xref: /linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision c0d6f52f9b62479d61f8cd4faf9fb2f8bce6e301)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include <drm/drm_print.h>
40 
41 #include "display/i9xx_plane_regs.h"
42 #include "display/intel_display_regs.h"
43 #include "display/intel_sprite_regs.h"
44 
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_pm.h"
47 
48 #include "gt/intel_context.h"
49 #include "gt/intel_engine_regs.h"
50 #include "gt/intel_gpu_commands.h"
51 #include "gt/intel_gt_regs.h"
52 #include "gt/intel_gt_requests.h"
53 #include "gt/intel_lrc.h"
54 #include "gt/intel_ring.h"
55 #include "gt/shmem_utils.h"
56 
57 #include "display_helpers.h"
58 #include "gvt.h"
59 #include "i915_drv.h"
60 #include "i915_pvinfo.h"
61 #include "i915_reg.h"
62 #include "trace.h"
63 
64 #define INVALID_OP    (~0U)
65 
66 #define OP_LEN_MI           9
67 #define OP_LEN_2D           10
68 #define OP_LEN_3D_MEDIA     16
69 #define OP_LEN_MFX_VC       16
70 #define OP_LEN_VEBOX	    16
71 
72 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
73 
74 struct sub_op_bits {
75 	int hi;
76 	int low;
77 };
78 struct decode_info {
79 	const char *name;
80 	int op_len;
81 	int nr_sub_op;
82 	const struct sub_op_bits *sub_op;
83 };
84 
85 #define   MAX_CMD_BUDGET			0x7fffffff
86 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
87 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
88 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
89 
90 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
91 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
92 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
93 
94 /* Render Command Map */
95 
96 /* MI_* command Opcode (28:23) */
97 #define OP_MI_NOOP                          0x0
98 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
99 #define OP_MI_USER_INTERRUPT                0x2
100 #define OP_MI_WAIT_FOR_EVENT                0x3
101 #define OP_MI_FLUSH                         0x4
102 #define OP_MI_ARB_CHECK                     0x5
103 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
104 #define OP_MI_REPORT_HEAD                   0x7
105 #define OP_MI_ARB_ON_OFF                    0x8
106 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
107 #define OP_MI_BATCH_BUFFER_END              0xA
108 #define OP_MI_SUSPEND_FLUSH                 0xB
109 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
110 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
111 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
112 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
113 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
114 #define OP_MI_DISPLAY_FLIP                  0x14
115 #define OP_MI_SEMAPHORE_MBOX                0x16
116 #define OP_MI_SET_CONTEXT                   0x18
117 #define OP_MI_MATH                          0x1A
118 #define OP_MI_URB_CLEAR                     0x19
119 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
120 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
121 
122 #define OP_MI_STORE_DATA_IMM                0x20
123 #define OP_MI_STORE_DATA_INDEX              0x21
124 #define OP_MI_LOAD_REGISTER_IMM             0x22
125 #define OP_MI_UPDATE_GTT                    0x23
126 #define OP_MI_STORE_REGISTER_MEM            0x24
127 #define OP_MI_FLUSH_DW                      0x26
128 #define OP_MI_CLFLUSH                       0x27
129 #define OP_MI_REPORT_PERF_COUNT             0x28
130 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
131 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
132 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
133 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
134 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
135 #define OP_MI_2E			    0x2E  /* BDW+ */
136 #define OP_MI_2F			    0x2F  /* BDW+ */
137 #define OP_MI_BATCH_BUFFER_START            0x31
138 
139 /* Bit definition for dword 0 */
140 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
141 
142 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
143 
144 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
145 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
146 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
147 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
148 
149 /* 2D command: Opcode (28:22) */
150 #define OP_2D(x)    ((2<<7) | x)
151 
152 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
153 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
154 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
155 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
156 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
157 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
158 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
159 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
160 #define OP_XY_PAT_BLT                               OP_2D(0x51)
161 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
162 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
163 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
164 #define OP_XY_FULL_BLT                              OP_2D(0x55)
165 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
166 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
167 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
168 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
169 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
170 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
171 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
172 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
173 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
174 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
175 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
176 
177 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
178 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
179 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
180 
181 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
182 
183 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
184 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
185 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
186 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
187 
188 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
189 
190 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
191 
192 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
193 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
194 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
195 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
196 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
197 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
198 
199 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
200 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
201 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
202 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
203 
204 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
205 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
206 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
207 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
208 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
209 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
210 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
211 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
212 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
213 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
214 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
215 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
216 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
217 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
218 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
219 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
220 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
221 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
222 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
223 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
224 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
225 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
226 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
227 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
228 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
229 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
230 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
231 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
232 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
233 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
234 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
235 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
236 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
237 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
238 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
239 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
240 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
241 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
242 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
243 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
244 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
245 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
246 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
247 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
248 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
249 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
250 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
251 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
252 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
253 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
254 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
255 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
256 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
257 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
258 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
259 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
260 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
261 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
262 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
263 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
264 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
265 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
266 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
267 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
268 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
269 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
270 
271 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
272 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
273 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
274 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
275 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
276 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
277 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
278 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
279 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
280 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
281 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
282 
283 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
284 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
285 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
286 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
287 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
288 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
289 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
290 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
291 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
292 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
293 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
294 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
295 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
296 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
297 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
298 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
299 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
300 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
301 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
302 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
303 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
304 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
305 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
306 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
307 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
308 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
309 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
310 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
311 
312 /* VCCP Command Parser */
313 
314 /*
315  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
316  * git://anongit.freedesktop.org/vaapi/intel-driver
317  * src/i965_defines.h
318  *
319  */
320 
321 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
322 	(3 << 13 | \
323 	 (pipeline) << 11 | \
324 	 (op) << 8 | \
325 	 (sub_opa) << 5 | \
326 	 (sub_opb))
327 
328 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
329 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
330 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
331 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
332 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
333 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
334 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
335 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
336 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
337 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
338 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
339 
340 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
341 
342 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
343 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
344 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
345 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
346 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
347 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
348 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
349 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
350 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
351 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
352 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
353 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
354 
355 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
356 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
357 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
358 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
359 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
360 
361 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
362 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
363 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
364 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
365 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
366 
367 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
368 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
369 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
370 
371 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
372 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
373 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
374 
375 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
376 	(3 << 13 | \
377 	 (pipeline) << 11 | \
378 	 (op) << 8 | \
379 	 (sub_opa) << 5 | \
380 	 (sub_opb))
381 
382 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
383 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
384 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
385 
386 struct parser_exec_state;
387 
388 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
389 
390 #define GVT_CMD_HASH_BITS   7
391 
392 /* which DWords need address fix */
393 #define ADDR_FIX_1(x1)			(1 << (x1))
394 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
395 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
396 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
397 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
398 
399 #define DWORD_FIELD(dword, end, start) \
400 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
401 
402 #define OP_LENGTH_BIAS 2
403 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
404 
405 static int gvt_check_valid_cmd_length(int len, int valid_len)
406 {
407 	if (valid_len != len) {
408 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
409 			len, valid_len);
410 		return -EFAULT;
411 	}
412 	return 0;
413 }
414 
415 struct cmd_info {
416 	const char *name;
417 	u32 opcode;
418 
419 #define F_LEN_MASK	3U
420 #define F_LEN_CONST  1U
421 #define F_LEN_VAR    0U
422 /* value is const although LEN maybe variable */
423 #define F_LEN_VAR_FIXED    (1<<1)
424 
425 /*
426  * command has its own ip advance logic
427  * e.g. MI_BATCH_START, MI_BATCH_END
428  */
429 #define F_IP_ADVANCE_CUSTOM (1<<2)
430 	u32 flag;
431 
432 #define R_RCS	BIT(RCS0)
433 #define R_VCS1  BIT(VCS0)
434 #define R_VCS2  BIT(VCS1)
435 #define R_VCS	(R_VCS1 | R_VCS2)
436 #define R_BCS	BIT(BCS0)
437 #define R_VECS	BIT(VECS0)
438 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
439 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
440 	intel_engine_mask_t rings;
441 
442 	/* devices that support this cmd: SNB/IVB/HSW/... */
443 	u16 devices;
444 
445 	/* which DWords are address that need fix up.
446 	 * bit 0 means a 32-bit non address operand in command
447 	 * bit 1 means address operand, which could be 32-bit
448 	 * or 64-bit depending on different architectures.(
449 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
450 	 * No matter the address length, each address only takes
451 	 * one bit in the bitmap.
452 	 */
453 	u16 addr_bitmap;
454 
455 	/* flag == F_LEN_CONST : command length
456 	 * flag == F_LEN_VAR : length bias bits
457 	 * Note: length is in DWord
458 	 */
459 	u32 len;
460 
461 	parser_cmd_handler handler;
462 
463 	/* valid length in DWord */
464 	u32 valid_len;
465 };
466 
467 struct cmd_entry {
468 	struct hlist_node hlist;
469 	const struct cmd_info *info;
470 };
471 
472 enum {
473 	RING_BUFFER_INSTRUCTION,
474 	BATCH_BUFFER_INSTRUCTION,
475 	BATCH_BUFFER_2ND_LEVEL,
476 	RING_BUFFER_CTX,
477 };
478 
479 enum {
480 	GTT_BUFFER,
481 	PPGTT_BUFFER
482 };
483 
484 struct parser_exec_state {
485 	struct intel_vgpu *vgpu;
486 	const struct intel_engine_cs *engine;
487 
488 	int buf_type;
489 
490 	/* batch buffer address type */
491 	int buf_addr_type;
492 
493 	/* graphics memory address of ring buffer start */
494 	unsigned long ring_start;
495 	unsigned long ring_size;
496 	unsigned long ring_head;
497 	unsigned long ring_tail;
498 
499 	/* instruction graphics memory address */
500 	unsigned long ip_gma;
501 
502 	/* mapped va of the instr_gma */
503 	void *ip_va;
504 	void *rb_va;
505 
506 	void *ret_bb_va;
507 	/* next instruction when return from  batch buffer to ring buffer */
508 	unsigned long ret_ip_gma_ring;
509 
510 	/* next instruction when return from 2nd batch buffer to batch buffer */
511 	unsigned long ret_ip_gma_bb;
512 
513 	/* batch buffer address type (GTT or PPGTT)
514 	 * used when ret from 2nd level batch buffer
515 	 */
516 	int saved_buf_addr_type;
517 	bool is_ctx_wa;
518 	bool is_init_ctx;
519 
520 	const struct cmd_info *info;
521 
522 	struct intel_vgpu_workload *workload;
523 };
524 
525 #define gmadr_dw_number(s)	\
526 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
527 
528 static unsigned long bypass_scan_mask = 0;
529 
530 /* ring ALL, type = 0 */
531 static const struct sub_op_bits sub_op_mi[] = {
532 	{31, 29},
533 	{28, 23},
534 };
535 
536 static const struct decode_info decode_info_mi = {
537 	"MI",
538 	OP_LEN_MI,
539 	ARRAY_SIZE(sub_op_mi),
540 	sub_op_mi,
541 };
542 
543 /* ring RCS, command type 2 */
544 static const struct sub_op_bits sub_op_2d[] = {
545 	{31, 29},
546 	{28, 22},
547 };
548 
549 static const struct decode_info decode_info_2d = {
550 	"2D",
551 	OP_LEN_2D,
552 	ARRAY_SIZE(sub_op_2d),
553 	sub_op_2d,
554 };
555 
556 /* ring RCS, command type 3 */
557 static const struct sub_op_bits sub_op_3d_media[] = {
558 	{31, 29},
559 	{28, 27},
560 	{26, 24},
561 	{23, 16},
562 };
563 
564 static const struct decode_info decode_info_3d_media = {
565 	"3D_Media",
566 	OP_LEN_3D_MEDIA,
567 	ARRAY_SIZE(sub_op_3d_media),
568 	sub_op_3d_media,
569 };
570 
571 /* ring VCS, command type 3 */
572 static const struct sub_op_bits sub_op_mfx_vc[] = {
573 	{31, 29},
574 	{28, 27},
575 	{26, 24},
576 	{23, 21},
577 	{20, 16},
578 };
579 
580 static const struct decode_info decode_info_mfx_vc = {
581 	"MFX_VC",
582 	OP_LEN_MFX_VC,
583 	ARRAY_SIZE(sub_op_mfx_vc),
584 	sub_op_mfx_vc,
585 };
586 
587 /* ring VECS, command type 3 */
588 static const struct sub_op_bits sub_op_vebox[] = {
589 	{31, 29},
590 	{28, 27},
591 	{26, 24},
592 	{23, 21},
593 	{20, 16},
594 };
595 
596 static const struct decode_info decode_info_vebox = {
597 	"VEBOX",
598 	OP_LEN_VEBOX,
599 	ARRAY_SIZE(sub_op_vebox),
600 	sub_op_vebox,
601 };
602 
603 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
604 	[RCS0] = {
605 		&decode_info_mi,
606 		NULL,
607 		NULL,
608 		&decode_info_3d_media,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 	},
614 
615 	[VCS0] = {
616 		&decode_info_mi,
617 		NULL,
618 		NULL,
619 		&decode_info_mfx_vc,
620 		NULL,
621 		NULL,
622 		NULL,
623 		NULL,
624 	},
625 
626 	[BCS0] = {
627 		&decode_info_mi,
628 		NULL,
629 		&decode_info_2d,
630 		NULL,
631 		NULL,
632 		NULL,
633 		NULL,
634 		NULL,
635 	},
636 
637 	[VECS0] = {
638 		&decode_info_mi,
639 		NULL,
640 		NULL,
641 		&decode_info_vebox,
642 		NULL,
643 		NULL,
644 		NULL,
645 		NULL,
646 	},
647 
648 	[VCS1] = {
649 		&decode_info_mi,
650 		NULL,
651 		NULL,
652 		&decode_info_mfx_vc,
653 		NULL,
654 		NULL,
655 		NULL,
656 		NULL,
657 	},
658 };
659 
660 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
661 {
662 	const struct decode_info *d_info;
663 
664 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
665 	if (d_info == NULL)
666 		return INVALID_OP;
667 
668 	return cmd >> (32 - d_info->op_len);
669 }
670 
671 static inline const struct cmd_info *
672 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
673 	       const struct intel_engine_cs *engine)
674 {
675 	struct cmd_entry *e;
676 
677 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
678 		if (opcode == e->info->opcode &&
679 		    e->info->rings & engine->mask)
680 			return e->info;
681 	}
682 	return NULL;
683 }
684 
685 static inline const struct cmd_info *
686 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
687 	     const struct intel_engine_cs *engine)
688 {
689 	u32 opcode;
690 
691 	opcode = get_opcode(cmd, engine);
692 	if (opcode == INVALID_OP)
693 		return NULL;
694 
695 	return find_cmd_entry(gvt, opcode, engine);
696 }
697 
698 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
699 {
700 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
701 }
702 
703 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
704 {
705 	const struct decode_info *d_info;
706 	int i;
707 
708 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
709 	if (d_info == NULL)
710 		return;
711 
712 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
713 			cmd >> (32 - d_info->op_len), d_info->name);
714 
715 	for (i = 0; i < d_info->nr_sub_op; i++)
716 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
717 					d_info->sub_op[i].low));
718 
719 	pr_err("\n");
720 }
721 
722 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
723 {
724 	return s->ip_va + (index << 2);
725 }
726 
727 static inline u32 cmd_val(struct parser_exec_state *s, int index)
728 {
729 	return *cmd_ptr(s, index);
730 }
731 
732 static inline bool is_init_ctx(struct parser_exec_state *s)
733 {
734 	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
735 }
736 
737 static void parser_exec_state_dump(struct parser_exec_state *s)
738 {
739 	int cnt = 0;
740 	int i;
741 
742 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
743 		    " ring_head(%08lx) ring_tail(%08lx)\n",
744 		    s->vgpu->id, s->engine->name,
745 		    s->ring_start, s->ring_start + s->ring_size,
746 		    s->ring_head, s->ring_tail);
747 
748 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
749 			s->buf_type == RING_BUFFER_INSTRUCTION ?
750 			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
751 				"CTX_BUFFER" : "BATCH_BUFFER"),
752 			s->buf_addr_type == GTT_BUFFER ?
753 			"GTT" : "PPGTT", s->ip_gma);
754 
755 	if (s->ip_va == NULL) {
756 		gvt_dbg_cmd(" ip_va(NULL)");
757 		return;
758 	}
759 
760 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
761 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
762 			cmd_val(s, 2), cmd_val(s, 3));
763 
764 	print_opcode(cmd_val(s, 0), s->engine);
765 
766 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
767 
768 	while (cnt < 1024) {
769 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
770 		for (i = 0; i < 8; i++)
771 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
772 		gvt_dbg_cmd("\n");
773 
774 		s->ip_va += 8 * sizeof(u32);
775 		cnt += 8;
776 	}
777 }
778 
779 static inline void update_ip_va(struct parser_exec_state *s)
780 {
781 	unsigned long len = 0;
782 
783 	if (WARN_ON(s->ring_head == s->ring_tail))
784 		return;
785 
786 	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
787 			s->buf_type == RING_BUFFER_CTX) {
788 		unsigned long ring_top = s->ring_start + s->ring_size;
789 
790 		if (s->ring_head > s->ring_tail) {
791 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
792 				len = (s->ip_gma - s->ring_head);
793 			else if (s->ip_gma >= s->ring_start &&
794 					s->ip_gma <= s->ring_tail)
795 				len = (ring_top - s->ring_head) +
796 					(s->ip_gma - s->ring_start);
797 		} else
798 			len = (s->ip_gma - s->ring_head);
799 
800 		s->ip_va = s->rb_va + len;
801 	} else {/* shadow batch buffer */
802 		s->ip_va = s->ret_bb_va;
803 	}
804 }
805 
806 static inline int ip_gma_set(struct parser_exec_state *s,
807 		unsigned long ip_gma)
808 {
809 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
810 
811 	s->ip_gma = ip_gma;
812 	update_ip_va(s);
813 	return 0;
814 }
815 
816 static inline int ip_gma_advance(struct parser_exec_state *s,
817 		unsigned int dw_len)
818 {
819 	s->ip_gma += (dw_len << 2);
820 
821 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
822 		if (s->ip_gma >= s->ring_start + s->ring_size)
823 			s->ip_gma -= s->ring_size;
824 		update_ip_va(s);
825 	} else {
826 		s->ip_va += (dw_len << 2);
827 	}
828 
829 	return 0;
830 }
831 
832 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
833 {
834 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
835 		return info->len;
836 	else
837 		return (cmd & ((1U << info->len) - 1)) + 2;
838 	return 0;
839 }
840 
841 static inline int cmd_length(struct parser_exec_state *s)
842 {
843 	return get_cmd_length(s->info, cmd_val(s, 0));
844 }
845 
846 /* do not remove this, some platform may need clflush here */
847 #define patch_value(s, addr, val) do { \
848 	*addr = val; \
849 } while (0)
850 
851 static inline bool is_mocs_mmio(unsigned int offset)
852 {
853 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
854 		((offset >= 0xb020) && (offset <= 0xb0a0));
855 }
856 
857 static int is_cmd_update_pdps(unsigned int offset,
858 			      struct parser_exec_state *s)
859 {
860 	u32 base = s->workload->engine->mmio_base;
861 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
862 }
863 
864 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
865 				       unsigned int offset, unsigned int index)
866 {
867 	struct intel_vgpu *vgpu = s->vgpu;
868 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
869 	struct intel_vgpu_mm *mm;
870 	u64 pdps[GEN8_3LVL_PDPES];
871 
872 	if (shadow_mm->ppgtt_mm.root_entry_type ==
873 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
874 		pdps[0] = (u64)cmd_val(s, 2) << 32;
875 		pdps[0] |= cmd_val(s, 4);
876 
877 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
878 		if (!mm) {
879 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
880 			return -EINVAL;
881 		}
882 		intel_vgpu_mm_get(mm);
883 		list_add_tail(&mm->ppgtt_mm.link,
884 			      &s->workload->lri_shadow_mm);
885 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
886 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
887 	} else {
888 		/* Currently all guests use PML4 table and now can't
889 		 * have a guest with 3-level table but uses LRI for
890 		 * PPGTT update. So this is simply un-testable. */
891 		GEM_BUG_ON(1);
892 		gvt_vgpu_err("invalid shared shadow vm type\n");
893 		return -EINVAL;
894 	}
895 	return 0;
896 }
897 
898 static int cmd_reg_handler(struct parser_exec_state *s,
899 	unsigned int offset, unsigned int index, char *cmd)
900 {
901 	struct intel_vgpu *vgpu = s->vgpu;
902 	struct intel_gvt *gvt = vgpu->gvt;
903 	u32 ctx_sr_ctl;
904 	u32 *vreg, vreg_old;
905 
906 	if (offset + 4 > gvt->device_info.mmio_size) {
907 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
908 				cmd, offset);
909 		return -EFAULT;
910 	}
911 
912 	if (is_init_ctx(s)) {
913 		struct intel_gvt_mmio_info *mmio_info;
914 
915 		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
916 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
917 		if (mmio_info && mmio_info->write)
918 			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
919 		return 0;
920 	}
921 
922 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
923 		gvt_vgpu_err("%s access to non-render register (%x)\n",
924 				cmd, offset);
925 		return -EBADRQC;
926 	}
927 
928 	if (!strncmp(cmd, "srm", 3) ||
929 			!strncmp(cmd, "lrm", 3)) {
930 		if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
931 		    offset == 0x21f0 ||
932 		    (IS_BROADWELL(gvt->gt->i915) &&
933 		     offset == i915_mmio_reg_offset(INSTPM)))
934 			return 0;
935 		else {
936 			gvt_vgpu_err("%s access to register (%x)\n",
937 					cmd, offset);
938 			return -EPERM;
939 		}
940 	}
941 
942 	if (!strncmp(cmd, "lrr-src", 7) ||
943 			!strncmp(cmd, "lrr-dst", 7)) {
944 		if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
945 			return 0;
946 		else {
947 			gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
948 			return -EPERM;
949 		}
950 	}
951 
952 	if (!strncmp(cmd, "pipe_ctrl", 9)) {
953 		/* TODO: add LRI POST logic here */
954 		return 0;
955 	}
956 
957 	if (strncmp(cmd, "lri", 3))
958 		return -EPERM;
959 
960 	/* below are all lri handlers */
961 	vreg = &vgpu_vreg(s->vgpu, offset);
962 
963 	if (is_cmd_update_pdps(offset, s) &&
964 	    cmd_pdp_mmio_update_handler(s, offset, index))
965 		return -EINVAL;
966 
967 	if (offset == i915_mmio_reg_offset(DERRMR) ||
968 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
969 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
970 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
971 	}
972 
973 	if (is_mocs_mmio(offset))
974 		*vreg = cmd_val(s, index + 1);
975 
976 	vreg_old = *vreg;
977 
978 	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
979 		u32 cmdval_new, cmdval;
980 		struct intel_gvt_mmio_info *mmio_info;
981 
982 		cmdval = cmd_val(s, index + 1);
983 
984 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
985 		if (!mmio_info) {
986 			cmdval_new = cmdval;
987 		} else {
988 			u64 ro_mask = mmio_info->ro_mask;
989 			int ret;
990 
991 			if (likely(!ro_mask))
992 				ret = mmio_info->write(s->vgpu, offset,
993 						&cmdval, 4);
994 			else {
995 				gvt_vgpu_err("try to write RO reg %x\n",
996 						offset);
997 				ret = -EBADRQC;
998 			}
999 			if (ret)
1000 				return ret;
1001 			cmdval_new = *vreg;
1002 		}
1003 		if (cmdval_new != cmdval)
1004 			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
1005 	}
1006 
1007 	/* only patch cmd. restore vreg value if changed in mmio write handler*/
1008 	*vreg = vreg_old;
1009 
1010 	/* TODO
1011 	 * In order to let workload with inhibit context to generate
1012 	 * correct image data into memory, vregs values will be loaded to
1013 	 * hw via LRIs in the workload with inhibit context. But as
1014 	 * indirect context is loaded prior to LRIs in workload, we don't
1015 	 * want reg values specified in indirect context overwritten by
1016 	 * LRIs in workloads. So, when scanning an indirect context, we
1017 	 * update reg values in it into vregs, so LRIs in workload with
1018 	 * inhibit context will restore with correct values
1019 	 */
1020 	if (GRAPHICS_VER(s->engine->i915) == 9 &&
1021 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1022 	    !strncmp(cmd, "lri", 3)) {
1023 		intel_gvt_read_gpa(s->vgpu,
1024 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1025 		/* check inhibit context */
1026 		if (ctx_sr_ctl & 1) {
1027 			u32 data = cmd_val(s, index + 1);
1028 
1029 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1030 				intel_vgpu_mask_mmio_write(vgpu,
1031 							offset, &data, 4);
1032 			else
1033 				vgpu_vreg(vgpu, offset) = data;
1034 		}
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 #define cmd_reg(s, i) \
1041 	(cmd_val(s, i) & GENMASK(22, 2))
1042 
1043 #define cmd_reg_inhibit(s, i) \
1044 	(cmd_val(s, i) & GENMASK(22, 18))
1045 
1046 #define cmd_gma(s, i) \
1047 	(cmd_val(s, i) & GENMASK(31, 2))
1048 
1049 #define cmd_gma_hi(s, i) \
1050 	(cmd_val(s, i) & GENMASK(15, 0))
1051 
1052 static int cmd_handler_lri(struct parser_exec_state *s)
1053 {
1054 	int i, ret = 0;
1055 	int cmd_len = cmd_length(s);
1056 
1057 	for (i = 1; i < cmd_len; i += 2) {
1058 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1059 			if (s->engine->id == BCS0 &&
1060 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1061 				ret |= 0;
1062 			else
1063 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1064 		}
1065 		if (ret)
1066 			break;
1067 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1068 		if (ret)
1069 			break;
1070 	}
1071 	return ret;
1072 }
1073 
1074 static int cmd_handler_lrr(struct parser_exec_state *s)
1075 {
1076 	int i, ret = 0;
1077 	int cmd_len = cmd_length(s);
1078 
1079 	for (i = 1; i < cmd_len; i += 2) {
1080 		if (IS_BROADWELL(s->engine->i915))
1081 			ret |= ((cmd_reg_inhibit(s, i) ||
1082 				 (cmd_reg_inhibit(s, i + 1)))) ?
1083 				-EBADRQC : 0;
1084 		if (ret)
1085 			break;
1086 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1087 		if (ret)
1088 			break;
1089 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1090 		if (ret)
1091 			break;
1092 	}
1093 	return ret;
1094 }
1095 
1096 static inline int cmd_address_audit(struct parser_exec_state *s,
1097 		unsigned long guest_gma, int op_size, bool index_mode);
1098 
1099 static int cmd_handler_lrm(struct parser_exec_state *s)
1100 {
1101 	struct intel_gvt *gvt = s->vgpu->gvt;
1102 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1103 	unsigned long gma;
1104 	int i, ret = 0;
1105 	int cmd_len = cmd_length(s);
1106 
1107 	for (i = 1; i < cmd_len;) {
1108 		if (IS_BROADWELL(s->engine->i915))
1109 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1110 		if (ret)
1111 			break;
1112 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1113 		if (ret)
1114 			break;
1115 		if (cmd_val(s, 0) & (1 << 22)) {
1116 			gma = cmd_gma(s, i + 1);
1117 			if (gmadr_bytes == 8)
1118 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1119 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1120 			if (ret)
1121 				break;
1122 		}
1123 		i += gmadr_dw_number(s) + 1;
1124 	}
1125 	return ret;
1126 }
1127 
1128 static int cmd_handler_srm(struct parser_exec_state *s)
1129 {
1130 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1131 	unsigned long gma;
1132 	int i, ret = 0;
1133 	int cmd_len = cmd_length(s);
1134 
1135 	for (i = 1; i < cmd_len;) {
1136 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1137 		if (ret)
1138 			break;
1139 		if (cmd_val(s, 0) & (1 << 22)) {
1140 			gma = cmd_gma(s, i + 1);
1141 			if (gmadr_bytes == 8)
1142 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1143 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1144 			if (ret)
1145 				break;
1146 		}
1147 		i += gmadr_dw_number(s) + 1;
1148 	}
1149 	return ret;
1150 }
1151 
1152 struct cmd_interrupt_event {
1153 	int pipe_control_notify;
1154 	int mi_flush_dw;
1155 	int mi_user_interrupt;
1156 };
1157 
1158 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1159 	[RCS0] = {
1160 		.pipe_control_notify = RCS_PIPE_CONTROL,
1161 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1162 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1163 	},
1164 	[BCS0] = {
1165 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1166 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1167 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1168 	},
1169 	[VCS0] = {
1170 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1171 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1172 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1173 	},
1174 	[VCS1] = {
1175 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1176 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1177 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1178 	},
1179 	[VECS0] = {
1180 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1181 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1182 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1183 	},
1184 };
1185 
1186 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1187 {
1188 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1189 	unsigned long gma;
1190 	bool index_mode = false;
1191 	unsigned int post_sync;
1192 	int ret = 0;
1193 	u32 hws_pga, val;
1194 
1195 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1196 
1197 	/* LRI post sync */
1198 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1199 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1200 	/* post sync */
1201 	else if (post_sync) {
1202 		if (post_sync == 2)
1203 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1204 		else if (post_sync == 3)
1205 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1206 		else if (post_sync == 1) {
1207 			/* check ggtt*/
1208 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1209 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1210 				if (gmadr_bytes == 8)
1211 					gma |= (cmd_gma_hi(s, 3)) << 32;
1212 				/* Store Data Index */
1213 				if (cmd_val(s, 1) & (1 << 21))
1214 					index_mode = true;
1215 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1216 						index_mode);
1217 				if (ret)
1218 					return ret;
1219 				if (index_mode) {
1220 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1221 					gma = hws_pga + gma;
1222 					patch_value(s, cmd_ptr(s, 2), gma);
1223 					val = cmd_val(s, 1) & (~(1 << 21));
1224 					patch_value(s, cmd_ptr(s, 1), val);
1225 				}
1226 			}
1227 		}
1228 	}
1229 
1230 	if (ret)
1231 		return ret;
1232 
1233 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1234 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1235 			s->workload->pending_events);
1236 	return 0;
1237 }
1238 
1239 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1240 {
1241 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1242 		s->workload->pending_events);
1243 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1244 	return 0;
1245 }
1246 
1247 static int cmd_advance_default(struct parser_exec_state *s)
1248 {
1249 	return ip_gma_advance(s, cmd_length(s));
1250 }
1251 
1252 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1253 {
1254 	int ret;
1255 
1256 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1257 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1258 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1259 		s->buf_addr_type = s->saved_buf_addr_type;
1260 	} else if (s->buf_type == RING_BUFFER_CTX) {
1261 		ret = ip_gma_set(s, s->ring_tail);
1262 	} else {
1263 		s->buf_type = RING_BUFFER_INSTRUCTION;
1264 		s->buf_addr_type = GTT_BUFFER;
1265 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1266 			s->ret_ip_gma_ring -= s->ring_size;
1267 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1268 	}
1269 	return ret;
1270 }
1271 
1272 struct mi_display_flip_command_info {
1273 	int pipe;
1274 	int plane;
1275 	int event;
1276 	i915_reg_t stride_reg;
1277 	i915_reg_t ctrl_reg;
1278 	i915_reg_t surf_reg;
1279 	u64 stride_val;
1280 	u64 tile_val;
1281 	u64 surf_val;
1282 	bool async_flip;
1283 };
1284 
1285 struct plane_code_mapping {
1286 	int pipe;
1287 	int plane;
1288 	int event;
1289 };
1290 
1291 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1292 		struct mi_display_flip_command_info *info)
1293 {
1294 	struct drm_i915_private *dev_priv = s->engine->i915;
1295 	struct intel_display *display = dev_priv->display;
1296 	struct plane_code_mapping gen8_plane_code[] = {
1297 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1298 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1299 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1300 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1301 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1302 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1303 	};
1304 	u32 dword0, dword1, dword2;
1305 	u32 v;
1306 
1307 	dword0 = cmd_val(s, 0);
1308 	dword1 = cmd_val(s, 1);
1309 	dword2 = cmd_val(s, 2);
1310 
1311 	v = (dword0 & GENMASK(21, 19)) >> 19;
1312 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1313 		return -EBADRQC;
1314 
1315 	info->pipe = gen8_plane_code[v].pipe;
1316 	info->plane = gen8_plane_code[v].plane;
1317 	info->event = gen8_plane_code[v].event;
1318 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1319 	info->tile_val = (dword1 & 0x1);
1320 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1321 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1322 
1323 	if (info->plane == PLANE_A) {
1324 		info->ctrl_reg = DSPCNTR(display, info->pipe);
1325 		info->stride_reg = DSPSTRIDE(display, info->pipe);
1326 		info->surf_reg = DSPSURF(display, info->pipe);
1327 	} else if (info->plane == PLANE_B) {
1328 		info->ctrl_reg = SPRCTL(info->pipe);
1329 		info->stride_reg = SPRSTRIDE(info->pipe);
1330 		info->surf_reg = SPRSURF(info->pipe);
1331 	} else {
1332 		drm_WARN_ON(&dev_priv->drm, 1);
1333 		return -EBADRQC;
1334 	}
1335 	return 0;
1336 }
1337 
1338 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1339 		struct mi_display_flip_command_info *info)
1340 {
1341 	struct drm_i915_private *dev_priv = s->engine->i915;
1342 	struct intel_display *display = dev_priv->display;
1343 	struct intel_vgpu *vgpu = s->vgpu;
1344 	u32 dword0 = cmd_val(s, 0);
1345 	u32 dword1 = cmd_val(s, 1);
1346 	u32 dword2 = cmd_val(s, 2);
1347 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1348 
1349 	info->plane = PRIMARY_PLANE;
1350 
1351 	switch (plane) {
1352 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1353 		info->pipe = PIPE_A;
1354 		info->event = PRIMARY_A_FLIP_DONE;
1355 		break;
1356 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1357 		info->pipe = PIPE_B;
1358 		info->event = PRIMARY_B_FLIP_DONE;
1359 		break;
1360 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1361 		info->pipe = PIPE_C;
1362 		info->event = PRIMARY_C_FLIP_DONE;
1363 		break;
1364 
1365 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1366 		info->pipe = PIPE_A;
1367 		info->event = SPRITE_A_FLIP_DONE;
1368 		info->plane = SPRITE_PLANE;
1369 		break;
1370 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1371 		info->pipe = PIPE_B;
1372 		info->event = SPRITE_B_FLIP_DONE;
1373 		info->plane = SPRITE_PLANE;
1374 		break;
1375 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1376 		info->pipe = PIPE_C;
1377 		info->event = SPRITE_C_FLIP_DONE;
1378 		info->plane = SPRITE_PLANE;
1379 		break;
1380 
1381 	default:
1382 		gvt_vgpu_err("unknown plane code %d\n", plane);
1383 		return -EBADRQC;
1384 	}
1385 
1386 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1387 	info->tile_val = (dword1 & GENMASK(2, 0));
1388 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1389 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1390 
1391 	info->ctrl_reg = DSPCNTR(display, info->pipe);
1392 	info->stride_reg = DSPSTRIDE(display, info->pipe);
1393 	info->surf_reg = DSPSURF(display, info->pipe);
1394 
1395 	return 0;
1396 }
1397 
1398 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1399 		struct mi_display_flip_command_info *info)
1400 {
1401 	u32 stride, tile;
1402 
1403 	if (!info->async_flip)
1404 		return 0;
1405 
1406 	if (GRAPHICS_VER(s->engine->i915) >= 9) {
1407 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1408 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1409 				GENMASK(12, 10)) >> 10;
1410 	} else {
1411 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1412 				GENMASK(15, 6)) >> 6;
1413 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1414 	}
1415 
1416 	if (stride != info->stride_val)
1417 		gvt_dbg_cmd("cannot change stride during async flip\n");
1418 
1419 	if (tile != info->tile_val)
1420 		gvt_dbg_cmd("cannot change tile during async flip\n");
1421 
1422 	return 0;
1423 }
1424 
1425 static int gen8_update_plane_mmio_from_mi_display_flip(
1426 		struct parser_exec_state *s,
1427 		struct mi_display_flip_command_info *info)
1428 {
1429 	struct drm_i915_private *dev_priv = s->engine->i915;
1430 	struct intel_display *display = dev_priv->display;
1431 	struct intel_vgpu *vgpu = s->vgpu;
1432 
1433 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1434 		      info->surf_val << 12);
1435 	if (GRAPHICS_VER(dev_priv) >= 9) {
1436 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1437 			      info->stride_val);
1438 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1439 			      info->tile_val << 10);
1440 	} else {
1441 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1442 			      info->stride_val << 6);
1443 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1444 			      info->tile_val << 10);
1445 	}
1446 
1447 	if (info->plane == PLANE_PRIMARY)
1448 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, info->pipe))++;
1449 
1450 	if (info->async_flip)
1451 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1452 	else
1453 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1454 
1455 	return 0;
1456 }
1457 
1458 static int decode_mi_display_flip(struct parser_exec_state *s,
1459 		struct mi_display_flip_command_info *info)
1460 {
1461 	if (IS_BROADWELL(s->engine->i915))
1462 		return gen8_decode_mi_display_flip(s, info);
1463 	if (GRAPHICS_VER(s->engine->i915) >= 9)
1464 		return skl_decode_mi_display_flip(s, info);
1465 
1466 	return -ENODEV;
1467 }
1468 
1469 static int check_mi_display_flip(struct parser_exec_state *s,
1470 		struct mi_display_flip_command_info *info)
1471 {
1472 	return gen8_check_mi_display_flip(s, info);
1473 }
1474 
1475 static int update_plane_mmio_from_mi_display_flip(
1476 		struct parser_exec_state *s,
1477 		struct mi_display_flip_command_info *info)
1478 {
1479 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1480 }
1481 
1482 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1483 {
1484 	struct mi_display_flip_command_info info;
1485 	struct intel_vgpu *vgpu = s->vgpu;
1486 	int ret;
1487 	int i;
1488 	int len = cmd_length(s);
1489 	u32 valid_len = CMD_LEN(1);
1490 
1491 	/* Flip Type == Stereo 3D Flip */
1492 	if (DWORD_FIELD(2, 1, 0) == 2)
1493 		valid_len++;
1494 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1495 			valid_len);
1496 	if (ret)
1497 		return ret;
1498 
1499 	ret = decode_mi_display_flip(s, &info);
1500 	if (ret) {
1501 		gvt_vgpu_err("fail to decode MI display flip command\n");
1502 		return ret;
1503 	}
1504 
1505 	ret = check_mi_display_flip(s, &info);
1506 	if (ret) {
1507 		gvt_vgpu_err("invalid MI display flip command\n");
1508 		return ret;
1509 	}
1510 
1511 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1512 	if (ret) {
1513 		gvt_vgpu_err("fail to update plane mmio\n");
1514 		return ret;
1515 	}
1516 
1517 	for (i = 0; i < len; i++)
1518 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1519 	return 0;
1520 }
1521 
1522 static bool is_wait_for_flip_pending(u32 cmd)
1523 {
1524 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1525 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1526 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1527 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1528 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1529 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1530 }
1531 
1532 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1533 {
1534 	u32 cmd = cmd_val(s, 0);
1535 
1536 	if (!is_wait_for_flip_pending(cmd))
1537 		return 0;
1538 
1539 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1540 	return 0;
1541 }
1542 
1543 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1544 {
1545 	unsigned long addr;
1546 	unsigned long gma_high, gma_low;
1547 	struct intel_vgpu *vgpu = s->vgpu;
1548 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1549 
1550 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1551 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1552 		return INTEL_GVT_INVALID_ADDR;
1553 	}
1554 
1555 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1556 	if (gmadr_bytes == 4) {
1557 		addr = gma_low;
1558 	} else {
1559 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1560 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1561 	}
1562 	return addr;
1563 }
1564 
1565 static inline int cmd_address_audit(struct parser_exec_state *s,
1566 		unsigned long guest_gma, int op_size, bool index_mode)
1567 {
1568 	struct intel_vgpu *vgpu = s->vgpu;
1569 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1570 	int i;
1571 	int ret;
1572 
1573 	if (op_size > max_surface_size) {
1574 		gvt_vgpu_err("command address audit fail name %s\n",
1575 			s->info->name);
1576 		return -EFAULT;
1577 	}
1578 
1579 	if (index_mode)	{
1580 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1581 			ret = -EFAULT;
1582 			goto err;
1583 		}
1584 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1585 		ret = -EFAULT;
1586 		goto err;
1587 	}
1588 
1589 	return 0;
1590 
1591 err:
1592 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1593 			s->info->name, guest_gma, op_size);
1594 
1595 	pr_err("cmd dump: ");
1596 	for (i = 0; i < cmd_length(s); i++) {
1597 		if (!(i % 4))
1598 			pr_err("\n%08x ", cmd_val(s, i));
1599 		else
1600 			pr_err("%08x ", cmd_val(s, i));
1601 	}
1602 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1603 			vgpu->id,
1604 			vgpu_aperture_gmadr_base(vgpu),
1605 			vgpu_aperture_gmadr_end(vgpu),
1606 			vgpu_hidden_gmadr_base(vgpu),
1607 			vgpu_hidden_gmadr_end(vgpu));
1608 	return ret;
1609 }
1610 
1611 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1612 {
1613 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1614 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1615 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1616 	unsigned long gma, gma_low, gma_high;
1617 	u32 valid_len = CMD_LEN(2);
1618 	int ret = 0;
1619 
1620 	/* check ppggt */
1621 	if (!(cmd_val(s, 0) & (1 << 22)))
1622 		return 0;
1623 
1624 	/* check if QWORD */
1625 	if (DWORD_FIELD(0, 21, 21))
1626 		valid_len++;
1627 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1628 			valid_len);
1629 	if (ret)
1630 		return ret;
1631 
1632 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1633 
1634 	if (gmadr_bytes == 8) {
1635 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1636 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1637 		gma = (gma_high << 32) | gma_low;
1638 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1639 	}
1640 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1641 	return ret;
1642 }
1643 
1644 static inline int unexpected_cmd(struct parser_exec_state *s)
1645 {
1646 	struct intel_vgpu *vgpu = s->vgpu;
1647 
1648 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1649 
1650 	return -EBADRQC;
1651 }
1652 
1653 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1654 {
1655 	return unexpected_cmd(s);
1656 }
1657 
1658 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1659 {
1660 	return unexpected_cmd(s);
1661 }
1662 
1663 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1664 {
1665 	return unexpected_cmd(s);
1666 }
1667 
1668 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1669 {
1670 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1671 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1672 			sizeof(u32);
1673 	unsigned long gma, gma_high;
1674 	u32 valid_len = CMD_LEN(1);
1675 	int ret = 0;
1676 
1677 	if (!(cmd_val(s, 0) & (1 << 22)))
1678 		return ret;
1679 
1680 	/* check inline data */
1681 	if (cmd_val(s, 0) & BIT(18))
1682 		valid_len = CMD_LEN(9);
1683 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1684 			valid_len);
1685 	if (ret)
1686 		return ret;
1687 
1688 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1689 	if (gmadr_bytes == 8) {
1690 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1691 		gma = (gma_high << 32) | gma;
1692 	}
1693 	ret = cmd_address_audit(s, gma, op_size, false);
1694 	return ret;
1695 }
1696 
1697 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1698 {
1699 	return unexpected_cmd(s);
1700 }
1701 
1702 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1703 {
1704 	return unexpected_cmd(s);
1705 }
1706 
1707 static int cmd_handler_mi_conditional_batch_buffer_end(
1708 		struct parser_exec_state *s)
1709 {
1710 	return unexpected_cmd(s);
1711 }
1712 
1713 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1714 {
1715 	return unexpected_cmd(s);
1716 }
1717 
1718 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1719 {
1720 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1721 	unsigned long gma;
1722 	bool index_mode = false;
1723 	int ret = 0;
1724 	u32 hws_pga, val;
1725 	u32 valid_len = CMD_LEN(2);
1726 
1727 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1728 			valid_len);
1729 	if (ret) {
1730 		/* Check again for Qword */
1731 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1732 			++valid_len);
1733 		return ret;
1734 	}
1735 
1736 	/* Check post-sync and ppgtt bit */
1737 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1738 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1739 		if (gmadr_bytes == 8)
1740 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1741 		/* Store Data Index */
1742 		if (cmd_val(s, 0) & (1 << 21))
1743 			index_mode = true;
1744 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1745 		if (ret)
1746 			return ret;
1747 		if (index_mode) {
1748 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1749 			gma = hws_pga + gma;
1750 			patch_value(s, cmd_ptr(s, 1), gma);
1751 			val = cmd_val(s, 0) & (~(1 << 21));
1752 			patch_value(s, cmd_ptr(s, 0), val);
1753 		}
1754 	}
1755 	/* Check notify bit */
1756 	if ((cmd_val(s, 0) & (1 << 8)))
1757 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1758 			s->workload->pending_events);
1759 	return ret;
1760 }
1761 
1762 static void addr_type_update_snb(struct parser_exec_state *s)
1763 {
1764 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1765 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1766 		s->buf_addr_type = PPGTT_BUFFER;
1767 	}
1768 }
1769 
1770 
1771 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1772 		unsigned long gma, unsigned long end_gma, void *va)
1773 {
1774 	unsigned long copy_len, offset;
1775 	unsigned long len = 0;
1776 	unsigned long gpa;
1777 
1778 	while (gma != end_gma) {
1779 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1780 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1781 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1782 			return -EFAULT;
1783 		}
1784 
1785 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1786 
1787 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1788 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1789 
1790 		intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1791 
1792 		len += copy_len;
1793 		gma += copy_len;
1794 	}
1795 	return len;
1796 }
1797 
1798 
1799 /*
1800  * Check whether a batch buffer needs to be scanned. Currently
1801  * the only criteria is based on privilege.
1802  */
1803 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1804 {
1805 	/* Decide privilege based on address space */
1806 	if (cmd_val(s, 0) & BIT(8) &&
1807 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1808 		return 0;
1809 
1810 	return 1;
1811 }
1812 
1813 static const char *repr_addr_type(unsigned int type)
1814 {
1815 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1816 }
1817 
1818 static int find_bb_size(struct parser_exec_state *s,
1819 			unsigned long *bb_size,
1820 			unsigned long *bb_end_cmd_offset)
1821 {
1822 	unsigned long gma = 0;
1823 	const struct cmd_info *info;
1824 	u32 cmd_len = 0;
1825 	bool bb_end = false;
1826 	struct intel_vgpu *vgpu = s->vgpu;
1827 	u32 cmd;
1828 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1829 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1830 
1831 	*bb_size = 0;
1832 	*bb_end_cmd_offset = 0;
1833 
1834 	/* get the start gm address of the batch buffer */
1835 	gma = get_gma_bb_from_cmd(s, 1);
1836 	if (gma == INTEL_GVT_INVALID_ADDR)
1837 		return -EFAULT;
1838 
1839 	cmd = cmd_val(s, 0);
1840 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1841 	if (info == NULL) {
1842 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1843 			     cmd, get_opcode(cmd, s->engine),
1844 			     repr_addr_type(s->buf_addr_type),
1845 			     s->engine->name, s->workload);
1846 		return -EBADRQC;
1847 	}
1848 	do {
1849 		if (copy_gma_to_hva(s->vgpu, mm,
1850 				    gma, gma + 4, &cmd) < 0)
1851 			return -EFAULT;
1852 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1853 		if (info == NULL) {
1854 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1855 				     cmd, get_opcode(cmd, s->engine),
1856 				     repr_addr_type(s->buf_addr_type),
1857 				     s->engine->name, s->workload);
1858 			return -EBADRQC;
1859 		}
1860 
1861 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1862 			bb_end = true;
1863 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1864 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1865 				/* chained batch buffer */
1866 				bb_end = true;
1867 		}
1868 
1869 		if (bb_end)
1870 			*bb_end_cmd_offset = *bb_size;
1871 
1872 		cmd_len = get_cmd_length(info, cmd) << 2;
1873 		*bb_size += cmd_len;
1874 		gma += cmd_len;
1875 	} while (!bb_end);
1876 
1877 	return 0;
1878 }
1879 
1880 static int audit_bb_end(struct parser_exec_state *s, void *va)
1881 {
1882 	struct intel_vgpu *vgpu = s->vgpu;
1883 	u32 cmd = *(u32 *)va;
1884 	const struct cmd_info *info;
1885 
1886 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1887 	if (info == NULL) {
1888 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1889 			     cmd, get_opcode(cmd, s->engine),
1890 			     repr_addr_type(s->buf_addr_type),
1891 			     s->engine->name, s->workload);
1892 		return -EBADRQC;
1893 	}
1894 
1895 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1896 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1897 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1898 		return 0;
1899 
1900 	return -EBADRQC;
1901 }
1902 
1903 static int perform_bb_shadow(struct parser_exec_state *s)
1904 {
1905 	struct intel_vgpu *vgpu = s->vgpu;
1906 	struct intel_vgpu_shadow_bb *bb;
1907 	unsigned long gma = 0;
1908 	unsigned long bb_size;
1909 	unsigned long bb_end_cmd_offset;
1910 	int ret = 0;
1911 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1912 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1913 	unsigned long start_offset = 0;
1914 
1915 	/* Get the start gm address of the batch buffer */
1916 	gma = get_gma_bb_from_cmd(s, 1);
1917 	if (gma == INTEL_GVT_INVALID_ADDR)
1918 		return -EFAULT;
1919 
1920 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1921 	if (ret)
1922 		return ret;
1923 
1924 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1925 	if (!bb)
1926 		return -ENOMEM;
1927 
1928 	bb->ppgtt = s->buf_addr_type != GTT_BUFFER;
1929 
1930 	/*
1931 	 * The start_offset stores the batch buffer's start gma's
1932 	 * offset relative to page boundary. So for non-privileged batch
1933 	 * buffer, the shadowed gem object holds exactly the same page
1934 	 * layout as original gem object. This is for the convenience of
1935 	 * replacing the whole non-privilged batch buffer page to this
1936 	 * shadowed one in PPGTT at the same gma address. (This replacing
1937 	 * action is not implemented yet now, but may be necessary in
1938 	 * future).
1939 	 * For prileged batch buffer, we just change start gma address to
1940 	 * that of shadowed page.
1941 	 */
1942 	if (bb->ppgtt)
1943 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1944 
1945 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1946 					       round_up(bb_size + start_offset,
1947 							PAGE_SIZE));
1948 	if (IS_ERR(bb->obj)) {
1949 		ret = PTR_ERR(bb->obj);
1950 		goto err_free_bb;
1951 	}
1952 
1953 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1954 	if (IS_ERR(bb->va)) {
1955 		ret = PTR_ERR(bb->va);
1956 		goto err_free_obj;
1957 	}
1958 
1959 	ret = copy_gma_to_hva(s->vgpu, mm,
1960 			      gma, gma + bb_size,
1961 			      bb->va + start_offset);
1962 	if (ret < 0) {
1963 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1964 		ret = -EFAULT;
1965 		goto err_unmap;
1966 	}
1967 
1968 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1969 	if (ret)
1970 		goto err_unmap;
1971 
1972 	i915_gem_object_unlock(bb->obj);
1973 	INIT_LIST_HEAD(&bb->list);
1974 	list_add(&bb->list, &s->workload->shadow_bb);
1975 
1976 	bb->bb_start_cmd_va = s->ip_va;
1977 
1978 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1979 		bb->bb_offset = s->ip_va - s->rb_va;
1980 	else
1981 		bb->bb_offset = 0;
1982 
1983 	/*
1984 	 * ip_va saves the virtual address of the shadow batch buffer, while
1985 	 * ip_gma saves the graphics address of the original batch buffer.
1986 	 * As the shadow batch buffer is just a copy from the original one,
1987 	 * it should be right to use shadow batch buffer'va and original batch
1988 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1989 	 * buffer here (too early).
1990 	 */
1991 	s->ip_va = bb->va + start_offset;
1992 	s->ip_gma = gma;
1993 	return 0;
1994 err_unmap:
1995 	i915_gem_object_unpin_map(bb->obj);
1996 err_free_obj:
1997 	i915_gem_object_put(bb->obj);
1998 err_free_bb:
1999 	kfree(bb);
2000 	return ret;
2001 }
2002 
2003 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
2004 {
2005 	bool second_level;
2006 	int ret = 0;
2007 	struct intel_vgpu *vgpu = s->vgpu;
2008 
2009 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
2010 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2011 		return -EFAULT;
2012 	}
2013 
2014 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2015 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2016 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2017 		return -EFAULT;
2018 	}
2019 
2020 	s->saved_buf_addr_type = s->buf_addr_type;
2021 	addr_type_update_snb(s);
2022 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2023 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2024 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2025 	} else if (second_level) {
2026 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2027 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2028 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2029 	}
2030 
2031 	if (batch_buffer_needs_scan(s)) {
2032 		ret = perform_bb_shadow(s);
2033 		if (ret < 0)
2034 			gvt_vgpu_err("invalid shadow batch buffer\n");
2035 	} else {
2036 		/* emulate a batch buffer end to do return right */
2037 		ret = cmd_handler_mi_batch_buffer_end(s);
2038 		if (ret < 0)
2039 			return ret;
2040 	}
2041 	return ret;
2042 }
2043 
2044 static int mi_noop_index;
2045 
2046 static const struct cmd_info cmd_info[] = {
2047 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2048 
2049 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2050 		0, 1, NULL},
2051 
2052 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2053 		0, 1, cmd_handler_mi_user_interrupt},
2054 
2055 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2056 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2057 
2058 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2059 
2060 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2061 		NULL},
2062 
2063 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2064 		NULL},
2065 
2066 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2067 		NULL},
2068 
2069 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2070 		NULL},
2071 
2072 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2073 		D_ALL, 0, 1, NULL},
2074 
2075 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2076 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2077 		cmd_handler_mi_batch_buffer_end},
2078 
2079 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2080 		0, 1, NULL},
2081 
2082 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2083 		NULL},
2084 
2085 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2086 		D_ALL, 0, 1, NULL},
2087 
2088 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2089 		NULL},
2090 
2091 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2092 		NULL},
2093 
2094 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2095 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2096 
2097 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2098 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2099 
2100 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2101 
2102 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2103 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2104 
2105 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2106 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2107 		NULL, CMD_LEN(0)},
2108 
2109 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2110 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2111 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2112 
2113 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2114 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2115 
2116 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2117 		0, 8, cmd_handler_mi_store_data_index},
2118 
2119 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2120 		D_ALL, 0, 8, cmd_handler_lri},
2121 
2122 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2123 		cmd_handler_mi_update_gtt},
2124 
2125 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2126 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2127 		cmd_handler_srm, CMD_LEN(2)},
2128 
2129 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2130 		cmd_handler_mi_flush_dw},
2131 
2132 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2133 		10, cmd_handler_mi_clflush},
2134 
2135 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2136 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2137 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2138 
2139 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2140 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2141 		cmd_handler_lrm, CMD_LEN(2)},
2142 
2143 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2144 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2145 		cmd_handler_lrr, CMD_LEN(1)},
2146 
2147 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2148 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2149 		8, NULL, CMD_LEN(2)},
2150 
2151 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2152 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2153 
2154 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2155 		ADDR_FIX_1(2), 8, NULL},
2156 
2157 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2158 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2159 
2160 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2161 		8, cmd_handler_mi_op_2f},
2162 
2163 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2164 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2165 		cmd_handler_mi_batch_buffer_start},
2166 
2167 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2168 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2169 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2170 
2171 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2172 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2173 
2174 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2175 		ADDR_FIX_2(4, 7), 8, NULL},
2176 
2177 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2178 		0, 8, NULL},
2179 
2180 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2181 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2182 
2183 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2184 
2185 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2186 		0, 8, NULL},
2187 
2188 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2189 		ADDR_FIX_1(3), 8, NULL},
2190 
2191 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2192 		D_ALL, 0, 8, NULL},
2193 
2194 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2195 		ADDR_FIX_1(4), 8, NULL},
2196 
2197 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2198 		ADDR_FIX_2(4, 5), 8, NULL},
2199 
2200 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2201 		ADDR_FIX_1(4), 8, NULL},
2202 
2203 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2204 		ADDR_FIX_2(4, 7), 8, NULL},
2205 
2206 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2207 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2208 
2209 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2210 
2211 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2212 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2213 
2214 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2215 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2216 
2217 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2218 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2219 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2220 
2221 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2222 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2223 
2224 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2225 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2226 
2227 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2228 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2229 
2230 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2231 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2232 
2233 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2234 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2235 
2236 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2237 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2238 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2239 
2240 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2241 		ADDR_FIX_2(4, 5), 8, NULL},
2242 
2243 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2244 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2245 
2246 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2247 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2248 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249 
2250 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2251 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2252 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 
2254 	{"3DSTATE_BLEND_STATE_POINTERS",
2255 		OP_3DSTATE_BLEND_STATE_POINTERS,
2256 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2257 
2258 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2259 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2260 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261 
2262 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2263 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2264 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2265 
2266 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2267 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2268 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269 
2270 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2271 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2272 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273 
2274 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2275 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2276 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 
2278 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2279 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2280 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281 
2282 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2283 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2284 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2285 
2286 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2287 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2288 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289 
2290 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2291 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2292 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2293 
2294 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2295 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2296 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2297 
2298 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2299 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2300 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301 
2302 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2303 		0, 8, NULL},
2304 
2305 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2306 		0, 8, NULL},
2307 
2308 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2309 		0, 8, NULL},
2310 
2311 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2312 		0, 8, NULL},
2313 
2314 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2315 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2316 
2317 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2318 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2319 
2320 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2321 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2322 
2323 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2324 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2325 
2326 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2327 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328 
2329 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2330 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2331 
2332 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2333 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2334 
2335 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2336 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2337 
2338 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2339 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2340 
2341 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2342 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2343 
2344 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2345 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2346 
2347 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2348 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2349 
2350 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2351 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2352 
2353 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2354 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2355 
2356 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2357 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2358 
2359 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2360 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2361 
2362 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2363 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2364 
2365 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2366 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2367 
2368 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2369 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2370 
2371 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2372 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2373 
2374 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2375 		D_BDW_PLUS, 0, 8, NULL},
2376 
2377 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2378 		NULL},
2379 
2380 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2381 		D_BDW_PLUS, 0, 8, NULL},
2382 
2383 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2384 		D_BDW_PLUS, 0, 8, NULL},
2385 
2386 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2387 		8, NULL},
2388 
2389 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2390 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2391 
2392 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2393 		8, NULL},
2394 
2395 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2396 		NULL},
2397 
2398 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2399 		NULL},
2400 
2401 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2402 		NULL},
2403 
2404 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2405 		D_BDW_PLUS, 0, 8, NULL},
2406 
2407 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2408 		R_RCS, D_ALL, 0, 8, NULL},
2409 
2410 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2411 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2412 
2413 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2414 		R_RCS, D_ALL, 0, 1, NULL},
2415 
2416 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2417 
2418 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2419 		R_RCS, D_ALL, 0, 8, NULL},
2420 
2421 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2422 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2423 
2424 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2425 
2426 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2427 
2428 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2429 
2430 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2431 		D_BDW_PLUS, 0, 8, NULL},
2432 
2433 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2434 		D_BDW_PLUS, 0, 8, NULL},
2435 
2436 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2437 		D_ALL, 0, 8, NULL},
2438 
2439 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2440 		D_BDW_PLUS, 0, 8, NULL},
2441 
2442 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2443 		D_BDW_PLUS, 0, 8, NULL},
2444 
2445 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446 
2447 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2448 
2449 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2450 
2451 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2452 		D_ALL, 0, 8, NULL},
2453 
2454 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2455 
2456 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457 
2458 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2459 		R_RCS, D_ALL, 0, 8, NULL},
2460 
2461 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2462 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2463 
2464 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2465 		0, 8, NULL},
2466 
2467 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2468 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2469 
2470 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2471 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2472 
2473 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2474 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2475 
2476 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2477 		D_ALL, 0, 8, NULL},
2478 
2479 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2480 		D_ALL, 0, 8, NULL},
2481 
2482 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2483 		D_ALL, 0, 8, NULL},
2484 
2485 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2486 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2487 
2488 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2489 		D_BDW_PLUS, 0, 8, NULL},
2490 
2491 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2492 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2493 
2494 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2495 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2496 
2497 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2498 		R_RCS, D_ALL, 0, 8, NULL},
2499 
2500 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2501 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2502 
2503 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2504 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2505 
2506 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2507 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2508 
2509 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2510 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2511 
2512 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2513 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2514 
2515 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2516 		R_RCS, D_ALL, 0, 8, NULL},
2517 
2518 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2519 		D_ALL, 0, 9, NULL},
2520 
2521 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2522 		ADDR_FIX_2(2, 4), 8, NULL},
2523 
2524 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2525 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2526 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2527 
2528 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2529 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2530 
2531 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2532 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2533 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2534 
2535 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2536 		D_BDW_PLUS, 0, 8, NULL},
2537 
2538 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2539 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2540 
2541 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2542 
2543 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2544 		1, NULL},
2545 
2546 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2547 		ADDR_FIX_1(1), 8, NULL},
2548 
2549 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2550 
2551 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2552 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2553 
2554 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2555 		ADDR_FIX_1(1), 8, NULL},
2556 
2557 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2558 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2559 
2560 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2561 
2562 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2563 
2564 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2565 		0, 8, NULL},
2566 
2567 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2568 		D_SKL_PLUS, 0, 8, NULL},
2569 
2570 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2571 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2572 
2573 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2574 		0, 16, NULL},
2575 
2576 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2577 		0, 16, NULL},
2578 
2579 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2580 		0, 16, NULL},
2581 
2582 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2583 
2584 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2585 		0, 16, NULL},
2586 
2587 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2588 		0, 16, NULL},
2589 
2590 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2591 		0, 16, NULL},
2592 
2593 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2594 		0, 8, NULL},
2595 
2596 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2597 		NULL},
2598 
2599 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2600 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2601 
2602 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2603 		R_VCS, D_ALL, 0, 12, NULL},
2604 
2605 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2606 		R_VCS, D_ALL, 0, 12, NULL},
2607 
2608 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2609 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2610 
2611 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2612 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2613 
2614 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2615 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2616 
2617 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2618 
2619 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2620 		R_VCS, D_ALL, 0, 12, NULL},
2621 
2622 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2623 		R_VCS, D_ALL, 0, 12, NULL},
2624 
2625 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2626 		R_VCS, D_ALL, 0, 12, NULL},
2627 
2628 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2629 		R_VCS, D_ALL, 0, 12, NULL},
2630 
2631 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2632 		R_VCS, D_ALL, 0, 12, NULL},
2633 
2634 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2635 		R_VCS, D_ALL, 0, 12, NULL},
2636 
2637 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2638 		R_VCS, D_ALL, 0, 6, NULL},
2639 
2640 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2641 		R_VCS, D_ALL, 0, 12, NULL},
2642 
2643 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2644 		R_VCS, D_ALL, 0, 12, NULL},
2645 
2646 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2647 		R_VCS, D_ALL, 0, 12, NULL},
2648 
2649 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2650 		R_VCS, D_ALL, 0, 12, NULL},
2651 
2652 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2653 		R_VCS, D_ALL, 0, 12, NULL},
2654 
2655 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2656 		R_VCS, D_ALL, 0, 12, NULL},
2657 
2658 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2659 		R_VCS, D_ALL, 0, 12, NULL},
2660 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2661 		R_VCS, D_ALL, 0, 12, NULL},
2662 
2663 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2664 		R_VCS, D_ALL, 0, 12, NULL},
2665 
2666 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2667 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2668 
2669 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2670 		R_VCS, D_ALL, 0, 12, NULL},
2671 
2672 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2673 		R_VCS, D_ALL, 0, 12, NULL},
2674 
2675 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2676 		R_VCS, D_ALL, 0, 12, NULL},
2677 
2678 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2679 		R_VCS, D_ALL, 0, 12, NULL},
2680 
2681 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2682 		R_VCS, D_ALL, 0, 12, NULL},
2683 
2684 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2685 		R_VCS, D_ALL, 0, 12, NULL},
2686 
2687 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2688 		R_VCS, D_ALL, 0, 12, NULL},
2689 
2690 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2691 		R_VCS, D_ALL, 0, 12, NULL},
2692 
2693 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2694 		R_VCS, D_ALL, 0, 12, NULL},
2695 
2696 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2697 		R_VCS, D_ALL, 0, 12, NULL},
2698 
2699 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2700 		R_VCS, D_ALL, 0, 12, NULL},
2701 
2702 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2703 		0, 16, NULL},
2704 
2705 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2706 
2707 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2708 
2709 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2710 		R_VCS, D_ALL, 0, 12, NULL},
2711 
2712 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2713 		R_VCS, D_ALL, 0, 12, NULL},
2714 
2715 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2716 		R_VCS, D_ALL, 0, 12, NULL},
2717 
2718 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2719 
2720 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2721 		0, 12, NULL},
2722 
2723 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2724 		0, 12, NULL},
2725 };
2726 
2727 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2728 {
2729 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2730 }
2731 
2732 /* call the cmd handler, and advance ip */
2733 static int cmd_parser_exec(struct parser_exec_state *s)
2734 {
2735 	struct intel_vgpu *vgpu = s->vgpu;
2736 	const struct cmd_info *info;
2737 	u32 cmd;
2738 	int ret = 0;
2739 
2740 	cmd = cmd_val(s, 0);
2741 
2742 	/* fastpath for MI_NOOP */
2743 	if (cmd == MI_NOOP)
2744 		info = &cmd_info[mi_noop_index];
2745 	else
2746 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2747 
2748 	if (info == NULL) {
2749 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2750 			     cmd, get_opcode(cmd, s->engine),
2751 			     repr_addr_type(s->buf_addr_type),
2752 			     s->engine->name, s->workload);
2753 		return -EBADRQC;
2754 	}
2755 
2756 	s->info = info;
2757 
2758 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2759 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2760 			  s->workload, info->name);
2761 
2762 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2763 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2764 						 info->valid_len);
2765 		if (ret)
2766 			return ret;
2767 	}
2768 
2769 	if (info->handler) {
2770 		ret = info->handler(s);
2771 		if (ret < 0) {
2772 			gvt_vgpu_err("%s handler error\n", info->name);
2773 			return ret;
2774 		}
2775 	}
2776 
2777 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2778 		ret = cmd_advance_default(s);
2779 		if (ret) {
2780 			gvt_vgpu_err("%s IP advance error\n", info->name);
2781 			return ret;
2782 		}
2783 	}
2784 	return 0;
2785 }
2786 
2787 static inline bool gma_out_of_range(unsigned long gma,
2788 		unsigned long gma_head, unsigned int gma_tail)
2789 {
2790 	if (gma_tail >= gma_head)
2791 		return (gma < gma_head) || (gma > gma_tail);
2792 	else
2793 		return (gma > gma_tail) && (gma < gma_head);
2794 }
2795 
2796 /* Keep the consistent return type, e.g EBADRQC for unknown
2797  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2798  * works as the input of VM healthy status.
2799  */
2800 static int command_scan(struct parser_exec_state *s,
2801 		unsigned long rb_head, unsigned long rb_tail,
2802 		unsigned long rb_start, unsigned long rb_len)
2803 {
2804 
2805 	unsigned long gma_head, gma_tail, gma_bottom;
2806 	int ret = 0;
2807 	struct intel_vgpu *vgpu = s->vgpu;
2808 
2809 	gma_head = rb_start + rb_head;
2810 	gma_tail = rb_start + rb_tail;
2811 	gma_bottom = rb_start +  rb_len;
2812 
2813 	while (s->ip_gma != gma_tail) {
2814 		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2815 				s->buf_type == RING_BUFFER_CTX) {
2816 			if (!(s->ip_gma >= rb_start) ||
2817 				!(s->ip_gma < gma_bottom)) {
2818 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2819 					"(base:0x%lx, bottom: 0x%lx)\n",
2820 					s->ip_gma, rb_start,
2821 					gma_bottom);
2822 				parser_exec_state_dump(s);
2823 				return -EFAULT;
2824 			}
2825 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2826 				gvt_vgpu_err("ip_gma %lx out of range."
2827 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2828 					s->ip_gma, rb_start,
2829 					rb_head, rb_tail);
2830 				parser_exec_state_dump(s);
2831 				break;
2832 			}
2833 		}
2834 		ret = cmd_parser_exec(s);
2835 		if (ret) {
2836 			gvt_vgpu_err("cmd parser error\n");
2837 			parser_exec_state_dump(s);
2838 			break;
2839 		}
2840 	}
2841 
2842 	return ret;
2843 }
2844 
2845 static int scan_workload(struct intel_vgpu_workload *workload)
2846 {
2847 	unsigned long gma_head, gma_tail;
2848 	struct parser_exec_state s;
2849 	int ret = 0;
2850 
2851 	/* ring base is page aligned */
2852 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2853 		return -EINVAL;
2854 
2855 	gma_head = workload->rb_start + workload->rb_head;
2856 	gma_tail = workload->rb_start + workload->rb_tail;
2857 
2858 	s.buf_type = RING_BUFFER_INSTRUCTION;
2859 	s.buf_addr_type = GTT_BUFFER;
2860 	s.vgpu = workload->vgpu;
2861 	s.engine = workload->engine;
2862 	s.ring_start = workload->rb_start;
2863 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2864 	s.ring_head = gma_head;
2865 	s.ring_tail = gma_tail;
2866 	s.rb_va = workload->shadow_ring_buffer_va;
2867 	s.workload = workload;
2868 	s.is_ctx_wa = false;
2869 
2870 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2871 		return 0;
2872 
2873 	ret = ip_gma_set(&s, gma_head);
2874 	if (ret)
2875 		goto out;
2876 
2877 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2878 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2879 
2880 out:
2881 	return ret;
2882 }
2883 
2884 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2885 {
2886 
2887 	unsigned long gma_head, gma_tail, ring_size, ring_tail;
2888 	struct parser_exec_state s;
2889 	int ret = 0;
2890 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2891 				struct intel_vgpu_workload,
2892 				wa_ctx);
2893 
2894 	/* ring base is page aligned */
2895 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2896 					I915_GTT_PAGE_SIZE)))
2897 		return -EINVAL;
2898 
2899 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2900 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2901 			PAGE_SIZE);
2902 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2903 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2904 
2905 	s.buf_type = RING_BUFFER_INSTRUCTION;
2906 	s.buf_addr_type = GTT_BUFFER;
2907 	s.vgpu = workload->vgpu;
2908 	s.engine = workload->engine;
2909 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2910 	s.ring_size = ring_size;
2911 	s.ring_head = gma_head;
2912 	s.ring_tail = gma_tail;
2913 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2914 	s.workload = workload;
2915 	s.is_ctx_wa = true;
2916 
2917 	ret = ip_gma_set(&s, gma_head);
2918 	if (ret)
2919 		goto out;
2920 
2921 	ret = command_scan(&s, 0, ring_tail,
2922 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2923 out:
2924 	return ret;
2925 }
2926 
2927 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2928 {
2929 	struct intel_vgpu *vgpu = workload->vgpu;
2930 	struct intel_vgpu_submission *s = &vgpu->submission;
2931 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2932 	void *shadow_ring_buffer_va;
2933 	int ret;
2934 
2935 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2936 
2937 	/* calculate workload ring buffer size */
2938 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2939 			workload->rb_head) % guest_rb_size;
2940 
2941 	gma_head = workload->rb_start + workload->rb_head;
2942 	gma_tail = workload->rb_start + workload->rb_tail;
2943 	gma_top = workload->rb_start + guest_rb_size;
2944 
2945 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2946 		void *p;
2947 
2948 		/* realloc the new ring buffer if needed */
2949 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2950 			     workload->rb_len, GFP_KERNEL);
2951 		if (!p) {
2952 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2953 			return -ENOMEM;
2954 		}
2955 		s->ring_scan_buffer[workload->engine->id] = p;
2956 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2957 	}
2958 
2959 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2960 
2961 	/* get shadow ring buffer va */
2962 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2963 
2964 	/* head > tail --> copy head <-> top */
2965 	if (gma_head > gma_tail) {
2966 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2967 				      gma_head, gma_top, shadow_ring_buffer_va);
2968 		if (ret < 0) {
2969 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2970 			return ret;
2971 		}
2972 		shadow_ring_buffer_va += ret;
2973 		gma_head = workload->rb_start;
2974 	}
2975 
2976 	/* copy head or start <-> tail */
2977 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2978 				shadow_ring_buffer_va);
2979 	if (ret < 0) {
2980 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2981 		return ret;
2982 	}
2983 	return 0;
2984 }
2985 
2986 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2987 {
2988 	int ret;
2989 	struct intel_vgpu *vgpu = workload->vgpu;
2990 
2991 	ret = shadow_workload_ring_buffer(workload);
2992 	if (ret) {
2993 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2994 		return ret;
2995 	}
2996 
2997 	ret = scan_workload(workload);
2998 	if (ret) {
2999 		gvt_vgpu_err("scan workload error\n");
3000 		return ret;
3001 	}
3002 	return 0;
3003 }
3004 
3005 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3006 {
3007 	int ctx_size = wa_ctx->indirect_ctx.size;
3008 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
3009 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3010 					struct intel_vgpu_workload,
3011 					wa_ctx);
3012 	struct intel_vgpu *vgpu = workload->vgpu;
3013 	struct drm_i915_gem_object *obj;
3014 	int ret = 0;
3015 	void *map;
3016 
3017 	obj = i915_gem_object_create_shmem(workload->engine->i915,
3018 					   roundup(ctx_size + CACHELINE_BYTES,
3019 						   PAGE_SIZE));
3020 	if (IS_ERR(obj))
3021 		return PTR_ERR(obj);
3022 
3023 	/* get the va of the shadow batch buffer */
3024 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3025 	if (IS_ERR(map)) {
3026 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3027 		ret = PTR_ERR(map);
3028 		goto put_obj;
3029 	}
3030 
3031 	i915_gem_object_lock(obj, NULL);
3032 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3033 	i915_gem_object_unlock(obj);
3034 	if (ret) {
3035 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3036 		goto unmap_src;
3037 	}
3038 
3039 	ret = copy_gma_to_hva(workload->vgpu,
3040 				workload->vgpu->gtt.ggtt_mm,
3041 				guest_gma, guest_gma + ctx_size,
3042 				map);
3043 	if (ret < 0) {
3044 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3045 		goto unmap_src;
3046 	}
3047 
3048 	wa_ctx->indirect_ctx.obj = obj;
3049 	wa_ctx->indirect_ctx.shadow_va = map;
3050 	return 0;
3051 
3052 unmap_src:
3053 	i915_gem_object_unpin_map(obj);
3054 put_obj:
3055 	i915_gem_object_put(obj);
3056 	return ret;
3057 }
3058 
3059 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3060 {
3061 	u32 per_ctx_start[CACHELINE_DWORDS] = {};
3062 	unsigned char *bb_start_sva;
3063 
3064 	if (!wa_ctx->per_ctx.valid)
3065 		return 0;
3066 
3067 	per_ctx_start[0] = 0x18800001;
3068 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3069 
3070 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3071 				wa_ctx->indirect_ctx.size;
3072 
3073 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3074 
3075 	return 0;
3076 }
3077 
3078 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3079 {
3080 	int ret;
3081 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3082 					struct intel_vgpu_workload,
3083 					wa_ctx);
3084 	struct intel_vgpu *vgpu = workload->vgpu;
3085 
3086 	if (wa_ctx->indirect_ctx.size == 0)
3087 		return 0;
3088 
3089 	ret = shadow_indirect_ctx(wa_ctx);
3090 	if (ret) {
3091 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3092 		return ret;
3093 	}
3094 
3095 	combine_wa_ctx(wa_ctx);
3096 
3097 	ret = scan_wa_ctx(wa_ctx);
3098 	if (ret) {
3099 		gvt_vgpu_err("scan wa ctx error\n");
3100 		return ret;
3101 	}
3102 
3103 	return 0;
3104 }
3105 
3106 /* generate dummy contexts by sending empty requests to HW, and let
3107  * the HW to fill Engine Contexts. This dummy contexts are used for
3108  * initialization purpose (update reg whitelist), so referred to as
3109  * init context here
3110  */
3111 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3112 {
3113 	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3114 	struct intel_gvt *gvt = vgpu->gvt;
3115 	struct intel_engine_cs *engine;
3116 	enum intel_engine_id id;
3117 
3118 	if (gvt->is_reg_whitelist_updated)
3119 		return;
3120 
3121 	/* scan init ctx to update cmd accessible list */
3122 	for_each_engine(engine, gvt->gt, id) {
3123 		struct parser_exec_state s;
3124 		void *vaddr;
3125 		int ret;
3126 
3127 		if (!engine->default_state)
3128 			continue;
3129 
3130 		vaddr = shmem_pin_map(engine->default_state);
3131 		if (!vaddr) {
3132 			gvt_err("failed to map %s->default state\n",
3133 				engine->name);
3134 			return;
3135 		}
3136 
3137 		s.buf_type = RING_BUFFER_CTX;
3138 		s.buf_addr_type = GTT_BUFFER;
3139 		s.vgpu = vgpu;
3140 		s.engine = engine;
3141 		s.ring_start = 0;
3142 		s.ring_size = engine->context_size - start;
3143 		s.ring_head = 0;
3144 		s.ring_tail = s.ring_size;
3145 		s.rb_va = vaddr + start;
3146 		s.workload = NULL;
3147 		s.is_ctx_wa = false;
3148 		s.is_init_ctx = true;
3149 
3150 		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3151 		ret = ip_gma_set(&s, RING_CTX_SIZE);
3152 		if (ret == 0) {
3153 			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3154 			if (ret)
3155 				gvt_err("Scan init ctx error\n");
3156 		}
3157 
3158 		shmem_unpin_map(engine->default_state, vaddr);
3159 		if (ret)
3160 			return;
3161 	}
3162 
3163 	gvt->is_reg_whitelist_updated = true;
3164 }
3165 
3166 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3167 {
3168 	struct intel_vgpu *vgpu = workload->vgpu;
3169 	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3170 	struct parser_exec_state s;
3171 	int ring_id = workload->engine->id;
3172 	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3173 	int ret;
3174 
3175 	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3176 
3177 	ctx_size = workload->engine->context_size - PAGE_SIZE;
3178 
3179 	/* Only ring contxt is loaded to HW for inhibit context, no need to
3180 	 * scan engine context
3181 	 */
3182 	if (is_inhibit_context(ce))
3183 		return 0;
3184 
3185 	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3186 	gma_head = 0;
3187 	gma_tail = ctx_size;
3188 
3189 	s.buf_type = RING_BUFFER_CTX;
3190 	s.buf_addr_type = GTT_BUFFER;
3191 	s.vgpu = workload->vgpu;
3192 	s.engine = workload->engine;
3193 	s.ring_start = gma_start;
3194 	s.ring_size = ctx_size;
3195 	s.ring_head = gma_start + gma_head;
3196 	s.ring_tail = gma_start + gma_tail;
3197 	s.rb_va = ce->lrc_reg_state;
3198 	s.workload = workload;
3199 	s.is_ctx_wa = false;
3200 	s.is_init_ctx = false;
3201 
3202 	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3203 	 * context
3204 	 */
3205 	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3206 	if (ret)
3207 		goto out;
3208 
3209 	ret = command_scan(&s, gma_head, gma_tail,
3210 		gma_start, ctx_size);
3211 out:
3212 	if (ret)
3213 		gvt_vgpu_err("scan shadow ctx error\n");
3214 
3215 	return ret;
3216 }
3217 
3218 static int init_cmd_table(struct intel_gvt *gvt)
3219 {
3220 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3221 	int i;
3222 
3223 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3224 		struct cmd_entry *e;
3225 
3226 		if (!(cmd_info[i].devices & gen_type))
3227 			continue;
3228 
3229 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3230 		if (!e)
3231 			return -ENOMEM;
3232 
3233 		e->info = &cmd_info[i];
3234 		if (cmd_info[i].opcode == OP_MI_NOOP)
3235 			mi_noop_index = i;
3236 
3237 		INIT_HLIST_NODE(&e->hlist);
3238 		add_cmd_entry(gvt, e);
3239 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3240 			    e->info->name, e->info->opcode, e->info->flag,
3241 			    e->info->devices, e->info->rings);
3242 	}
3243 
3244 	return 0;
3245 }
3246 
3247 static void clean_cmd_table(struct intel_gvt *gvt)
3248 {
3249 	struct hlist_node *tmp;
3250 	struct cmd_entry *e;
3251 	int i;
3252 
3253 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3254 		kfree(e);
3255 
3256 	hash_init(gvt->cmd_table);
3257 }
3258 
3259 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3260 {
3261 	clean_cmd_table(gvt);
3262 }
3263 
3264 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3265 {
3266 	int ret;
3267 
3268 	ret = init_cmd_table(gvt);
3269 	if (ret) {
3270 		intel_gvt_clean_cmd_parser(gvt);
3271 		return ret;
3272 	}
3273 	return 0;
3274 }
3275