xref: /linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision e08a1d97d33e2ac05cd368b955f9fdc2823f15fd)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42 
43 #define INVALID_OP    (~0U)
44 
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX	    16
50 
51 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
52 
53 struct sub_op_bits {
54 	int hi;
55 	int low;
56 };
57 struct decode_info {
58 	char *name;
59 	int op_len;
60 	int nr_sub_op;
61 	struct sub_op_bits *sub_op;
62 };
63 
64 #define   MAX_CMD_BUDGET			0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68 
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72 
73 /* Render Command Map */
74 
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
100 
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E			    0x2E  /* BDW+ */
115 #define OP_MI_2F			    0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117 
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
120 
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122 
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127 
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130 
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155 
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159 
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161 
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
165 
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167 
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169 
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 
176 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
180 
181 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247 
248 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259 
260 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
288 
289 /* VCCP Command Parser */
290 
291 /*
292  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293  * git://anongit.freedesktop.org/vaapi/intel-driver
294  * src/i965_defines.h
295  *
296  */
297 
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
299 	(3 << 13 | \
300 	 (pipeline) << 11 | \
301 	 (op) << 8 | \
302 	 (sub_opa) << 5 | \
303 	 (sub_opb))
304 
305 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
306 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
310 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
311 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
312 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
313 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
316 
317 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
318 
319 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
331 
332 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
337 
338 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
343 
344 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
347 
348 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
351 
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353 	(3 << 13 | \
354 	 (pipeline) << 11 | \
355 	 (op) << 8 | \
356 	 (sub_opa) << 5 | \
357 	 (sub_opb))
358 
359 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
362 
363 struct parser_exec_state;
364 
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366 
367 #define GVT_CMD_HASH_BITS   7
368 
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1)			(1 << (x1))
371 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375 
376 struct cmd_info {
377 	char *name;
378 	u32 opcode;
379 
380 #define F_LEN_MASK	(1U<<0)
381 #define F_LEN_CONST  1U
382 #define F_LEN_VAR    0U
383 
384 /*
385  * command has its own ip advance logic
386  * e.g. MI_BATCH_START, MI_BATCH_END
387  */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389 
390 #define F_POST_HANDLE	(1<<2)
391 	u32 flag;
392 
393 #define R_RCS	(1 << RCS)
394 #define R_VCS1  (1 << VCS)
395 #define R_VCS2  (1 << VCS2)
396 #define R_VCS	(R_VCS1 | R_VCS2)
397 #define R_BCS	(1 << BCS)
398 #define R_VECS	(1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
401 	uint16_t rings;
402 
403 	/* devices that support this cmd: SNB/IVB/HSW/... */
404 	uint16_t devices;
405 
406 	/* which DWords are address that need fix up.
407 	 * bit 0 means a 32-bit non address operand in command
408 	 * bit 1 means address operand, which could be 32-bit
409 	 * or 64-bit depending on different architectures.(
410 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411 	 * No matter the address length, each address only takes
412 	 * one bit in the bitmap.
413 	 */
414 	uint16_t addr_bitmap;
415 
416 	/* flag == F_LEN_CONST : command length
417 	 * flag == F_LEN_VAR : length bias bits
418 	 * Note: length is in DWord
419 	 */
420 	uint8_t	len;
421 
422 	parser_cmd_handler handler;
423 };
424 
425 struct cmd_entry {
426 	struct hlist_node hlist;
427 	struct cmd_info *info;
428 };
429 
430 enum {
431 	RING_BUFFER_INSTRUCTION,
432 	BATCH_BUFFER_INSTRUCTION,
433 	BATCH_BUFFER_2ND_LEVEL,
434 };
435 
436 enum {
437 	GTT_BUFFER,
438 	PPGTT_BUFFER
439 };
440 
441 struct parser_exec_state {
442 	struct intel_vgpu *vgpu;
443 	int ring_id;
444 
445 	int buf_type;
446 
447 	/* batch buffer address type */
448 	int buf_addr_type;
449 
450 	/* graphics memory address of ring buffer start */
451 	unsigned long ring_start;
452 	unsigned long ring_size;
453 	unsigned long ring_head;
454 	unsigned long ring_tail;
455 
456 	/* instruction graphics memory address */
457 	unsigned long ip_gma;
458 
459 	/* mapped va of the instr_gma */
460 	void *ip_va;
461 	void *rb_va;
462 
463 	void *ret_bb_va;
464 	/* next instruction when return from  batch buffer to ring buffer */
465 	unsigned long ret_ip_gma_ring;
466 
467 	/* next instruction when return from 2nd batch buffer to batch buffer */
468 	unsigned long ret_ip_gma_bb;
469 
470 	/* batch buffer address type (GTT or PPGTT)
471 	 * used when ret from 2nd level batch buffer
472 	 */
473 	int saved_buf_addr_type;
474 
475 	struct cmd_info *info;
476 
477 	struct intel_vgpu_workload *workload;
478 };
479 
480 #define gmadr_dw_number(s)	\
481 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
482 
483 static unsigned long bypass_scan_mask = 0;
484 static bool bypass_batch_buffer_scan = true;
485 
486 /* ring ALL, type = 0 */
487 static struct sub_op_bits sub_op_mi[] = {
488 	{31, 29},
489 	{28, 23},
490 };
491 
492 static struct decode_info decode_info_mi = {
493 	"MI",
494 	OP_LEN_MI,
495 	ARRAY_SIZE(sub_op_mi),
496 	sub_op_mi,
497 };
498 
499 /* ring RCS, command type 2 */
500 static struct sub_op_bits sub_op_2d[] = {
501 	{31, 29},
502 	{28, 22},
503 };
504 
505 static struct decode_info decode_info_2d = {
506 	"2D",
507 	OP_LEN_2D,
508 	ARRAY_SIZE(sub_op_2d),
509 	sub_op_2d,
510 };
511 
512 /* ring RCS, command type 3 */
513 static struct sub_op_bits sub_op_3d_media[] = {
514 	{31, 29},
515 	{28, 27},
516 	{26, 24},
517 	{23, 16},
518 };
519 
520 static struct decode_info decode_info_3d_media = {
521 	"3D_Media",
522 	OP_LEN_3D_MEDIA,
523 	ARRAY_SIZE(sub_op_3d_media),
524 	sub_op_3d_media,
525 };
526 
527 /* ring VCS, command type 3 */
528 static struct sub_op_bits sub_op_mfx_vc[] = {
529 	{31, 29},
530 	{28, 27},
531 	{26, 24},
532 	{23, 21},
533 	{20, 16},
534 };
535 
536 static struct decode_info decode_info_mfx_vc = {
537 	"MFX_VC",
538 	OP_LEN_MFX_VC,
539 	ARRAY_SIZE(sub_op_mfx_vc),
540 	sub_op_mfx_vc,
541 };
542 
543 /* ring VECS, command type 3 */
544 static struct sub_op_bits sub_op_vebox[] = {
545 	{31, 29},
546 	{28, 27},
547 	{26, 24},
548 	{23, 21},
549 	{20, 16},
550 };
551 
552 static struct decode_info decode_info_vebox = {
553 	"VEBOX",
554 	OP_LEN_VEBOX,
555 	ARRAY_SIZE(sub_op_vebox),
556 	sub_op_vebox,
557 };
558 
559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
560 	[RCS] = {
561 		&decode_info_mi,
562 		NULL,
563 		NULL,
564 		&decode_info_3d_media,
565 		NULL,
566 		NULL,
567 		NULL,
568 		NULL,
569 	},
570 
571 	[VCS] = {
572 		&decode_info_mi,
573 		NULL,
574 		NULL,
575 		&decode_info_mfx_vc,
576 		NULL,
577 		NULL,
578 		NULL,
579 		NULL,
580 	},
581 
582 	[BCS] = {
583 		&decode_info_mi,
584 		NULL,
585 		&decode_info_2d,
586 		NULL,
587 		NULL,
588 		NULL,
589 		NULL,
590 		NULL,
591 	},
592 
593 	[VECS] = {
594 		&decode_info_mi,
595 		NULL,
596 		NULL,
597 		&decode_info_vebox,
598 		NULL,
599 		NULL,
600 		NULL,
601 		NULL,
602 	},
603 
604 	[VCS2] = {
605 		&decode_info_mi,
606 		NULL,
607 		NULL,
608 		&decode_info_mfx_vc,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 	},
614 };
615 
616 static inline u32 get_opcode(u32 cmd, int ring_id)
617 {
618 	struct decode_info *d_info;
619 
620 	if (ring_id >= I915_NUM_ENGINES)
621 		return INVALID_OP;
622 
623 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
624 	if (d_info == NULL)
625 		return INVALID_OP;
626 
627 	return cmd >> (32 - d_info->op_len);
628 }
629 
630 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
631 		unsigned int opcode, int ring_id)
632 {
633 	struct cmd_entry *e;
634 
635 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
636 		if ((opcode == e->info->opcode) &&
637 				(e->info->rings & (1 << ring_id)))
638 			return e->info;
639 	}
640 	return NULL;
641 }
642 
643 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
644 		u32 cmd, int ring_id)
645 {
646 	u32 opcode;
647 
648 	opcode = get_opcode(cmd, ring_id);
649 	if (opcode == INVALID_OP)
650 		return NULL;
651 
652 	return find_cmd_entry(gvt, opcode, ring_id);
653 }
654 
655 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
656 {
657 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
658 }
659 
660 static inline void print_opcode(u32 cmd, int ring_id)
661 {
662 	struct decode_info *d_info;
663 	int i;
664 
665 	if (ring_id >= I915_NUM_ENGINES)
666 		return;
667 
668 	d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
669 	if (d_info == NULL)
670 		return;
671 
672 	gvt_err("opcode=0x%x %s sub_ops:",
673 			cmd >> (32 - d_info->op_len), d_info->name);
674 
675 	for (i = 0; i < d_info->nr_sub_op; i++)
676 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
677 					d_info->sub_op[i].low));
678 
679 	pr_err("\n");
680 }
681 
682 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
683 {
684 	return s->ip_va + (index << 2);
685 }
686 
687 static inline u32 cmd_val(struct parser_exec_state *s, int index)
688 {
689 	return *cmd_ptr(s, index);
690 }
691 
692 static void parser_exec_state_dump(struct parser_exec_state *s)
693 {
694 	int cnt = 0;
695 	int i;
696 
697 	gvt_err("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
698 			" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
699 			s->ring_id, s->ring_start, s->ring_start + s->ring_size,
700 			s->ring_head, s->ring_tail);
701 
702 	gvt_err("  %s %s ip_gma(%08lx) ",
703 			s->buf_type == RING_BUFFER_INSTRUCTION ?
704 			"RING_BUFFER" : "BATCH_BUFFER",
705 			s->buf_addr_type == GTT_BUFFER ?
706 			"GTT" : "PPGTT", s->ip_gma);
707 
708 	if (s->ip_va == NULL) {
709 		gvt_err(" ip_va(NULL)");
710 		return;
711 	}
712 
713 	gvt_err("  ip_va=%p: %08x %08x %08x %08x\n",
714 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
715 			cmd_val(s, 2), cmd_val(s, 3));
716 
717 	print_opcode(cmd_val(s, 0), s->ring_id);
718 
719 	/* print the whole page to trace */
720 	pr_err("    ip_va=%p: %08x %08x %08x %08x\n",
721 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
722 			cmd_val(s, 2), cmd_val(s, 3));
723 
724 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
725 
726 	while (cnt < 1024) {
727 		pr_err("ip_va=%p: ", s->ip_va);
728 		for (i = 0; i < 8; i++)
729 			pr_err("%08x ", cmd_val(s, i));
730 		pr_err("\n");
731 
732 		s->ip_va += 8 * sizeof(u32);
733 		cnt += 8;
734 	}
735 }
736 
737 static inline void update_ip_va(struct parser_exec_state *s)
738 {
739 	unsigned long len = 0;
740 
741 	if (WARN_ON(s->ring_head == s->ring_tail))
742 		return;
743 
744 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
745 		unsigned long ring_top = s->ring_start + s->ring_size;
746 
747 		if (s->ring_head > s->ring_tail) {
748 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
749 				len = (s->ip_gma - s->ring_head);
750 			else if (s->ip_gma >= s->ring_start &&
751 					s->ip_gma <= s->ring_tail)
752 				len = (ring_top - s->ring_head) +
753 					(s->ip_gma - s->ring_start);
754 		} else
755 			len = (s->ip_gma - s->ring_head);
756 
757 		s->ip_va = s->rb_va + len;
758 	} else {/* shadow batch buffer */
759 		s->ip_va = s->ret_bb_va;
760 	}
761 }
762 
763 static inline int ip_gma_set(struct parser_exec_state *s,
764 		unsigned long ip_gma)
765 {
766 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
767 
768 	s->ip_gma = ip_gma;
769 	update_ip_va(s);
770 	return 0;
771 }
772 
773 static inline int ip_gma_advance(struct parser_exec_state *s,
774 		unsigned int dw_len)
775 {
776 	s->ip_gma += (dw_len << 2);
777 
778 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
779 		if (s->ip_gma >= s->ring_start + s->ring_size)
780 			s->ip_gma -= s->ring_size;
781 		update_ip_va(s);
782 	} else {
783 		s->ip_va += (dw_len << 2);
784 	}
785 
786 	return 0;
787 }
788 
789 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
790 {
791 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
792 		return info->len;
793 	else
794 		return (cmd & ((1U << info->len) - 1)) + 2;
795 	return 0;
796 }
797 
798 static inline int cmd_length(struct parser_exec_state *s)
799 {
800 	return get_cmd_length(s->info, cmd_val(s, 0));
801 }
802 
803 /* do not remove this, some platform may need clflush here */
804 #define patch_value(s, addr, val) do { \
805 	*addr = val; \
806 } while (0)
807 
808 static bool is_shadowed_mmio(unsigned int offset)
809 {
810 	bool ret = false;
811 
812 	if ((offset == 0x2168) || /*BB current head register UDW */
813 	    (offset == 0x2140) || /*BB current header register */
814 	    (offset == 0x211c) || /*second BB header register UDW */
815 	    (offset == 0x2114)) { /*second BB header register UDW */
816 		ret = true;
817 	}
818 	return ret;
819 }
820 
821 static int cmd_reg_handler(struct parser_exec_state *s,
822 	unsigned int offset, unsigned int index, char *cmd)
823 {
824 	struct intel_vgpu *vgpu = s->vgpu;
825 	struct intel_gvt *gvt = vgpu->gvt;
826 
827 	if (offset + 4 > gvt->device_info.mmio_size) {
828 		gvt_err("%s access to (%x) outside of MMIO range\n",
829 				cmd, offset);
830 		return -EINVAL;
831 	}
832 
833 	if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
834 		gvt_err("vgpu%d: %s access to non-render register (%x)\n",
835 				s->vgpu->id, cmd, offset);
836 		return 0;
837 	}
838 
839 	if (is_shadowed_mmio(offset)) {
840 		gvt_err("vgpu%d: found access of shadowed MMIO %x\n",
841 				s->vgpu->id, offset);
842 		return 0;
843 	}
844 
845 	if (offset == i915_mmio_reg_offset(DERRMR) ||
846 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
847 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
848 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
849 	}
850 
851 	/* TODO: Update the global mask if this MMIO is a masked-MMIO */
852 	intel_gvt_mmio_set_cmd_accessed(gvt, offset);
853 	return 0;
854 }
855 
856 #define cmd_reg(s, i) \
857 	(cmd_val(s, i) & GENMASK(22, 2))
858 
859 #define cmd_reg_inhibit(s, i) \
860 	(cmd_val(s, i) & GENMASK(22, 18))
861 
862 #define cmd_gma(s, i) \
863 	(cmd_val(s, i) & GENMASK(31, 2))
864 
865 #define cmd_gma_hi(s, i) \
866 	(cmd_val(s, i) & GENMASK(15, 0))
867 
868 static int cmd_handler_lri(struct parser_exec_state *s)
869 {
870 	int i, ret = 0;
871 	int cmd_len = cmd_length(s);
872 	struct intel_gvt *gvt = s->vgpu->gvt;
873 
874 	for (i = 1; i < cmd_len; i += 2) {
875 		if (IS_BROADWELL(gvt->dev_priv) &&
876 				(s->ring_id != RCS)) {
877 			if (s->ring_id == BCS &&
878 					cmd_reg(s, i) ==
879 					i915_mmio_reg_offset(DERRMR))
880 				ret |= 0;
881 			else
882 				ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
883 		}
884 		if (ret)
885 			break;
886 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
887 	}
888 	return ret;
889 }
890 
891 static int cmd_handler_lrr(struct parser_exec_state *s)
892 {
893 	int i, ret = 0;
894 	int cmd_len = cmd_length(s);
895 
896 	for (i = 1; i < cmd_len; i += 2) {
897 		if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
898 			ret |= ((cmd_reg_inhibit(s, i) ||
899 					(cmd_reg_inhibit(s, i + 1)))) ?
900 				-EINVAL : 0;
901 		if (ret)
902 			break;
903 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
904 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
905 	}
906 	return ret;
907 }
908 
909 static inline int cmd_address_audit(struct parser_exec_state *s,
910 		unsigned long guest_gma, int op_size, bool index_mode);
911 
912 static int cmd_handler_lrm(struct parser_exec_state *s)
913 {
914 	struct intel_gvt *gvt = s->vgpu->gvt;
915 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
916 	unsigned long gma;
917 	int i, ret = 0;
918 	int cmd_len = cmd_length(s);
919 
920 	for (i = 1; i < cmd_len;) {
921 		if (IS_BROADWELL(gvt->dev_priv))
922 			ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
923 		if (ret)
924 			break;
925 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
926 		if (cmd_val(s, 0) & (1 << 22)) {
927 			gma = cmd_gma(s, i + 1);
928 			if (gmadr_bytes == 8)
929 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
930 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
931 		}
932 		i += gmadr_dw_number(s) + 1;
933 	}
934 	return ret;
935 }
936 
937 static int cmd_handler_srm(struct parser_exec_state *s)
938 {
939 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
940 	unsigned long gma;
941 	int i, ret = 0;
942 	int cmd_len = cmd_length(s);
943 
944 	for (i = 1; i < cmd_len;) {
945 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
946 		if (cmd_val(s, 0) & (1 << 22)) {
947 			gma = cmd_gma(s, i + 1);
948 			if (gmadr_bytes == 8)
949 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
950 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
951 		}
952 		i += gmadr_dw_number(s) + 1;
953 	}
954 	return ret;
955 }
956 
957 struct cmd_interrupt_event {
958 	int pipe_control_notify;
959 	int mi_flush_dw;
960 	int mi_user_interrupt;
961 };
962 
963 static struct cmd_interrupt_event cmd_interrupt_events[] = {
964 	[RCS] = {
965 		.pipe_control_notify = RCS_PIPE_CONTROL,
966 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
967 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
968 	},
969 	[BCS] = {
970 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
971 		.mi_flush_dw = BCS_MI_FLUSH_DW,
972 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
973 	},
974 	[VCS] = {
975 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
976 		.mi_flush_dw = VCS_MI_FLUSH_DW,
977 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
978 	},
979 	[VCS2] = {
980 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
981 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
982 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
983 	},
984 	[VECS] = {
985 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
986 		.mi_flush_dw = VECS_MI_FLUSH_DW,
987 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
988 	},
989 };
990 
991 static int cmd_handler_pipe_control(struct parser_exec_state *s)
992 {
993 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
994 	unsigned long gma;
995 	bool index_mode = false;
996 	unsigned int post_sync;
997 	int ret = 0;
998 
999 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1000 
1001 	/* LRI post sync */
1002 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1003 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1004 	/* post sync */
1005 	else if (post_sync) {
1006 		if (post_sync == 2)
1007 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1008 		else if (post_sync == 3)
1009 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1010 		else if (post_sync == 1) {
1011 			/* check ggtt*/
1012 			if ((cmd_val(s, 2) & (1 << 2))) {
1013 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1014 				if (gmadr_bytes == 8)
1015 					gma |= (cmd_gma_hi(s, 3)) << 32;
1016 				/* Store Data Index */
1017 				if (cmd_val(s, 1) & (1 << 21))
1018 					index_mode = true;
1019 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1020 						index_mode);
1021 			}
1022 		}
1023 	}
1024 
1025 	if (ret)
1026 		return ret;
1027 
1028 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1029 		set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1030 				s->workload->pending_events);
1031 	return 0;
1032 }
1033 
1034 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1035 {
1036 	set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1037 			s->workload->pending_events);
1038 	return 0;
1039 }
1040 
1041 static int cmd_advance_default(struct parser_exec_state *s)
1042 {
1043 	return ip_gma_advance(s, cmd_length(s));
1044 }
1045 
1046 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1047 {
1048 	int ret;
1049 
1050 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1051 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1052 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1053 		s->buf_addr_type = s->saved_buf_addr_type;
1054 	} else {
1055 		s->buf_type = RING_BUFFER_INSTRUCTION;
1056 		s->buf_addr_type = GTT_BUFFER;
1057 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1058 			s->ret_ip_gma_ring -= s->ring_size;
1059 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1060 	}
1061 	return ret;
1062 }
1063 
1064 struct mi_display_flip_command_info {
1065 	int pipe;
1066 	int plane;
1067 	int event;
1068 	i915_reg_t stride_reg;
1069 	i915_reg_t ctrl_reg;
1070 	i915_reg_t surf_reg;
1071 	u64 stride_val;
1072 	u64 tile_val;
1073 	u64 surf_val;
1074 	bool async_flip;
1075 };
1076 
1077 struct plane_code_mapping {
1078 	int pipe;
1079 	int plane;
1080 	int event;
1081 };
1082 
1083 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1084 		struct mi_display_flip_command_info *info)
1085 {
1086 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1087 	struct plane_code_mapping gen8_plane_code[] = {
1088 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1089 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1090 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1091 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1092 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1093 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1094 	};
1095 	u32 dword0, dword1, dword2;
1096 	u32 v;
1097 
1098 	dword0 = cmd_val(s, 0);
1099 	dword1 = cmd_val(s, 1);
1100 	dword2 = cmd_val(s, 2);
1101 
1102 	v = (dword0 & GENMASK(21, 19)) >> 19;
1103 	if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1104 		return -EINVAL;
1105 
1106 	info->pipe = gen8_plane_code[v].pipe;
1107 	info->plane = gen8_plane_code[v].plane;
1108 	info->event = gen8_plane_code[v].event;
1109 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1110 	info->tile_val = (dword1 & 0x1);
1111 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1112 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1113 
1114 	if (info->plane == PLANE_A) {
1115 		info->ctrl_reg = DSPCNTR(info->pipe);
1116 		info->stride_reg = DSPSTRIDE(info->pipe);
1117 		info->surf_reg = DSPSURF(info->pipe);
1118 	} else if (info->plane == PLANE_B) {
1119 		info->ctrl_reg = SPRCTL(info->pipe);
1120 		info->stride_reg = SPRSTRIDE(info->pipe);
1121 		info->surf_reg = SPRSURF(info->pipe);
1122 	} else {
1123 		WARN_ON(1);
1124 		return -EINVAL;
1125 	}
1126 	return 0;
1127 }
1128 
1129 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1130 		struct mi_display_flip_command_info *info)
1131 {
1132 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1133 	u32 dword0 = cmd_val(s, 0);
1134 	u32 dword1 = cmd_val(s, 1);
1135 	u32 dword2 = cmd_val(s, 2);
1136 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1137 
1138 	switch (plane) {
1139 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1140 		info->pipe = PIPE_A;
1141 		info->event = PRIMARY_A_FLIP_DONE;
1142 		break;
1143 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1144 		info->pipe = PIPE_B;
1145 		info->event = PRIMARY_B_FLIP_DONE;
1146 		break;
1147 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1148 		info->pipe = PIPE_B;
1149 		info->event = PRIMARY_C_FLIP_DONE;
1150 		break;
1151 	default:
1152 		gvt_err("unknown plane code %d\n", plane);
1153 		return -EINVAL;
1154 	}
1155 
1156 	info->pipe = PRIMARY_PLANE;
1157 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1158 	info->tile_val = (dword1 & GENMASK(2, 0));
1159 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1160 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1161 
1162 	info->ctrl_reg = DSPCNTR(info->pipe);
1163 	info->stride_reg = DSPSTRIDE(info->pipe);
1164 	info->surf_reg = DSPSURF(info->pipe);
1165 
1166 	return 0;
1167 }
1168 
1169 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1170 		struct mi_display_flip_command_info *info)
1171 {
1172 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1173 	u32 stride, tile;
1174 
1175 	if (!info->async_flip)
1176 		return 0;
1177 
1178 	if (IS_SKYLAKE(dev_priv)) {
1179 		stride = vgpu_vreg(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1180 		tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) &
1181 				GENMASK(12, 10)) >> 10;
1182 	} else {
1183 		stride = (vgpu_vreg(s->vgpu, info->stride_reg) &
1184 				GENMASK(15, 6)) >> 6;
1185 		tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1186 	}
1187 
1188 	if (stride != info->stride_val)
1189 		gvt_dbg_cmd("cannot change stride during async flip\n");
1190 
1191 	if (tile != info->tile_val)
1192 		gvt_dbg_cmd("cannot change tile during async flip\n");
1193 
1194 	return 0;
1195 }
1196 
1197 static int gen8_update_plane_mmio_from_mi_display_flip(
1198 		struct parser_exec_state *s,
1199 		struct mi_display_flip_command_info *info)
1200 {
1201 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1202 	struct intel_vgpu *vgpu = s->vgpu;
1203 
1204 #define write_bits(reg, e, s, v) do { \
1205 	vgpu_vreg(vgpu, reg) &= ~GENMASK(e, s); \
1206 	vgpu_vreg(vgpu, reg) |= (v << s); \
1207 } while (0)
1208 
1209 	write_bits(info->surf_reg, 31, 12, info->surf_val);
1210 	if (IS_SKYLAKE(dev_priv))
1211 		write_bits(info->stride_reg, 9, 0, info->stride_val);
1212 	else
1213 		write_bits(info->stride_reg, 15, 6, info->stride_val);
1214 	write_bits(info->ctrl_reg, IS_SKYLAKE(dev_priv) ? 12 : 10,
1215 		   10, info->tile_val);
1216 
1217 #undef write_bits
1218 
1219 	vgpu_vreg(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1220 	intel_vgpu_trigger_virtual_event(vgpu, info->event);
1221 	return 0;
1222 }
1223 
1224 static int decode_mi_display_flip(struct parser_exec_state *s,
1225 		struct mi_display_flip_command_info *info)
1226 {
1227 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1228 
1229 	if (IS_BROADWELL(dev_priv))
1230 		return gen8_decode_mi_display_flip(s, info);
1231 	if (IS_SKYLAKE(dev_priv))
1232 		return skl_decode_mi_display_flip(s, info);
1233 
1234 	return -ENODEV;
1235 }
1236 
1237 static int check_mi_display_flip(struct parser_exec_state *s,
1238 		struct mi_display_flip_command_info *info)
1239 {
1240 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1241 
1242 	if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1243 		return gen8_check_mi_display_flip(s, info);
1244 	return -ENODEV;
1245 }
1246 
1247 static int update_plane_mmio_from_mi_display_flip(
1248 		struct parser_exec_state *s,
1249 		struct mi_display_flip_command_info *info)
1250 {
1251 	struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1252 
1253 	if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1254 		return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1255 	return -ENODEV;
1256 }
1257 
1258 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1259 {
1260 	struct mi_display_flip_command_info info;
1261 	int ret;
1262 	int i;
1263 	int len = cmd_length(s);
1264 
1265 	ret = decode_mi_display_flip(s, &info);
1266 	if (ret) {
1267 		gvt_err("fail to decode MI display flip command\n");
1268 		return ret;
1269 	}
1270 
1271 	ret = check_mi_display_flip(s, &info);
1272 	if (ret) {
1273 		gvt_err("invalid MI display flip command\n");
1274 		return ret;
1275 	}
1276 
1277 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1278 	if (ret) {
1279 		gvt_err("fail to update plane mmio\n");
1280 		return ret;
1281 	}
1282 
1283 	for (i = 0; i < len; i++)
1284 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1285 	return 0;
1286 }
1287 
1288 static bool is_wait_for_flip_pending(u32 cmd)
1289 {
1290 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1291 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1292 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1293 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1294 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1295 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1296 }
1297 
1298 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1299 {
1300 	u32 cmd = cmd_val(s, 0);
1301 
1302 	if (!is_wait_for_flip_pending(cmd))
1303 		return 0;
1304 
1305 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1306 	return 0;
1307 }
1308 
1309 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1310 {
1311 	unsigned long addr;
1312 	unsigned long gma_high, gma_low;
1313 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1314 
1315 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8))
1316 		return INTEL_GVT_INVALID_ADDR;
1317 
1318 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1319 	if (gmadr_bytes == 4) {
1320 		addr = gma_low;
1321 	} else {
1322 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1323 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1324 	}
1325 	return addr;
1326 }
1327 
1328 static inline int cmd_address_audit(struct parser_exec_state *s,
1329 		unsigned long guest_gma, int op_size, bool index_mode)
1330 {
1331 	struct intel_vgpu *vgpu = s->vgpu;
1332 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1333 	int i;
1334 	int ret;
1335 
1336 	if (op_size > max_surface_size) {
1337 		gvt_err("command address audit fail name %s\n", s->info->name);
1338 		return -EINVAL;
1339 	}
1340 
1341 	if (index_mode)	{
1342 		if (guest_gma >= GTT_PAGE_SIZE / sizeof(u64)) {
1343 			ret = -EINVAL;
1344 			goto err;
1345 		}
1346 	} else if ((!vgpu_gmadr_is_valid(s->vgpu, guest_gma)) ||
1347 			(!vgpu_gmadr_is_valid(s->vgpu,
1348 					      guest_gma + op_size - 1))) {
1349 		ret = -EINVAL;
1350 		goto err;
1351 	}
1352 	return 0;
1353 err:
1354 	gvt_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1355 			s->info->name, guest_gma, op_size);
1356 
1357 	pr_err("cmd dump: ");
1358 	for (i = 0; i < cmd_length(s); i++) {
1359 		if (!(i % 4))
1360 			pr_err("\n%08x ", cmd_val(s, i));
1361 		else
1362 			pr_err("%08x ", cmd_val(s, i));
1363 	}
1364 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1365 			vgpu->id,
1366 			vgpu_aperture_gmadr_base(vgpu),
1367 			vgpu_aperture_gmadr_end(vgpu),
1368 			vgpu_hidden_gmadr_base(vgpu),
1369 			vgpu_hidden_gmadr_end(vgpu));
1370 	return ret;
1371 }
1372 
1373 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1374 {
1375 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1376 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1377 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1378 	unsigned long gma, gma_low, gma_high;
1379 	int ret = 0;
1380 
1381 	/* check ppggt */
1382 	if (!(cmd_val(s, 0) & (1 << 22)))
1383 		return 0;
1384 
1385 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1386 
1387 	if (gmadr_bytes == 8) {
1388 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1389 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1390 		gma = (gma_high << 32) | gma_low;
1391 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1392 	}
1393 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1394 	return ret;
1395 }
1396 
1397 static inline int unexpected_cmd(struct parser_exec_state *s)
1398 {
1399 	gvt_err("vgpu%d: Unexpected %s in command buffer!\n",
1400 			s->vgpu->id, s->info->name);
1401 	return -EINVAL;
1402 }
1403 
1404 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1405 {
1406 	return unexpected_cmd(s);
1407 }
1408 
1409 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1410 {
1411 	return unexpected_cmd(s);
1412 }
1413 
1414 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1415 {
1416 	return unexpected_cmd(s);
1417 }
1418 
1419 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1420 {
1421 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1422 	int op_size = ((1 << (cmd_val(s, 0) & GENMASK(20, 19) >> 19)) *
1423 			sizeof(u32));
1424 	unsigned long gma, gma_high;
1425 	int ret = 0;
1426 
1427 	if (!(cmd_val(s, 0) & (1 << 22)))
1428 		return ret;
1429 
1430 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1431 	if (gmadr_bytes == 8) {
1432 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1433 		gma = (gma_high << 32) | gma;
1434 	}
1435 	ret = cmd_address_audit(s, gma, op_size, false);
1436 	return ret;
1437 }
1438 
1439 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1440 {
1441 	return unexpected_cmd(s);
1442 }
1443 
1444 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1445 {
1446 	return unexpected_cmd(s);
1447 }
1448 
1449 static int cmd_handler_mi_conditional_batch_buffer_end(
1450 		struct parser_exec_state *s)
1451 {
1452 	return unexpected_cmd(s);
1453 }
1454 
1455 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1456 {
1457 	return unexpected_cmd(s);
1458 }
1459 
1460 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1461 {
1462 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1463 	unsigned long gma;
1464 	bool index_mode = false;
1465 	int ret = 0;
1466 
1467 	/* Check post-sync and ppgtt bit */
1468 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1469 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1470 		if (gmadr_bytes == 8)
1471 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1472 		/* Store Data Index */
1473 		if (cmd_val(s, 0) & (1 << 21))
1474 			index_mode = true;
1475 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1476 	}
1477 	/* Check notify bit */
1478 	if ((cmd_val(s, 0) & (1 << 8)))
1479 		set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1480 				s->workload->pending_events);
1481 	return ret;
1482 }
1483 
1484 static void addr_type_update_snb(struct parser_exec_state *s)
1485 {
1486 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1487 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1488 		s->buf_addr_type = PPGTT_BUFFER;
1489 	}
1490 }
1491 
1492 
1493 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1494 		unsigned long gma, unsigned long end_gma, void *va)
1495 {
1496 	unsigned long copy_len, offset;
1497 	unsigned long len = 0;
1498 	unsigned long gpa;
1499 
1500 	while (gma != end_gma) {
1501 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1502 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1503 			gvt_err("invalid gma address: %lx\n", gma);
1504 			return -EFAULT;
1505 		}
1506 
1507 		offset = gma & (GTT_PAGE_SIZE - 1);
1508 
1509 		copy_len = (end_gma - gma) >= (GTT_PAGE_SIZE - offset) ?
1510 			GTT_PAGE_SIZE - offset : end_gma - gma;
1511 
1512 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1513 
1514 		len += copy_len;
1515 		gma += copy_len;
1516 	}
1517 	return 0;
1518 }
1519 
1520 
1521 /*
1522  * Check whether a batch buffer needs to be scanned. Currently
1523  * the only criteria is based on privilege.
1524  */
1525 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1526 {
1527 	struct intel_gvt *gvt = s->vgpu->gvt;
1528 
1529 	if (bypass_batch_buffer_scan)
1530 		return 0;
1531 
1532 	if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
1533 		/* BDW decides privilege based on address space */
1534 		if (cmd_val(s, 0) & (1 << 8))
1535 			return 0;
1536 	}
1537 	return 1;
1538 }
1539 
1540 static uint32_t find_bb_size(struct parser_exec_state *s)
1541 {
1542 	unsigned long gma = 0;
1543 	struct cmd_info *info;
1544 	uint32_t bb_size = 0;
1545 	uint32_t cmd_len = 0;
1546 	bool met_bb_end = false;
1547 	u32 cmd;
1548 
1549 	/* get the start gm address of the batch buffer */
1550 	gma = get_gma_bb_from_cmd(s, 1);
1551 	cmd = cmd_val(s, 0);
1552 
1553 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1554 	if (info == NULL) {
1555 		gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
1556 				cmd, get_opcode(cmd, s->ring_id));
1557 		return -EINVAL;
1558 	}
1559 	do {
1560 		copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1561 				gma, gma + 4, &cmd);
1562 		info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1563 		if (info == NULL) {
1564 			gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
1565 				cmd, get_opcode(cmd, s->ring_id));
1566 			return -EINVAL;
1567 		}
1568 
1569 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1570 			met_bb_end = true;
1571 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1572 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) {
1573 				/* chained batch buffer */
1574 				met_bb_end = true;
1575 			}
1576 		}
1577 		cmd_len = get_cmd_length(info, cmd) << 2;
1578 		bb_size += cmd_len;
1579 		gma += cmd_len;
1580 
1581 	} while (!met_bb_end);
1582 
1583 	return bb_size;
1584 }
1585 
1586 static int perform_bb_shadow(struct parser_exec_state *s)
1587 {
1588 	struct intel_shadow_bb_entry *entry_obj;
1589 	unsigned long gma = 0;
1590 	uint32_t bb_size;
1591 	void *dst = NULL;
1592 	int ret = 0;
1593 
1594 	/* get the start gm address of the batch buffer */
1595 	gma = get_gma_bb_from_cmd(s, 1);
1596 
1597 	/* get the size of the batch buffer */
1598 	bb_size = find_bb_size(s);
1599 
1600 	/* allocate shadow batch buffer */
1601 	entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL);
1602 	if (entry_obj == NULL)
1603 		return -ENOMEM;
1604 
1605 	entry_obj->obj =
1606 		i915_gem_object_create(&(s->vgpu->gvt->dev_priv->drm),
1607 				       roundup(bb_size, PAGE_SIZE));
1608 	if (IS_ERR(entry_obj->obj)) {
1609 		ret = PTR_ERR(entry_obj->obj);
1610 		goto free_entry;
1611 	}
1612 	entry_obj->len = bb_size;
1613 	INIT_LIST_HEAD(&entry_obj->list);
1614 
1615 	dst = i915_gem_object_pin_map(entry_obj->obj, I915_MAP_WB);
1616 	if (IS_ERR(dst)) {
1617 		ret = PTR_ERR(dst);
1618 		goto put_obj;
1619 	}
1620 
1621 	ret = i915_gem_object_set_to_cpu_domain(entry_obj->obj, false);
1622 	if (ret) {
1623 		gvt_err("failed to set shadow batch to CPU\n");
1624 		goto unmap_src;
1625 	}
1626 
1627 	entry_obj->va = dst;
1628 	entry_obj->bb_start_cmd_va = s->ip_va;
1629 
1630 	/* copy batch buffer to shadow batch buffer*/
1631 	ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1632 			      gma, gma + bb_size,
1633 			      dst);
1634 	if (ret) {
1635 		gvt_err("fail to copy guest ring buffer\n");
1636 		goto unmap_src;
1637 	}
1638 
1639 	list_add(&entry_obj->list, &s->workload->shadow_bb);
1640 	/*
1641 	 * ip_va saves the virtual address of the shadow batch buffer, while
1642 	 * ip_gma saves the graphics address of the original batch buffer.
1643 	 * As the shadow batch buffer is just a copy from the originial one,
1644 	 * it should be right to use shadow batch buffer'va and original batch
1645 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1646 	 * buffer here (too early).
1647 	 */
1648 	s->ip_va = dst;
1649 	s->ip_gma = gma;
1650 
1651 	return 0;
1652 
1653 unmap_src:
1654 	i915_gem_object_unpin_map(entry_obj->obj);
1655 put_obj:
1656 	i915_gem_object_put(entry_obj->obj);
1657 free_entry:
1658 	kfree(entry_obj);
1659 	return ret;
1660 }
1661 
1662 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1663 {
1664 	bool second_level;
1665 	int ret = 0;
1666 
1667 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1668 		gvt_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1669 		return -EINVAL;
1670 	}
1671 
1672 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1673 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1674 		gvt_err("Jumping to 2nd level BB from RB is not allowed\n");
1675 		return -EINVAL;
1676 	}
1677 
1678 	s->saved_buf_addr_type = s->buf_addr_type;
1679 	addr_type_update_snb(s);
1680 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1681 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1682 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1683 	} else if (second_level) {
1684 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1685 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1686 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1687 	}
1688 
1689 	if (batch_buffer_needs_scan(s)) {
1690 		ret = perform_bb_shadow(s);
1691 		if (ret < 0)
1692 			gvt_err("invalid shadow batch buffer\n");
1693 	} else {
1694 		/* emulate a batch buffer end to do return right */
1695 		ret = cmd_handler_mi_batch_buffer_end(s);
1696 		if (ret < 0)
1697 			return ret;
1698 	}
1699 
1700 	return ret;
1701 }
1702 
1703 static struct cmd_info cmd_info[] = {
1704 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1705 
1706 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1707 		0, 1, NULL},
1708 
1709 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1710 		0, 1, cmd_handler_mi_user_interrupt},
1711 
1712 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1713 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1714 
1715 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1716 
1717 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1718 		NULL},
1719 
1720 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1721 		NULL},
1722 
1723 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1724 		NULL},
1725 
1726 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1727 		NULL},
1728 
1729 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1730 		D_ALL, 0, 1, NULL},
1731 
1732 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1733 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1734 		cmd_handler_mi_batch_buffer_end},
1735 
1736 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1737 		0, 1, NULL},
1738 
1739 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1740 		NULL},
1741 
1742 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1743 		D_ALL, 0, 1, NULL},
1744 
1745 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1746 		NULL},
1747 
1748 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1749 		NULL},
1750 
1751 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1752 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1753 
1754 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1755 		0, 8, NULL},
1756 
1757 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1758 
1759 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1760 
1761 	{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1762 		D_BDW_PLUS, 0, 8, NULL},
1763 
1764 	{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1765 		ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1766 
1767 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1768 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1769 
1770 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1771 		0, 8, cmd_handler_mi_store_data_index},
1772 
1773 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1774 		D_ALL, 0, 8, cmd_handler_lri},
1775 
1776 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1777 		cmd_handler_mi_update_gtt},
1778 
1779 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1780 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1781 
1782 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1783 		cmd_handler_mi_flush_dw},
1784 
1785 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1786 		10, cmd_handler_mi_clflush},
1787 
1788 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1789 		D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1790 
1791 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1792 		D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1793 
1794 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1795 		D_ALL, 0, 8, cmd_handler_lrr},
1796 
1797 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1798 		D_ALL, 0, 8, NULL},
1799 
1800 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1801 		ADDR_FIX_1(2), 8, NULL},
1802 
1803 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1804 		ADDR_FIX_1(2), 8, NULL},
1805 
1806 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1807 		8, cmd_handler_mi_op_2e},
1808 
1809 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1810 		8, cmd_handler_mi_op_2f},
1811 
1812 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1813 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1814 		cmd_handler_mi_batch_buffer_start},
1815 
1816 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1817 		F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1818 		cmd_handler_mi_conditional_batch_buffer_end},
1819 
1820 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1821 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1822 
1823 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1824 		ADDR_FIX_2(4, 7), 8, NULL},
1825 
1826 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1827 		0, 8, NULL},
1828 
1829 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1830 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1831 
1832 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1833 
1834 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1835 		0, 8, NULL},
1836 
1837 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1838 		ADDR_FIX_1(3), 8, NULL},
1839 
1840 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1841 		D_ALL, 0, 8, NULL},
1842 
1843 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1844 		ADDR_FIX_1(4), 8, NULL},
1845 
1846 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1847 		ADDR_FIX_2(4, 5), 8, NULL},
1848 
1849 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1850 		ADDR_FIX_1(4), 8, NULL},
1851 
1852 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1853 		ADDR_FIX_2(4, 7), 8, NULL},
1854 
1855 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1856 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1857 
1858 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1859 
1860 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1861 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1862 
1863 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1864 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1865 
1866 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1867 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1868 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1869 
1870 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1871 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1872 
1873 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
1874 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1875 
1876 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
1877 		D_ALL, ADDR_FIX_1(4), 8, NULL},
1878 
1879 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
1880 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1881 
1882 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
1883 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1884 
1885 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
1886 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
1887 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1888 
1889 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
1890 		ADDR_FIX_2(4, 5), 8, NULL},
1891 
1892 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
1893 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1894 
1895 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
1896 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
1897 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1898 
1899 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
1900 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
1901 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1902 
1903 	{"3DSTATE_BLEND_STATE_POINTERS",
1904 		OP_3DSTATE_BLEND_STATE_POINTERS,
1905 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1906 
1907 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
1908 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
1909 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1910 
1911 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
1912 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
1913 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1914 
1915 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
1916 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
1917 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1918 
1919 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
1920 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
1921 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1922 
1923 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
1924 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
1925 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1926 
1927 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
1928 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
1929 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1930 
1931 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
1932 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
1933 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1934 
1935 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
1936 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
1937 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1938 
1939 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
1940 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
1941 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1942 
1943 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
1944 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
1945 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1946 
1947 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
1948 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
1949 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1950 
1951 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
1952 		0, 8, NULL},
1953 
1954 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
1955 		0, 8, NULL},
1956 
1957 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
1958 		0, 8, NULL},
1959 
1960 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
1961 		0, 8, NULL},
1962 
1963 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
1964 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1965 
1966 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
1967 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1968 
1969 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
1970 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1971 
1972 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
1973 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1974 
1975 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
1976 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1977 
1978 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
1979 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
1980 
1981 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
1982 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
1983 
1984 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
1985 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1986 
1987 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
1988 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1989 
1990 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
1991 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1992 
1993 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
1994 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1995 
1996 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
1997 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1998 
1999 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2000 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2001 
2002 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2003 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2004 
2005 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2006 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2007 
2008 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2009 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2010 
2011 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2012 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2013 
2014 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2015 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2016 
2017 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2018 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2019 
2020 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2021 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2022 
2023 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2024 		D_BDW_PLUS, 0, 8, NULL},
2025 
2026 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2027 		NULL},
2028 
2029 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2030 		D_BDW_PLUS, 0, 8, NULL},
2031 
2032 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2033 		D_BDW_PLUS, 0, 8, NULL},
2034 
2035 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2036 		8, NULL},
2037 
2038 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2039 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2040 
2041 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2042 		8, NULL},
2043 
2044 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2045 		NULL},
2046 
2047 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2048 		NULL},
2049 
2050 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2051 		NULL},
2052 
2053 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2054 		D_BDW_PLUS, 0, 8, NULL},
2055 
2056 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2057 		R_RCS, D_ALL, 0, 8, NULL},
2058 
2059 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2060 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2061 
2062 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2063 		R_RCS, D_ALL, 0, 1, NULL},
2064 
2065 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2066 
2067 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2068 		R_RCS, D_ALL, 0, 8, NULL},
2069 
2070 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2071 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2072 
2073 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2074 
2075 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2076 
2077 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2078 
2079 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2080 		D_BDW_PLUS, 0, 8, NULL},
2081 
2082 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2083 		D_BDW_PLUS, 0, 8, NULL},
2084 
2085 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2086 		D_ALL, 0, 8, NULL},
2087 
2088 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2089 		D_BDW_PLUS, 0, 8, NULL},
2090 
2091 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2092 		D_BDW_PLUS, 0, 8, NULL},
2093 
2094 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2095 
2096 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2097 
2098 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2099 
2100 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2101 		D_ALL, 0, 8, NULL},
2102 
2103 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2104 
2105 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2106 
2107 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2108 		R_RCS, D_ALL, 0, 8, NULL},
2109 
2110 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2111 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2112 
2113 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2114 		0, 8, NULL},
2115 
2116 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2117 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2118 
2119 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2120 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2121 
2122 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2123 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2124 
2125 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2126 		D_ALL, 0, 8, NULL},
2127 
2128 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2129 		D_ALL, 0, 8, NULL},
2130 
2131 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2132 		D_ALL, 0, 8, NULL},
2133 
2134 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2135 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2136 
2137 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2138 		D_BDW_PLUS, 0, 8, NULL},
2139 
2140 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2141 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2142 
2143 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2144 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2145 
2146 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2147 		R_RCS, D_ALL, 0, 8, NULL},
2148 
2149 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2150 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2151 
2152 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2153 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2154 
2155 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2156 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2157 
2158 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2159 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2160 
2161 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2162 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2163 
2164 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2165 		R_RCS, D_ALL, 0, 8, NULL},
2166 
2167 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2168 		D_ALL, 0, 9, NULL},
2169 
2170 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2171 		ADDR_FIX_2(2, 4), 8, NULL},
2172 
2173 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2174 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2175 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2176 
2177 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2178 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2179 
2180 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2181 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2182 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2183 
2184 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2185 		D_BDW_PLUS, 0, 8, NULL},
2186 
2187 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2188 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2189 
2190 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2191 
2192 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2193 		1, NULL},
2194 
2195 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2196 		ADDR_FIX_1(1), 8, NULL},
2197 
2198 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2199 
2200 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2201 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2202 
2203 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2204 		ADDR_FIX_1(1), 8, NULL},
2205 
2206 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2207 
2208 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2209 
2210 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2211 		0, 8, NULL},
2212 
2213 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2214 		D_SKL_PLUS, 0, 8, NULL},
2215 
2216 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2217 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2218 
2219 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2220 		0, 16, NULL},
2221 
2222 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2223 		0, 16, NULL},
2224 
2225 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2226 
2227 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2228 		0, 16, NULL},
2229 
2230 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2231 		0, 16, NULL},
2232 
2233 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2234 		0, 16, NULL},
2235 
2236 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2237 		0, 8, NULL},
2238 
2239 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2240 		NULL},
2241 
2242 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2243 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2244 
2245 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2246 		R_VCS, D_ALL, 0, 12, NULL},
2247 
2248 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2249 		R_VCS, D_ALL, 0, 12, NULL},
2250 
2251 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2252 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2253 
2254 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2255 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2256 
2257 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2258 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2259 
2260 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2261 
2262 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2263 		R_VCS, D_ALL, 0, 12, NULL},
2264 
2265 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2266 		R_VCS, D_ALL, 0, 12, NULL},
2267 
2268 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2269 		R_VCS, D_ALL, 0, 12, NULL},
2270 
2271 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2272 		R_VCS, D_ALL, 0, 12, NULL},
2273 
2274 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2275 		R_VCS, D_ALL, 0, 12, NULL},
2276 
2277 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2278 		R_VCS, D_ALL, 0, 12, NULL},
2279 
2280 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2281 		R_VCS, D_ALL, 0, 6, NULL},
2282 
2283 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2284 		R_VCS, D_ALL, 0, 12, NULL},
2285 
2286 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2287 		R_VCS, D_ALL, 0, 12, NULL},
2288 
2289 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2290 		R_VCS, D_ALL, 0, 12, NULL},
2291 
2292 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2293 		R_VCS, D_ALL, 0, 12, NULL},
2294 
2295 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2296 		R_VCS, D_ALL, 0, 12, NULL},
2297 
2298 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2299 		R_VCS, D_ALL, 0, 12, NULL},
2300 
2301 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2302 		R_VCS, D_ALL, 0, 12, NULL},
2303 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2304 		R_VCS, D_ALL, 0, 12, NULL},
2305 
2306 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2307 		R_VCS, D_ALL, 0, 12, NULL},
2308 
2309 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2310 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2311 
2312 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2313 		R_VCS, D_ALL, 0, 12, NULL},
2314 
2315 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2316 		R_VCS, D_ALL, 0, 12, NULL},
2317 
2318 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2319 		R_VCS, D_ALL, 0, 12, NULL},
2320 
2321 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2322 		R_VCS, D_ALL, 0, 12, NULL},
2323 
2324 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2325 		R_VCS, D_ALL, 0, 12, NULL},
2326 
2327 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2328 		R_VCS, D_ALL, 0, 12, NULL},
2329 
2330 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2331 		R_VCS, D_ALL, 0, 12, NULL},
2332 
2333 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2334 		R_VCS, D_ALL, 0, 12, NULL},
2335 
2336 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2337 		R_VCS, D_ALL, 0, 12, NULL},
2338 
2339 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2340 		R_VCS, D_ALL, 0, 12, NULL},
2341 
2342 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2343 		R_VCS, D_ALL, 0, 12, NULL},
2344 
2345 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2346 		0, 16, NULL},
2347 
2348 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2349 
2350 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2351 
2352 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2353 		R_VCS, D_ALL, 0, 12, NULL},
2354 
2355 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2356 		R_VCS, D_ALL, 0, 12, NULL},
2357 
2358 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2359 		R_VCS, D_ALL, 0, 12, NULL},
2360 
2361 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2362 
2363 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2364 		0, 12, NULL},
2365 
2366 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2367 		0, 20, NULL},
2368 };
2369 
2370 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2371 {
2372 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2373 }
2374 
2375 #define GVT_MAX_CMD_LENGTH     20  /* In Dword */
2376 
2377 static void trace_cs_command(struct parser_exec_state *s,
2378 		cycles_t cost_pre_cmd_handler, cycles_t cost_cmd_handler)
2379 {
2380 	/* This buffer is used by ftrace to store all commands copied from
2381 	 * guest gma space. Sometimes commands can cross pages, this should
2382 	 * not be handled in ftrace logic. So this is just used as a
2383 	 * 'bounce buffer'
2384 	 */
2385 	u32 cmd_trace_buf[GVT_MAX_CMD_LENGTH];
2386 	int i;
2387 	u32 cmd_len = cmd_length(s);
2388 	/* The chosen value of GVT_MAX_CMD_LENGTH are just based on
2389 	 * following two considerations:
2390 	 * 1) From observation, most common ring commands is not that long.
2391 	 *    But there are execeptions. So it indeed makes sence to observe
2392 	 *    longer commands.
2393 	 * 2) From the performance and debugging point of view, dumping all
2394 	 *    contents of very commands is not necessary.
2395 	 * We mgith shrink GVT_MAX_CMD_LENGTH or remove this trace event in
2396 	 * future for performance considerations.
2397 	 */
2398 	if (unlikely(cmd_len > GVT_MAX_CMD_LENGTH)) {
2399 		gvt_dbg_cmd("cmd length exceed tracing limitation!\n");
2400 		cmd_len = GVT_MAX_CMD_LENGTH;
2401 	}
2402 
2403 	for (i = 0; i < cmd_len; i++)
2404 		cmd_trace_buf[i] = cmd_val(s, i);
2405 
2406 	trace_gvt_command(s->vgpu->id, s->ring_id, s->ip_gma, cmd_trace_buf,
2407 			cmd_len, s->buf_type == RING_BUFFER_INSTRUCTION,
2408 			cost_pre_cmd_handler, cost_cmd_handler);
2409 }
2410 
2411 /* call the cmd handler, and advance ip */
2412 static int cmd_parser_exec(struct parser_exec_state *s)
2413 {
2414 	struct cmd_info *info;
2415 	u32 cmd;
2416 	int ret = 0;
2417 	cycles_t t0, t1, t2;
2418 	struct parser_exec_state s_before_advance_custom;
2419 
2420 	t0 = get_cycles();
2421 
2422 	cmd = cmd_val(s, 0);
2423 
2424 	info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2425 	if (info == NULL) {
2426 		gvt_err("unknown cmd 0x%x, opcode=0x%x\n",
2427 				cmd, get_opcode(cmd, s->ring_id));
2428 		return -EINVAL;
2429 	}
2430 
2431 	gvt_dbg_cmd("%s\n", info->name);
2432 
2433 	s->info = info;
2434 
2435 	t1 = get_cycles();
2436 
2437 	memcpy(&s_before_advance_custom, s, sizeof(struct parser_exec_state));
2438 
2439 	if (info->handler) {
2440 		ret = info->handler(s);
2441 		if (ret < 0) {
2442 			gvt_err("%s handler error\n", info->name);
2443 			return ret;
2444 		}
2445 	}
2446 	t2 = get_cycles();
2447 
2448 	trace_cs_command(&s_before_advance_custom, t1 - t0, t2 - t1);
2449 
2450 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2451 		ret = cmd_advance_default(s);
2452 		if (ret) {
2453 			gvt_err("%s IP advance error\n", info->name);
2454 			return ret;
2455 		}
2456 	}
2457 	return 0;
2458 }
2459 
2460 static inline bool gma_out_of_range(unsigned long gma,
2461 		unsigned long gma_head, unsigned int gma_tail)
2462 {
2463 	if (gma_tail >= gma_head)
2464 		return (gma < gma_head) || (gma > gma_tail);
2465 	else
2466 		return (gma > gma_tail) && (gma < gma_head);
2467 }
2468 
2469 static int command_scan(struct parser_exec_state *s,
2470 		unsigned long rb_head, unsigned long rb_tail,
2471 		unsigned long rb_start, unsigned long rb_len)
2472 {
2473 
2474 	unsigned long gma_head, gma_tail, gma_bottom;
2475 	int ret = 0;
2476 
2477 	gma_head = rb_start + rb_head;
2478 	gma_tail = rb_start + rb_tail;
2479 	gma_bottom = rb_start +  rb_len;
2480 
2481 	gvt_dbg_cmd("scan_start: start=%lx end=%lx\n", gma_head, gma_tail);
2482 
2483 	while (s->ip_gma != gma_tail) {
2484 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2485 			if (!(s->ip_gma >= rb_start) ||
2486 				!(s->ip_gma < gma_bottom)) {
2487 				gvt_err("ip_gma %lx out of ring scope."
2488 					"(base:0x%lx, bottom: 0x%lx)\n",
2489 					s->ip_gma, rb_start,
2490 					gma_bottom);
2491 				parser_exec_state_dump(s);
2492 				return -EINVAL;
2493 			}
2494 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2495 				gvt_err("ip_gma %lx out of range."
2496 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2497 					s->ip_gma, rb_start,
2498 					rb_head, rb_tail);
2499 				parser_exec_state_dump(s);
2500 				break;
2501 			}
2502 		}
2503 		ret = cmd_parser_exec(s);
2504 		if (ret) {
2505 			gvt_err("cmd parser error\n");
2506 			parser_exec_state_dump(s);
2507 			break;
2508 		}
2509 	}
2510 
2511 	gvt_dbg_cmd("scan_end\n");
2512 
2513 	return ret;
2514 }
2515 
2516 static int scan_workload(struct intel_vgpu_workload *workload)
2517 {
2518 	unsigned long gma_head, gma_tail, gma_bottom;
2519 	struct parser_exec_state s;
2520 	int ret = 0;
2521 
2522 	/* ring base is page aligned */
2523 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, GTT_PAGE_SIZE)))
2524 		return -EINVAL;
2525 
2526 	gma_head = workload->rb_start + workload->rb_head;
2527 	gma_tail = workload->rb_start + workload->rb_tail;
2528 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2529 
2530 	s.buf_type = RING_BUFFER_INSTRUCTION;
2531 	s.buf_addr_type = GTT_BUFFER;
2532 	s.vgpu = workload->vgpu;
2533 	s.ring_id = workload->ring_id;
2534 	s.ring_start = workload->rb_start;
2535 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2536 	s.ring_head = gma_head;
2537 	s.ring_tail = gma_tail;
2538 	s.rb_va = workload->shadow_ring_buffer_va;
2539 	s.workload = workload;
2540 
2541 	if (bypass_scan_mask & (1 << workload->ring_id))
2542 		return 0;
2543 
2544 	ret = ip_gma_set(&s, gma_head);
2545 	if (ret)
2546 		goto out;
2547 
2548 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2549 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2550 
2551 out:
2552 	return ret;
2553 }
2554 
2555 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2556 {
2557 
2558 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2559 	struct parser_exec_state s;
2560 	int ret = 0;
2561 
2562 	/* ring base is page aligned */
2563 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, GTT_PAGE_SIZE)))
2564 		return -EINVAL;
2565 
2566 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2567 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2568 			PAGE_SIZE);
2569 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2570 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2571 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2572 
2573 	s.buf_type = RING_BUFFER_INSTRUCTION;
2574 	s.buf_addr_type = GTT_BUFFER;
2575 	s.vgpu = wa_ctx->workload->vgpu;
2576 	s.ring_id = wa_ctx->workload->ring_id;
2577 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2578 	s.ring_size = ring_size;
2579 	s.ring_head = gma_head;
2580 	s.ring_tail = gma_tail;
2581 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2582 	s.workload = wa_ctx->workload;
2583 
2584 	ret = ip_gma_set(&s, gma_head);
2585 	if (ret)
2586 		goto out;
2587 
2588 	ret = command_scan(&s, 0, ring_tail,
2589 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2590 out:
2591 	return ret;
2592 }
2593 
2594 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2595 {
2596 	struct intel_vgpu *vgpu = workload->vgpu;
2597 	int ring_id = workload->ring_id;
2598 	struct i915_gem_context *shadow_ctx = vgpu->shadow_ctx;
2599 	struct intel_ring *ring = shadow_ctx->engine[ring_id].ring;
2600 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2601 	unsigned int copy_len = 0;
2602 	int ret;
2603 
2604 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2605 
2606 	/* calculate workload ring buffer size */
2607 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2608 			workload->rb_head) % guest_rb_size;
2609 
2610 	gma_head = workload->rb_start + workload->rb_head;
2611 	gma_tail = workload->rb_start + workload->rb_tail;
2612 	gma_top = workload->rb_start + guest_rb_size;
2613 
2614 	/* allocate shadow ring buffer */
2615 	ret = intel_ring_begin(workload->req, workload->rb_len / 4);
2616 	if (ret)
2617 		return ret;
2618 
2619 	/* get shadow ring buffer va */
2620 	workload->shadow_ring_buffer_va = ring->vaddr + ring->tail;
2621 
2622 	/* head > tail --> copy head <-> top */
2623 	if (gma_head > gma_tail) {
2624 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2625 				gma_head, gma_top,
2626 				workload->shadow_ring_buffer_va);
2627 		if (ret) {
2628 			gvt_err("fail to copy guest ring buffer\n");
2629 			return ret;
2630 		}
2631 		copy_len = gma_top - gma_head;
2632 		gma_head = workload->rb_start;
2633 	}
2634 
2635 	/* copy head or start <-> tail */
2636 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2637 			gma_head, gma_tail,
2638 			workload->shadow_ring_buffer_va + copy_len);
2639 	if (ret) {
2640 		gvt_err("fail to copy guest ring buffer\n");
2641 		return ret;
2642 	}
2643 	ring->tail += workload->rb_len;
2644 	intel_ring_advance(ring);
2645 	return 0;
2646 }
2647 
2648 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
2649 {
2650 	int ret;
2651 
2652 	ret = shadow_workload_ring_buffer(workload);
2653 	if (ret) {
2654 		gvt_err("fail to shadow workload ring_buffer\n");
2655 		return ret;
2656 	}
2657 
2658 	ret = scan_workload(workload);
2659 	if (ret) {
2660 		gvt_err("scan workload error\n");
2661 		return ret;
2662 	}
2663 	return 0;
2664 }
2665 
2666 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2667 {
2668 	struct drm_device *dev = &wa_ctx->workload->vgpu->gvt->dev_priv->drm;
2669 	int ctx_size = wa_ctx->indirect_ctx.size;
2670 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2671 	struct drm_i915_gem_object *obj;
2672 	int ret = 0;
2673 	void *map;
2674 
2675 	obj = i915_gem_object_create(dev,
2676 				     roundup(ctx_size + CACHELINE_BYTES,
2677 					     PAGE_SIZE));
2678 	if (IS_ERR(obj))
2679 		return PTR_ERR(obj);
2680 
2681 	/* get the va of the shadow batch buffer */
2682 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2683 	if (IS_ERR(map)) {
2684 		gvt_err("failed to vmap shadow indirect ctx\n");
2685 		ret = PTR_ERR(map);
2686 		goto put_obj;
2687 	}
2688 
2689 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2690 	if (ret) {
2691 		gvt_err("failed to set shadow indirect ctx to CPU\n");
2692 		goto unmap_src;
2693 	}
2694 
2695 	ret = copy_gma_to_hva(wa_ctx->workload->vgpu,
2696 				wa_ctx->workload->vgpu->gtt.ggtt_mm,
2697 				guest_gma, guest_gma + ctx_size,
2698 				map);
2699 	if (ret) {
2700 		gvt_err("fail to copy guest indirect ctx\n");
2701 		goto unmap_src;
2702 	}
2703 
2704 	wa_ctx->indirect_ctx.obj = obj;
2705 	wa_ctx->indirect_ctx.shadow_va = map;
2706 	return 0;
2707 
2708 unmap_src:
2709 	i915_gem_object_unpin_map(obj);
2710 put_obj:
2711 	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
2712 	return ret;
2713 }
2714 
2715 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2716 {
2717 	uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2718 	unsigned char *bb_start_sva;
2719 
2720 	per_ctx_start[0] = 0x18800001;
2721 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2722 
2723 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2724 				wa_ctx->indirect_ctx.size;
2725 
2726 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2727 
2728 	return 0;
2729 }
2730 
2731 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2732 {
2733 	int ret;
2734 
2735 	if (wa_ctx->indirect_ctx.size == 0)
2736 		return 0;
2737 
2738 	ret = shadow_indirect_ctx(wa_ctx);
2739 	if (ret) {
2740 		gvt_err("fail to shadow indirect ctx\n");
2741 		return ret;
2742 	}
2743 
2744 	combine_wa_ctx(wa_ctx);
2745 
2746 	ret = scan_wa_ctx(wa_ctx);
2747 	if (ret) {
2748 		gvt_err("scan wa ctx error\n");
2749 		return ret;
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2756 		unsigned int opcode, int rings)
2757 {
2758 	struct cmd_info *info = NULL;
2759 	unsigned int ring;
2760 
2761 	for_each_set_bit(ring, (unsigned long *)&rings, I915_NUM_ENGINES) {
2762 		info = find_cmd_entry(gvt, opcode, ring);
2763 		if (info)
2764 			break;
2765 	}
2766 	return info;
2767 }
2768 
2769 static int init_cmd_table(struct intel_gvt *gvt)
2770 {
2771 	int i;
2772 	struct cmd_entry *e;
2773 	struct cmd_info	*info;
2774 	unsigned int gen_type;
2775 
2776 	gen_type = intel_gvt_get_device_type(gvt);
2777 
2778 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2779 		if (!(cmd_info[i].devices & gen_type))
2780 			continue;
2781 
2782 		e = kzalloc(sizeof(*e), GFP_KERNEL);
2783 		if (!e)
2784 			return -ENOMEM;
2785 
2786 		e->info = &cmd_info[i];
2787 		info = find_cmd_entry_any_ring(gvt,
2788 				e->info->opcode, e->info->rings);
2789 		if (info) {
2790 			gvt_err("%s %s duplicated\n", e->info->name,
2791 					info->name);
2792 			return -EEXIST;
2793 		}
2794 
2795 		INIT_HLIST_NODE(&e->hlist);
2796 		add_cmd_entry(gvt, e);
2797 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2798 				e->info->name, e->info->opcode, e->info->flag,
2799 				e->info->devices, e->info->rings);
2800 	}
2801 	return 0;
2802 }
2803 
2804 static void clean_cmd_table(struct intel_gvt *gvt)
2805 {
2806 	struct hlist_node *tmp;
2807 	struct cmd_entry *e;
2808 	int i;
2809 
2810 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2811 		kfree(e);
2812 
2813 	hash_init(gvt->cmd_table);
2814 }
2815 
2816 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2817 {
2818 	clean_cmd_table(gvt);
2819 }
2820 
2821 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2822 {
2823 	int ret;
2824 
2825 	ret = init_cmd_table(gvt);
2826 	if (ret) {
2827 		intel_gvt_clean_cmd_parser(gvt);
2828 		return ret;
2829 	}
2830 	return 0;
2831 }
2832