1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_lrc.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_gt_requests.h" 44 #include "gt/shmem_utils.h" 45 #include "gvt.h" 46 #include "i915_pvinfo.h" 47 #include "trace.h" 48 49 #include "gem/i915_gem_context.h" 50 #include "gem/i915_gem_pm.h" 51 #include "gt/intel_context.h" 52 53 #define INVALID_OP (~0U) 54 55 #define OP_LEN_MI 9 56 #define OP_LEN_2D 10 57 #define OP_LEN_3D_MEDIA 16 58 #define OP_LEN_MFX_VC 16 59 #define OP_LEN_VEBOX 16 60 61 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 62 63 struct sub_op_bits { 64 int hi; 65 int low; 66 }; 67 struct decode_info { 68 const char *name; 69 int op_len; 70 int nr_sub_op; 71 const struct sub_op_bits *sub_op; 72 }; 73 74 #define MAX_CMD_BUDGET 0x7fffffff 75 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 76 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 77 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 78 79 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 80 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 81 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 82 83 /* Render Command Map */ 84 85 /* MI_* command Opcode (28:23) */ 86 #define OP_MI_NOOP 0x0 87 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 88 #define OP_MI_USER_INTERRUPT 0x2 89 #define OP_MI_WAIT_FOR_EVENT 0x3 90 #define OP_MI_FLUSH 0x4 91 #define OP_MI_ARB_CHECK 0x5 92 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 93 #define OP_MI_REPORT_HEAD 0x7 94 #define OP_MI_ARB_ON_OFF 0x8 95 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 96 #define OP_MI_BATCH_BUFFER_END 0xA 97 #define OP_MI_SUSPEND_FLUSH 0xB 98 #define OP_MI_PREDICATE 0xC /* IVB+ */ 99 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 100 #define OP_MI_SET_APPID 0xE /* IVB+ */ 101 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 102 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 103 #define OP_MI_DISPLAY_FLIP 0x14 104 #define OP_MI_SEMAPHORE_MBOX 0x16 105 #define OP_MI_SET_CONTEXT 0x18 106 #define OP_MI_MATH 0x1A 107 #define OP_MI_URB_CLEAR 0x19 108 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 109 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 110 111 #define OP_MI_STORE_DATA_IMM 0x20 112 #define OP_MI_STORE_DATA_INDEX 0x21 113 #define OP_MI_LOAD_REGISTER_IMM 0x22 114 #define OP_MI_UPDATE_GTT 0x23 115 #define OP_MI_STORE_REGISTER_MEM 0x24 116 #define OP_MI_FLUSH_DW 0x26 117 #define OP_MI_CLFLUSH 0x27 118 #define OP_MI_REPORT_PERF_COUNT 0x28 119 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 120 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 121 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 122 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 123 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 124 #define OP_MI_2E 0x2E /* BDW+ */ 125 #define OP_MI_2F 0x2F /* BDW+ */ 126 #define OP_MI_BATCH_BUFFER_START 0x31 127 128 /* Bit definition for dword 0 */ 129 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 130 131 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 132 133 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 134 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 135 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 136 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 137 138 /* 2D command: Opcode (28:22) */ 139 #define OP_2D(x) ((2<<7) | x) 140 141 #define OP_XY_SETUP_BLT OP_2D(0x1) 142 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 143 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 144 #define OP_XY_PIXEL_BLT OP_2D(0x24) 145 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 146 #define OP_XY_TEXT_BLT OP_2D(0x26) 147 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 148 #define OP_XY_COLOR_BLT OP_2D(0x50) 149 #define OP_XY_PAT_BLT OP_2D(0x51) 150 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 151 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 152 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 153 #define OP_XY_FULL_BLT OP_2D(0x55) 154 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 155 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 156 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 157 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 158 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 159 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 160 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 161 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 162 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 163 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 164 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 165 166 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 167 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 168 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 169 170 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 171 172 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 173 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 174 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 175 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 176 177 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 178 179 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 180 181 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 182 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 183 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 184 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 185 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 186 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 187 188 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 189 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 190 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 191 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 192 193 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 194 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 195 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 196 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 197 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 198 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 199 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 200 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 201 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 202 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 203 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 204 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 205 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 206 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 207 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 208 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 209 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 210 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 211 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 212 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 213 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 214 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 215 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 216 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 217 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 218 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 219 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 220 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 222 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 223 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 224 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 235 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 236 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 237 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 238 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 239 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 240 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 241 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 242 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 243 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 244 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 245 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 246 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 247 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 248 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 249 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 250 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 251 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 253 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 254 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 255 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 256 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 257 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 258 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 259 260 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 261 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 262 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 263 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 264 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 265 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 266 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 267 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 268 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 269 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 270 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 271 272 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 274 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 275 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 276 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 277 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 278 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 279 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 280 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 281 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 282 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 283 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 284 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 285 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 286 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 292 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 293 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 294 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 295 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 296 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 297 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 298 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 299 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 300 301 /* VCCP Command Parser */ 302 303 /* 304 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 305 * git://anongit.freedesktop.org/vaapi/intel-driver 306 * src/i965_defines.h 307 * 308 */ 309 310 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 311 (3 << 13 | \ 312 (pipeline) << 11 | \ 313 (op) << 8 | \ 314 (sub_opa) << 5 | \ 315 (sub_opb)) 316 317 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 318 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 319 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 320 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 321 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 322 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 323 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 324 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 325 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 326 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 327 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 328 329 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 330 331 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 332 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 333 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 334 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 335 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 336 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 337 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 338 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 339 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 340 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 341 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 342 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 343 344 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 345 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 346 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 347 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 348 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 349 350 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 351 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 352 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 353 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 354 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 355 356 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 357 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 358 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 359 360 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 361 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 362 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 363 364 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 365 (3 << 13 | \ 366 (pipeline) << 11 | \ 367 (op) << 8 | \ 368 (sub_opa) << 5 | \ 369 (sub_opb)) 370 371 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 372 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 373 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 374 375 struct parser_exec_state; 376 377 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 378 379 #define GVT_CMD_HASH_BITS 7 380 381 /* which DWords need address fix */ 382 #define ADDR_FIX_1(x1) (1 << (x1)) 383 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 384 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 385 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 386 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 387 388 #define DWORD_FIELD(dword, end, start) \ 389 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 390 391 #define OP_LENGTH_BIAS 2 392 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 393 394 static int gvt_check_valid_cmd_length(int len, int valid_len) 395 { 396 if (valid_len != len) { 397 gvt_err("len is not valid: len=%u valid_len=%u\n", 398 len, valid_len); 399 return -EFAULT; 400 } 401 return 0; 402 } 403 404 struct cmd_info { 405 const char *name; 406 u32 opcode; 407 408 #define F_LEN_MASK 3U 409 #define F_LEN_CONST 1U 410 #define F_LEN_VAR 0U 411 /* value is const although LEN maybe variable */ 412 #define F_LEN_VAR_FIXED (1<<1) 413 414 /* 415 * command has its own ip advance logic 416 * e.g. MI_BATCH_START, MI_BATCH_END 417 */ 418 #define F_IP_ADVANCE_CUSTOM (1<<2) 419 u32 flag; 420 421 #define R_RCS BIT(RCS0) 422 #define R_VCS1 BIT(VCS0) 423 #define R_VCS2 BIT(VCS1) 424 #define R_VCS (R_VCS1 | R_VCS2) 425 #define R_BCS BIT(BCS0) 426 #define R_VECS BIT(VECS0) 427 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 428 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 429 u16 rings; 430 431 /* devices that support this cmd: SNB/IVB/HSW/... */ 432 u16 devices; 433 434 /* which DWords are address that need fix up. 435 * bit 0 means a 32-bit non address operand in command 436 * bit 1 means address operand, which could be 32-bit 437 * or 64-bit depending on different architectures.( 438 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 439 * No matter the address length, each address only takes 440 * one bit in the bitmap. 441 */ 442 u16 addr_bitmap; 443 444 /* flag == F_LEN_CONST : command length 445 * flag == F_LEN_VAR : length bias bits 446 * Note: length is in DWord 447 */ 448 u32 len; 449 450 parser_cmd_handler handler; 451 452 /* valid length in DWord */ 453 u32 valid_len; 454 }; 455 456 struct cmd_entry { 457 struct hlist_node hlist; 458 const struct cmd_info *info; 459 }; 460 461 enum { 462 RING_BUFFER_INSTRUCTION, 463 BATCH_BUFFER_INSTRUCTION, 464 BATCH_BUFFER_2ND_LEVEL, 465 RING_BUFFER_CTX, 466 }; 467 468 enum { 469 GTT_BUFFER, 470 PPGTT_BUFFER 471 }; 472 473 struct parser_exec_state { 474 struct intel_vgpu *vgpu; 475 const struct intel_engine_cs *engine; 476 477 int buf_type; 478 479 /* batch buffer address type */ 480 int buf_addr_type; 481 482 /* graphics memory address of ring buffer start */ 483 unsigned long ring_start; 484 unsigned long ring_size; 485 unsigned long ring_head; 486 unsigned long ring_tail; 487 488 /* instruction graphics memory address */ 489 unsigned long ip_gma; 490 491 /* mapped va of the instr_gma */ 492 void *ip_va; 493 void *rb_va; 494 495 void *ret_bb_va; 496 /* next instruction when return from batch buffer to ring buffer */ 497 unsigned long ret_ip_gma_ring; 498 499 /* next instruction when return from 2nd batch buffer to batch buffer */ 500 unsigned long ret_ip_gma_bb; 501 502 /* batch buffer address type (GTT or PPGTT) 503 * used when ret from 2nd level batch buffer 504 */ 505 int saved_buf_addr_type; 506 bool is_ctx_wa; 507 bool is_init_ctx; 508 509 const struct cmd_info *info; 510 511 struct intel_vgpu_workload *workload; 512 }; 513 514 #define gmadr_dw_number(s) \ 515 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 516 517 static unsigned long bypass_scan_mask = 0; 518 519 /* ring ALL, type = 0 */ 520 static const struct sub_op_bits sub_op_mi[] = { 521 {31, 29}, 522 {28, 23}, 523 }; 524 525 static const struct decode_info decode_info_mi = { 526 "MI", 527 OP_LEN_MI, 528 ARRAY_SIZE(sub_op_mi), 529 sub_op_mi, 530 }; 531 532 /* ring RCS, command type 2 */ 533 static const struct sub_op_bits sub_op_2d[] = { 534 {31, 29}, 535 {28, 22}, 536 }; 537 538 static const struct decode_info decode_info_2d = { 539 "2D", 540 OP_LEN_2D, 541 ARRAY_SIZE(sub_op_2d), 542 sub_op_2d, 543 }; 544 545 /* ring RCS, command type 3 */ 546 static const struct sub_op_bits sub_op_3d_media[] = { 547 {31, 29}, 548 {28, 27}, 549 {26, 24}, 550 {23, 16}, 551 }; 552 553 static const struct decode_info decode_info_3d_media = { 554 "3D_Media", 555 OP_LEN_3D_MEDIA, 556 ARRAY_SIZE(sub_op_3d_media), 557 sub_op_3d_media, 558 }; 559 560 /* ring VCS, command type 3 */ 561 static const struct sub_op_bits sub_op_mfx_vc[] = { 562 {31, 29}, 563 {28, 27}, 564 {26, 24}, 565 {23, 21}, 566 {20, 16}, 567 }; 568 569 static const struct decode_info decode_info_mfx_vc = { 570 "MFX_VC", 571 OP_LEN_MFX_VC, 572 ARRAY_SIZE(sub_op_mfx_vc), 573 sub_op_mfx_vc, 574 }; 575 576 /* ring VECS, command type 3 */ 577 static const struct sub_op_bits sub_op_vebox[] = { 578 {31, 29}, 579 {28, 27}, 580 {26, 24}, 581 {23, 21}, 582 {20, 16}, 583 }; 584 585 static const struct decode_info decode_info_vebox = { 586 "VEBOX", 587 OP_LEN_VEBOX, 588 ARRAY_SIZE(sub_op_vebox), 589 sub_op_vebox, 590 }; 591 592 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 593 [RCS0] = { 594 &decode_info_mi, 595 NULL, 596 NULL, 597 &decode_info_3d_media, 598 NULL, 599 NULL, 600 NULL, 601 NULL, 602 }, 603 604 [VCS0] = { 605 &decode_info_mi, 606 NULL, 607 NULL, 608 &decode_info_mfx_vc, 609 NULL, 610 NULL, 611 NULL, 612 NULL, 613 }, 614 615 [BCS0] = { 616 &decode_info_mi, 617 NULL, 618 &decode_info_2d, 619 NULL, 620 NULL, 621 NULL, 622 NULL, 623 NULL, 624 }, 625 626 [VECS0] = { 627 &decode_info_mi, 628 NULL, 629 NULL, 630 &decode_info_vebox, 631 NULL, 632 NULL, 633 NULL, 634 NULL, 635 }, 636 637 [VCS1] = { 638 &decode_info_mi, 639 NULL, 640 NULL, 641 &decode_info_mfx_vc, 642 NULL, 643 NULL, 644 NULL, 645 NULL, 646 }, 647 }; 648 649 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 650 { 651 const struct decode_info *d_info; 652 653 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 654 if (d_info == NULL) 655 return INVALID_OP; 656 657 return cmd >> (32 - d_info->op_len); 658 } 659 660 static inline const struct cmd_info * 661 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 662 const struct intel_engine_cs *engine) 663 { 664 struct cmd_entry *e; 665 666 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 667 if (opcode == e->info->opcode && 668 e->info->rings & engine->mask) 669 return e->info; 670 } 671 return NULL; 672 } 673 674 static inline const struct cmd_info * 675 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 676 const struct intel_engine_cs *engine) 677 { 678 u32 opcode; 679 680 opcode = get_opcode(cmd, engine); 681 if (opcode == INVALID_OP) 682 return NULL; 683 684 return find_cmd_entry(gvt, opcode, engine); 685 } 686 687 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 688 { 689 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 690 } 691 692 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 693 { 694 const struct decode_info *d_info; 695 int i; 696 697 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 698 if (d_info == NULL) 699 return; 700 701 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 702 cmd >> (32 - d_info->op_len), d_info->name); 703 704 for (i = 0; i < d_info->nr_sub_op; i++) 705 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 706 d_info->sub_op[i].low)); 707 708 pr_err("\n"); 709 } 710 711 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 712 { 713 return s->ip_va + (index << 2); 714 } 715 716 static inline u32 cmd_val(struct parser_exec_state *s, int index) 717 { 718 return *cmd_ptr(s, index); 719 } 720 721 static inline bool is_init_ctx(struct parser_exec_state *s) 722 { 723 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 724 } 725 726 static void parser_exec_state_dump(struct parser_exec_state *s) 727 { 728 int cnt = 0; 729 int i; 730 731 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 732 " ring_head(%08lx) ring_tail(%08lx)\n", 733 s->vgpu->id, s->engine->name, 734 s->ring_start, s->ring_start + s->ring_size, 735 s->ring_head, s->ring_tail); 736 737 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 738 s->buf_type == RING_BUFFER_INSTRUCTION ? 739 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 740 "CTX_BUFFER" : "BATCH_BUFFER"), 741 s->buf_addr_type == GTT_BUFFER ? 742 "GTT" : "PPGTT", s->ip_gma); 743 744 if (s->ip_va == NULL) { 745 gvt_dbg_cmd(" ip_va(NULL)"); 746 return; 747 } 748 749 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 750 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 751 cmd_val(s, 2), cmd_val(s, 3)); 752 753 print_opcode(cmd_val(s, 0), s->engine); 754 755 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 756 757 while (cnt < 1024) { 758 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 759 for (i = 0; i < 8; i++) 760 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 761 gvt_dbg_cmd("\n"); 762 763 s->ip_va += 8 * sizeof(u32); 764 cnt += 8; 765 } 766 } 767 768 static inline void update_ip_va(struct parser_exec_state *s) 769 { 770 unsigned long len = 0; 771 772 if (WARN_ON(s->ring_head == s->ring_tail)) 773 return; 774 775 if (s->buf_type == RING_BUFFER_INSTRUCTION || 776 s->buf_type == RING_BUFFER_CTX) { 777 unsigned long ring_top = s->ring_start + s->ring_size; 778 779 if (s->ring_head > s->ring_tail) { 780 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 781 len = (s->ip_gma - s->ring_head); 782 else if (s->ip_gma >= s->ring_start && 783 s->ip_gma <= s->ring_tail) 784 len = (ring_top - s->ring_head) + 785 (s->ip_gma - s->ring_start); 786 } else 787 len = (s->ip_gma - s->ring_head); 788 789 s->ip_va = s->rb_va + len; 790 } else {/* shadow batch buffer */ 791 s->ip_va = s->ret_bb_va; 792 } 793 } 794 795 static inline int ip_gma_set(struct parser_exec_state *s, 796 unsigned long ip_gma) 797 { 798 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 799 800 s->ip_gma = ip_gma; 801 update_ip_va(s); 802 return 0; 803 } 804 805 static inline int ip_gma_advance(struct parser_exec_state *s, 806 unsigned int dw_len) 807 { 808 s->ip_gma += (dw_len << 2); 809 810 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 811 if (s->ip_gma >= s->ring_start + s->ring_size) 812 s->ip_gma -= s->ring_size; 813 update_ip_va(s); 814 } else { 815 s->ip_va += (dw_len << 2); 816 } 817 818 return 0; 819 } 820 821 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 822 { 823 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 824 return info->len; 825 else 826 return (cmd & ((1U << info->len) - 1)) + 2; 827 return 0; 828 } 829 830 static inline int cmd_length(struct parser_exec_state *s) 831 { 832 return get_cmd_length(s->info, cmd_val(s, 0)); 833 } 834 835 /* do not remove this, some platform may need clflush here */ 836 #define patch_value(s, addr, val) do { \ 837 *addr = val; \ 838 } while (0) 839 840 static inline bool is_mocs_mmio(unsigned int offset) 841 { 842 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 843 ((offset >= 0xb020) && (offset <= 0xb0a0)); 844 } 845 846 static int is_cmd_update_pdps(unsigned int offset, 847 struct parser_exec_state *s) 848 { 849 u32 base = s->workload->engine->mmio_base; 850 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 851 } 852 853 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 854 unsigned int offset, unsigned int index) 855 { 856 struct intel_vgpu *vgpu = s->vgpu; 857 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 858 struct intel_vgpu_mm *mm; 859 u64 pdps[GEN8_3LVL_PDPES]; 860 861 if (shadow_mm->ppgtt_mm.root_entry_type == 862 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 863 pdps[0] = (u64)cmd_val(s, 2) << 32; 864 pdps[0] |= cmd_val(s, 4); 865 866 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 867 if (!mm) { 868 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 869 return -EINVAL; 870 } 871 intel_vgpu_mm_get(mm); 872 list_add_tail(&mm->ppgtt_mm.link, 873 &s->workload->lri_shadow_mm); 874 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 875 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 876 } else { 877 /* Currently all guests use PML4 table and now can't 878 * have a guest with 3-level table but uses LRI for 879 * PPGTT update. So this is simply un-testable. */ 880 GEM_BUG_ON(1); 881 gvt_vgpu_err("invalid shared shadow vm type\n"); 882 return -EINVAL; 883 } 884 return 0; 885 } 886 887 static int cmd_reg_handler(struct parser_exec_state *s, 888 unsigned int offset, unsigned int index, char *cmd) 889 { 890 struct intel_vgpu *vgpu = s->vgpu; 891 struct intel_gvt *gvt = vgpu->gvt; 892 u32 ctx_sr_ctl; 893 u32 *vreg, vreg_old; 894 895 if (offset + 4 > gvt->device_info.mmio_size) { 896 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 897 cmd, offset); 898 return -EFAULT; 899 } 900 901 if (is_init_ctx(s)) { 902 struct intel_gvt_mmio_info *mmio_info; 903 904 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 905 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 906 if (mmio_info && mmio_info->write) 907 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 908 return 0; 909 } 910 911 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 912 gvt_vgpu_err("%s access to non-render register (%x)\n", 913 cmd, offset); 914 return -EBADRQC; 915 } 916 917 if (!strncmp(cmd, "srm", 3) || 918 !strncmp(cmd, "lrm", 3)) { 919 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 920 offset == 0x21f0 || 921 (IS_BROADWELL(gvt->gt->i915) && 922 offset == i915_mmio_reg_offset(INSTPM))) 923 return 0; 924 else { 925 gvt_vgpu_err("%s access to register (%x)\n", 926 cmd, offset); 927 return -EPERM; 928 } 929 } 930 931 if (!strncmp(cmd, "lrr-src", 7) || 932 !strncmp(cmd, "lrr-dst", 7)) { 933 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 934 return 0; 935 else { 936 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 937 return -EPERM; 938 } 939 } 940 941 if (!strncmp(cmd, "pipe_ctrl", 9)) { 942 /* TODO: add LRI POST logic here */ 943 return 0; 944 } 945 946 if (strncmp(cmd, "lri", 3)) 947 return -EPERM; 948 949 /* below are all lri handlers */ 950 vreg = &vgpu_vreg(s->vgpu, offset); 951 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 952 gvt_vgpu_err("%s access to non-render register (%x)\n", 953 cmd, offset); 954 return -EBADRQC; 955 } 956 957 if (is_cmd_update_pdps(offset, s) && 958 cmd_pdp_mmio_update_handler(s, offset, index)) 959 return -EINVAL; 960 961 if (offset == i915_mmio_reg_offset(DERRMR) || 962 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 963 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 964 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 965 } 966 967 if (is_mocs_mmio(offset)) 968 *vreg = cmd_val(s, index + 1); 969 970 vreg_old = *vreg; 971 972 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 973 u32 cmdval_new, cmdval; 974 struct intel_gvt_mmio_info *mmio_info; 975 976 cmdval = cmd_val(s, index + 1); 977 978 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 979 if (!mmio_info) { 980 cmdval_new = cmdval; 981 } else { 982 u64 ro_mask = mmio_info->ro_mask; 983 int ret; 984 985 if (likely(!ro_mask)) 986 ret = mmio_info->write(s->vgpu, offset, 987 &cmdval, 4); 988 else { 989 gvt_vgpu_err("try to write RO reg %x\n", 990 offset); 991 ret = -EBADRQC; 992 } 993 if (ret) 994 return ret; 995 cmdval_new = *vreg; 996 } 997 if (cmdval_new != cmdval) 998 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 999 } 1000 1001 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 1002 *vreg = vreg_old; 1003 1004 /* TODO 1005 * In order to let workload with inhibit context to generate 1006 * correct image data into memory, vregs values will be loaded to 1007 * hw via LRIs in the workload with inhibit context. But as 1008 * indirect context is loaded prior to LRIs in workload, we don't 1009 * want reg values specified in indirect context overwritten by 1010 * LRIs in workloads. So, when scanning an indirect context, we 1011 * update reg values in it into vregs, so LRIs in workload with 1012 * inhibit context will restore with correct values 1013 */ 1014 if (IS_GEN(s->engine->i915, 9) && 1015 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1016 !strncmp(cmd, "lri", 3)) { 1017 intel_gvt_hypervisor_read_gpa(s->vgpu, 1018 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1019 /* check inhibit context */ 1020 if (ctx_sr_ctl & 1) { 1021 u32 data = cmd_val(s, index + 1); 1022 1023 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1024 intel_vgpu_mask_mmio_write(vgpu, 1025 offset, &data, 4); 1026 else 1027 vgpu_vreg(vgpu, offset) = data; 1028 } 1029 } 1030 1031 return 0; 1032 } 1033 1034 #define cmd_reg(s, i) \ 1035 (cmd_val(s, i) & GENMASK(22, 2)) 1036 1037 #define cmd_reg_inhibit(s, i) \ 1038 (cmd_val(s, i) & GENMASK(22, 18)) 1039 1040 #define cmd_gma(s, i) \ 1041 (cmd_val(s, i) & GENMASK(31, 2)) 1042 1043 #define cmd_gma_hi(s, i) \ 1044 (cmd_val(s, i) & GENMASK(15, 0)) 1045 1046 static int cmd_handler_lri(struct parser_exec_state *s) 1047 { 1048 int i, ret = 0; 1049 int cmd_len = cmd_length(s); 1050 1051 for (i = 1; i < cmd_len; i += 2) { 1052 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1053 if (s->engine->id == BCS0 && 1054 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1055 ret |= 0; 1056 else 1057 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1058 } 1059 if (ret) 1060 break; 1061 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1062 if (ret) 1063 break; 1064 } 1065 return ret; 1066 } 1067 1068 static int cmd_handler_lrr(struct parser_exec_state *s) 1069 { 1070 int i, ret = 0; 1071 int cmd_len = cmd_length(s); 1072 1073 for (i = 1; i < cmd_len; i += 2) { 1074 if (IS_BROADWELL(s->engine->i915)) 1075 ret |= ((cmd_reg_inhibit(s, i) || 1076 (cmd_reg_inhibit(s, i + 1)))) ? 1077 -EBADRQC : 0; 1078 if (ret) 1079 break; 1080 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1081 if (ret) 1082 break; 1083 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1084 if (ret) 1085 break; 1086 } 1087 return ret; 1088 } 1089 1090 static inline int cmd_address_audit(struct parser_exec_state *s, 1091 unsigned long guest_gma, int op_size, bool index_mode); 1092 1093 static int cmd_handler_lrm(struct parser_exec_state *s) 1094 { 1095 struct intel_gvt *gvt = s->vgpu->gvt; 1096 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1097 unsigned long gma; 1098 int i, ret = 0; 1099 int cmd_len = cmd_length(s); 1100 1101 for (i = 1; i < cmd_len;) { 1102 if (IS_BROADWELL(s->engine->i915)) 1103 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1104 if (ret) 1105 break; 1106 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1107 if (ret) 1108 break; 1109 if (cmd_val(s, 0) & (1 << 22)) { 1110 gma = cmd_gma(s, i + 1); 1111 if (gmadr_bytes == 8) 1112 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1113 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1114 if (ret) 1115 break; 1116 } 1117 i += gmadr_dw_number(s) + 1; 1118 } 1119 return ret; 1120 } 1121 1122 static int cmd_handler_srm(struct parser_exec_state *s) 1123 { 1124 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1125 unsigned long gma; 1126 int i, ret = 0; 1127 int cmd_len = cmd_length(s); 1128 1129 for (i = 1; i < cmd_len;) { 1130 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1131 if (ret) 1132 break; 1133 if (cmd_val(s, 0) & (1 << 22)) { 1134 gma = cmd_gma(s, i + 1); 1135 if (gmadr_bytes == 8) 1136 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1137 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1138 if (ret) 1139 break; 1140 } 1141 i += gmadr_dw_number(s) + 1; 1142 } 1143 return ret; 1144 } 1145 1146 struct cmd_interrupt_event { 1147 int pipe_control_notify; 1148 int mi_flush_dw; 1149 int mi_user_interrupt; 1150 }; 1151 1152 static struct cmd_interrupt_event cmd_interrupt_events[] = { 1153 [RCS0] = { 1154 .pipe_control_notify = RCS_PIPE_CONTROL, 1155 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1156 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1157 }, 1158 [BCS0] = { 1159 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1160 .mi_flush_dw = BCS_MI_FLUSH_DW, 1161 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1162 }, 1163 [VCS0] = { 1164 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1165 .mi_flush_dw = VCS_MI_FLUSH_DW, 1166 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1167 }, 1168 [VCS1] = { 1169 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1170 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1171 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1172 }, 1173 [VECS0] = { 1174 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1175 .mi_flush_dw = VECS_MI_FLUSH_DW, 1176 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1177 }, 1178 }; 1179 1180 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1181 { 1182 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1183 unsigned long gma; 1184 bool index_mode = false; 1185 unsigned int post_sync; 1186 int ret = 0; 1187 u32 hws_pga, val; 1188 1189 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1190 1191 /* LRI post sync */ 1192 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1193 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1194 /* post sync */ 1195 else if (post_sync) { 1196 if (post_sync == 2) 1197 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1198 else if (post_sync == 3) 1199 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1200 else if (post_sync == 1) { 1201 /* check ggtt*/ 1202 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1203 gma = cmd_val(s, 2) & GENMASK(31, 3); 1204 if (gmadr_bytes == 8) 1205 gma |= (cmd_gma_hi(s, 3)) << 32; 1206 /* Store Data Index */ 1207 if (cmd_val(s, 1) & (1 << 21)) 1208 index_mode = true; 1209 ret |= cmd_address_audit(s, gma, sizeof(u64), 1210 index_mode); 1211 if (ret) 1212 return ret; 1213 if (index_mode) { 1214 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1215 gma = hws_pga + gma; 1216 patch_value(s, cmd_ptr(s, 2), gma); 1217 val = cmd_val(s, 1) & (~(1 << 21)); 1218 patch_value(s, cmd_ptr(s, 1), val); 1219 } 1220 } 1221 } 1222 } 1223 1224 if (ret) 1225 return ret; 1226 1227 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1228 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1229 s->workload->pending_events); 1230 return 0; 1231 } 1232 1233 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1234 { 1235 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1236 s->workload->pending_events); 1237 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1238 return 0; 1239 } 1240 1241 static int cmd_advance_default(struct parser_exec_state *s) 1242 { 1243 return ip_gma_advance(s, cmd_length(s)); 1244 } 1245 1246 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1247 { 1248 int ret; 1249 1250 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1251 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1252 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1253 s->buf_addr_type = s->saved_buf_addr_type; 1254 } else if (s->buf_type == RING_BUFFER_CTX) { 1255 ret = ip_gma_set(s, s->ring_tail); 1256 } else { 1257 s->buf_type = RING_BUFFER_INSTRUCTION; 1258 s->buf_addr_type = GTT_BUFFER; 1259 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1260 s->ret_ip_gma_ring -= s->ring_size; 1261 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1262 } 1263 return ret; 1264 } 1265 1266 struct mi_display_flip_command_info { 1267 int pipe; 1268 int plane; 1269 int event; 1270 i915_reg_t stride_reg; 1271 i915_reg_t ctrl_reg; 1272 i915_reg_t surf_reg; 1273 u64 stride_val; 1274 u64 tile_val; 1275 u64 surf_val; 1276 bool async_flip; 1277 }; 1278 1279 struct plane_code_mapping { 1280 int pipe; 1281 int plane; 1282 int event; 1283 }; 1284 1285 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1286 struct mi_display_flip_command_info *info) 1287 { 1288 struct drm_i915_private *dev_priv = s->engine->i915; 1289 struct plane_code_mapping gen8_plane_code[] = { 1290 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1291 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1292 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1293 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1294 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1295 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1296 }; 1297 u32 dword0, dword1, dword2; 1298 u32 v; 1299 1300 dword0 = cmd_val(s, 0); 1301 dword1 = cmd_val(s, 1); 1302 dword2 = cmd_val(s, 2); 1303 1304 v = (dword0 & GENMASK(21, 19)) >> 19; 1305 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1306 return -EBADRQC; 1307 1308 info->pipe = gen8_plane_code[v].pipe; 1309 info->plane = gen8_plane_code[v].plane; 1310 info->event = gen8_plane_code[v].event; 1311 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1312 info->tile_val = (dword1 & 0x1); 1313 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1314 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1315 1316 if (info->plane == PLANE_A) { 1317 info->ctrl_reg = DSPCNTR(info->pipe); 1318 info->stride_reg = DSPSTRIDE(info->pipe); 1319 info->surf_reg = DSPSURF(info->pipe); 1320 } else if (info->plane == PLANE_B) { 1321 info->ctrl_reg = SPRCTL(info->pipe); 1322 info->stride_reg = SPRSTRIDE(info->pipe); 1323 info->surf_reg = SPRSURF(info->pipe); 1324 } else { 1325 drm_WARN_ON(&dev_priv->drm, 1); 1326 return -EBADRQC; 1327 } 1328 return 0; 1329 } 1330 1331 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1332 struct mi_display_flip_command_info *info) 1333 { 1334 struct drm_i915_private *dev_priv = s->engine->i915; 1335 struct intel_vgpu *vgpu = s->vgpu; 1336 u32 dword0 = cmd_val(s, 0); 1337 u32 dword1 = cmd_val(s, 1); 1338 u32 dword2 = cmd_val(s, 2); 1339 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1340 1341 info->plane = PRIMARY_PLANE; 1342 1343 switch (plane) { 1344 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1345 info->pipe = PIPE_A; 1346 info->event = PRIMARY_A_FLIP_DONE; 1347 break; 1348 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1349 info->pipe = PIPE_B; 1350 info->event = PRIMARY_B_FLIP_DONE; 1351 break; 1352 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1353 info->pipe = PIPE_C; 1354 info->event = PRIMARY_C_FLIP_DONE; 1355 break; 1356 1357 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1358 info->pipe = PIPE_A; 1359 info->event = SPRITE_A_FLIP_DONE; 1360 info->plane = SPRITE_PLANE; 1361 break; 1362 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1363 info->pipe = PIPE_B; 1364 info->event = SPRITE_B_FLIP_DONE; 1365 info->plane = SPRITE_PLANE; 1366 break; 1367 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1368 info->pipe = PIPE_C; 1369 info->event = SPRITE_C_FLIP_DONE; 1370 info->plane = SPRITE_PLANE; 1371 break; 1372 1373 default: 1374 gvt_vgpu_err("unknown plane code %d\n", plane); 1375 return -EBADRQC; 1376 } 1377 1378 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1379 info->tile_val = (dword1 & GENMASK(2, 0)); 1380 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1381 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1382 1383 info->ctrl_reg = DSPCNTR(info->pipe); 1384 info->stride_reg = DSPSTRIDE(info->pipe); 1385 info->surf_reg = DSPSURF(info->pipe); 1386 1387 return 0; 1388 } 1389 1390 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1391 struct mi_display_flip_command_info *info) 1392 { 1393 u32 stride, tile; 1394 1395 if (!info->async_flip) 1396 return 0; 1397 1398 if (INTEL_GEN(s->engine->i915) >= 9) { 1399 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1400 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1401 GENMASK(12, 10)) >> 10; 1402 } else { 1403 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1404 GENMASK(15, 6)) >> 6; 1405 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1406 } 1407 1408 if (stride != info->stride_val) 1409 gvt_dbg_cmd("cannot change stride during async flip\n"); 1410 1411 if (tile != info->tile_val) 1412 gvt_dbg_cmd("cannot change tile during async flip\n"); 1413 1414 return 0; 1415 } 1416 1417 static int gen8_update_plane_mmio_from_mi_display_flip( 1418 struct parser_exec_state *s, 1419 struct mi_display_flip_command_info *info) 1420 { 1421 struct drm_i915_private *dev_priv = s->engine->i915; 1422 struct intel_vgpu *vgpu = s->vgpu; 1423 1424 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1425 info->surf_val << 12); 1426 if (INTEL_GEN(dev_priv) >= 9) { 1427 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1428 info->stride_val); 1429 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1430 info->tile_val << 10); 1431 } else { 1432 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1433 info->stride_val << 6); 1434 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1435 info->tile_val << 10); 1436 } 1437 1438 if (info->plane == PLANE_PRIMARY) 1439 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++; 1440 1441 if (info->async_flip) 1442 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1443 else 1444 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1445 1446 return 0; 1447 } 1448 1449 static int decode_mi_display_flip(struct parser_exec_state *s, 1450 struct mi_display_flip_command_info *info) 1451 { 1452 if (IS_BROADWELL(s->engine->i915)) 1453 return gen8_decode_mi_display_flip(s, info); 1454 if (INTEL_GEN(s->engine->i915) >= 9) 1455 return skl_decode_mi_display_flip(s, info); 1456 1457 return -ENODEV; 1458 } 1459 1460 static int check_mi_display_flip(struct parser_exec_state *s, 1461 struct mi_display_flip_command_info *info) 1462 { 1463 return gen8_check_mi_display_flip(s, info); 1464 } 1465 1466 static int update_plane_mmio_from_mi_display_flip( 1467 struct parser_exec_state *s, 1468 struct mi_display_flip_command_info *info) 1469 { 1470 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1471 } 1472 1473 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1474 { 1475 struct mi_display_flip_command_info info; 1476 struct intel_vgpu *vgpu = s->vgpu; 1477 int ret; 1478 int i; 1479 int len = cmd_length(s); 1480 u32 valid_len = CMD_LEN(1); 1481 1482 /* Flip Type == Stereo 3D Flip */ 1483 if (DWORD_FIELD(2, 1, 0) == 2) 1484 valid_len++; 1485 ret = gvt_check_valid_cmd_length(cmd_length(s), 1486 valid_len); 1487 if (ret) 1488 return ret; 1489 1490 ret = decode_mi_display_flip(s, &info); 1491 if (ret) { 1492 gvt_vgpu_err("fail to decode MI display flip command\n"); 1493 return ret; 1494 } 1495 1496 ret = check_mi_display_flip(s, &info); 1497 if (ret) { 1498 gvt_vgpu_err("invalid MI display flip command\n"); 1499 return ret; 1500 } 1501 1502 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1503 if (ret) { 1504 gvt_vgpu_err("fail to update plane mmio\n"); 1505 return ret; 1506 } 1507 1508 for (i = 0; i < len; i++) 1509 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1510 return 0; 1511 } 1512 1513 static bool is_wait_for_flip_pending(u32 cmd) 1514 { 1515 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1516 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1517 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1518 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1519 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1520 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1521 } 1522 1523 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1524 { 1525 u32 cmd = cmd_val(s, 0); 1526 1527 if (!is_wait_for_flip_pending(cmd)) 1528 return 0; 1529 1530 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1531 return 0; 1532 } 1533 1534 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1535 { 1536 unsigned long addr; 1537 unsigned long gma_high, gma_low; 1538 struct intel_vgpu *vgpu = s->vgpu; 1539 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1540 1541 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1542 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1543 return INTEL_GVT_INVALID_ADDR; 1544 } 1545 1546 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1547 if (gmadr_bytes == 4) { 1548 addr = gma_low; 1549 } else { 1550 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1551 addr = (((unsigned long)gma_high) << 32) | gma_low; 1552 } 1553 return addr; 1554 } 1555 1556 static inline int cmd_address_audit(struct parser_exec_state *s, 1557 unsigned long guest_gma, int op_size, bool index_mode) 1558 { 1559 struct intel_vgpu *vgpu = s->vgpu; 1560 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1561 int i; 1562 int ret; 1563 1564 if (op_size > max_surface_size) { 1565 gvt_vgpu_err("command address audit fail name %s\n", 1566 s->info->name); 1567 return -EFAULT; 1568 } 1569 1570 if (index_mode) { 1571 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1572 ret = -EFAULT; 1573 goto err; 1574 } 1575 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1576 ret = -EFAULT; 1577 goto err; 1578 } 1579 1580 return 0; 1581 1582 err: 1583 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1584 s->info->name, guest_gma, op_size); 1585 1586 pr_err("cmd dump: "); 1587 for (i = 0; i < cmd_length(s); i++) { 1588 if (!(i % 4)) 1589 pr_err("\n%08x ", cmd_val(s, i)); 1590 else 1591 pr_err("%08x ", cmd_val(s, i)); 1592 } 1593 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1594 vgpu->id, 1595 vgpu_aperture_gmadr_base(vgpu), 1596 vgpu_aperture_gmadr_end(vgpu), 1597 vgpu_hidden_gmadr_base(vgpu), 1598 vgpu_hidden_gmadr_end(vgpu)); 1599 return ret; 1600 } 1601 1602 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1603 { 1604 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1605 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1606 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1607 unsigned long gma, gma_low, gma_high; 1608 u32 valid_len = CMD_LEN(2); 1609 int ret = 0; 1610 1611 /* check ppggt */ 1612 if (!(cmd_val(s, 0) & (1 << 22))) 1613 return 0; 1614 1615 /* check if QWORD */ 1616 if (DWORD_FIELD(0, 21, 21)) 1617 valid_len++; 1618 ret = gvt_check_valid_cmd_length(cmd_length(s), 1619 valid_len); 1620 if (ret) 1621 return ret; 1622 1623 gma = cmd_val(s, 2) & GENMASK(31, 2); 1624 1625 if (gmadr_bytes == 8) { 1626 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1627 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1628 gma = (gma_high << 32) | gma_low; 1629 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1630 } 1631 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1632 return ret; 1633 } 1634 1635 static inline int unexpected_cmd(struct parser_exec_state *s) 1636 { 1637 struct intel_vgpu *vgpu = s->vgpu; 1638 1639 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1640 1641 return -EBADRQC; 1642 } 1643 1644 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1645 { 1646 return unexpected_cmd(s); 1647 } 1648 1649 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1650 { 1651 return unexpected_cmd(s); 1652 } 1653 1654 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1655 { 1656 return unexpected_cmd(s); 1657 } 1658 1659 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1660 { 1661 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1662 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1663 sizeof(u32); 1664 unsigned long gma, gma_high; 1665 u32 valid_len = CMD_LEN(1); 1666 int ret = 0; 1667 1668 if (!(cmd_val(s, 0) & (1 << 22))) 1669 return ret; 1670 1671 /* check inline data */ 1672 if (cmd_val(s, 0) & BIT(18)) 1673 valid_len = CMD_LEN(9); 1674 ret = gvt_check_valid_cmd_length(cmd_length(s), 1675 valid_len); 1676 if (ret) 1677 return ret; 1678 1679 gma = cmd_val(s, 1) & GENMASK(31, 2); 1680 if (gmadr_bytes == 8) { 1681 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1682 gma = (gma_high << 32) | gma; 1683 } 1684 ret = cmd_address_audit(s, gma, op_size, false); 1685 return ret; 1686 } 1687 1688 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1689 { 1690 return unexpected_cmd(s); 1691 } 1692 1693 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1694 { 1695 return unexpected_cmd(s); 1696 } 1697 1698 static int cmd_handler_mi_conditional_batch_buffer_end( 1699 struct parser_exec_state *s) 1700 { 1701 return unexpected_cmd(s); 1702 } 1703 1704 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1705 { 1706 return unexpected_cmd(s); 1707 } 1708 1709 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1710 { 1711 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1712 unsigned long gma; 1713 bool index_mode = false; 1714 int ret = 0; 1715 u32 hws_pga, val; 1716 u32 valid_len = CMD_LEN(2); 1717 1718 ret = gvt_check_valid_cmd_length(cmd_length(s), 1719 valid_len); 1720 if (ret) { 1721 /* Check again for Qword */ 1722 ret = gvt_check_valid_cmd_length(cmd_length(s), 1723 ++valid_len); 1724 return ret; 1725 } 1726 1727 /* Check post-sync and ppgtt bit */ 1728 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1729 gma = cmd_val(s, 1) & GENMASK(31, 3); 1730 if (gmadr_bytes == 8) 1731 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1732 /* Store Data Index */ 1733 if (cmd_val(s, 0) & (1 << 21)) 1734 index_mode = true; 1735 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1736 if (ret) 1737 return ret; 1738 if (index_mode) { 1739 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1740 gma = hws_pga + gma; 1741 patch_value(s, cmd_ptr(s, 1), gma); 1742 val = cmd_val(s, 0) & (~(1 << 21)); 1743 patch_value(s, cmd_ptr(s, 0), val); 1744 } 1745 } 1746 /* Check notify bit */ 1747 if ((cmd_val(s, 0) & (1 << 8))) 1748 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1749 s->workload->pending_events); 1750 return ret; 1751 } 1752 1753 static void addr_type_update_snb(struct parser_exec_state *s) 1754 { 1755 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1756 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1757 s->buf_addr_type = PPGTT_BUFFER; 1758 } 1759 } 1760 1761 1762 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1763 unsigned long gma, unsigned long end_gma, void *va) 1764 { 1765 unsigned long copy_len, offset; 1766 unsigned long len = 0; 1767 unsigned long gpa; 1768 1769 while (gma != end_gma) { 1770 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1771 if (gpa == INTEL_GVT_INVALID_ADDR) { 1772 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1773 return -EFAULT; 1774 } 1775 1776 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1777 1778 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1779 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1780 1781 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len); 1782 1783 len += copy_len; 1784 gma += copy_len; 1785 } 1786 return len; 1787 } 1788 1789 1790 /* 1791 * Check whether a batch buffer needs to be scanned. Currently 1792 * the only criteria is based on privilege. 1793 */ 1794 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1795 { 1796 /* Decide privilege based on address space */ 1797 if (cmd_val(s, 0) & BIT(8) && 1798 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1799 return 0; 1800 1801 return 1; 1802 } 1803 1804 static const char *repr_addr_type(unsigned int type) 1805 { 1806 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1807 } 1808 1809 static int find_bb_size(struct parser_exec_state *s, 1810 unsigned long *bb_size, 1811 unsigned long *bb_end_cmd_offset) 1812 { 1813 unsigned long gma = 0; 1814 const struct cmd_info *info; 1815 u32 cmd_len = 0; 1816 bool bb_end = false; 1817 struct intel_vgpu *vgpu = s->vgpu; 1818 u32 cmd; 1819 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1820 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1821 1822 *bb_size = 0; 1823 *bb_end_cmd_offset = 0; 1824 1825 /* get the start gm address of the batch buffer */ 1826 gma = get_gma_bb_from_cmd(s, 1); 1827 if (gma == INTEL_GVT_INVALID_ADDR) 1828 return -EFAULT; 1829 1830 cmd = cmd_val(s, 0); 1831 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1832 if (info == NULL) { 1833 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1834 cmd, get_opcode(cmd, s->engine), 1835 repr_addr_type(s->buf_addr_type), 1836 s->engine->name, s->workload); 1837 return -EBADRQC; 1838 } 1839 do { 1840 if (copy_gma_to_hva(s->vgpu, mm, 1841 gma, gma + 4, &cmd) < 0) 1842 return -EFAULT; 1843 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1844 if (info == NULL) { 1845 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1846 cmd, get_opcode(cmd, s->engine), 1847 repr_addr_type(s->buf_addr_type), 1848 s->engine->name, s->workload); 1849 return -EBADRQC; 1850 } 1851 1852 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1853 bb_end = true; 1854 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1855 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1856 /* chained batch buffer */ 1857 bb_end = true; 1858 } 1859 1860 if (bb_end) 1861 *bb_end_cmd_offset = *bb_size; 1862 1863 cmd_len = get_cmd_length(info, cmd) << 2; 1864 *bb_size += cmd_len; 1865 gma += cmd_len; 1866 } while (!bb_end); 1867 1868 return 0; 1869 } 1870 1871 static int audit_bb_end(struct parser_exec_state *s, void *va) 1872 { 1873 struct intel_vgpu *vgpu = s->vgpu; 1874 u32 cmd = *(u32 *)va; 1875 const struct cmd_info *info; 1876 1877 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1878 if (info == NULL) { 1879 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1880 cmd, get_opcode(cmd, s->engine), 1881 repr_addr_type(s->buf_addr_type), 1882 s->engine->name, s->workload); 1883 return -EBADRQC; 1884 } 1885 1886 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1887 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1888 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1889 return 0; 1890 1891 return -EBADRQC; 1892 } 1893 1894 static int perform_bb_shadow(struct parser_exec_state *s) 1895 { 1896 struct intel_vgpu *vgpu = s->vgpu; 1897 struct intel_vgpu_shadow_bb *bb; 1898 unsigned long gma = 0; 1899 unsigned long bb_size; 1900 unsigned long bb_end_cmd_offset; 1901 int ret = 0; 1902 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1903 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1904 unsigned long start_offset = 0; 1905 1906 /* get the start gm address of the batch buffer */ 1907 gma = get_gma_bb_from_cmd(s, 1); 1908 if (gma == INTEL_GVT_INVALID_ADDR) 1909 return -EFAULT; 1910 1911 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1912 if (ret) 1913 return ret; 1914 1915 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1916 if (!bb) 1917 return -ENOMEM; 1918 1919 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1920 1921 /* the start_offset stores the batch buffer's start gma's 1922 * offset relative to page boundary. so for non-privileged batch 1923 * buffer, the shadowed gem object holds exactly the same page 1924 * layout as original gem object. This is for the convience of 1925 * replacing the whole non-privilged batch buffer page to this 1926 * shadowed one in PPGTT at the same gma address. (this replacing 1927 * action is not implemented yet now, but may be necessary in 1928 * future). 1929 * for prileged batch buffer, we just change start gma address to 1930 * that of shadowed page. 1931 */ 1932 if (bb->ppgtt) 1933 start_offset = gma & ~I915_GTT_PAGE_MASK; 1934 1935 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1936 round_up(bb_size + start_offset, 1937 PAGE_SIZE)); 1938 if (IS_ERR(bb->obj)) { 1939 ret = PTR_ERR(bb->obj); 1940 goto err_free_bb; 1941 } 1942 1943 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1944 if (IS_ERR(bb->va)) { 1945 ret = PTR_ERR(bb->va); 1946 goto err_free_obj; 1947 } 1948 1949 ret = copy_gma_to_hva(s->vgpu, mm, 1950 gma, gma + bb_size, 1951 bb->va + start_offset); 1952 if (ret < 0) { 1953 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1954 ret = -EFAULT; 1955 goto err_unmap; 1956 } 1957 1958 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1959 if (ret) 1960 goto err_unmap; 1961 1962 i915_gem_object_unlock(bb->obj); 1963 INIT_LIST_HEAD(&bb->list); 1964 list_add(&bb->list, &s->workload->shadow_bb); 1965 1966 bb->bb_start_cmd_va = s->ip_va; 1967 1968 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1969 bb->bb_offset = s->ip_va - s->rb_va; 1970 else 1971 bb->bb_offset = 0; 1972 1973 /* 1974 * ip_va saves the virtual address of the shadow batch buffer, while 1975 * ip_gma saves the graphics address of the original batch buffer. 1976 * As the shadow batch buffer is just a copy from the originial one, 1977 * it should be right to use shadow batch buffer'va and original batch 1978 * buffer's gma in pair. After all, we don't want to pin the shadow 1979 * buffer here (too early). 1980 */ 1981 s->ip_va = bb->va + start_offset; 1982 s->ip_gma = gma; 1983 return 0; 1984 err_unmap: 1985 i915_gem_object_unpin_map(bb->obj); 1986 err_free_obj: 1987 i915_gem_object_put(bb->obj); 1988 err_free_bb: 1989 kfree(bb); 1990 return ret; 1991 } 1992 1993 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1994 { 1995 bool second_level; 1996 int ret = 0; 1997 struct intel_vgpu *vgpu = s->vgpu; 1998 1999 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 2000 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 2001 return -EFAULT; 2002 } 2003 2004 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2005 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2006 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2007 return -EFAULT; 2008 } 2009 2010 s->saved_buf_addr_type = s->buf_addr_type; 2011 addr_type_update_snb(s); 2012 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2013 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2014 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2015 } else if (second_level) { 2016 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2017 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2018 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2019 } 2020 2021 if (batch_buffer_needs_scan(s)) { 2022 ret = perform_bb_shadow(s); 2023 if (ret < 0) 2024 gvt_vgpu_err("invalid shadow batch buffer\n"); 2025 } else { 2026 /* emulate a batch buffer end to do return right */ 2027 ret = cmd_handler_mi_batch_buffer_end(s); 2028 if (ret < 0) 2029 return ret; 2030 } 2031 return ret; 2032 } 2033 2034 static int mi_noop_index; 2035 2036 static const struct cmd_info cmd_info[] = { 2037 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2038 2039 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2040 0, 1, NULL}, 2041 2042 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2043 0, 1, cmd_handler_mi_user_interrupt}, 2044 2045 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2046 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2047 2048 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2049 2050 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2051 NULL}, 2052 2053 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2054 NULL}, 2055 2056 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2057 NULL}, 2058 2059 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2060 NULL}, 2061 2062 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2063 D_ALL, 0, 1, NULL}, 2064 2065 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2066 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2067 cmd_handler_mi_batch_buffer_end}, 2068 2069 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2070 0, 1, NULL}, 2071 2072 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2073 NULL}, 2074 2075 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2076 D_ALL, 0, 1, NULL}, 2077 2078 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2079 NULL}, 2080 2081 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2082 NULL}, 2083 2084 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2085 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2086 2087 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2088 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2089 2090 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2091 2092 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2093 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2094 2095 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2096 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2097 NULL, CMD_LEN(0)}, 2098 2099 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2100 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2101 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2102 2103 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2104 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2105 2106 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2107 0, 8, cmd_handler_mi_store_data_index}, 2108 2109 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2110 D_ALL, 0, 8, cmd_handler_lri}, 2111 2112 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2113 cmd_handler_mi_update_gtt}, 2114 2115 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2116 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2117 cmd_handler_srm, CMD_LEN(2)}, 2118 2119 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2120 cmd_handler_mi_flush_dw}, 2121 2122 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2123 10, cmd_handler_mi_clflush}, 2124 2125 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2126 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2127 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2128 2129 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2130 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2131 cmd_handler_lrm, CMD_LEN(2)}, 2132 2133 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2134 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2135 cmd_handler_lrr, CMD_LEN(1)}, 2136 2137 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2138 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2139 8, NULL, CMD_LEN(2)}, 2140 2141 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2142 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2143 2144 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2145 ADDR_FIX_1(2), 8, NULL}, 2146 2147 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2148 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2149 2150 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2151 8, cmd_handler_mi_op_2f}, 2152 2153 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2154 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2155 cmd_handler_mi_batch_buffer_start}, 2156 2157 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2158 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2159 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2160 2161 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2162 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2163 2164 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2165 ADDR_FIX_2(4, 7), 8, NULL}, 2166 2167 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2168 0, 8, NULL}, 2169 2170 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2171 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2172 2173 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2174 2175 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2176 0, 8, NULL}, 2177 2178 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2179 ADDR_FIX_1(3), 8, NULL}, 2180 2181 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2182 D_ALL, 0, 8, NULL}, 2183 2184 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2185 ADDR_FIX_1(4), 8, NULL}, 2186 2187 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2188 ADDR_FIX_2(4, 5), 8, NULL}, 2189 2190 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2191 ADDR_FIX_1(4), 8, NULL}, 2192 2193 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2194 ADDR_FIX_2(4, 7), 8, NULL}, 2195 2196 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2197 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2198 2199 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2200 2201 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2202 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2203 2204 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2205 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2206 2207 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2208 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2209 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2210 2211 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2212 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2213 2214 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2215 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2216 2217 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2218 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2219 2220 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2221 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2222 2223 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2224 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2225 2226 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2227 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2228 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2229 2230 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2231 ADDR_FIX_2(4, 5), 8, NULL}, 2232 2233 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2234 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2235 2236 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2237 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2238 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2239 2240 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2241 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2242 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2243 2244 {"3DSTATE_BLEND_STATE_POINTERS", 2245 OP_3DSTATE_BLEND_STATE_POINTERS, 2246 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2247 2248 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2249 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2250 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2251 2252 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2253 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2254 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2255 2256 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2257 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2258 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2259 2260 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2261 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2263 2264 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2265 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2266 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2267 2268 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2269 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2271 2272 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2273 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2277 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2278 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2279 2280 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2281 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2282 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2283 2284 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2285 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2286 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2287 2288 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2289 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2290 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2291 2292 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2293 0, 8, NULL}, 2294 2295 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2296 0, 8, NULL}, 2297 2298 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2299 0, 8, NULL}, 2300 2301 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2302 0, 8, NULL}, 2303 2304 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2305 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2306 2307 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2308 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2309 2310 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2311 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2312 2313 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2314 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2315 2316 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2317 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2318 2319 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2320 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2321 2322 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2323 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2324 2325 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2326 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2327 2328 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2329 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2330 2331 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2332 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2333 2334 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2335 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2336 2337 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2338 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2339 2340 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2341 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2342 2343 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2344 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2345 2346 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2347 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2348 2349 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2350 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2351 2352 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2353 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2354 2355 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2356 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2357 2358 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2359 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2360 2361 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2362 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2363 2364 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2365 D_BDW_PLUS, 0, 8, NULL}, 2366 2367 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2368 NULL}, 2369 2370 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2371 D_BDW_PLUS, 0, 8, NULL}, 2372 2373 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2374 D_BDW_PLUS, 0, 8, NULL}, 2375 2376 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2377 8, NULL}, 2378 2379 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2380 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2381 2382 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2383 8, NULL}, 2384 2385 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2386 NULL}, 2387 2388 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2389 NULL}, 2390 2391 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2392 NULL}, 2393 2394 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2395 D_BDW_PLUS, 0, 8, NULL}, 2396 2397 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2398 R_RCS, D_ALL, 0, 8, NULL}, 2399 2400 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2401 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2402 2403 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2404 R_RCS, D_ALL, 0, 1, NULL}, 2405 2406 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2407 2408 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2409 R_RCS, D_ALL, 0, 8, NULL}, 2410 2411 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2412 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2413 2414 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2415 2416 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2417 2418 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2419 2420 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2421 D_BDW_PLUS, 0, 8, NULL}, 2422 2423 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2424 D_BDW_PLUS, 0, 8, NULL}, 2425 2426 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2427 D_ALL, 0, 8, NULL}, 2428 2429 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2430 D_BDW_PLUS, 0, 8, NULL}, 2431 2432 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2433 D_BDW_PLUS, 0, 8, NULL}, 2434 2435 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2436 2437 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2438 2439 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2440 2441 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2442 D_ALL, 0, 8, NULL}, 2443 2444 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2445 2446 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2447 2448 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2449 R_RCS, D_ALL, 0, 8, NULL}, 2450 2451 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2452 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2453 2454 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2455 0, 8, NULL}, 2456 2457 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2458 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2459 2460 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2461 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2462 2463 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2464 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2465 2466 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2467 D_ALL, 0, 8, NULL}, 2468 2469 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2470 D_ALL, 0, 8, NULL}, 2471 2472 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2473 D_ALL, 0, 8, NULL}, 2474 2475 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2476 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2477 2478 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2479 D_BDW_PLUS, 0, 8, NULL}, 2480 2481 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2482 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2483 2484 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2485 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2486 2487 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2488 R_RCS, D_ALL, 0, 8, NULL}, 2489 2490 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2491 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2492 2493 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2494 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2495 2496 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2497 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2498 2499 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2500 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2501 2502 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2503 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2504 2505 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2506 R_RCS, D_ALL, 0, 8, NULL}, 2507 2508 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2509 D_ALL, 0, 9, NULL}, 2510 2511 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2512 ADDR_FIX_2(2, 4), 8, NULL}, 2513 2514 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2515 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2516 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2517 2518 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2519 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2520 2521 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2522 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2523 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2524 2525 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2526 D_BDW_PLUS, 0, 8, NULL}, 2527 2528 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2529 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2530 2531 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2532 2533 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2534 1, NULL}, 2535 2536 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2537 ADDR_FIX_1(1), 8, NULL}, 2538 2539 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2540 2541 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2542 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2543 2544 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2545 ADDR_FIX_1(1), 8, NULL}, 2546 2547 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2548 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2549 2550 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2551 2552 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2553 2554 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2555 0, 8, NULL}, 2556 2557 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2558 D_SKL_PLUS, 0, 8, NULL}, 2559 2560 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2561 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2562 2563 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2564 0, 16, NULL}, 2565 2566 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2567 0, 16, NULL}, 2568 2569 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2570 0, 16, NULL}, 2571 2572 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2573 2574 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2575 0, 16, NULL}, 2576 2577 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2578 0, 16, NULL}, 2579 2580 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2581 0, 16, NULL}, 2582 2583 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2584 0, 8, NULL}, 2585 2586 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2587 NULL}, 2588 2589 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2590 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2591 2592 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2593 R_VCS, D_ALL, 0, 12, NULL}, 2594 2595 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2596 R_VCS, D_ALL, 0, 12, NULL}, 2597 2598 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2599 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2600 2601 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2602 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2603 2604 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2605 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2606 2607 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2608 2609 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2610 R_VCS, D_ALL, 0, 12, NULL}, 2611 2612 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2613 R_VCS, D_ALL, 0, 12, NULL}, 2614 2615 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2616 R_VCS, D_ALL, 0, 12, NULL}, 2617 2618 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2619 R_VCS, D_ALL, 0, 12, NULL}, 2620 2621 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2622 R_VCS, D_ALL, 0, 12, NULL}, 2623 2624 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2625 R_VCS, D_ALL, 0, 12, NULL}, 2626 2627 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2628 R_VCS, D_ALL, 0, 6, NULL}, 2629 2630 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2631 R_VCS, D_ALL, 0, 12, NULL}, 2632 2633 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2634 R_VCS, D_ALL, 0, 12, NULL}, 2635 2636 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2637 R_VCS, D_ALL, 0, 12, NULL}, 2638 2639 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2640 R_VCS, D_ALL, 0, 12, NULL}, 2641 2642 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2643 R_VCS, D_ALL, 0, 12, NULL}, 2644 2645 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2646 R_VCS, D_ALL, 0, 12, NULL}, 2647 2648 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2649 R_VCS, D_ALL, 0, 12, NULL}, 2650 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2651 R_VCS, D_ALL, 0, 12, NULL}, 2652 2653 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2654 R_VCS, D_ALL, 0, 12, NULL}, 2655 2656 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2657 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2658 2659 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2660 R_VCS, D_ALL, 0, 12, NULL}, 2661 2662 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2663 R_VCS, D_ALL, 0, 12, NULL}, 2664 2665 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2666 R_VCS, D_ALL, 0, 12, NULL}, 2667 2668 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2669 R_VCS, D_ALL, 0, 12, NULL}, 2670 2671 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2672 R_VCS, D_ALL, 0, 12, NULL}, 2673 2674 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2675 R_VCS, D_ALL, 0, 12, NULL}, 2676 2677 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2678 R_VCS, D_ALL, 0, 12, NULL}, 2679 2680 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2681 R_VCS, D_ALL, 0, 12, NULL}, 2682 2683 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2684 R_VCS, D_ALL, 0, 12, NULL}, 2685 2686 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2687 R_VCS, D_ALL, 0, 12, NULL}, 2688 2689 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2690 R_VCS, D_ALL, 0, 12, NULL}, 2691 2692 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2693 0, 16, NULL}, 2694 2695 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2696 2697 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2698 2699 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2700 R_VCS, D_ALL, 0, 12, NULL}, 2701 2702 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2703 R_VCS, D_ALL, 0, 12, NULL}, 2704 2705 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2706 R_VCS, D_ALL, 0, 12, NULL}, 2707 2708 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2709 2710 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2711 0, 12, NULL}, 2712 2713 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2714 0, 12, NULL}, 2715 }; 2716 2717 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2718 { 2719 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2720 } 2721 2722 /* call the cmd handler, and advance ip */ 2723 static int cmd_parser_exec(struct parser_exec_state *s) 2724 { 2725 struct intel_vgpu *vgpu = s->vgpu; 2726 const struct cmd_info *info; 2727 u32 cmd; 2728 int ret = 0; 2729 2730 cmd = cmd_val(s, 0); 2731 2732 /* fastpath for MI_NOOP */ 2733 if (cmd == MI_NOOP) 2734 info = &cmd_info[mi_noop_index]; 2735 else 2736 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2737 2738 if (info == NULL) { 2739 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2740 cmd, get_opcode(cmd, s->engine), 2741 repr_addr_type(s->buf_addr_type), 2742 s->engine->name, s->workload); 2743 return -EBADRQC; 2744 } 2745 2746 s->info = info; 2747 2748 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2749 cmd_length(s), s->buf_type, s->buf_addr_type, 2750 s->workload, info->name); 2751 2752 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2753 ret = gvt_check_valid_cmd_length(cmd_length(s), 2754 info->valid_len); 2755 if (ret) 2756 return ret; 2757 } 2758 2759 if (info->handler) { 2760 ret = info->handler(s); 2761 if (ret < 0) { 2762 gvt_vgpu_err("%s handler error\n", info->name); 2763 return ret; 2764 } 2765 } 2766 2767 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2768 ret = cmd_advance_default(s); 2769 if (ret) { 2770 gvt_vgpu_err("%s IP advance error\n", info->name); 2771 return ret; 2772 } 2773 } 2774 return 0; 2775 } 2776 2777 static inline bool gma_out_of_range(unsigned long gma, 2778 unsigned long gma_head, unsigned int gma_tail) 2779 { 2780 if (gma_tail >= gma_head) 2781 return (gma < gma_head) || (gma > gma_tail); 2782 else 2783 return (gma > gma_tail) && (gma < gma_head); 2784 } 2785 2786 /* Keep the consistent return type, e.g EBADRQC for unknown 2787 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2788 * works as the input of VM healthy status. 2789 */ 2790 static int command_scan(struct parser_exec_state *s, 2791 unsigned long rb_head, unsigned long rb_tail, 2792 unsigned long rb_start, unsigned long rb_len) 2793 { 2794 2795 unsigned long gma_head, gma_tail, gma_bottom; 2796 int ret = 0; 2797 struct intel_vgpu *vgpu = s->vgpu; 2798 2799 gma_head = rb_start + rb_head; 2800 gma_tail = rb_start + rb_tail; 2801 gma_bottom = rb_start + rb_len; 2802 2803 while (s->ip_gma != gma_tail) { 2804 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2805 s->buf_type == RING_BUFFER_CTX) { 2806 if (!(s->ip_gma >= rb_start) || 2807 !(s->ip_gma < gma_bottom)) { 2808 gvt_vgpu_err("ip_gma %lx out of ring scope." 2809 "(base:0x%lx, bottom: 0x%lx)\n", 2810 s->ip_gma, rb_start, 2811 gma_bottom); 2812 parser_exec_state_dump(s); 2813 return -EFAULT; 2814 } 2815 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2816 gvt_vgpu_err("ip_gma %lx out of range." 2817 "base 0x%lx head 0x%lx tail 0x%lx\n", 2818 s->ip_gma, rb_start, 2819 rb_head, rb_tail); 2820 parser_exec_state_dump(s); 2821 break; 2822 } 2823 } 2824 ret = cmd_parser_exec(s); 2825 if (ret) { 2826 gvt_vgpu_err("cmd parser error\n"); 2827 parser_exec_state_dump(s); 2828 break; 2829 } 2830 } 2831 2832 return ret; 2833 } 2834 2835 static int scan_workload(struct intel_vgpu_workload *workload) 2836 { 2837 unsigned long gma_head, gma_tail, gma_bottom; 2838 struct parser_exec_state s; 2839 int ret = 0; 2840 2841 /* ring base is page aligned */ 2842 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2843 return -EINVAL; 2844 2845 gma_head = workload->rb_start + workload->rb_head; 2846 gma_tail = workload->rb_start + workload->rb_tail; 2847 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl); 2848 2849 s.buf_type = RING_BUFFER_INSTRUCTION; 2850 s.buf_addr_type = GTT_BUFFER; 2851 s.vgpu = workload->vgpu; 2852 s.engine = workload->engine; 2853 s.ring_start = workload->rb_start; 2854 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2855 s.ring_head = gma_head; 2856 s.ring_tail = gma_tail; 2857 s.rb_va = workload->shadow_ring_buffer_va; 2858 s.workload = workload; 2859 s.is_ctx_wa = false; 2860 2861 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2862 return 0; 2863 2864 ret = ip_gma_set(&s, gma_head); 2865 if (ret) 2866 goto out; 2867 2868 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2869 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2870 2871 out: 2872 return ret; 2873 } 2874 2875 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2876 { 2877 2878 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail; 2879 struct parser_exec_state s; 2880 int ret = 0; 2881 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2882 struct intel_vgpu_workload, 2883 wa_ctx); 2884 2885 /* ring base is page aligned */ 2886 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2887 I915_GTT_PAGE_SIZE))) 2888 return -EINVAL; 2889 2890 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2891 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2892 PAGE_SIZE); 2893 gma_head = wa_ctx->indirect_ctx.guest_gma; 2894 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2895 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size; 2896 2897 s.buf_type = RING_BUFFER_INSTRUCTION; 2898 s.buf_addr_type = GTT_BUFFER; 2899 s.vgpu = workload->vgpu; 2900 s.engine = workload->engine; 2901 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2902 s.ring_size = ring_size; 2903 s.ring_head = gma_head; 2904 s.ring_tail = gma_tail; 2905 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2906 s.workload = workload; 2907 s.is_ctx_wa = true; 2908 2909 ret = ip_gma_set(&s, gma_head); 2910 if (ret) 2911 goto out; 2912 2913 ret = command_scan(&s, 0, ring_tail, 2914 wa_ctx->indirect_ctx.guest_gma, ring_size); 2915 out: 2916 return ret; 2917 } 2918 2919 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2920 { 2921 struct intel_vgpu *vgpu = workload->vgpu; 2922 struct intel_vgpu_submission *s = &vgpu->submission; 2923 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2924 void *shadow_ring_buffer_va; 2925 int ret; 2926 2927 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2928 2929 /* calculate workload ring buffer size */ 2930 workload->rb_len = (workload->rb_tail + guest_rb_size - 2931 workload->rb_head) % guest_rb_size; 2932 2933 gma_head = workload->rb_start + workload->rb_head; 2934 gma_tail = workload->rb_start + workload->rb_tail; 2935 gma_top = workload->rb_start + guest_rb_size; 2936 2937 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2938 void *p; 2939 2940 /* realloc the new ring buffer if needed */ 2941 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2942 workload->rb_len, GFP_KERNEL); 2943 if (!p) { 2944 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2945 return -ENOMEM; 2946 } 2947 s->ring_scan_buffer[workload->engine->id] = p; 2948 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2949 } 2950 2951 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2952 2953 /* get shadow ring buffer va */ 2954 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2955 2956 /* head > tail --> copy head <-> top */ 2957 if (gma_head > gma_tail) { 2958 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2959 gma_head, gma_top, shadow_ring_buffer_va); 2960 if (ret < 0) { 2961 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2962 return ret; 2963 } 2964 shadow_ring_buffer_va += ret; 2965 gma_head = workload->rb_start; 2966 } 2967 2968 /* copy head or start <-> tail */ 2969 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2970 shadow_ring_buffer_va); 2971 if (ret < 0) { 2972 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2973 return ret; 2974 } 2975 return 0; 2976 } 2977 2978 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2979 { 2980 int ret; 2981 struct intel_vgpu *vgpu = workload->vgpu; 2982 2983 ret = shadow_workload_ring_buffer(workload); 2984 if (ret) { 2985 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2986 return ret; 2987 } 2988 2989 ret = scan_workload(workload); 2990 if (ret) { 2991 gvt_vgpu_err("scan workload error\n"); 2992 return ret; 2993 } 2994 return 0; 2995 } 2996 2997 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2998 { 2999 int ctx_size = wa_ctx->indirect_ctx.size; 3000 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 3001 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3002 struct intel_vgpu_workload, 3003 wa_ctx); 3004 struct intel_vgpu *vgpu = workload->vgpu; 3005 struct drm_i915_gem_object *obj; 3006 int ret = 0; 3007 void *map; 3008 3009 obj = i915_gem_object_create_shmem(workload->engine->i915, 3010 roundup(ctx_size + CACHELINE_BYTES, 3011 PAGE_SIZE)); 3012 if (IS_ERR(obj)) 3013 return PTR_ERR(obj); 3014 3015 /* get the va of the shadow batch buffer */ 3016 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3017 if (IS_ERR(map)) { 3018 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3019 ret = PTR_ERR(map); 3020 goto put_obj; 3021 } 3022 3023 i915_gem_object_lock(obj, NULL); 3024 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3025 i915_gem_object_unlock(obj); 3026 if (ret) { 3027 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3028 goto unmap_src; 3029 } 3030 3031 ret = copy_gma_to_hva(workload->vgpu, 3032 workload->vgpu->gtt.ggtt_mm, 3033 guest_gma, guest_gma + ctx_size, 3034 map); 3035 if (ret < 0) { 3036 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3037 goto unmap_src; 3038 } 3039 3040 wa_ctx->indirect_ctx.obj = obj; 3041 wa_ctx->indirect_ctx.shadow_va = map; 3042 return 0; 3043 3044 unmap_src: 3045 i915_gem_object_unpin_map(obj); 3046 put_obj: 3047 i915_gem_object_put(obj); 3048 return ret; 3049 } 3050 3051 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3052 { 3053 u32 per_ctx_start[CACHELINE_DWORDS] = {0}; 3054 unsigned char *bb_start_sva; 3055 3056 if (!wa_ctx->per_ctx.valid) 3057 return 0; 3058 3059 per_ctx_start[0] = 0x18800001; 3060 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3061 3062 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3063 wa_ctx->indirect_ctx.size; 3064 3065 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3066 3067 return 0; 3068 } 3069 3070 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3071 { 3072 int ret; 3073 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3074 struct intel_vgpu_workload, 3075 wa_ctx); 3076 struct intel_vgpu *vgpu = workload->vgpu; 3077 3078 if (wa_ctx->indirect_ctx.size == 0) 3079 return 0; 3080 3081 ret = shadow_indirect_ctx(wa_ctx); 3082 if (ret) { 3083 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3084 return ret; 3085 } 3086 3087 combine_wa_ctx(wa_ctx); 3088 3089 ret = scan_wa_ctx(wa_ctx); 3090 if (ret) { 3091 gvt_vgpu_err("scan wa ctx error\n"); 3092 return ret; 3093 } 3094 3095 return 0; 3096 } 3097 3098 /* generate dummy contexts by sending empty requests to HW, and let 3099 * the HW to fill Engine Contexts. This dummy contexts are used for 3100 * initialization purpose (update reg whitelist), so referred to as 3101 * init context here 3102 */ 3103 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3104 { 3105 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3106 struct intel_gvt *gvt = vgpu->gvt; 3107 struct intel_engine_cs *engine; 3108 enum intel_engine_id id; 3109 3110 if (gvt->is_reg_whitelist_updated) 3111 return; 3112 3113 /* scan init ctx to update cmd accessible list */ 3114 for_each_engine(engine, gvt->gt, id) { 3115 struct parser_exec_state s; 3116 void *vaddr; 3117 int ret; 3118 3119 if (!engine->default_state) 3120 continue; 3121 3122 vaddr = shmem_pin_map(engine->default_state); 3123 if (IS_ERR(vaddr)) { 3124 gvt_err("failed to map %s->default state, err:%zd\n", 3125 engine->name, PTR_ERR(vaddr)); 3126 return; 3127 } 3128 3129 s.buf_type = RING_BUFFER_CTX; 3130 s.buf_addr_type = GTT_BUFFER; 3131 s.vgpu = vgpu; 3132 s.engine = engine; 3133 s.ring_start = 0; 3134 s.ring_size = engine->context_size - start; 3135 s.ring_head = 0; 3136 s.ring_tail = s.ring_size; 3137 s.rb_va = vaddr + start; 3138 s.workload = NULL; 3139 s.is_ctx_wa = false; 3140 s.is_init_ctx = true; 3141 3142 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3143 ret = ip_gma_set(&s, RING_CTX_SIZE); 3144 if (ret == 0) { 3145 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3146 if (ret) 3147 gvt_err("Scan init ctx error\n"); 3148 } 3149 3150 shmem_unpin_map(engine->default_state, vaddr); 3151 if (ret) 3152 return; 3153 } 3154 3155 gvt->is_reg_whitelist_updated = true; 3156 } 3157 3158 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3159 { 3160 struct intel_vgpu *vgpu = workload->vgpu; 3161 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3162 struct parser_exec_state s; 3163 int ring_id = workload->engine->id; 3164 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3165 int ret; 3166 3167 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3168 3169 ctx_size = workload->engine->context_size - PAGE_SIZE; 3170 3171 /* Only ring contxt is loaded to HW for inhibit context, no need to 3172 * scan engine context 3173 */ 3174 if (is_inhibit_context(ce)) 3175 return 0; 3176 3177 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3178 gma_head = 0; 3179 gma_tail = ctx_size; 3180 3181 s.buf_type = RING_BUFFER_CTX; 3182 s.buf_addr_type = GTT_BUFFER; 3183 s.vgpu = workload->vgpu; 3184 s.engine = workload->engine; 3185 s.ring_start = gma_start; 3186 s.ring_size = ctx_size; 3187 s.ring_head = gma_start + gma_head; 3188 s.ring_tail = gma_start + gma_tail; 3189 s.rb_va = ce->lrc_reg_state; 3190 s.workload = workload; 3191 s.is_ctx_wa = false; 3192 s.is_init_ctx = false; 3193 3194 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3195 * context 3196 */ 3197 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3198 if (ret) 3199 goto out; 3200 3201 ret = command_scan(&s, gma_head, gma_tail, 3202 gma_start, ctx_size); 3203 out: 3204 if (ret) 3205 gvt_vgpu_err("scan shadow ctx error\n"); 3206 3207 return ret; 3208 } 3209 3210 static int init_cmd_table(struct intel_gvt *gvt) 3211 { 3212 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3213 int i; 3214 3215 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3216 struct cmd_entry *e; 3217 3218 if (!(cmd_info[i].devices & gen_type)) 3219 continue; 3220 3221 e = kzalloc(sizeof(*e), GFP_KERNEL); 3222 if (!e) 3223 return -ENOMEM; 3224 3225 e->info = &cmd_info[i]; 3226 if (cmd_info[i].opcode == OP_MI_NOOP) 3227 mi_noop_index = i; 3228 3229 INIT_HLIST_NODE(&e->hlist); 3230 add_cmd_entry(gvt, e); 3231 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3232 e->info->name, e->info->opcode, e->info->flag, 3233 e->info->devices, e->info->rings); 3234 } 3235 3236 return 0; 3237 } 3238 3239 static void clean_cmd_table(struct intel_gvt *gvt) 3240 { 3241 struct hlist_node *tmp; 3242 struct cmd_entry *e; 3243 int i; 3244 3245 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3246 kfree(e); 3247 3248 hash_init(gvt->cmd_table); 3249 } 3250 3251 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3252 { 3253 clean_cmd_table(gvt); 3254 } 3255 3256 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3257 { 3258 int ret; 3259 3260 ret = init_cmd_table(gvt); 3261 if (ret) { 3262 intel_gvt_clean_cmd_parser(gvt); 3263 return ret; 3264 } 3265 return 0; 3266 } 3267