mi, 498 }; 499 500 /* ring RCS, command type 2 */ 501 static struct sub_op_bits sub_op_2d[] = { 502 {31, 29}, 503 {28, 22}, 504 }; 505 506 static struct decode_info decode_info_2d = { 507 "2D", 508 OP_LEN_2D, 509 ARRAY_SIZE(sub_op_2d), 510 sub_op_2d, 511 }; 512 513 /* ring RCS, command type 3 */ 514 static struct sub_op_bits sub_op_3d_media[] = { 515 {31, 29}, 516 {28, 27}, 517 {26, 24}, 518 {23, 16}, 519 }; 520 521 static struct decode_info decode_info_3d_media = { 522 "3D_Media", 523 OP_LEN_3D_MEDIA, 524 ARRAY_SIZE(sub_op_3d_media), 525 sub_op_3d_media, 526 }; 527 528 /* ring VCS, command type 3 */ 529 static struct sub_op_bits sub_op_mfx_vc[] = { 530 {31, 29}, 531 {28, 27}, 532 {26, 24}, 533 {23, 21}, 534 {20, 16}, 535 }; 536 537 static struct decode_info decode_info_mfx_vc = { 538 "MFX_VC", 539 OP_LEN_MFX_VC, 540 ARRAY_SIZE(sub_op_mfx_vc), 541 sub_op_mfx_vc, 542 }; 543 544 /* ring VECS, command type 3 */ 545 static struct sub_op_bits sub_op_vebox[] = { 546 {31, 29}, 547 {28, 27}, 548 {26, 24}, 549 {23, 21}, 550 {20, 16}, 551 }; 552 553 static struct decode_info decode_info_vebox = { 554 "VEBOX", 555 OP_LEN_VEBOX, 556 ARRAY_SIZE(sub_op_vebox), 557 sub_op_vebox, 558 }; 559 560 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 561 [RCS] = { 562 &decode_info_mi, 563 NULL, 564 NULL, 565 &decode_info_3d_media, 566 NULL, 567 NULL, 568 NULL, 569 NULL, 570 }, 571 572 [VCS] = { 573 &decode_info_mi, 574 NULL, 575 NULL, 576 &decode_info_mfx_vc, 577 NULL, 578 NULL, 579 NULL, 580 NULL, 581 }, 582 583 [BCS] = { 584 &decode_info_mi, 585 NULL, 586 &decode_info_2d, 587 NULL, 588 NULL, 589 NULL, 590 NULL, 591 NULL, 592 }, 593 594 [VECS] = { 595 &decode_info_mi, 596 NULL, 597 NULL, 598 &decode_info_vebox, 599 NULL, 600 NULL, 601 NULL, 602 NULL, 603 }, 604 605 [VCS2] = { 606 &decode_info_mi, 607 NULL, 608 NULL, 609 &decode_info_mfx_vc, 610 NULL, 611 NULL, 612 NULL, 613 NULL, 614 }, 615 }; 616 617 static inline u32 get_opcode(u32 cmd, int ring_id) 618 { 619 struct decode_info *d_info; 620 621 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 622 if (d_info == NULL) 623 return INVALID_OP; 624 625 return cmd >> (32 - d_info->op_len); 626 } 627 628 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt, 629 unsigned int opcode, int ring_id) 630 { 631 struct cmd_entry *e; 632 633 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 634 if ((opcode == e->info->opcode) && 635 (e->info->rings & (1 << ring_id))) 636 return e->info; 637 } 638 return NULL; 639 } 640 641 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt, 642 u32 cmd, int ring_id) 643 { 644 u32 opcode; 645 646 opcode = get_opcode(cmd, ring_id); 647 if (opcode == INVALID_OP) 648 return NULL; 649 650 return find_cmd_entry(gvt, opcode, ring_id); 651 } 652 653 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 654 { 655 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 656 } 657 658 static inline void print_opcode(u32 cmd, int ring_id) 659 { 660 struct decode_info *d_info; 661 int i; 662 663 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)]; 664 if (d_info == NULL) 665 return; 666 667 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 668 cmd >> (32 - d_info->op_len), d_info->name); 669 670 for (i = 0; i < d_info->nr_sub_op; i++) 671 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 672 d_info->sub_op[i].low)); 673 674 pr_err("\n"); 675 } 676 677 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 678 { 679 return s->ip_va + (index << 2); 680 } 681 682 static inline u32 cmd_val(struct parser_exec_state *s, int index) 683 { 684 return *cmd_ptr(s, index); 685 } 686 687 static void parser_exec_state_dump(struct parser_exec_state *s) 688 { 689 int cnt = 0; 690 int i; 691 692 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)" 693 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id, 694 s->ring_id, s->ring_start, s->ring_start + s->ring_size, 695 s->ring_head, s->ring_tail); 696 697 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 698 s->buf_type == RING_BUFFER_INSTRUCTION ? 699 "RING_BUFFER" : "BATCH_BUFFER", 700 s->buf_addr_type == GTT_BUFFER ? 701 "GTT" : "PPGTT", s->ip_gma); 702 703 if (s->ip_va == NULL) { 704 gvt_dbg_cmd(" ip_va(NULL)"); 705 return; 706 } 707 708 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 709 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 710 cmd_val(s, 2), cmd_val(s, 3)); 711 712 print_opcode(cmd_val(s, 0), s->ring_id); 713 714 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 715 716 while (cnt < 1024) { 717 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 718 for (i = 0; i < 8; i++) 719 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 720 gvt_dbg_cmd("\n"); 721 722 s->ip_va += 8 * sizeof(u32); 723 cnt += 8; 724 } 725 } 726 727 static inline void update_ip_va(struct parser_exec_state *s) 728 { 729 unsigned long len = 0; 730 731 if (WARN_ON(s->ring_head == s->ring_tail)) 732 return; 733 734 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 735 unsigned long ring_top = s->ring_start + s->ring_size; 736 737 if (s->ring_head > s->ring_tail) { 738 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 739 len = (s->ip_gma - s->ring_head); 740 else if (s->ip_gma >= s->ring_start && 741 s->ip_gma <= s->ring_tail) 742 len = (ring_top - s->ring_head) + 743 (s->ip_gma - s->ring_start); 744 } else 745 len = (s->ip_gma - s->ring_head); 746 747 s->ip_va = s->rb_va + len; 748 } else {/* shadow batch buffer */ 749 s->ip_va = s->ret_bb_va; 750 } 751 } 752 753 static inline int ip_gma_set(struct parser_exec_state *s, 754 unsigned long ip_gma) 755 { 756 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 757 758 s->ip_gma = ip_gma; 759 update_ip_va(s); 760 return 0; 761 } 762 763 static inline int ip_gma_advance(struct parser_exec_state *s, 764 unsigned int dw_len) 765 { 766 s->ip_gma += (dw_len << 2); 767 768 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 769 if (s->ip_gma >= s->ring_start + s->ring_size) 770 s->ip_gma -= s->ring_size; 771 update_ip_va(s); 772 } else { 773 s->ip_va += (dw_len << 2); 774 } 775 776 return 0; 777 } 778 779 static inline int get_cmd_length(struct cmd_info *info, u32 cmd) 780 { 781 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 782 return info->len; 783 else 784 return (cmd & ((1U << info->len) - 1)) + 2; 785 return 0; 786 } 787 788 static inline int cmd_length(struct parser_exec_state *s) 789 { 790 return get_cmd_length(s->info, cmd_val(s, 0)); 791 } 792 793 /* do not remove this, some platform may need clflush here */ 794 #define patch_value(s, addr, val) do { \ 795 *addr = val; \ 796 } while (0) 797 798 static bool is_shadowed_mmio(unsigned int offset) 799 { 800 bool ret = false; 801 802 if ((offset == 0x2168) || /*BB current head register UDW */ 803 (offset == 0x2140) || /*BB current header register */ 804 (offset == 0x211c) || /*second BB header register UDW */ 805 (offset == 0x2114)) { /*second BB header register UDW */ 806 ret = true; 807 } 808 return ret; 809 } 810 811 static inline bool is_force_nonpriv_mmio(unsigned int offset) 812 { 813 return (offset >= 0x24d0 && offset < 0x2500); 814 } 815 816 static int force_nonpriv_reg_handler(struct parser_exec_state *s, 817 unsigned int offset, unsigned int index, char *cmd) 818 { 819 struct intel_gvt *gvt = s->vgpu->gvt; 820 unsigned int data; 821 u32 ring_base; 822 u32 nopid; 823 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 824 825 if (!strcmp(cmd, "lri")) 826 data = cmd_val(s, index + 1); 827 else { 828 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n", 829 offset, cmd); 830 return -EINVAL; 831 } 832 833 ring_base = dev_priv->engine[s->ring_id]->mmio_base; 834 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base)); 835 836 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) && 837 data != nopid) { 838 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n", 839 offset, data); 840 patch_value(s, cmd_ptr(s, index), nopid); 841 return 0; 842 } 843 return 0; 844 } 845 846 static inline bool is_mocs_mmio(unsigned int offset) 847 { 848 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 849 ((offset >= 0xb020) && (offset <= 0xb0a0)); 850 } 851 852 static int mocs_cmd_reg_handler(struct parser_exec_state *s, 853 unsigned int offset, unsigned int index) 854 { 855 if (!is_mocs_mmio(offset)) 856 return -EINVAL; 857 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1); 858 return 0; 859 } 860 861 static int cmd_reg_handler(struct parser_exec_state *s, 862 unsigned int offset, unsigned int index, char *cmd) 863 { 864 struct intel_vgpu *vgpu = s->vgpu; 865 struct intel_gvt *gvt = vgpu->gvt; 866 u32 ctx_sr_ctl; 867 868 if (offset + 4 > gvt->device_info.mmio_size) { 869 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 870 cmd, offset); 871 return -EFAULT; 872 } 873 874 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) { 875 gvt_vgpu_err("%s access to non-render register (%x)\n", 876 cmd, offset); 877 return -EBADRQC; 878 } 879 880 if (is_shadowed_mmio(offset)) { 881 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset); 882 return 0; 883 } 884 885 if (is_mocs_mmio(offset) && 886 mocs_cmd_reg_handler(s, offset, index)) 887 return -EINVAL; 888 889 if (is_force_nonpriv_mmio(offset) && 890 force_nonpriv_reg_handler(s, offset, index, cmd)) 891 return -EPERM; 892 893 if (offset == i915_mmio_reg_offset(DERRMR) || 894 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 895 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 896 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 897 } 898 899 /* TODO 900 * Right now only scan LRI command on KBL and in inhibit context. 901 * It's good enough to support initializing mmio by lri command in 902 * vgpu inhibit context on KBL. 903 */ 904 if (IS_KABYLAKE(s->vgpu->gvt->dev_priv) && 905 intel_gvt_mmio_is_in_ctx(gvt, offset) && 906 !strncmp(cmd, "lri", 3)) { 907 intel_gvt_hypervisor_read_gpa(s->vgpu, 908 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 909 /* check inhibit context */ 910 if (ctx_sr_ctl & 1) { 911 u32 data = cmd_val(s, index + 1); 912 913 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 914 intel_vgpu_mask_mmio_write(vgpu, 915 offset, &data, 4); 916 else 917 vgpu_vreg(vgpu, offset) = data; 918 } 919 } 920 921 /* TODO: Update the global mask if this MMIO is a masked-MMIO */ 922 intel_gvt_mmio_set_cmd_accessed(gvt, offset); 923 return 0; 924 } 925 926 #define cmd_reg(s, i) \ 927 (cmd_val(s, i) & GENMASK(22, 2)) 928 929 #define cmd_reg_inhibit(s, i) \ 930 (cmd_val(s, i) & GENMASK(22, 18)) 931 932 #define cmd_gma(s, i) \ 933 (cmd_val(s, i) & GENMASK(31, 2)) 934 935 #define cmd_gma_hi(s, i) \ 936 (cmd_val(s, i) & GENMASK(15, 0)) 937 938 static int cmd_handler_lri(struct parser_exec_state *s) 939 { 940 int i, ret = 0; 941 int cmd_len = cmd_length(s); 942 struct intel_gvt *gvt = s->vgpu->gvt; 943 944 for (i = 1; i < cmd_len; i += 2) { 945 if (IS_BROADWELL(gvt->dev_priv) && 946 (s->ring_id != RCS)) { 947 if (s->ring_id == BCS && 948 cmd_reg(s, i) == 949 i915_mmio_reg_offset(DERRMR)) 950 ret |= 0; 951 else 952 ret |= (cmd_reg_inhibit(s, i)) ? 953 -EBADRQC : 0; 954 } 955 if (ret) 956 break; 957 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 958 if (ret) 959 break; 960 } 961 return ret; 962 } 963 964 static int cmd_handler_lrr(struct parser_exec_state *s) 965 { 966 int i, ret = 0; 967 int cmd_len = cmd_length(s); 968 969 for (i = 1; i < cmd_len; i += 2) { 970 if (IS_BROADWELL(s->vgpu->gvt->dev_priv)) 971 ret |= ((cmd_reg_inhibit(s, i) || 972 (cmd_reg_inhibit(s, i + 1)))) ? 973 -EBADRQC : 0; 974 if (ret) 975 break; 976 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 977 if (ret) 978 break; 979 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 980 if (ret) 981 break; 982 } 983 return ret; 984 } 985 986 static inline int cmd_address_audit(struct parser_exec_state *s, 987 unsigned long guest_gma, int op_size, bool index_mode); 988 989 static int cmd_handler_lrm(struct parser_exec_state *s) 990 { 991 struct intel_gvt *gvt = s->vgpu->gvt; 992 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 993 unsigned long gma; 994 int i, ret = 0; 995 int cmd_len = cmd_length(s); 996 997 for (i = 1; i < cmd_len;) { 998 if (IS_BROADWELL(gvt->dev_priv)) 999 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1000 if (ret) 1001 break; 1002 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1003 if (ret) 1004 break; 1005 if (cmd_val(s, 0) & (1 << 22)) { 1006 gma = cmd_gma(s, i + 1); 1007 if (gmadr_bytes == 8) 1008 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1009 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1010 if (ret) 1011 break; 1012 } 1013 i += gmadr_dw_number(s) + 1; 1014 } 1015 return ret; 1016 } 1017 1018 static int cmd_handler_srm(struct parser_exec_state *s) 1019 { 1020 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1021 unsigned long gma; 1022 int i, ret = 0; 1023 int cmd_len = cmd_length(s); 1024 1025 for (i = 1; i < cmd_len;) { 1026 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1027 if (ret) 1028 break; 1029 if (cmd_val(s, 0) & (1 << 22)) { 1030 gma = cmd_gma(s, i + 1); 1031 if (gmadr_bytes == 8) 1032 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1033 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1034 if (ret) 1035 break; 1036 } 1037 i += gmadr_dw_number(s) + 1; 1038 } 1039 return ret; 1040 } 1041 1042 struct cmd_interrupt_event { 1043 int pipe_control_notify; 1044 int mi_flush_dw; 1045 int mi_user_interrupt; 1046 }; 1047 1048 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1049 [RCS] = { 1050 .pipe_control_notify = RCS_PIPE_CONTROL, 1051 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1052 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1053 }, 1054 [BCS] = { 1055 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1056 .mi_flush_dw = BCS_MI_FLUSH_DW, 1057 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1058 }, 1059 [VCS] = { 1060 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1061 .mi_flush_dw = VCS_MI_FLUSH_DW, 1062 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1063 }, 1064 [VCS2] = { 1065 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1066 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1067 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1068 }, 1069 [VECS] = { 1070 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1071 .mi_flush_dw = VECS_MI_FLUSH_DW, 1072 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1073 }, 1074 }; 1075 1076 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1077 { 1078 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1079 unsigned long gma; 1080 bool index_mode = false; 1081 unsigned int post_sync; 1082 int ret = 0; 1083 1084 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1085 1086 /* LRI post sync */ 1087 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1088 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1089 /* post sync */ 1090 else if (post_sync) { 1091 if (post_sync == 2) 1092 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1093 else if (post_sync == 3) 1094 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1095 else if (post_sync == 1) { 1096 /* check ggtt*/ 1097 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1098 gma = cmd_val(s, 2) & GENMASK(31, 3); 1099 if (gmadr_bytes == 8) 1100 gma |= (cmd_gma_hi(s, 3)) << 32; 1101 /* Store Data Index */ 1102 if (cmd_val(s, 1) & (1 << 21)) 1103 index_mode = true; 1104 ret |= cmd_address_audit(s, gma, sizeof(u64), 1105 index_mode); 1106 } 1107 } 1108 } 1109 1110 if (ret) 1111 return ret; 1112 1113 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1114 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify, 1115 s->workload->pending_events); 1116 return 0; 1117 } 1118 1119 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1120 { 1121 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt, 1122 s->workload->pending_events); 1123 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1124 return 0; 1125 } 1126 1127 static int cmd_advance_default(struct parser_exec_state *s) 1128 { 1129 return ip_gma_advance(s, cmd_length(s)); 1130 } 1131 1132 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1133 { 1134 int ret; 1135 1136 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1137 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1138 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1139 s->buf_addr_type = s->saved_buf_addr_type; 1140 } else { 1141 s->buf_type = RING_BUFFER_INSTRUCTION; 1142 s->buf_addr_type = GTT_BUFFER; 1143 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1144 s->ret_ip_gma_ring -= s->ring_size; 1145 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1146 } 1147 return ret; 1148 } 1149 1150 struct mi_display_flip_command_info { 1151 int pipe; 1152 int plane; 1153 int event; 1154 i915_reg_t stride_reg; 1155 i915_reg_t ctrl_reg; 1156 i915_reg_t surf_reg; 1157 u64 stride_val; 1158 u64 tile_val; 1159 u64 surf_val; 1160 bool async_flip; 1161 }; 1162 1163 struct plane_code_mapping { 1164 int pipe; 1165 int plane; 1166 int event; 1167 }; 1168 1169 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1170 struct mi_display_flip_command_info *info) 1171 { 1172 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1173 struct plane_code_mapping gen8_plane_code[] = { 1174 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1175 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1176 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1177 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1178 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1179 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1180 }; 1181 u32 dword0, dword1, dword2; 1182 u32 v; 1183 1184 dword0 = cmd_val(s, 0); 1185 dword1 = cmd_val(s, 1); 1186 dword2 = cmd_val(s, 2); 1187 1188 v = (dword0 & GENMASK(21, 19)) >> 19; 1189 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code))) 1190 return -EBADRQC; 1191 1192 info->pipe = gen8_plane_code[v].pipe; 1193 info->plane = gen8_plane_code[v].plane; 1194 info->event = gen8_plane_code[v].event; 1195 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1196 info->tile_val = (dword1 & 0x1); 1197 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1198 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1199 1200 if (info->plane == PLANE_A) { 1201 info->ctrl_reg = DSPCNTR(info->pipe); 1202 info->stride_reg = DSPSTRIDE(info->pipe); 1203 info->surf_reg = DSPSURF(info->pipe); 1204 } else if (info->plane == PLANE_B) { 1205 info->ctrl_reg = SPRCTL(info->pipe); 1206 info->stride_reg = SPRSTRIDE(info->pipe); 1207 info->surf_reg = SPRSURF(info->pipe); 1208 } else { 1209 WARN_ON(1); 1210 return -EBADRQC; 1211 } 1212 return 0; 1213 } 1214 1215 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1216 struct mi_display_flip_command_info *info) 1217 { 1218 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1219 struct intel_vgpu *vgpu = s->vgpu; 1220 u32 dword0 = cmd_val(s, 0); 1221 u32 dword1 = cmd_val(s, 1); 1222 u32 dword2 = cmd_val(s, 2); 1223 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1224 1225 info->plane = PRIMARY_PLANE; 1226 1227 switch (plane) { 1228 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1229 info->pipe = PIPE_A; 1230 info->event = PRIMARY_A_FLIP_DONE; 1231 break; 1232 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1233 info->pipe = PIPE_B; 1234 info->event = PRIMARY_B_FLIP_DONE; 1235 break; 1236 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1237 info->pipe = PIPE_C; 1238 info->event = PRIMARY_C_FLIP_DONE; 1239 break; 1240 1241 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1242 info->pipe = PIPE_A; 1243 info->event = SPRITE_A_FLIP_DONE; 1244 info->plane = SPRITE_PLANE; 1245 break; 1246 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1247 info->pipe = PIPE_B; 1248 info->event = SPRITE_B_FLIP_DONE; 1249 info->plane = SPRITE_PLANE; 1250 break; 1251 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1252 info->pipe = PIPE_C; 1253 info->event = SPRITE_C_FLIP_DONE; 1254 info->plane = SPRITE_PLANE; 1255 break; 1256 1257 default: 1258 gvt_vgpu_err("unknown plane code %d\n", plane); 1259 return -EBADRQC; 1260 } 1261 1262 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1263 info->tile_val = (dword1 & GENMASK(2, 0)); 1264 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1265 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1266 1267 info->ctrl_reg = DSPCNTR(info->pipe); 1268 info->stride_reg = DSPSTRIDE(info->pipe); 1269 info->surf_reg = DSPSURF(info->pipe); 1270 1271 return 0; 1272 } 1273 1274 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1275 struct mi_display_flip_command_info *info) 1276 { 1277 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1278 u32 stride, tile; 1279 1280 if (!info->async_flip) 1281 return 0; 1282 1283 if (IS_SKYLAKE(dev_priv) 1284 || IS_KABYLAKE(dev_priv) 1285 || IS_BROXTON(dev_priv)) { 1286 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1287 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1288 GENMASK(12, 10)) >> 10; 1289 } else { 1290 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1291 GENMASK(15, 6)) >> 6; 1292 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1293 } 1294 1295 if (stride != info->stride_val) 1296 gvt_dbg_cmd("cannot change stride during async flip\n"); 1297 1298 if (tile != info->tile_val) 1299 gvt_dbg_cmd("cannot change tile during async flip\n"); 1300 1301 return 0; 1302 } 1303 1304 static int gen8_update_plane_mmio_from_mi_display_flip( 1305 struct parser_exec_state *s, 1306 struct mi_display_flip_command_info *info) 1307 { 1308 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1309 struct intel_vgpu *vgpu = s->vgpu; 1310 1311 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1312 info->surf_val << 12); 1313 if (IS_SKYLAKE(dev_priv) 1314 || IS_KABYLAKE(dev_priv) 1315 || IS_BROXTON(dev_priv)) { 1316 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1317 info->stride_val); 1318 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1319 info->tile_val << 10); 1320 } else { 1321 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1322 info->stride_val << 6); 1323 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1324 info->tile_val << 10); 1325 } 1326 1327 vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++; 1328 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1329 return 0; 1330 } 1331 1332 static int decode_mi_display_flip(struct parser_exec_state *s, 1333 struct mi_display_flip_command_info *info) 1334 { 1335 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv; 1336 1337 if (IS_BROADWELL(dev_priv)) 1338 return gen8_decode_mi_display_flip(s, info); 1339 if (IS_SKYLAKE(dev_priv) 1340 || IS_KABYLAKE(dev_priv) 1341 || IS_BROXTON(dev_priv)) 1342 return skl_decode_mi_display_flip(s, info); 1343 1344 return -ENODEV; 1345 } 1346 1347 static int check_mi_display_flip(struct parser_exec_state *s, 1348 struct mi_display_flip_command_info *info) 1349 { 1350 return gen8_check_mi_display_flip(s, info); 1351 } 1352 1353 static int update_plane_mmio_from_mi_display_flip( 1354 struct parser_exec_state *s, 1355 struct mi_display_flip_command_info *info) 1356 { 1357 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1358 } 1359 1360 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1361 { 1362 struct mi_display_flip_command_info info; 1363 struct intel_vgpu *vgpu = s->vgpu; 1364 int ret; 1365 int i; 1366 int len = cmd_length(s); 1367 1368 ret = decode_mi_display_flip(s, &info); 1369 if (ret) { 1370 gvt_vgpu_err("fail to decode MI display flip command\n"); 1371 return ret; 1372 } 1373 1374 ret = check_mi_display_flip(s, &info); 1375 if (ret) { 1376 gvt_vgpu_err("invalid MI display flip command\n"); 1377 return ret; 1378 } 1379 1380 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1381 if (ret) { 1382 gvt_vgpu_err("fail to update plane mmio\n"); 1383 return ret; 1384 } 1385 1386 for (i = 0; i < len; i++) 1387 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1388 return 0; 1389 } 1390 1391 static bool is_wait_for_flip_pending(u32 cmd) 1392 { 1393 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1394 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1395 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1396 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1397 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1398 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1399 } 1400 1401 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1402 { 1403 u32 cmd = cmd_val(s, 0); 1404 1405 if (!is_wait_for_flip_pending(cmd)) 1406 return 0; 1407 1408 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1409 return 0; 1410 } 1411 1412 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1413 { 1414 unsigned long addr; 1415 unsigned long gma_high, gma_low; 1416 struct intel_vgpu *vgpu = s->vgpu; 1417 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1418 1419 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1420 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1421 return INTEL_GVT_INVALID_ADDR; 1422 } 1423 1424 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1425 if (gmadr_bytes == 4) { 1426 addr = gma_low; 1427 } else { 1428 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1429 addr = (((unsigned long)gma_high) << 32) | gma_low; 1430 } 1431 return addr; 1432 } 1433 1434 static inline int cmd_address_audit(struct parser_exec_state *s, 1435 unsigned long guest_gma, int op_size, bool index_mode) 1436 { 1437 struct intel_vgpu *vgpu = s->vgpu; 1438 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1439 int i; 1440 int ret; 1441 1442 if (op_size > max_surface_size) { 1443 gvt_vgpu_err("command address audit fail name %s\n", 1444 s->info->name); 1445 return -EFAULT; 1446 } 1447 1448 if (index_mode) { 1449 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) { 1450 ret = -EFAULT; 1451 goto err; 1452 } 1453 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1454 ret = -EFAULT; 1455 goto err; 1456 } 1457 1458 return 0; 1459 1460 err: 1461 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1462 s->info->name, guest_gma, op_size); 1463 1464 pr_err("cmd dump: "); 1465 for (i = 0; i < cmd_length(s); i++) { 1466 if (!(i % 4)) 1467 pr_err("\n%08x ", cmd_val(s, i)); 1468 else 1469 pr_err("%08x ", cmd_val(s, i)); 1470 } 1471 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1472 vgpu->id, 1473 vgpu_aperture_gmadr_base(vgpu), 1474 vgpu_aperture_gmadr_end(vgpu), 1475 vgpu_hidden_gmadr_base(vgpu), 1476 vgpu_hidden_gmadr_end(vgpu)); 1477 return ret; 1478 } 1479 1480 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1481 { 1482 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1483 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1484 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1485 unsigned long gma, gma_low, gma_high; 1486 int ret = 0; 1487 1488 /* check ppggt */ 1489 if (!(cmd_val(s, 0) & (1 << 22))) 1490 return 0; 1491 1492 gma = cmd_val(s, 2) & GENMASK(31, 2); 1493 1494 if (gmadr_bytes == 8) { 1495 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1496 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1497 gma = (gma_high << 32) | gma_low; 1498 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1499 } 1500 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1501 return ret; 1502 } 1503 1504 static inline int unexpected_cmd(struct parser_exec_state *s) 1505 { 1506 struct intel_vgpu *vgpu = s->vgpu; 1507 1508 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1509 1510 return -EBADRQC; 1511 } 1512 1513 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1514 { 1515 return unexpected_cmd(s); 1516 } 1517 1518 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1519 { 1520 return unexpected_cmd(s); 1521 } 1522 1523 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1524 { 1525 return unexpected_cmd(s); 1526 } 1527 1528 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1529 { 1530 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1531 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1532 sizeof(u32); 1533 unsigned long gma, gma_high; 1534 int ret = 0; 1535 1536 if (!(cmd_val(s, 0) & (1 << 22))) 1537 return ret; 1538 1539 gma = cmd_val(s, 1) & GENMASK(31, 2); 1540 if (gmadr_bytes == 8) { 1541 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1542 gma = (gma_high << 32) | gma; 1543 } 1544 ret = cmd_address_audit(s, gma, op_size, false); 1545 return ret; 1546 } 1547 1548 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1549 { 1550 return unexpected_cmd(s); 1551 } 1552 1553 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1554 { 1555 return unexpected_cmd(s); 1556 } 1557 1558 static int cmd_handler_mi_conditional_batch_buffer_end( 1559 struct parser_exec_state *s) 1560 { 1561 return unexpected_cmd(s); 1562 } 1563 1564 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1565 { 1566 return unexpected_cmd(s); 1567 } 1568 1569 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1570 { 1571 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1572 unsigned long gma; 1573 bool index_mode = false; 1574 int ret = 0; 1575 1576 /* Check post-sync and ppgtt bit */ 1577 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1578 gma = cmd_val(s, 1) & GENMASK(31, 3); 1579 if (gmadr_bytes == 8) 1580 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1581 /* Store Data Index */ 1582 if (cmd_val(s, 0) & (1 << 21)) 1583 index_mode = true; 1584 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1585 } 1586 /* Check notify bit */ 1587 if ((cmd_val(s, 0) & (1 << 8))) 1588 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw, 1589 s->workload->pending_events); 1590 return ret; 1591 } 1592 1593 static void addr_type_update_snb(struct parser_exec_state *s) 1594 { 1595 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1596 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1597 s->buf_addr_type = PPGTT_BUFFER; 1598 } 1599 } 1600 1601 1602 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1603 unsigned long gma, unsigned long end_gma, void *va) 1604 { 1605 unsigned long copy_len, offset; 1606 unsigned long len = 0; 1607 unsigned long gpa; 1608 1609 while (gma != end_gma) { 1610 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1611 if (gpa == INTEL_GVT_INVALID_ADDR) { 1612 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1613 return -EFAULT; 1614 } 1615 1616 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1617 1618 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1619 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1620 1621 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1622 1623 len += copy_len; 1624 gma += copy_len; 1625 } 1626 return len; 1627 } 1628 1629 1630 /* 1631 * Check whether a batch buffer needs to be scanned. Currently 1632 * the only criteria is based on privilege. 1633 */ 1634 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1635 { 1636 /* Decide privilege based on address space */ 1637 if (cmd_val(s, 0) & (1 << 8) && 1638 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id))) 1639 return 0; 1640 return 1; 1641 } 1642 1643 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size) 1644 { 1645 unsigned long gma = 0; 1646 struct cmd_info *info; 1647 uint32_t cmd_len = 0; 1648 bool bb_end = false; 1649 struct intel_vgpu *vgpu = s->vgpu; 1650 u32 cmd; 1651 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1652 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1653 1654 *bb_size = 0; 1655 1656 /* get the start gm address of the batch buffer */ 1657 gma = get_gma_bb_from_cmd(s, 1); 1658 if (gma == INTEL_GVT_INVALID_ADDR) 1659 return -EFAULT; 1660 1661 cmd = cmd_val(s, 0); 1662 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1663 if (info == NULL) { 1664 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1665 cmd, get_opcode(cmd, s->ring_id), 1666 (s->buf_addr_type == PPGTT_BUFFER) ? 1667 "ppgtt" : "ggtt", s->ring_id, s->workload); 1668 return -EBADRQC; 1669 } 1670 do { 1671 if (copy_gma_to_hva(s->vgpu, mm, 1672 gma, gma + 4, &cmd) < 0) 1673 return -EFAULT; 1674 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 1675 if (info == NULL) { 1676 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 1677 cmd, get_opcode(cmd, s->ring_id), 1678 (s->buf_addr_type == PPGTT_BUFFER) ? 1679 "ppgtt" : "ggtt", s->ring_id, s->workload); 1680 return -EBADRQC; 1681 } 1682 1683 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1684 bb_end = true; 1685 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1686 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1687 /* chained batch buffer */ 1688 bb_end = true; 1689 } 1690 cmd_len = get_cmd_length(info, cmd) << 2; 1691 *bb_size += cmd_len; 1692 gma += cmd_len; 1693 } while (!bb_end); 1694 1695 return 0; 1696 } 1697 1698 static int perform_bb_shadow(struct parser_exec_state *s) 1699 { 1700 struct intel_vgpu *vgpu = s->vgpu; 1701 struct intel_vgpu_shadow_bb *bb; 1702 unsigned long gma = 0; 1703 unsigned long bb_size; 1704 int ret = 0; 1705 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1706 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1707 unsigned long gma_start_offset = 0; 1708 1709 /* get the start gm address of the batch buffer */ 1710 gma = get_gma_bb_from_cmd(s, 1); 1711 if (gma == INTEL_GVT_INVALID_ADDR) 1712 return -EFAULT; 1713 1714 ret = find_bb_size(s, &bb_size); 1715 if (ret) 1716 return ret; 1717 1718 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1719 if (!bb) 1720 return -ENOMEM; 1721 1722 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1723 1724 /* the gma_start_offset stores the batch buffer's start gma's 1725 * offset relative to page boundary. so for non-privileged batch 1726 * buffer, the shadowed gem object holds exactly the same page 1727 * layout as original gem object. This is for the convience of 1728 * replacing the whole non-privilged batch buffer page to this 1729 * shadowed one in PPGTT at the same gma address. (this replacing 1730 * action is not implemented yet now, but may be necessary in 1731 * future). 1732 * for prileged batch buffer, we just change start gma address to 1733 * that of shadowed page. 1734 */ 1735 if (bb->ppgtt) 1736 gma_start_offset = gma & ~I915_GTT_PAGE_MASK; 1737 1738 bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv, 1739 roundup(bb_size + gma_start_offset, PAGE_SIZE)); 1740 if (IS_ERR(bb->obj)) { 1741 ret = PTR_ERR(bb->obj); 1742 goto err_free_bb; 1743 } 1744 1745 ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush); 1746 if (ret) 1747 goto err_free_obj; 1748 1749 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1750 if (IS_ERR(bb->va)) { 1751 ret = PTR_ERR(bb->va); 1752 goto err_finish_shmem_access; 1753 } 1754 1755 if (bb->clflush & CLFLUSH_BEFORE) { 1756 drm_clflush_virt_range(bb->va, bb->obj->base.size); 1757 bb->clflush &= ~CLFLUSH_BEFORE; 1758 } 1759 1760 ret = copy_gma_to_hva(s->vgpu, mm, 1761 gma, gma + bb_size, 1762 bb->va + gma_start_offset); 1763 if (ret < 0) { 1764 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1765 ret = -EFAULT; 1766 goto err_unmap; 1767 } 1768 1769 INIT_LIST_HEAD(&bb->list); 1770 list_add(&bb->list, &s->workload->shadow_bb); 1771 1772 bb->accessing = true; 1773 bb->bb_start_cmd_va = s->ip_va; 1774 1775 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1776 bb->bb_offset = s->ip_va - s->rb_va; 1777 else 1778 bb->bb_offset = 0; 1779 1780 /* 1781 * ip_va saves the virtual address of the shadow batch buffer, while 1782 * ip_gma saves the graphics address of the original batch buffer. 1783 * As the shadow batch buffer is just a copy from the originial one, 1784 * it should be right to use shadow batch buffer'va and original batch 1785 * buffer's gma in pair. After all, we don't want to pin the shadow 1786 * buffer here (too early). 1787 */ 1788 s->ip_va = bb->va + gma_start_offset; 1789 s->ip_gma = gma; 1790 return 0; 1791 err_unmap: 1792 i915_gem_object_unpin_map(bb->obj); 1793 err_finish_shmem_access: 1794 i915_gem_obj_finish_shmem_access(bb->obj); 1795 err_free_obj: 1796 i915_gem_object_put(bb->obj); 1797 err_free_bb: 1798 kfree(bb); 1799 return ret; 1800 } 1801 1802 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1803 { 1804 bool second_level; 1805 int ret = 0; 1806 struct intel_vgpu *vgpu = s->vgpu; 1807 1808 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1809 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 1810 return -EFAULT; 1811 } 1812 1813 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 1814 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 1815 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 1816 return -EFAULT; 1817 } 1818 1819 s->saved_buf_addr_type = s->buf_addr_type; 1820 addr_type_update_snb(s); 1821 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 1822 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 1823 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1824 } else if (second_level) { 1825 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 1826 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 1827 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 1828 } 1829 1830 if (batch_buffer_needs_scan(s)) { 1831 ret = perform_bb_shadow(s); 1832 if (ret < 0) 1833 gvt_vgpu_err("invalid shadow batch buffer\n"); 1834 } else { 1835 /* emulate a batch buffer end to do return right */ 1836 ret = cmd_handler_mi_batch_buffer_end(s); 1837 if (ret < 0) 1838 return ret; 1839 } 1840 return ret; 1841 } 1842 1843 static struct cmd_info cmd_info[] = { 1844 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1845 1846 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 1847 0, 1, NULL}, 1848 1849 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 1850 0, 1, cmd_handler_mi_user_interrupt}, 1851 1852 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 1853 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 1854 1855 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 1856 1857 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1858 NULL}, 1859 1860 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1861 NULL}, 1862 1863 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1864 NULL}, 1865 1866 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1867 NULL}, 1868 1869 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 1870 D_ALL, 0, 1, NULL}, 1871 1872 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 1873 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1874 cmd_handler_mi_batch_buffer_end}, 1875 1876 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 1877 0, 1, NULL}, 1878 1879 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1880 NULL}, 1881 1882 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 1883 D_ALL, 0, 1, NULL}, 1884 1885 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 1886 NULL}, 1887 1888 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 1889 NULL}, 1890 1891 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE, 1892 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 1893 1894 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL, 1895 0, 8, NULL}, 1896 1897 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 1898 1899 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 1900 1901 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL, 1902 D_BDW_PLUS, 0, 8, NULL}, 1903 1904 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1905 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait}, 1906 1907 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 1908 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 1909 1910 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 1911 0, 8, cmd_handler_mi_store_data_index}, 1912 1913 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 1914 D_ALL, 0, 8, cmd_handler_lri}, 1915 1916 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 1917 cmd_handler_mi_update_gtt}, 1918 1919 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL, 1920 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm}, 1921 1922 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 1923 cmd_handler_mi_flush_dw}, 1924 1925 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 1926 10, cmd_handler_mi_clflush}, 1927 1928 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL, 1929 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count}, 1930 1931 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL, 1932 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm}, 1933 1934 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL, 1935 D_ALL, 0, 8, cmd_handler_lrr}, 1936 1937 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS, 1938 D_ALL, 0, 8, NULL}, 1939 1940 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL, 1941 ADDR_FIX_1(2), 8, NULL}, 1942 1943 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 1944 ADDR_FIX_1(2), 8, NULL}, 1945 1946 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2), 1947 8, cmd_handler_mi_op_2e}, 1948 1949 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 1950 8, cmd_handler_mi_op_2f}, 1951 1952 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 1953 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 1954 cmd_handler_mi_batch_buffer_start}, 1955 1956 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 1957 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 1958 cmd_handler_mi_conditional_batch_buffer_end}, 1959 1960 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 1961 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 1962 1963 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1964 ADDR_FIX_2(4, 7), 8, NULL}, 1965 1966 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 1967 0, 8, NULL}, 1968 1969 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 1970 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 1971 1972 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1973 1974 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 1975 0, 8, NULL}, 1976 1977 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1978 ADDR_FIX_1(3), 8, NULL}, 1979 1980 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 1981 D_ALL, 0, 8, NULL}, 1982 1983 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 1984 ADDR_FIX_1(4), 8, NULL}, 1985 1986 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1987 ADDR_FIX_2(4, 5), 8, NULL}, 1988 1989 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 1990 ADDR_FIX_1(4), 8, NULL}, 1991 1992 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 1993 ADDR_FIX_2(4, 7), 8, NULL}, 1994 1995 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 1996 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 1997 1998 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 1999 2000 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2001 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2002 2003 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2004 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2005 2006 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2007 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2008 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2009 2010 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2011 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2012 2013 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2014 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2015 2016 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2017 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2018 2019 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2020 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2021 2022 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2023 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2024 2025 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2026 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2027 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2028 2029 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2030 ADDR_FIX_2(4, 5), 8, NULL}, 2031 2032 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2033 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2034 2035 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2036 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2037 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2038 2039 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2040 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2041 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2042 2043 {"3DSTATE_BLEND_STATE_POINTERS", 2044 OP_3DSTATE_BLEND_STATE_POINTERS, 2045 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2046 2047 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2048 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2049 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2050 2051 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2052 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2053 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2054 2055 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2056 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2057 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2058 2059 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2060 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2061 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2062 2063 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2064 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2065 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2066 2067 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2068 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2069 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2070 2071 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2072 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2073 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2074 2075 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2076 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2077 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2078 2079 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2080 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2081 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2082 2083 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2084 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2085 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2086 2087 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2088 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2089 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2090 2091 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2092 0, 8, NULL}, 2093 2094 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2095 0, 8, NULL}, 2096 2097 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2098 0, 8, NULL}, 2099 2100 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2101 0, 8, NULL}, 2102 2103 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2104 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2105 2106 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2107 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2108 2109 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2110 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2111 2112 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2113 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2114 2115 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2116 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2117 2118 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2119 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2120 2121 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2122 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2123 2124 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2125 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2126 2127 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2128 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2129 2130 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2131 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2132 2133 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2134 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2135 2136 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2137 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2138 2139 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2140 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2141 2142 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2143 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2144 2145 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2146 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2147 2148 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2149 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2150 2151 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2152 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2153 2154 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2155 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2156 2157 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2158 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2159 2160 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2161 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2162 2163 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2164 D_BDW_PLUS, 0, 8, NULL}, 2165 2166 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2167 NULL}, 2168 2169 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2170 D_BDW_PLUS, 0, 8, NULL}, 2171 2172 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2173 D_BDW_PLUS, 0, 8, NULL}, 2174 2175 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2176 8, NULL}, 2177 2178 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2179 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2180 2181 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2182 8, NULL}, 2183 2184 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2185 NULL}, 2186 2187 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2188 NULL}, 2189 2190 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2191 NULL}, 2192 2193 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2194 D_BDW_PLUS, 0, 8, NULL}, 2195 2196 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2197 R_RCS, D_ALL, 0, 8, NULL}, 2198 2199 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2200 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2201 2202 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2203 R_RCS, D_ALL, 0, 1, NULL}, 2204 2205 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2206 2207 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2208 R_RCS, D_ALL, 0, 8, NULL}, 2209 2210 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2211 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2212 2213 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2214 2215 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2216 2217 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2218 2219 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2220 D_BDW_PLUS, 0, 8, NULL}, 2221 2222 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2223 D_BDW_PLUS, 0, 8, NULL}, 2224 2225 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2226 D_ALL, 0, 8, NULL}, 2227 2228 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2229 D_BDW_PLUS, 0, 8, NULL}, 2230 2231 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2232 D_BDW_PLUS, 0, 8, NULL}, 2233 2234 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2235 2236 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2237 2238 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2239 2240 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2241 D_ALL, 0, 8, NULL}, 2242 2243 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2244 2245 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2246 2247 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2248 R_RCS, D_ALL, 0, 8, NULL}, 2249 2250 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2251 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2252 2253 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2254 0, 8, NULL}, 2255 2256 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2257 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2258 2259 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2260 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2261 2262 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2263 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2264 2265 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2266 D_ALL, 0, 8, NULL}, 2267 2268 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2269 D_ALL, 0, 8, NULL}, 2270 2271 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2272 D_ALL, 0, 8, NULL}, 2273 2274 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2275 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2276 2277 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2278 D_BDW_PLUS, 0, 8, NULL}, 2279 2280 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2281 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2282 2283 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2284 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2285 2286 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2287 R_RCS, D_ALL, 0, 8, NULL}, 2288 2289 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2290 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2291 2292 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2293 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2294 2295 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2296 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2297 2298 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2299 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2300 2301 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2302 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2303 2304 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2305 R_RCS, D_ALL, 0, 8, NULL}, 2306 2307 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2308 D_ALL, 0, 9, NULL}, 2309 2310 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2311 ADDR_FIX_2(2, 4), 8, NULL}, 2312 2313 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2314 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2315 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2316 2317 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2318 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2319 2320 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2321 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2322 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2323 2324 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2325 D_BDW_PLUS, 0, 8, NULL}, 2326 2327 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2328 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2329 2330 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2331 2332 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2333 1, NULL}, 2334 2335 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2336 ADDR_FIX_1(1), 8, NULL}, 2337 2338 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2339 2340 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2341 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2342 2343 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2344 ADDR_FIX_1(1), 8, NULL}, 2345 2346 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2347 2348 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2349 2350 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2351 0, 8, NULL}, 2352 2353 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2354 D_SKL_PLUS, 0, 8, NULL}, 2355 2356 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2357 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2358 2359 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2360 0, 16, NULL}, 2361 2362 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2363 0, 16, NULL}, 2364 2365 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2366 0, 16, NULL}, 2367 2368 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2369 2370 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2371 0, 16, NULL}, 2372 2373 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2374 0, 16, NULL}, 2375 2376 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2377 0, 16, NULL}, 2378 2379 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2380 0, 8, NULL}, 2381 2382 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2383 NULL}, 2384 2385 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2386 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2387 2388 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2389 R_VCS, D_ALL, 0, 12, NULL}, 2390 2391 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2392 R_VCS, D_ALL, 0, 12, NULL}, 2393 2394 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2395 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2396 2397 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2398 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2399 2400 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2401 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2402 2403 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2404 2405 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2406 R_VCS, D_ALL, 0, 12, NULL}, 2407 2408 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2409 R_VCS, D_ALL, 0, 12, NULL}, 2410 2411 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2412 R_VCS, D_ALL, 0, 12, NULL}, 2413 2414 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2415 R_VCS, D_ALL, 0, 12, NULL}, 2416 2417 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2418 R_VCS, D_ALL, 0, 12, NULL}, 2419 2420 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2421 R_VCS, D_ALL, 0, 12, NULL}, 2422 2423 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2424 R_VCS, D_ALL, 0, 6, NULL}, 2425 2426 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2427 R_VCS, D_ALL, 0, 12, NULL}, 2428 2429 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2430 R_VCS, D_ALL, 0, 12, NULL}, 2431 2432 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2433 R_VCS, D_ALL, 0, 12, NULL}, 2434 2435 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2436 R_VCS, D_ALL, 0, 12, NULL}, 2437 2438 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2439 R_VCS, D_ALL, 0, 12, NULL}, 2440 2441 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2442 R_VCS, D_ALL, 0, 12, NULL}, 2443 2444 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2445 R_VCS, D_ALL, 0, 12, NULL}, 2446 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2447 R_VCS, D_ALL, 0, 12, NULL}, 2448 2449 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2450 R_VCS, D_ALL, 0, 12, NULL}, 2451 2452 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2453 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2454 2455 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2456 R_VCS, D_ALL, 0, 12, NULL}, 2457 2458 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2459 R_VCS, D_ALL, 0, 12, NULL}, 2460 2461 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2462 R_VCS, D_ALL, 0, 12, NULL}, 2463 2464 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2465 R_VCS, D_ALL, 0, 12, NULL}, 2466 2467 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2468 R_VCS, D_ALL, 0, 12, NULL}, 2469 2470 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2471 R_VCS, D_ALL, 0, 12, NULL}, 2472 2473 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2474 R_VCS, D_ALL, 0, 12, NULL}, 2475 2476 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2477 R_VCS, D_ALL, 0, 12, NULL}, 2478 2479 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2480 R_VCS, D_ALL, 0, 12, NULL}, 2481 2482 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2483 R_VCS, D_ALL, 0, 12, NULL}, 2484 2485 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2486 R_VCS, D_ALL, 0, 12, NULL}, 2487 2488 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2489 0, 16, NULL}, 2490 2491 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2492 2493 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2494 2495 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2496 R_VCS, D_ALL, 0, 12, NULL}, 2497 2498 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2499 R_VCS, D_ALL, 0, 12, NULL}, 2500 2501 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2502 R_VCS, D_ALL, 0, 12, NULL}, 2503 2504 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2505 2506 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2507 0, 12, NULL}, 2508 2509 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2510 0, 20, NULL}, 2511 }; 2512 2513 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2514 { 2515 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2516 } 2517 2518 /* call the cmd handler, and advance ip */ 2519 static int cmd_parser_exec(struct parser_exec_state *s) 2520 { 2521 struct intel_vgpu *vgpu = s->vgpu; 2522 struct cmd_info *info; 2523 u32 cmd; 2524 int ret = 0; 2525 2526 cmd = cmd_val(s, 0); 2527 2528 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id); 2529 if (info == NULL) { 2530 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n", 2531 cmd, get_opcode(cmd, s->ring_id), 2532 (s->buf_addr_type == PPGTT_BUFFER) ? 2533 "ppgtt" : "ggtt", s->ring_id, s->workload); 2534 return -EBADRQC; 2535 } 2536 2537 s->info = info; 2538 2539 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va, 2540 cmd_length(s), s->buf_type, s->buf_addr_type, 2541 s->workload, info->name); 2542 2543 if (info->handler) { 2544 ret = info->handler(s); 2545 if (ret < 0) { 2546 gvt_vgpu_err("%s handler error\n", info->name); 2547 return ret; 2548 } 2549 } 2550 2551 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2552 ret = cmd_advance_default(s); 2553 if (ret) { 2554 gvt_vgpu_err("%s IP advance error\n", info->name); 2555 return ret; 2556 } 2557 } 2558 return 0; 2559 } 2560 2561 static inline bool gma_out_of_range(unsigned long gma, 2562 unsigned long gma_head, unsigned int gma_tail) 2563 { 2564 if (gma_tail >= gma_head) 2565 return (gma < gma_head) || (gma > gma_tail); 2566 else 2567 return (gma > gma_tail) && (gma < gma_head); 2568 } 2569 2570 /* Keep the consistent return type, e.g EBADRQC for unknown 2571 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2572 * works as the input of VM healthy status. 2573 */ 2574 static int command_scan(struct parser_exec_state *s, 2575 unsigned long rb_head, unsigned long rb_tail, 2576 unsigned long rb_start, unsigned long rb_len) 2577 { 2578 2579 unsigned long gma_head, gma_tail, gma_bottom; 2580 int ret = 0; 2581 struct intel_vgpu *vgpu = s->vgpu; 2582 2583 gma_head = rb_start + rb_head; 2584 gma_tail = rb_start + rb_tail; 2585 gma_bottom = rb_start + rb_len; 2586 2587 while (s->ip_gma != gma_tail) { 2588 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2589 if (!(s->ip_gma >= rb_start) || 2590 !(s->ip_gma < gma_bottom)) { 2591 gvt_vgpu_err("ip_gma %lx out of ring scope." 2592 "(base:0x%lx, bottom: 0x%lx)\n", 2593 s->ip_gma, rb_start, 2594 gma_bottom); 2595 parser_exec_state_dump(s); 2596 return -EFAULT; 2597 } 2598 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2599 gvt_vgpu_err("ip_gma %lx out of range." 2600 "base 0x%lx head 0x%lx tail 0x%lx\n", 2601 s->ip_gma, rb_start, 2602 rb_head, rb_tail); 2603 parser_exec_state_dump(s); 2604 break; 2605 } 2606 } 2607 ret = cmd_parser_exec(s); 2608 if (ret) { 2609 gvt_vgpu_err("cmd parser error\n"); 2610 parser_exec_state_dump(s); 2611 break; 2612 } 2613 } 2614 2615 return ret; 2616 } 2617 2618 static int scan_workload(struct intel_vgpu_workload *workload) 2619 { 2620 unsigned long gma_head, gma_tail, gma_bottom; 2621 struct parser_exec_state s; 2622 int ret = 0; 2623 2624 /* ring base is page aligned */ 2625 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2626 return -EINVAL; 2627 2628 gma_head = workload->rb_start + workload->rb_head; 2629 gma_tail = workload->rb_start + workload->rb_tail; 2630 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2631 2632 s.buf_type = RING_BUFFER_INSTRUCTION; 2633 s.buf_addr_type = GTT_BUFFER; 2634 s.vgpu = workload->vgpu; 2635 s.ring_id = workload->ring_id; 2636 s.ring_start = workload->rb_start; 2637 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2638 s.ring_head = gma_head; 2639 s.ring_tail = gma_tail; 2640 s.rb_va = workload->shadow_ring_buffer_va; 2641 s.workload = workload; 2642 s.is_ctx_wa = false; 2643 2644 if ((bypass_scan_mask & (1 << workload->ring_id)) || 2645 gma_head == gma_tail) 2646 return 0; 2647 2648 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2649 ret = -EINVAL; 2650 goto out; 2651 } 2652 2653 ret = ip_gma_set(&s, gma_head); 2654 if (ret) 2655 goto out; 2656 2657 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2658 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2659 2660 out: 2661 return ret; 2662 } 2663 2664 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2665 { 2666 2667 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2668 struct parser_exec_state s; 2669 int ret = 0; 2670 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2671 struct intel_vgpu_workload, 2672 wa_ctx); 2673 2674 /* ring base is page aligned */ 2675 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2676 I915_GTT_PAGE_SIZE))) 2677 return -EINVAL; 2678 2679 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t); 2680 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2681 PAGE_SIZE); 2682 gma_head = wa_ctx->indirect_ctx.guest_gma; 2683 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2684 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2685 2686 s.buf_type = RING_BUFFER_INSTRUCTION; 2687 s.buf_addr_type = GTT_BUFFER; 2688 s.vgpu = workload->vgpu; 2689 s.ring_id = workload->ring_id; 2690 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2691 s.ring_size = ring_size; 2692 s.ring_head = gma_head; 2693 s.ring_tail = gma_tail; 2694 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2695 s.workload = workload; 2696 s.is_ctx_wa = true; 2697 2698 if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) { 2699 ret = -EINVAL; 2700 goto out; 2701 } 2702 2703 ret = ip_gma_set(&s, gma_head); 2704 if (ret) 2705 goto out; 2706 2707 ret = command_scan(&s, 0, ring_tail, 2708 wa_ctx->indirect_ctx.guest_gma, ring_size); 2709 out: 2710 return ret; 2711 } 2712 2713 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2714 { 2715 struct intel_vgpu *vgpu = workload->vgpu; 2716 struct intel_vgpu_submission *s = &vgpu->submission; 2717 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2718 void *shadow_ring_buffer_va; 2719 int ring_id = workload->ring_id; 2720 int ret; 2721 2722 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2723 2724 /* calculate workload ring buffer size */ 2725 workload->rb_len = (workload->rb_tail + guest_rb_size - 2726 workload->rb_head) % guest_rb_size; 2727 2728 gma_head = workload->rb_start + workload->rb_head; 2729 gma_tail = workload->rb_start + workload->rb_tail; 2730 gma_top = workload->rb_start + guest_rb_size; 2731 2732 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) { 2733 void *p; 2734 2735 /* realloc the new ring buffer if needed */ 2736 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len, 2737 GFP_KERNEL); 2738 if (!p) { 2739 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2740 return -ENOMEM; 2741 } 2742 s->ring_scan_buffer[ring_id] = p; 2743 s->ring_scan_buffer_size[ring_id] = workload->rb_len; 2744 } 2745 2746 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id]; 2747 2748 /* get shadow ring buffer va */ 2749 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2750 2751 /* head > tail --> copy head <-> top */ 2752 if (gma_head > gma_tail) { 2753 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2754 gma_head, gma_top, shadow_ring_buffer_va); 2755 if (ret < 0) { 2756 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2757 return ret; 2758 } 2759 shadow_ring_buffer_va += ret; 2760 gma_head = workload->rb_start; 2761 } 2762 2763 /* copy head or start <-> tail */ 2764 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2765 shadow_ring_buffer_va); 2766 if (ret < 0) { 2767 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2768 return ret; 2769 } 2770 return 0; 2771 } 2772 2773 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2774 { 2775 int ret; 2776 struct intel_vgpu *vgpu = workload->vgpu; 2777 2778 ret = shadow_workload_ring_buffer(workload); 2779 if (ret) { 2780 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2781 return ret; 2782 } 2783 2784 ret = scan_workload(workload); 2785 if (ret) { 2786 gvt_vgpu_err("scan workload error\n"); 2787 return ret; 2788 } 2789 return 0; 2790 } 2791 2792 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2793 { 2794 int ctx_size = wa_ctx->indirect_ctx.size; 2795 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 2796 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2797 struct intel_vgpu_workload, 2798 wa_ctx); 2799 struct intel_vgpu *vgpu = workload->vgpu; 2800 struct drm_i915_gem_object *obj; 2801 int ret = 0; 2802 void *map; 2803 2804 obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv, 2805 roundup(ctx_size + CACHELINE_BYTES, 2806 PAGE_SIZE)); 2807 if (IS_ERR(obj)) 2808 return PTR_ERR(obj); 2809 2810 /* get the va of the shadow batch buffer */ 2811 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 2812 if (IS_ERR(map)) { 2813 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 2814 ret = PTR_ERR(map); 2815 goto put_obj; 2816 } 2817 2818 ret = i915_gem_object_set_to_cpu_domain(obj, false); 2819 if (ret) { 2820 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 2821 goto unmap_src; 2822 } 2823 2824 ret = copy_gma_to_hva(workload->vgpu, 2825 workload->vgpu->gtt.ggtt_mm, 2826 guest_gma, guest_gma + ctx_size, 2827 map); 2828 if (ret < 0) { 2829 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 2830 goto unmap_src; 2831 } 2832 2833 wa_ctx->indirect_ctx.obj = obj; 2834 wa_ctx->indirect_ctx.shadow_va = map; 2835 return 0; 2836 2837 unmap_src: 2838 i915_gem_object_unpin_map(obj); 2839 put_obj: 2840 i915_gem_object_put(obj); 2841 return ret; 2842 } 2843 2844 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2845 { 2846 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0}; 2847 unsigned char *bb_start_sva; 2848 2849 if (!wa_ctx->per_ctx.valid) 2850 return 0; 2851 2852 per_ctx_start[0] = 0x18800001; 2853 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 2854 2855 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 2856 wa_ctx->indirect_ctx.size; 2857 2858 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 2859 2860 return 0; 2861 } 2862 2863 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2864 { 2865 int ret; 2866 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2867 struct intel_vgpu_workload, 2868 wa_ctx); 2869 struct intel_vgpu *vgpu = workload->vgpu; 2870 2871 if (wa_ctx->indirect_ctx.size == 0) 2872 return 0; 2873 2874 ret = shadow_indirect_ctx(wa_ctx); 2875 if (ret) { 2876 gvt_vgpu_err("fail to shadow indirect ctx\n"); 2877 return ret; 2878 } 2879 2880 combine_wa_ctx(wa_ctx); 2881 2882 ret = scan_wa_ctx(wa_ctx); 2883 if (ret) { 2884 gvt_vgpu_err("scan wa ctx error\n"); 2885 return ret; 2886 } 2887 2888 return 0; 2889 } 2890 2891 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt, 2892 unsigned int opcode, unsigned long rings) 2893 { 2894 struct cmd_info *info = NULL; 2895 unsigned int ring; 2896 2897 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) { 2898 info = find_cmd_entry(gvt, opcode, ring); 2899 if (info) 2900 break; 2901 } 2902 return info; 2903 } 2904 2905 static int init_cmd_table(struct intel_gvt *gvt) 2906 { 2907 int i; 2908 struct cmd_entry *e; 2909 struct cmd_info *info; 2910 unsigned int gen_type; 2911 2912 gen_type = intel_gvt_get_device_type(gvt); 2913 2914 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 2915 if (!(cmd_info[i].devices & gen_type)) 2916 continue; 2917 2918 e = kzalloc(sizeof(*e), GFP_KERNEL); 2919 if (!e) 2920 return -ENOMEM; 2921 2922 e->info = &cmd_info[i]; 2923 info = find_cmd_entry_any_ring(gvt, 2924 e->info->opcode, e->info->rings); 2925 if (info) { 2926 gvt_err("%s %s duplicated\n", e->info->name, 2927 info->name); 2928 kfree(e); 2929 return -EEXIST; 2930 } 2931 2932 INIT_HLIST_NODE(&e->hlist); 2933 add_cmd_entry(gvt, e); 2934 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 2935 e->info->name, e->info->opcode, e->info->flag, 2936 e->info->devices, e->info->rings); 2937 } 2938 return 0; 2939 } 2940 2941 static void clean_cmd_table(struct intel_gvt *gvt) 2942 { 2943 struct hlist_node *tmp; 2944 struct cmd_entry *e; 2945 int i; 2946 2947 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 2948 kfree(e); 2949 2950 hash_init(gvt->cmd_table); 2951 } 2952 2953 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 2954 { 2955 clean_cmd_table(gvt); 2956 } 2957 2958 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 2959 { 2960 int ret; 2961 2962 ret = init_cmd_table(gvt); 2963 if (ret) { 2964 intel_gvt_clean_cmd_parser(gvt); 2965 return ret; 2966 } 2967 return 0; 2968 } 2969