xref: /linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include <drm/drm_print.h>
40 
41 #include "i915_drv.h"
42 #include "i915_reg.h"
43 #include "display/intel_display_regs.h"
44 #include "gt/intel_engine_regs.h"
45 #include "gt/intel_gpu_commands.h"
46 #include "gt/intel_gt_regs.h"
47 #include "gt/intel_lrc.h"
48 #include "gt/intel_ring.h"
49 #include "gt/intel_gt_requests.h"
50 #include "gt/shmem_utils.h"
51 #include "gvt.h"
52 #include "i915_pvinfo.h"
53 #include "trace.h"
54 
55 #include "display/i9xx_plane_regs.h"
56 #include "display/intel_display_core.h"
57 #include "display/intel_sprite_regs.h"
58 #include "gem/i915_gem_context.h"
59 #include "gem/i915_gem_pm.h"
60 #include "gt/intel_context.h"
61 
62 #define INVALID_OP    (~0U)
63 
64 #define OP_LEN_MI           9
65 #define OP_LEN_2D           10
66 #define OP_LEN_3D_MEDIA     16
67 #define OP_LEN_MFX_VC       16
68 #define OP_LEN_VEBOX	    16
69 
70 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
71 
72 struct sub_op_bits {
73 	int hi;
74 	int low;
75 };
76 struct decode_info {
77 	const char *name;
78 	int op_len;
79 	int nr_sub_op;
80 	const struct sub_op_bits *sub_op;
81 };
82 
83 #define   MAX_CMD_BUDGET			0x7fffffff
84 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
85 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
86 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
87 
88 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
89 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
90 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
91 
92 /* Render Command Map */
93 
94 /* MI_* command Opcode (28:23) */
95 #define OP_MI_NOOP                          0x0
96 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
97 #define OP_MI_USER_INTERRUPT                0x2
98 #define OP_MI_WAIT_FOR_EVENT                0x3
99 #define OP_MI_FLUSH                         0x4
100 #define OP_MI_ARB_CHECK                     0x5
101 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
102 #define OP_MI_REPORT_HEAD                   0x7
103 #define OP_MI_ARB_ON_OFF                    0x8
104 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
105 #define OP_MI_BATCH_BUFFER_END              0xA
106 #define OP_MI_SUSPEND_FLUSH                 0xB
107 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
108 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
109 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
110 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
111 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
112 #define OP_MI_DISPLAY_FLIP                  0x14
113 #define OP_MI_SEMAPHORE_MBOX                0x16
114 #define OP_MI_SET_CONTEXT                   0x18
115 #define OP_MI_MATH                          0x1A
116 #define OP_MI_URB_CLEAR                     0x19
117 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
118 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
119 
120 #define OP_MI_STORE_DATA_IMM                0x20
121 #define OP_MI_STORE_DATA_INDEX              0x21
122 #define OP_MI_LOAD_REGISTER_IMM             0x22
123 #define OP_MI_UPDATE_GTT                    0x23
124 #define OP_MI_STORE_REGISTER_MEM            0x24
125 #define OP_MI_FLUSH_DW                      0x26
126 #define OP_MI_CLFLUSH                       0x27
127 #define OP_MI_REPORT_PERF_COUNT             0x28
128 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
129 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
130 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
131 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
132 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
133 #define OP_MI_2E			    0x2E  /* BDW+ */
134 #define OP_MI_2F			    0x2F  /* BDW+ */
135 #define OP_MI_BATCH_BUFFER_START            0x31
136 
137 /* Bit definition for dword 0 */
138 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
139 
140 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
141 
142 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
143 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
144 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
145 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
146 
147 /* 2D command: Opcode (28:22) */
148 #define OP_2D(x)    ((2<<7) | x)
149 
150 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
151 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
152 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
153 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
154 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
155 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
156 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
157 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
158 #define OP_XY_PAT_BLT                               OP_2D(0x51)
159 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
160 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
161 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
162 #define OP_XY_FULL_BLT                              OP_2D(0x55)
163 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
164 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
165 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
166 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
167 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
168 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
169 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
170 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
171 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
172 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
173 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
174 
175 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
176 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
177 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
178 
179 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
180 
181 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
182 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
183 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
184 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
185 
186 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
187 
188 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
189 
190 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
191 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
192 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
193 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
194 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
195 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
196 
197 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
198 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
199 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
200 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
201 
202 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
203 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
204 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
205 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
206 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
207 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
208 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
209 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
210 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
211 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
212 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
213 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
214 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
215 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
216 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
217 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
218 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
219 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
220 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
221 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
222 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
223 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
224 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
225 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
226 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
227 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
228 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
229 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
230 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
231 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
232 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
233 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
234 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
235 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
236 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
237 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
238 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
239 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
240 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
241 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
242 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
243 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
244 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
245 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
246 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
247 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
248 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
249 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
250 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
251 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
252 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
253 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
254 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
255 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
256 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
257 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
258 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
259 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
260 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
261 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
262 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
263 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
264 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
265 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
266 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
267 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
268 
269 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
270 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
271 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
272 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
273 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
274 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
275 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
276 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
277 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
278 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
279 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
280 
281 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
282 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
283 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
284 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
285 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
286 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
287 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
288 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
289 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
290 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
291 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
292 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
293 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
294 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
295 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
296 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
297 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
298 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
299 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
300 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
301 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
302 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
303 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
304 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
305 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
306 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
307 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
308 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
309 
310 /* VCCP Command Parser */
311 
312 /*
313  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
314  * git://anongit.freedesktop.org/vaapi/intel-driver
315  * src/i965_defines.h
316  *
317  */
318 
319 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
320 	(3 << 13 | \
321 	 (pipeline) << 11 | \
322 	 (op) << 8 | \
323 	 (sub_opa) << 5 | \
324 	 (sub_opb))
325 
326 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
327 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
328 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
329 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
330 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
331 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
332 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
333 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
334 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
335 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
336 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
337 
338 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
339 
340 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
341 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
342 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
343 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
344 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
345 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
346 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
347 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
348 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
349 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
350 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
351 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
352 
353 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
354 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
355 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
356 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
357 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
358 
359 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
360 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
361 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
362 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
363 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
364 
365 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
366 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
367 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
368 
369 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
370 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
371 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
372 
373 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
374 	(3 << 13 | \
375 	 (pipeline) << 11 | \
376 	 (op) << 8 | \
377 	 (sub_opa) << 5 | \
378 	 (sub_opb))
379 
380 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
381 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
382 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
383 
384 struct parser_exec_state;
385 
386 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
387 
388 #define GVT_CMD_HASH_BITS   7
389 
390 /* which DWords need address fix */
391 #define ADDR_FIX_1(x1)			(1 << (x1))
392 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
393 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
394 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
395 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
396 
397 #define DWORD_FIELD(dword, end, start) \
398 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
399 
400 #define OP_LENGTH_BIAS 2
401 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
402 
403 static int gvt_check_valid_cmd_length(int len, int valid_len)
404 {
405 	if (valid_len != len) {
406 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
407 			len, valid_len);
408 		return -EFAULT;
409 	}
410 	return 0;
411 }
412 
413 struct cmd_info {
414 	const char *name;
415 	u32 opcode;
416 
417 #define F_LEN_MASK	3U
418 #define F_LEN_CONST  1U
419 #define F_LEN_VAR    0U
420 /* value is const although LEN maybe variable */
421 #define F_LEN_VAR_FIXED    (1<<1)
422 
423 /*
424  * command has its own ip advance logic
425  * e.g. MI_BATCH_START, MI_BATCH_END
426  */
427 #define F_IP_ADVANCE_CUSTOM (1<<2)
428 	u32 flag;
429 
430 #define R_RCS	BIT(RCS0)
431 #define R_VCS1  BIT(VCS0)
432 #define R_VCS2  BIT(VCS1)
433 #define R_VCS	(R_VCS1 | R_VCS2)
434 #define R_BCS	BIT(BCS0)
435 #define R_VECS	BIT(VECS0)
436 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
437 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
438 	intel_engine_mask_t rings;
439 
440 	/* devices that support this cmd: SNB/IVB/HSW/... */
441 	u16 devices;
442 
443 	/* which DWords are address that need fix up.
444 	 * bit 0 means a 32-bit non address operand in command
445 	 * bit 1 means address operand, which could be 32-bit
446 	 * or 64-bit depending on different architectures.(
447 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
448 	 * No matter the address length, each address only takes
449 	 * one bit in the bitmap.
450 	 */
451 	u16 addr_bitmap;
452 
453 	/* flag == F_LEN_CONST : command length
454 	 * flag == F_LEN_VAR : length bias bits
455 	 * Note: length is in DWord
456 	 */
457 	u32 len;
458 
459 	parser_cmd_handler handler;
460 
461 	/* valid length in DWord */
462 	u32 valid_len;
463 };
464 
465 struct cmd_entry {
466 	struct hlist_node hlist;
467 	const struct cmd_info *info;
468 };
469 
470 enum {
471 	RING_BUFFER_INSTRUCTION,
472 	BATCH_BUFFER_INSTRUCTION,
473 	BATCH_BUFFER_2ND_LEVEL,
474 	RING_BUFFER_CTX,
475 };
476 
477 enum {
478 	GTT_BUFFER,
479 	PPGTT_BUFFER
480 };
481 
482 struct parser_exec_state {
483 	struct intel_vgpu *vgpu;
484 	const struct intel_engine_cs *engine;
485 
486 	int buf_type;
487 
488 	/* batch buffer address type */
489 	int buf_addr_type;
490 
491 	/* graphics memory address of ring buffer start */
492 	unsigned long ring_start;
493 	unsigned long ring_size;
494 	unsigned long ring_head;
495 	unsigned long ring_tail;
496 
497 	/* instruction graphics memory address */
498 	unsigned long ip_gma;
499 
500 	/* mapped va of the instr_gma */
501 	void *ip_va;
502 	void *rb_va;
503 
504 	void *ret_bb_va;
505 	/* next instruction when return from  batch buffer to ring buffer */
506 	unsigned long ret_ip_gma_ring;
507 
508 	/* next instruction when return from 2nd batch buffer to batch buffer */
509 	unsigned long ret_ip_gma_bb;
510 
511 	/* batch buffer address type (GTT or PPGTT)
512 	 * used when ret from 2nd level batch buffer
513 	 */
514 	int saved_buf_addr_type;
515 	bool is_ctx_wa;
516 	bool is_init_ctx;
517 
518 	const struct cmd_info *info;
519 
520 	struct intel_vgpu_workload *workload;
521 };
522 
523 #define gmadr_dw_number(s)	\
524 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
525 
526 static unsigned long bypass_scan_mask = 0;
527 
528 /* ring ALL, type = 0 */
529 static const struct sub_op_bits sub_op_mi[] = {
530 	{31, 29},
531 	{28, 23},
532 };
533 
534 static const struct decode_info decode_info_mi = {
535 	"MI",
536 	OP_LEN_MI,
537 	ARRAY_SIZE(sub_op_mi),
538 	sub_op_mi,
539 };
540 
541 /* ring RCS, command type 2 */
542 static const struct sub_op_bits sub_op_2d[] = {
543 	{31, 29},
544 	{28, 22},
545 };
546 
547 static const struct decode_info decode_info_2d = {
548 	"2D",
549 	OP_LEN_2D,
550 	ARRAY_SIZE(sub_op_2d),
551 	sub_op_2d,
552 };
553 
554 /* ring RCS, command type 3 */
555 static const struct sub_op_bits sub_op_3d_media[] = {
556 	{31, 29},
557 	{28, 27},
558 	{26, 24},
559 	{23, 16},
560 };
561 
562 static const struct decode_info decode_info_3d_media = {
563 	"3D_Media",
564 	OP_LEN_3D_MEDIA,
565 	ARRAY_SIZE(sub_op_3d_media),
566 	sub_op_3d_media,
567 };
568 
569 /* ring VCS, command type 3 */
570 static const struct sub_op_bits sub_op_mfx_vc[] = {
571 	{31, 29},
572 	{28, 27},
573 	{26, 24},
574 	{23, 21},
575 	{20, 16},
576 };
577 
578 static const struct decode_info decode_info_mfx_vc = {
579 	"MFX_VC",
580 	OP_LEN_MFX_VC,
581 	ARRAY_SIZE(sub_op_mfx_vc),
582 	sub_op_mfx_vc,
583 };
584 
585 /* ring VECS, command type 3 */
586 static const struct sub_op_bits sub_op_vebox[] = {
587 	{31, 29},
588 	{28, 27},
589 	{26, 24},
590 	{23, 21},
591 	{20, 16},
592 };
593 
594 static const struct decode_info decode_info_vebox = {
595 	"VEBOX",
596 	OP_LEN_VEBOX,
597 	ARRAY_SIZE(sub_op_vebox),
598 	sub_op_vebox,
599 };
600 
601 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
602 	[RCS0] = {
603 		&decode_info_mi,
604 		NULL,
605 		NULL,
606 		&decode_info_3d_media,
607 		NULL,
608 		NULL,
609 		NULL,
610 		NULL,
611 	},
612 
613 	[VCS0] = {
614 		&decode_info_mi,
615 		NULL,
616 		NULL,
617 		&decode_info_mfx_vc,
618 		NULL,
619 		NULL,
620 		NULL,
621 		NULL,
622 	},
623 
624 	[BCS0] = {
625 		&decode_info_mi,
626 		NULL,
627 		&decode_info_2d,
628 		NULL,
629 		NULL,
630 		NULL,
631 		NULL,
632 		NULL,
633 	},
634 
635 	[VECS0] = {
636 		&decode_info_mi,
637 		NULL,
638 		NULL,
639 		&decode_info_vebox,
640 		NULL,
641 		NULL,
642 		NULL,
643 		NULL,
644 	},
645 
646 	[VCS1] = {
647 		&decode_info_mi,
648 		NULL,
649 		NULL,
650 		&decode_info_mfx_vc,
651 		NULL,
652 		NULL,
653 		NULL,
654 		NULL,
655 	},
656 };
657 
658 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
659 {
660 	const struct decode_info *d_info;
661 
662 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
663 	if (d_info == NULL)
664 		return INVALID_OP;
665 
666 	return cmd >> (32 - d_info->op_len);
667 }
668 
669 static inline const struct cmd_info *
670 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
671 	       const struct intel_engine_cs *engine)
672 {
673 	struct cmd_entry *e;
674 
675 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
676 		if (opcode == e->info->opcode &&
677 		    e->info->rings & engine->mask)
678 			return e->info;
679 	}
680 	return NULL;
681 }
682 
683 static inline const struct cmd_info *
684 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
685 	     const struct intel_engine_cs *engine)
686 {
687 	u32 opcode;
688 
689 	opcode = get_opcode(cmd, engine);
690 	if (opcode == INVALID_OP)
691 		return NULL;
692 
693 	return find_cmd_entry(gvt, opcode, engine);
694 }
695 
696 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
697 {
698 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
699 }
700 
701 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
702 {
703 	const struct decode_info *d_info;
704 	int i;
705 
706 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
707 	if (d_info == NULL)
708 		return;
709 
710 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
711 			cmd >> (32 - d_info->op_len), d_info->name);
712 
713 	for (i = 0; i < d_info->nr_sub_op; i++)
714 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
715 					d_info->sub_op[i].low));
716 
717 	pr_err("\n");
718 }
719 
720 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
721 {
722 	return s->ip_va + (index << 2);
723 }
724 
725 static inline u32 cmd_val(struct parser_exec_state *s, int index)
726 {
727 	return *cmd_ptr(s, index);
728 }
729 
730 static inline bool is_init_ctx(struct parser_exec_state *s)
731 {
732 	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
733 }
734 
735 static void parser_exec_state_dump(struct parser_exec_state *s)
736 {
737 	int cnt = 0;
738 	int i;
739 
740 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
741 		    " ring_head(%08lx) ring_tail(%08lx)\n",
742 		    s->vgpu->id, s->engine->name,
743 		    s->ring_start, s->ring_start + s->ring_size,
744 		    s->ring_head, s->ring_tail);
745 
746 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
747 			s->buf_type == RING_BUFFER_INSTRUCTION ?
748 			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
749 				"CTX_BUFFER" : "BATCH_BUFFER"),
750 			s->buf_addr_type == GTT_BUFFER ?
751 			"GTT" : "PPGTT", s->ip_gma);
752 
753 	if (s->ip_va == NULL) {
754 		gvt_dbg_cmd(" ip_va(NULL)");
755 		return;
756 	}
757 
758 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
759 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
760 			cmd_val(s, 2), cmd_val(s, 3));
761 
762 	print_opcode(cmd_val(s, 0), s->engine);
763 
764 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
765 
766 	while (cnt < 1024) {
767 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
768 		for (i = 0; i < 8; i++)
769 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
770 		gvt_dbg_cmd("\n");
771 
772 		s->ip_va += 8 * sizeof(u32);
773 		cnt += 8;
774 	}
775 }
776 
777 static inline void update_ip_va(struct parser_exec_state *s)
778 {
779 	unsigned long len = 0;
780 
781 	if (WARN_ON(s->ring_head == s->ring_tail))
782 		return;
783 
784 	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
785 			s->buf_type == RING_BUFFER_CTX) {
786 		unsigned long ring_top = s->ring_start + s->ring_size;
787 
788 		if (s->ring_head > s->ring_tail) {
789 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
790 				len = (s->ip_gma - s->ring_head);
791 			else if (s->ip_gma >= s->ring_start &&
792 					s->ip_gma <= s->ring_tail)
793 				len = (ring_top - s->ring_head) +
794 					(s->ip_gma - s->ring_start);
795 		} else
796 			len = (s->ip_gma - s->ring_head);
797 
798 		s->ip_va = s->rb_va + len;
799 	} else {/* shadow batch buffer */
800 		s->ip_va = s->ret_bb_va;
801 	}
802 }
803 
804 static inline int ip_gma_set(struct parser_exec_state *s,
805 		unsigned long ip_gma)
806 {
807 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
808 
809 	s->ip_gma = ip_gma;
810 	update_ip_va(s);
811 	return 0;
812 }
813 
814 static inline int ip_gma_advance(struct parser_exec_state *s,
815 		unsigned int dw_len)
816 {
817 	s->ip_gma += (dw_len << 2);
818 
819 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
820 		if (s->ip_gma >= s->ring_start + s->ring_size)
821 			s->ip_gma -= s->ring_size;
822 		update_ip_va(s);
823 	} else {
824 		s->ip_va += (dw_len << 2);
825 	}
826 
827 	return 0;
828 }
829 
830 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
831 {
832 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
833 		return info->len;
834 	else
835 		return (cmd & ((1U << info->len) - 1)) + 2;
836 	return 0;
837 }
838 
839 static inline int cmd_length(struct parser_exec_state *s)
840 {
841 	return get_cmd_length(s->info, cmd_val(s, 0));
842 }
843 
844 /* do not remove this, some platform may need clflush here */
845 #define patch_value(s, addr, val) do { \
846 	*addr = val; \
847 } while (0)
848 
849 static inline bool is_mocs_mmio(unsigned int offset)
850 {
851 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
852 		((offset >= 0xb020) && (offset <= 0xb0a0));
853 }
854 
855 static int is_cmd_update_pdps(unsigned int offset,
856 			      struct parser_exec_state *s)
857 {
858 	u32 base = s->workload->engine->mmio_base;
859 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
860 }
861 
862 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
863 				       unsigned int offset, unsigned int index)
864 {
865 	struct intel_vgpu *vgpu = s->vgpu;
866 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
867 	struct intel_vgpu_mm *mm;
868 	u64 pdps[GEN8_3LVL_PDPES];
869 
870 	if (shadow_mm->ppgtt_mm.root_entry_type ==
871 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
872 		pdps[0] = (u64)cmd_val(s, 2) << 32;
873 		pdps[0] |= cmd_val(s, 4);
874 
875 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
876 		if (!mm) {
877 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
878 			return -EINVAL;
879 		}
880 		intel_vgpu_mm_get(mm);
881 		list_add_tail(&mm->ppgtt_mm.link,
882 			      &s->workload->lri_shadow_mm);
883 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
884 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
885 	} else {
886 		/* Currently all guests use PML4 table and now can't
887 		 * have a guest with 3-level table but uses LRI for
888 		 * PPGTT update. So this is simply un-testable. */
889 		GEM_BUG_ON(1);
890 		gvt_vgpu_err("invalid shared shadow vm type\n");
891 		return -EINVAL;
892 	}
893 	return 0;
894 }
895 
896 static int cmd_reg_handler(struct parser_exec_state *s,
897 	unsigned int offset, unsigned int index, char *cmd)
898 {
899 	struct intel_vgpu *vgpu = s->vgpu;
900 	struct intel_gvt *gvt = vgpu->gvt;
901 	u32 ctx_sr_ctl;
902 	u32 *vreg, vreg_old;
903 
904 	if (offset + 4 > gvt->device_info.mmio_size) {
905 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
906 				cmd, offset);
907 		return -EFAULT;
908 	}
909 
910 	if (is_init_ctx(s)) {
911 		struct intel_gvt_mmio_info *mmio_info;
912 
913 		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
914 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
915 		if (mmio_info && mmio_info->write)
916 			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
917 		return 0;
918 	}
919 
920 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
921 		gvt_vgpu_err("%s access to non-render register (%x)\n",
922 				cmd, offset);
923 		return -EBADRQC;
924 	}
925 
926 	if (!strncmp(cmd, "srm", 3) ||
927 			!strncmp(cmd, "lrm", 3)) {
928 		if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
929 		    offset == 0x21f0 ||
930 		    (IS_BROADWELL(gvt->gt->i915) &&
931 		     offset == i915_mmio_reg_offset(INSTPM)))
932 			return 0;
933 		else {
934 			gvt_vgpu_err("%s access to register (%x)\n",
935 					cmd, offset);
936 			return -EPERM;
937 		}
938 	}
939 
940 	if (!strncmp(cmd, "lrr-src", 7) ||
941 			!strncmp(cmd, "lrr-dst", 7)) {
942 		if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
943 			return 0;
944 		else {
945 			gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
946 			return -EPERM;
947 		}
948 	}
949 
950 	if (!strncmp(cmd, "pipe_ctrl", 9)) {
951 		/* TODO: add LRI POST logic here */
952 		return 0;
953 	}
954 
955 	if (strncmp(cmd, "lri", 3))
956 		return -EPERM;
957 
958 	/* below are all lri handlers */
959 	vreg = &vgpu_vreg(s->vgpu, offset);
960 
961 	if (is_cmd_update_pdps(offset, s) &&
962 	    cmd_pdp_mmio_update_handler(s, offset, index))
963 		return -EINVAL;
964 
965 	if (offset == i915_mmio_reg_offset(DERRMR) ||
966 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
967 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
968 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
969 	}
970 
971 	if (is_mocs_mmio(offset))
972 		*vreg = cmd_val(s, index + 1);
973 
974 	vreg_old = *vreg;
975 
976 	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
977 		u32 cmdval_new, cmdval;
978 		struct intel_gvt_mmio_info *mmio_info;
979 
980 		cmdval = cmd_val(s, index + 1);
981 
982 		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
983 		if (!mmio_info) {
984 			cmdval_new = cmdval;
985 		} else {
986 			u64 ro_mask = mmio_info->ro_mask;
987 			int ret;
988 
989 			if (likely(!ro_mask))
990 				ret = mmio_info->write(s->vgpu, offset,
991 						&cmdval, 4);
992 			else {
993 				gvt_vgpu_err("try to write RO reg %x\n",
994 						offset);
995 				ret = -EBADRQC;
996 			}
997 			if (ret)
998 				return ret;
999 			cmdval_new = *vreg;
1000 		}
1001 		if (cmdval_new != cmdval)
1002 			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
1003 	}
1004 
1005 	/* only patch cmd. restore vreg value if changed in mmio write handler*/
1006 	*vreg = vreg_old;
1007 
1008 	/* TODO
1009 	 * In order to let workload with inhibit context to generate
1010 	 * correct image data into memory, vregs values will be loaded to
1011 	 * hw via LRIs in the workload with inhibit context. But as
1012 	 * indirect context is loaded prior to LRIs in workload, we don't
1013 	 * want reg values specified in indirect context overwritten by
1014 	 * LRIs in workloads. So, when scanning an indirect context, we
1015 	 * update reg values in it into vregs, so LRIs in workload with
1016 	 * inhibit context will restore with correct values
1017 	 */
1018 	if (GRAPHICS_VER(s->engine->i915) == 9 &&
1019 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1020 	    !strncmp(cmd, "lri", 3)) {
1021 		intel_gvt_read_gpa(s->vgpu,
1022 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1023 		/* check inhibit context */
1024 		if (ctx_sr_ctl & 1) {
1025 			u32 data = cmd_val(s, index + 1);
1026 
1027 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1028 				intel_vgpu_mask_mmio_write(vgpu,
1029 							offset, &data, 4);
1030 			else
1031 				vgpu_vreg(vgpu, offset) = data;
1032 		}
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 #define cmd_reg(s, i) \
1039 	(cmd_val(s, i) & GENMASK(22, 2))
1040 
1041 #define cmd_reg_inhibit(s, i) \
1042 	(cmd_val(s, i) & GENMASK(22, 18))
1043 
1044 #define cmd_gma(s, i) \
1045 	(cmd_val(s, i) & GENMASK(31, 2))
1046 
1047 #define cmd_gma_hi(s, i) \
1048 	(cmd_val(s, i) & GENMASK(15, 0))
1049 
1050 static int cmd_handler_lri(struct parser_exec_state *s)
1051 {
1052 	int i, ret = 0;
1053 	int cmd_len = cmd_length(s);
1054 
1055 	for (i = 1; i < cmd_len; i += 2) {
1056 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1057 			if (s->engine->id == BCS0 &&
1058 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1059 				ret |= 0;
1060 			else
1061 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1062 		}
1063 		if (ret)
1064 			break;
1065 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1066 		if (ret)
1067 			break;
1068 	}
1069 	return ret;
1070 }
1071 
1072 static int cmd_handler_lrr(struct parser_exec_state *s)
1073 {
1074 	int i, ret = 0;
1075 	int cmd_len = cmd_length(s);
1076 
1077 	for (i = 1; i < cmd_len; i += 2) {
1078 		if (IS_BROADWELL(s->engine->i915))
1079 			ret |= ((cmd_reg_inhibit(s, i) ||
1080 				 (cmd_reg_inhibit(s, i + 1)))) ?
1081 				-EBADRQC : 0;
1082 		if (ret)
1083 			break;
1084 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1085 		if (ret)
1086 			break;
1087 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1088 		if (ret)
1089 			break;
1090 	}
1091 	return ret;
1092 }
1093 
1094 static inline int cmd_address_audit(struct parser_exec_state *s,
1095 		unsigned long guest_gma, int op_size, bool index_mode);
1096 
1097 static int cmd_handler_lrm(struct parser_exec_state *s)
1098 {
1099 	struct intel_gvt *gvt = s->vgpu->gvt;
1100 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1101 	unsigned long gma;
1102 	int i, ret = 0;
1103 	int cmd_len = cmd_length(s);
1104 
1105 	for (i = 1; i < cmd_len;) {
1106 		if (IS_BROADWELL(s->engine->i915))
1107 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1108 		if (ret)
1109 			break;
1110 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1111 		if (ret)
1112 			break;
1113 		if (cmd_val(s, 0) & (1 << 22)) {
1114 			gma = cmd_gma(s, i + 1);
1115 			if (gmadr_bytes == 8)
1116 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1117 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1118 			if (ret)
1119 				break;
1120 		}
1121 		i += gmadr_dw_number(s) + 1;
1122 	}
1123 	return ret;
1124 }
1125 
1126 static int cmd_handler_srm(struct parser_exec_state *s)
1127 {
1128 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1129 	unsigned long gma;
1130 	int i, ret = 0;
1131 	int cmd_len = cmd_length(s);
1132 
1133 	for (i = 1; i < cmd_len;) {
1134 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1135 		if (ret)
1136 			break;
1137 		if (cmd_val(s, 0) & (1 << 22)) {
1138 			gma = cmd_gma(s, i + 1);
1139 			if (gmadr_bytes == 8)
1140 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1141 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1142 			if (ret)
1143 				break;
1144 		}
1145 		i += gmadr_dw_number(s) + 1;
1146 	}
1147 	return ret;
1148 }
1149 
1150 struct cmd_interrupt_event {
1151 	int pipe_control_notify;
1152 	int mi_flush_dw;
1153 	int mi_user_interrupt;
1154 };
1155 
1156 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1157 	[RCS0] = {
1158 		.pipe_control_notify = RCS_PIPE_CONTROL,
1159 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1160 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1161 	},
1162 	[BCS0] = {
1163 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1164 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1165 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1166 	},
1167 	[VCS0] = {
1168 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1169 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1170 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1171 	},
1172 	[VCS1] = {
1173 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1174 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1175 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1176 	},
1177 	[VECS0] = {
1178 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1179 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1180 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1181 	},
1182 };
1183 
1184 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1185 {
1186 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1187 	unsigned long gma;
1188 	bool index_mode = false;
1189 	unsigned int post_sync;
1190 	int ret = 0;
1191 	u32 hws_pga, val;
1192 
1193 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1194 
1195 	/* LRI post sync */
1196 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1197 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1198 	/* post sync */
1199 	else if (post_sync) {
1200 		if (post_sync == 2)
1201 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1202 		else if (post_sync == 3)
1203 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1204 		else if (post_sync == 1) {
1205 			/* check ggtt*/
1206 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1207 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1208 				if (gmadr_bytes == 8)
1209 					gma |= (cmd_gma_hi(s, 3)) << 32;
1210 				/* Store Data Index */
1211 				if (cmd_val(s, 1) & (1 << 21))
1212 					index_mode = true;
1213 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1214 						index_mode);
1215 				if (ret)
1216 					return ret;
1217 				if (index_mode) {
1218 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1219 					gma = hws_pga + gma;
1220 					patch_value(s, cmd_ptr(s, 2), gma);
1221 					val = cmd_val(s, 1) & (~(1 << 21));
1222 					patch_value(s, cmd_ptr(s, 1), val);
1223 				}
1224 			}
1225 		}
1226 	}
1227 
1228 	if (ret)
1229 		return ret;
1230 
1231 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1232 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1233 			s->workload->pending_events);
1234 	return 0;
1235 }
1236 
1237 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1238 {
1239 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1240 		s->workload->pending_events);
1241 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1242 	return 0;
1243 }
1244 
1245 static int cmd_advance_default(struct parser_exec_state *s)
1246 {
1247 	return ip_gma_advance(s, cmd_length(s));
1248 }
1249 
1250 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1251 {
1252 	int ret;
1253 
1254 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1255 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1256 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1257 		s->buf_addr_type = s->saved_buf_addr_type;
1258 	} else if (s->buf_type == RING_BUFFER_CTX) {
1259 		ret = ip_gma_set(s, s->ring_tail);
1260 	} else {
1261 		s->buf_type = RING_BUFFER_INSTRUCTION;
1262 		s->buf_addr_type = GTT_BUFFER;
1263 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1264 			s->ret_ip_gma_ring -= s->ring_size;
1265 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1266 	}
1267 	return ret;
1268 }
1269 
1270 struct mi_display_flip_command_info {
1271 	int pipe;
1272 	int plane;
1273 	int event;
1274 	i915_reg_t stride_reg;
1275 	i915_reg_t ctrl_reg;
1276 	i915_reg_t surf_reg;
1277 	u64 stride_val;
1278 	u64 tile_val;
1279 	u64 surf_val;
1280 	bool async_flip;
1281 };
1282 
1283 struct plane_code_mapping {
1284 	int pipe;
1285 	int plane;
1286 	int event;
1287 };
1288 
1289 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1290 		struct mi_display_flip_command_info *info)
1291 {
1292 	struct drm_i915_private *dev_priv = s->engine->i915;
1293 	struct intel_display *display = dev_priv->display;
1294 	struct plane_code_mapping gen8_plane_code[] = {
1295 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1296 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1297 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1298 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1299 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1300 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1301 	};
1302 	u32 dword0, dword1, dword2;
1303 	u32 v;
1304 
1305 	dword0 = cmd_val(s, 0);
1306 	dword1 = cmd_val(s, 1);
1307 	dword2 = cmd_val(s, 2);
1308 
1309 	v = (dword0 & GENMASK(21, 19)) >> 19;
1310 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1311 		return -EBADRQC;
1312 
1313 	info->pipe = gen8_plane_code[v].pipe;
1314 	info->plane = gen8_plane_code[v].plane;
1315 	info->event = gen8_plane_code[v].event;
1316 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1317 	info->tile_val = (dword1 & 0x1);
1318 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1319 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1320 
1321 	if (info->plane == PLANE_A) {
1322 		info->ctrl_reg = DSPCNTR(display, info->pipe);
1323 		info->stride_reg = DSPSTRIDE(display, info->pipe);
1324 		info->surf_reg = DSPSURF(display, info->pipe);
1325 	} else if (info->plane == PLANE_B) {
1326 		info->ctrl_reg = SPRCTL(info->pipe);
1327 		info->stride_reg = SPRSTRIDE(info->pipe);
1328 		info->surf_reg = SPRSURF(info->pipe);
1329 	} else {
1330 		drm_WARN_ON(&dev_priv->drm, 1);
1331 		return -EBADRQC;
1332 	}
1333 	return 0;
1334 }
1335 
1336 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1337 		struct mi_display_flip_command_info *info)
1338 {
1339 	struct drm_i915_private *dev_priv = s->engine->i915;
1340 	struct intel_display *display = dev_priv->display;
1341 	struct intel_vgpu *vgpu = s->vgpu;
1342 	u32 dword0 = cmd_val(s, 0);
1343 	u32 dword1 = cmd_val(s, 1);
1344 	u32 dword2 = cmd_val(s, 2);
1345 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1346 
1347 	info->plane = PRIMARY_PLANE;
1348 
1349 	switch (plane) {
1350 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1351 		info->pipe = PIPE_A;
1352 		info->event = PRIMARY_A_FLIP_DONE;
1353 		break;
1354 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1355 		info->pipe = PIPE_B;
1356 		info->event = PRIMARY_B_FLIP_DONE;
1357 		break;
1358 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1359 		info->pipe = PIPE_C;
1360 		info->event = PRIMARY_C_FLIP_DONE;
1361 		break;
1362 
1363 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1364 		info->pipe = PIPE_A;
1365 		info->event = SPRITE_A_FLIP_DONE;
1366 		info->plane = SPRITE_PLANE;
1367 		break;
1368 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1369 		info->pipe = PIPE_B;
1370 		info->event = SPRITE_B_FLIP_DONE;
1371 		info->plane = SPRITE_PLANE;
1372 		break;
1373 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1374 		info->pipe = PIPE_C;
1375 		info->event = SPRITE_C_FLIP_DONE;
1376 		info->plane = SPRITE_PLANE;
1377 		break;
1378 
1379 	default:
1380 		gvt_vgpu_err("unknown plane code %d\n", plane);
1381 		return -EBADRQC;
1382 	}
1383 
1384 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1385 	info->tile_val = (dword1 & GENMASK(2, 0));
1386 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1387 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1388 
1389 	info->ctrl_reg = DSPCNTR(display, info->pipe);
1390 	info->stride_reg = DSPSTRIDE(display, info->pipe);
1391 	info->surf_reg = DSPSURF(display, info->pipe);
1392 
1393 	return 0;
1394 }
1395 
1396 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1397 		struct mi_display_flip_command_info *info)
1398 {
1399 	u32 stride, tile;
1400 
1401 	if (!info->async_flip)
1402 		return 0;
1403 
1404 	if (GRAPHICS_VER(s->engine->i915) >= 9) {
1405 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1406 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1407 				GENMASK(12, 10)) >> 10;
1408 	} else {
1409 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1410 				GENMASK(15, 6)) >> 6;
1411 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1412 	}
1413 
1414 	if (stride != info->stride_val)
1415 		gvt_dbg_cmd("cannot change stride during async flip\n");
1416 
1417 	if (tile != info->tile_val)
1418 		gvt_dbg_cmd("cannot change tile during async flip\n");
1419 
1420 	return 0;
1421 }
1422 
1423 static int gen8_update_plane_mmio_from_mi_display_flip(
1424 		struct parser_exec_state *s,
1425 		struct mi_display_flip_command_info *info)
1426 {
1427 	struct drm_i915_private *dev_priv = s->engine->i915;
1428 	struct intel_display *display = dev_priv->display;
1429 	struct intel_vgpu *vgpu = s->vgpu;
1430 
1431 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1432 		      info->surf_val << 12);
1433 	if (GRAPHICS_VER(dev_priv) >= 9) {
1434 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1435 			      info->stride_val);
1436 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1437 			      info->tile_val << 10);
1438 	} else {
1439 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1440 			      info->stride_val << 6);
1441 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1442 			      info->tile_val << 10);
1443 	}
1444 
1445 	if (info->plane == PLANE_PRIMARY)
1446 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, info->pipe))++;
1447 
1448 	if (info->async_flip)
1449 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1450 	else
1451 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1452 
1453 	return 0;
1454 }
1455 
1456 static int decode_mi_display_flip(struct parser_exec_state *s,
1457 		struct mi_display_flip_command_info *info)
1458 {
1459 	if (IS_BROADWELL(s->engine->i915))
1460 		return gen8_decode_mi_display_flip(s, info);
1461 	if (GRAPHICS_VER(s->engine->i915) >= 9)
1462 		return skl_decode_mi_display_flip(s, info);
1463 
1464 	return -ENODEV;
1465 }
1466 
1467 static int check_mi_display_flip(struct parser_exec_state *s,
1468 		struct mi_display_flip_command_info *info)
1469 {
1470 	return gen8_check_mi_display_flip(s, info);
1471 }
1472 
1473 static int update_plane_mmio_from_mi_display_flip(
1474 		struct parser_exec_state *s,
1475 		struct mi_display_flip_command_info *info)
1476 {
1477 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1478 }
1479 
1480 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1481 {
1482 	struct mi_display_flip_command_info info;
1483 	struct intel_vgpu *vgpu = s->vgpu;
1484 	int ret;
1485 	int i;
1486 	int len = cmd_length(s);
1487 	u32 valid_len = CMD_LEN(1);
1488 
1489 	/* Flip Type == Stereo 3D Flip */
1490 	if (DWORD_FIELD(2, 1, 0) == 2)
1491 		valid_len++;
1492 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1493 			valid_len);
1494 	if (ret)
1495 		return ret;
1496 
1497 	ret = decode_mi_display_flip(s, &info);
1498 	if (ret) {
1499 		gvt_vgpu_err("fail to decode MI display flip command\n");
1500 		return ret;
1501 	}
1502 
1503 	ret = check_mi_display_flip(s, &info);
1504 	if (ret) {
1505 		gvt_vgpu_err("invalid MI display flip command\n");
1506 		return ret;
1507 	}
1508 
1509 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1510 	if (ret) {
1511 		gvt_vgpu_err("fail to update plane mmio\n");
1512 		return ret;
1513 	}
1514 
1515 	for (i = 0; i < len; i++)
1516 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1517 	return 0;
1518 }
1519 
1520 static bool is_wait_for_flip_pending(u32 cmd)
1521 {
1522 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1523 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1524 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1525 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1526 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1527 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1528 }
1529 
1530 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1531 {
1532 	u32 cmd = cmd_val(s, 0);
1533 
1534 	if (!is_wait_for_flip_pending(cmd))
1535 		return 0;
1536 
1537 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1538 	return 0;
1539 }
1540 
1541 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1542 {
1543 	unsigned long addr;
1544 	unsigned long gma_high, gma_low;
1545 	struct intel_vgpu *vgpu = s->vgpu;
1546 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1547 
1548 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1549 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1550 		return INTEL_GVT_INVALID_ADDR;
1551 	}
1552 
1553 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1554 	if (gmadr_bytes == 4) {
1555 		addr = gma_low;
1556 	} else {
1557 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1558 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1559 	}
1560 	return addr;
1561 }
1562 
1563 static inline int cmd_address_audit(struct parser_exec_state *s,
1564 		unsigned long guest_gma, int op_size, bool index_mode)
1565 {
1566 	struct intel_vgpu *vgpu = s->vgpu;
1567 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1568 	int i;
1569 	int ret;
1570 
1571 	if (op_size > max_surface_size) {
1572 		gvt_vgpu_err("command address audit fail name %s\n",
1573 			s->info->name);
1574 		return -EFAULT;
1575 	}
1576 
1577 	if (index_mode)	{
1578 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1579 			ret = -EFAULT;
1580 			goto err;
1581 		}
1582 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1583 		ret = -EFAULT;
1584 		goto err;
1585 	}
1586 
1587 	return 0;
1588 
1589 err:
1590 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1591 			s->info->name, guest_gma, op_size);
1592 
1593 	pr_err("cmd dump: ");
1594 	for (i = 0; i < cmd_length(s); i++) {
1595 		if (!(i % 4))
1596 			pr_err("\n%08x ", cmd_val(s, i));
1597 		else
1598 			pr_err("%08x ", cmd_val(s, i));
1599 	}
1600 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1601 			vgpu->id,
1602 			vgpu_aperture_gmadr_base(vgpu),
1603 			vgpu_aperture_gmadr_end(vgpu),
1604 			vgpu_hidden_gmadr_base(vgpu),
1605 			vgpu_hidden_gmadr_end(vgpu));
1606 	return ret;
1607 }
1608 
1609 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1610 {
1611 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1612 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1613 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1614 	unsigned long gma, gma_low, gma_high;
1615 	u32 valid_len = CMD_LEN(2);
1616 	int ret = 0;
1617 
1618 	/* check ppggt */
1619 	if (!(cmd_val(s, 0) & (1 << 22)))
1620 		return 0;
1621 
1622 	/* check if QWORD */
1623 	if (DWORD_FIELD(0, 21, 21))
1624 		valid_len++;
1625 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1626 			valid_len);
1627 	if (ret)
1628 		return ret;
1629 
1630 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1631 
1632 	if (gmadr_bytes == 8) {
1633 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1634 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1635 		gma = (gma_high << 32) | gma_low;
1636 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1637 	}
1638 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1639 	return ret;
1640 }
1641 
1642 static inline int unexpected_cmd(struct parser_exec_state *s)
1643 {
1644 	struct intel_vgpu *vgpu = s->vgpu;
1645 
1646 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1647 
1648 	return -EBADRQC;
1649 }
1650 
1651 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1652 {
1653 	return unexpected_cmd(s);
1654 }
1655 
1656 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1657 {
1658 	return unexpected_cmd(s);
1659 }
1660 
1661 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1662 {
1663 	return unexpected_cmd(s);
1664 }
1665 
1666 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1667 {
1668 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1669 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1670 			sizeof(u32);
1671 	unsigned long gma, gma_high;
1672 	u32 valid_len = CMD_LEN(1);
1673 	int ret = 0;
1674 
1675 	if (!(cmd_val(s, 0) & (1 << 22)))
1676 		return ret;
1677 
1678 	/* check inline data */
1679 	if (cmd_val(s, 0) & BIT(18))
1680 		valid_len = CMD_LEN(9);
1681 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1682 			valid_len);
1683 	if (ret)
1684 		return ret;
1685 
1686 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1687 	if (gmadr_bytes == 8) {
1688 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1689 		gma = (gma_high << 32) | gma;
1690 	}
1691 	ret = cmd_address_audit(s, gma, op_size, false);
1692 	return ret;
1693 }
1694 
1695 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1696 {
1697 	return unexpected_cmd(s);
1698 }
1699 
1700 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1701 {
1702 	return unexpected_cmd(s);
1703 }
1704 
1705 static int cmd_handler_mi_conditional_batch_buffer_end(
1706 		struct parser_exec_state *s)
1707 {
1708 	return unexpected_cmd(s);
1709 }
1710 
1711 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1712 {
1713 	return unexpected_cmd(s);
1714 }
1715 
1716 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1717 {
1718 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1719 	unsigned long gma;
1720 	bool index_mode = false;
1721 	int ret = 0;
1722 	u32 hws_pga, val;
1723 	u32 valid_len = CMD_LEN(2);
1724 
1725 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1726 			valid_len);
1727 	if (ret) {
1728 		/* Check again for Qword */
1729 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1730 			++valid_len);
1731 		return ret;
1732 	}
1733 
1734 	/* Check post-sync and ppgtt bit */
1735 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1736 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1737 		if (gmadr_bytes == 8)
1738 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1739 		/* Store Data Index */
1740 		if (cmd_val(s, 0) & (1 << 21))
1741 			index_mode = true;
1742 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1743 		if (ret)
1744 			return ret;
1745 		if (index_mode) {
1746 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1747 			gma = hws_pga + gma;
1748 			patch_value(s, cmd_ptr(s, 1), gma);
1749 			val = cmd_val(s, 0) & (~(1 << 21));
1750 			patch_value(s, cmd_ptr(s, 0), val);
1751 		}
1752 	}
1753 	/* Check notify bit */
1754 	if ((cmd_val(s, 0) & (1 << 8)))
1755 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1756 			s->workload->pending_events);
1757 	return ret;
1758 }
1759 
1760 static void addr_type_update_snb(struct parser_exec_state *s)
1761 {
1762 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1763 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1764 		s->buf_addr_type = PPGTT_BUFFER;
1765 	}
1766 }
1767 
1768 
1769 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1770 		unsigned long gma, unsigned long end_gma, void *va)
1771 {
1772 	unsigned long copy_len, offset;
1773 	unsigned long len = 0;
1774 	unsigned long gpa;
1775 
1776 	while (gma != end_gma) {
1777 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1778 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1779 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1780 			return -EFAULT;
1781 		}
1782 
1783 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1784 
1785 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1786 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1787 
1788 		intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1789 
1790 		len += copy_len;
1791 		gma += copy_len;
1792 	}
1793 	return len;
1794 }
1795 
1796 
1797 /*
1798  * Check whether a batch buffer needs to be scanned. Currently
1799  * the only criteria is based on privilege.
1800  */
1801 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1802 {
1803 	/* Decide privilege based on address space */
1804 	if (cmd_val(s, 0) & BIT(8) &&
1805 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1806 		return 0;
1807 
1808 	return 1;
1809 }
1810 
1811 static const char *repr_addr_type(unsigned int type)
1812 {
1813 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1814 }
1815 
1816 static int find_bb_size(struct parser_exec_state *s,
1817 			unsigned long *bb_size,
1818 			unsigned long *bb_end_cmd_offset)
1819 {
1820 	unsigned long gma = 0;
1821 	const struct cmd_info *info;
1822 	u32 cmd_len = 0;
1823 	bool bb_end = false;
1824 	struct intel_vgpu *vgpu = s->vgpu;
1825 	u32 cmd;
1826 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1827 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1828 
1829 	*bb_size = 0;
1830 	*bb_end_cmd_offset = 0;
1831 
1832 	/* get the start gm address of the batch buffer */
1833 	gma = get_gma_bb_from_cmd(s, 1);
1834 	if (gma == INTEL_GVT_INVALID_ADDR)
1835 		return -EFAULT;
1836 
1837 	cmd = cmd_val(s, 0);
1838 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1839 	if (info == NULL) {
1840 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1841 			     cmd, get_opcode(cmd, s->engine),
1842 			     repr_addr_type(s->buf_addr_type),
1843 			     s->engine->name, s->workload);
1844 		return -EBADRQC;
1845 	}
1846 	do {
1847 		if (copy_gma_to_hva(s->vgpu, mm,
1848 				    gma, gma + 4, &cmd) < 0)
1849 			return -EFAULT;
1850 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1851 		if (info == NULL) {
1852 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1853 				     cmd, get_opcode(cmd, s->engine),
1854 				     repr_addr_type(s->buf_addr_type),
1855 				     s->engine->name, s->workload);
1856 			return -EBADRQC;
1857 		}
1858 
1859 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1860 			bb_end = true;
1861 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1862 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1863 				/* chained batch buffer */
1864 				bb_end = true;
1865 		}
1866 
1867 		if (bb_end)
1868 			*bb_end_cmd_offset = *bb_size;
1869 
1870 		cmd_len = get_cmd_length(info, cmd) << 2;
1871 		*bb_size += cmd_len;
1872 		gma += cmd_len;
1873 	} while (!bb_end);
1874 
1875 	return 0;
1876 }
1877 
1878 static int audit_bb_end(struct parser_exec_state *s, void *va)
1879 {
1880 	struct intel_vgpu *vgpu = s->vgpu;
1881 	u32 cmd = *(u32 *)va;
1882 	const struct cmd_info *info;
1883 
1884 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1885 	if (info == NULL) {
1886 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1887 			     cmd, get_opcode(cmd, s->engine),
1888 			     repr_addr_type(s->buf_addr_type),
1889 			     s->engine->name, s->workload);
1890 		return -EBADRQC;
1891 	}
1892 
1893 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1894 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1895 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1896 		return 0;
1897 
1898 	return -EBADRQC;
1899 }
1900 
1901 static int perform_bb_shadow(struct parser_exec_state *s)
1902 {
1903 	struct intel_vgpu *vgpu = s->vgpu;
1904 	struct intel_vgpu_shadow_bb *bb;
1905 	unsigned long gma = 0;
1906 	unsigned long bb_size;
1907 	unsigned long bb_end_cmd_offset;
1908 	int ret = 0;
1909 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1910 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1911 	unsigned long start_offset = 0;
1912 
1913 	/* Get the start gm address of the batch buffer */
1914 	gma = get_gma_bb_from_cmd(s, 1);
1915 	if (gma == INTEL_GVT_INVALID_ADDR)
1916 		return -EFAULT;
1917 
1918 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1919 	if (ret)
1920 		return ret;
1921 
1922 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1923 	if (!bb)
1924 		return -ENOMEM;
1925 
1926 	bb->ppgtt = s->buf_addr_type != GTT_BUFFER;
1927 
1928 	/*
1929 	 * The start_offset stores the batch buffer's start gma's
1930 	 * offset relative to page boundary. So for non-privileged batch
1931 	 * buffer, the shadowed gem object holds exactly the same page
1932 	 * layout as original gem object. This is for the convenience of
1933 	 * replacing the whole non-privilged batch buffer page to this
1934 	 * shadowed one in PPGTT at the same gma address. (This replacing
1935 	 * action is not implemented yet now, but may be necessary in
1936 	 * future).
1937 	 * For prileged batch buffer, we just change start gma address to
1938 	 * that of shadowed page.
1939 	 */
1940 	if (bb->ppgtt)
1941 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1942 
1943 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1944 					       round_up(bb_size + start_offset,
1945 							PAGE_SIZE));
1946 	if (IS_ERR(bb->obj)) {
1947 		ret = PTR_ERR(bb->obj);
1948 		goto err_free_bb;
1949 	}
1950 
1951 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1952 	if (IS_ERR(bb->va)) {
1953 		ret = PTR_ERR(bb->va);
1954 		goto err_free_obj;
1955 	}
1956 
1957 	ret = copy_gma_to_hva(s->vgpu, mm,
1958 			      gma, gma + bb_size,
1959 			      bb->va + start_offset);
1960 	if (ret < 0) {
1961 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1962 		ret = -EFAULT;
1963 		goto err_unmap;
1964 	}
1965 
1966 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1967 	if (ret)
1968 		goto err_unmap;
1969 
1970 	i915_gem_object_unlock(bb->obj);
1971 	INIT_LIST_HEAD(&bb->list);
1972 	list_add(&bb->list, &s->workload->shadow_bb);
1973 
1974 	bb->bb_start_cmd_va = s->ip_va;
1975 
1976 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1977 		bb->bb_offset = s->ip_va - s->rb_va;
1978 	else
1979 		bb->bb_offset = 0;
1980 
1981 	/*
1982 	 * ip_va saves the virtual address of the shadow batch buffer, while
1983 	 * ip_gma saves the graphics address of the original batch buffer.
1984 	 * As the shadow batch buffer is just a copy from the original one,
1985 	 * it should be right to use shadow batch buffer'va and original batch
1986 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1987 	 * buffer here (too early).
1988 	 */
1989 	s->ip_va = bb->va + start_offset;
1990 	s->ip_gma = gma;
1991 	return 0;
1992 err_unmap:
1993 	i915_gem_object_unpin_map(bb->obj);
1994 err_free_obj:
1995 	i915_gem_object_put(bb->obj);
1996 err_free_bb:
1997 	kfree(bb);
1998 	return ret;
1999 }
2000 
2001 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
2002 {
2003 	bool second_level;
2004 	int ret = 0;
2005 	struct intel_vgpu *vgpu = s->vgpu;
2006 
2007 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
2008 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2009 		return -EFAULT;
2010 	}
2011 
2012 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2013 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2014 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2015 		return -EFAULT;
2016 	}
2017 
2018 	s->saved_buf_addr_type = s->buf_addr_type;
2019 	addr_type_update_snb(s);
2020 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2021 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2022 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
2023 	} else if (second_level) {
2024 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2025 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2026 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2027 	}
2028 
2029 	if (batch_buffer_needs_scan(s)) {
2030 		ret = perform_bb_shadow(s);
2031 		if (ret < 0)
2032 			gvt_vgpu_err("invalid shadow batch buffer\n");
2033 	} else {
2034 		/* emulate a batch buffer end to do return right */
2035 		ret = cmd_handler_mi_batch_buffer_end(s);
2036 		if (ret < 0)
2037 			return ret;
2038 	}
2039 	return ret;
2040 }
2041 
2042 static int mi_noop_index;
2043 
2044 static const struct cmd_info cmd_info[] = {
2045 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2046 
2047 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2048 		0, 1, NULL},
2049 
2050 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2051 		0, 1, cmd_handler_mi_user_interrupt},
2052 
2053 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2054 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2055 
2056 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2057 
2058 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2059 		NULL},
2060 
2061 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2062 		NULL},
2063 
2064 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2065 		NULL},
2066 
2067 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2068 		NULL},
2069 
2070 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2071 		D_ALL, 0, 1, NULL},
2072 
2073 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2074 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2075 		cmd_handler_mi_batch_buffer_end},
2076 
2077 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2078 		0, 1, NULL},
2079 
2080 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2081 		NULL},
2082 
2083 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2084 		D_ALL, 0, 1, NULL},
2085 
2086 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2087 		NULL},
2088 
2089 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2090 		NULL},
2091 
2092 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2093 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2094 
2095 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2096 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2097 
2098 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2099 
2100 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2101 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2102 
2103 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2104 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2105 		NULL, CMD_LEN(0)},
2106 
2107 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2108 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2109 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2110 
2111 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2112 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2113 
2114 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2115 		0, 8, cmd_handler_mi_store_data_index},
2116 
2117 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2118 		D_ALL, 0, 8, cmd_handler_lri},
2119 
2120 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2121 		cmd_handler_mi_update_gtt},
2122 
2123 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2124 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2125 		cmd_handler_srm, CMD_LEN(2)},
2126 
2127 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2128 		cmd_handler_mi_flush_dw},
2129 
2130 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2131 		10, cmd_handler_mi_clflush},
2132 
2133 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2134 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2135 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2136 
2137 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2138 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2139 		cmd_handler_lrm, CMD_LEN(2)},
2140 
2141 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2142 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2143 		cmd_handler_lrr, CMD_LEN(1)},
2144 
2145 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2146 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2147 		8, NULL, CMD_LEN(2)},
2148 
2149 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2150 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2151 
2152 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2153 		ADDR_FIX_1(2), 8, NULL},
2154 
2155 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2156 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2157 
2158 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2159 		8, cmd_handler_mi_op_2f},
2160 
2161 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2162 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2163 		cmd_handler_mi_batch_buffer_start},
2164 
2165 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2166 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2167 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2168 
2169 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2170 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2171 
2172 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2173 		ADDR_FIX_2(4, 7), 8, NULL},
2174 
2175 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2176 		0, 8, NULL},
2177 
2178 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2179 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2180 
2181 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2182 
2183 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2184 		0, 8, NULL},
2185 
2186 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2187 		ADDR_FIX_1(3), 8, NULL},
2188 
2189 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2190 		D_ALL, 0, 8, NULL},
2191 
2192 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2193 		ADDR_FIX_1(4), 8, NULL},
2194 
2195 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2196 		ADDR_FIX_2(4, 5), 8, NULL},
2197 
2198 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2199 		ADDR_FIX_1(4), 8, NULL},
2200 
2201 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2202 		ADDR_FIX_2(4, 7), 8, NULL},
2203 
2204 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2205 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2206 
2207 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2208 
2209 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2210 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2211 
2212 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2213 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2214 
2215 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2216 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2217 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2218 
2219 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2220 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2221 
2222 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2223 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2224 
2225 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2226 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2227 
2228 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2229 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2230 
2231 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2232 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2233 
2234 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2235 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2236 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2237 
2238 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2239 		ADDR_FIX_2(4, 5), 8, NULL},
2240 
2241 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2242 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2243 
2244 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2245 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2246 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2247 
2248 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2249 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2250 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2251 
2252 	{"3DSTATE_BLEND_STATE_POINTERS",
2253 		OP_3DSTATE_BLEND_STATE_POINTERS,
2254 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2255 
2256 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2257 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2258 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2259 
2260 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2261 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2262 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263 
2264 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2265 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2266 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2267 
2268 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2269 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2270 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271 
2272 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2273 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2274 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2275 
2276 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2277 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2278 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2279 
2280 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2281 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2282 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2283 
2284 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2285 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2286 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2287 
2288 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2289 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2290 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2291 
2292 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2293 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2294 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2295 
2296 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2297 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2298 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2299 
2300 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2301 		0, 8, NULL},
2302 
2303 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2304 		0, 8, NULL},
2305 
2306 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2307 		0, 8, NULL},
2308 
2309 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2310 		0, 8, NULL},
2311 
2312 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2313 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2314 
2315 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2316 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2317 
2318 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2319 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2320 
2321 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2322 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2323 
2324 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2325 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326 
2327 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2328 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2329 
2330 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2331 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2332 
2333 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2334 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2335 
2336 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2337 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2338 
2339 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2340 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341 
2342 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2343 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2344 
2345 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2346 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2347 
2348 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2349 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2350 
2351 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2352 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2353 
2354 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2355 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2356 
2357 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2358 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2359 
2360 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2361 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2362 
2363 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2364 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2365 
2366 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2367 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2368 
2369 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2370 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2371 
2372 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2373 		D_BDW_PLUS, 0, 8, NULL},
2374 
2375 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2376 		NULL},
2377 
2378 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2379 		D_BDW_PLUS, 0, 8, NULL},
2380 
2381 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2382 		D_BDW_PLUS, 0, 8, NULL},
2383 
2384 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2385 		8, NULL},
2386 
2387 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2388 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2389 
2390 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2391 		8, NULL},
2392 
2393 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2394 		NULL},
2395 
2396 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2397 		NULL},
2398 
2399 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2400 		NULL},
2401 
2402 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2403 		D_BDW_PLUS, 0, 8, NULL},
2404 
2405 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2406 		R_RCS, D_ALL, 0, 8, NULL},
2407 
2408 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2409 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2410 
2411 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2412 		R_RCS, D_ALL, 0, 1, NULL},
2413 
2414 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2415 
2416 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2417 		R_RCS, D_ALL, 0, 8, NULL},
2418 
2419 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2420 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2421 
2422 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2423 
2424 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2425 
2426 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2427 
2428 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2429 		D_BDW_PLUS, 0, 8, NULL},
2430 
2431 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2432 		D_BDW_PLUS, 0, 8, NULL},
2433 
2434 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2435 		D_ALL, 0, 8, NULL},
2436 
2437 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2438 		D_BDW_PLUS, 0, 8, NULL},
2439 
2440 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2441 		D_BDW_PLUS, 0, 8, NULL},
2442 
2443 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444 
2445 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446 
2447 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2448 
2449 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2450 		D_ALL, 0, 8, NULL},
2451 
2452 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2453 
2454 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2455 
2456 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2457 		R_RCS, D_ALL, 0, 8, NULL},
2458 
2459 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2460 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2461 
2462 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2463 		0, 8, NULL},
2464 
2465 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2466 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2467 
2468 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2469 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2470 
2471 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2472 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2473 
2474 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2475 		D_ALL, 0, 8, NULL},
2476 
2477 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2478 		D_ALL, 0, 8, NULL},
2479 
2480 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2481 		D_ALL, 0, 8, NULL},
2482 
2483 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2484 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2485 
2486 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2487 		D_BDW_PLUS, 0, 8, NULL},
2488 
2489 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2490 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2491 
2492 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2493 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2494 
2495 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2496 		R_RCS, D_ALL, 0, 8, NULL},
2497 
2498 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2499 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2500 
2501 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2502 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2503 
2504 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2505 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2506 
2507 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2508 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2509 
2510 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2511 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2512 
2513 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2514 		R_RCS, D_ALL, 0, 8, NULL},
2515 
2516 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2517 		D_ALL, 0, 9, NULL},
2518 
2519 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2520 		ADDR_FIX_2(2, 4), 8, NULL},
2521 
2522 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2523 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2524 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2525 
2526 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2527 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2528 
2529 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2530 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2531 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2532 
2533 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2534 		D_BDW_PLUS, 0, 8, NULL},
2535 
2536 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2537 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2538 
2539 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2540 
2541 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2542 		1, NULL},
2543 
2544 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2545 		ADDR_FIX_1(1), 8, NULL},
2546 
2547 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2548 
2549 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2550 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2551 
2552 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2553 		ADDR_FIX_1(1), 8, NULL},
2554 
2555 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2556 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2557 
2558 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2559 
2560 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2561 
2562 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2563 		0, 8, NULL},
2564 
2565 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2566 		D_SKL_PLUS, 0, 8, NULL},
2567 
2568 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2569 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2570 
2571 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2572 		0, 16, NULL},
2573 
2574 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2575 		0, 16, NULL},
2576 
2577 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2578 		0, 16, NULL},
2579 
2580 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2581 
2582 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2583 		0, 16, NULL},
2584 
2585 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2586 		0, 16, NULL},
2587 
2588 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2589 		0, 16, NULL},
2590 
2591 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2592 		0, 8, NULL},
2593 
2594 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2595 		NULL},
2596 
2597 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2598 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2599 
2600 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2601 		R_VCS, D_ALL, 0, 12, NULL},
2602 
2603 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2604 		R_VCS, D_ALL, 0, 12, NULL},
2605 
2606 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2607 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2608 
2609 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2610 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2611 
2612 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2613 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2614 
2615 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2616 
2617 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2618 		R_VCS, D_ALL, 0, 12, NULL},
2619 
2620 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2621 		R_VCS, D_ALL, 0, 12, NULL},
2622 
2623 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2624 		R_VCS, D_ALL, 0, 12, NULL},
2625 
2626 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2627 		R_VCS, D_ALL, 0, 12, NULL},
2628 
2629 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2630 		R_VCS, D_ALL, 0, 12, NULL},
2631 
2632 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2633 		R_VCS, D_ALL, 0, 12, NULL},
2634 
2635 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2636 		R_VCS, D_ALL, 0, 6, NULL},
2637 
2638 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2639 		R_VCS, D_ALL, 0, 12, NULL},
2640 
2641 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2642 		R_VCS, D_ALL, 0, 12, NULL},
2643 
2644 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2645 		R_VCS, D_ALL, 0, 12, NULL},
2646 
2647 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2648 		R_VCS, D_ALL, 0, 12, NULL},
2649 
2650 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2651 		R_VCS, D_ALL, 0, 12, NULL},
2652 
2653 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2654 		R_VCS, D_ALL, 0, 12, NULL},
2655 
2656 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2657 		R_VCS, D_ALL, 0, 12, NULL},
2658 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2659 		R_VCS, D_ALL, 0, 12, NULL},
2660 
2661 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2662 		R_VCS, D_ALL, 0, 12, NULL},
2663 
2664 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2665 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2666 
2667 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2668 		R_VCS, D_ALL, 0, 12, NULL},
2669 
2670 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2671 		R_VCS, D_ALL, 0, 12, NULL},
2672 
2673 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2674 		R_VCS, D_ALL, 0, 12, NULL},
2675 
2676 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2677 		R_VCS, D_ALL, 0, 12, NULL},
2678 
2679 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2680 		R_VCS, D_ALL, 0, 12, NULL},
2681 
2682 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2683 		R_VCS, D_ALL, 0, 12, NULL},
2684 
2685 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2686 		R_VCS, D_ALL, 0, 12, NULL},
2687 
2688 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2689 		R_VCS, D_ALL, 0, 12, NULL},
2690 
2691 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2692 		R_VCS, D_ALL, 0, 12, NULL},
2693 
2694 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2695 		R_VCS, D_ALL, 0, 12, NULL},
2696 
2697 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2698 		R_VCS, D_ALL, 0, 12, NULL},
2699 
2700 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2701 		0, 16, NULL},
2702 
2703 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2704 
2705 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2706 
2707 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2708 		R_VCS, D_ALL, 0, 12, NULL},
2709 
2710 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2711 		R_VCS, D_ALL, 0, 12, NULL},
2712 
2713 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2714 		R_VCS, D_ALL, 0, 12, NULL},
2715 
2716 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2717 
2718 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2719 		0, 12, NULL},
2720 
2721 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2722 		0, 12, NULL},
2723 };
2724 
2725 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2726 {
2727 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2728 }
2729 
2730 /* call the cmd handler, and advance ip */
2731 static int cmd_parser_exec(struct parser_exec_state *s)
2732 {
2733 	struct intel_vgpu *vgpu = s->vgpu;
2734 	const struct cmd_info *info;
2735 	u32 cmd;
2736 	int ret = 0;
2737 
2738 	cmd = cmd_val(s, 0);
2739 
2740 	/* fastpath for MI_NOOP */
2741 	if (cmd == MI_NOOP)
2742 		info = &cmd_info[mi_noop_index];
2743 	else
2744 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2745 
2746 	if (info == NULL) {
2747 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2748 			     cmd, get_opcode(cmd, s->engine),
2749 			     repr_addr_type(s->buf_addr_type),
2750 			     s->engine->name, s->workload);
2751 		return -EBADRQC;
2752 	}
2753 
2754 	s->info = info;
2755 
2756 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2757 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2758 			  s->workload, info->name);
2759 
2760 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2761 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2762 						 info->valid_len);
2763 		if (ret)
2764 			return ret;
2765 	}
2766 
2767 	if (info->handler) {
2768 		ret = info->handler(s);
2769 		if (ret < 0) {
2770 			gvt_vgpu_err("%s handler error\n", info->name);
2771 			return ret;
2772 		}
2773 	}
2774 
2775 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2776 		ret = cmd_advance_default(s);
2777 		if (ret) {
2778 			gvt_vgpu_err("%s IP advance error\n", info->name);
2779 			return ret;
2780 		}
2781 	}
2782 	return 0;
2783 }
2784 
2785 static inline bool gma_out_of_range(unsigned long gma,
2786 		unsigned long gma_head, unsigned int gma_tail)
2787 {
2788 	if (gma_tail >= gma_head)
2789 		return (gma < gma_head) || (gma > gma_tail);
2790 	else
2791 		return (gma > gma_tail) && (gma < gma_head);
2792 }
2793 
2794 /* Keep the consistent return type, e.g EBADRQC for unknown
2795  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2796  * works as the input of VM healthy status.
2797  */
2798 static int command_scan(struct parser_exec_state *s,
2799 		unsigned long rb_head, unsigned long rb_tail,
2800 		unsigned long rb_start, unsigned long rb_len)
2801 {
2802 
2803 	unsigned long gma_head, gma_tail, gma_bottom;
2804 	int ret = 0;
2805 	struct intel_vgpu *vgpu = s->vgpu;
2806 
2807 	gma_head = rb_start + rb_head;
2808 	gma_tail = rb_start + rb_tail;
2809 	gma_bottom = rb_start +  rb_len;
2810 
2811 	while (s->ip_gma != gma_tail) {
2812 		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2813 				s->buf_type == RING_BUFFER_CTX) {
2814 			if (!(s->ip_gma >= rb_start) ||
2815 				!(s->ip_gma < gma_bottom)) {
2816 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2817 					"(base:0x%lx, bottom: 0x%lx)\n",
2818 					s->ip_gma, rb_start,
2819 					gma_bottom);
2820 				parser_exec_state_dump(s);
2821 				return -EFAULT;
2822 			}
2823 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2824 				gvt_vgpu_err("ip_gma %lx out of range."
2825 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2826 					s->ip_gma, rb_start,
2827 					rb_head, rb_tail);
2828 				parser_exec_state_dump(s);
2829 				break;
2830 			}
2831 		}
2832 		ret = cmd_parser_exec(s);
2833 		if (ret) {
2834 			gvt_vgpu_err("cmd parser error\n");
2835 			parser_exec_state_dump(s);
2836 			break;
2837 		}
2838 	}
2839 
2840 	return ret;
2841 }
2842 
2843 static int scan_workload(struct intel_vgpu_workload *workload)
2844 {
2845 	unsigned long gma_head, gma_tail;
2846 	struct parser_exec_state s;
2847 	int ret = 0;
2848 
2849 	/* ring base is page aligned */
2850 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2851 		return -EINVAL;
2852 
2853 	gma_head = workload->rb_start + workload->rb_head;
2854 	gma_tail = workload->rb_start + workload->rb_tail;
2855 
2856 	s.buf_type = RING_BUFFER_INSTRUCTION;
2857 	s.buf_addr_type = GTT_BUFFER;
2858 	s.vgpu = workload->vgpu;
2859 	s.engine = workload->engine;
2860 	s.ring_start = workload->rb_start;
2861 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2862 	s.ring_head = gma_head;
2863 	s.ring_tail = gma_tail;
2864 	s.rb_va = workload->shadow_ring_buffer_va;
2865 	s.workload = workload;
2866 	s.is_ctx_wa = false;
2867 
2868 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2869 		return 0;
2870 
2871 	ret = ip_gma_set(&s, gma_head);
2872 	if (ret)
2873 		goto out;
2874 
2875 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2876 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2877 
2878 out:
2879 	return ret;
2880 }
2881 
2882 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2883 {
2884 
2885 	unsigned long gma_head, gma_tail, ring_size, ring_tail;
2886 	struct parser_exec_state s;
2887 	int ret = 0;
2888 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2889 				struct intel_vgpu_workload,
2890 				wa_ctx);
2891 
2892 	/* ring base is page aligned */
2893 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2894 					I915_GTT_PAGE_SIZE)))
2895 		return -EINVAL;
2896 
2897 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2898 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2899 			PAGE_SIZE);
2900 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2901 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2902 
2903 	s.buf_type = RING_BUFFER_INSTRUCTION;
2904 	s.buf_addr_type = GTT_BUFFER;
2905 	s.vgpu = workload->vgpu;
2906 	s.engine = workload->engine;
2907 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2908 	s.ring_size = ring_size;
2909 	s.ring_head = gma_head;
2910 	s.ring_tail = gma_tail;
2911 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2912 	s.workload = workload;
2913 	s.is_ctx_wa = true;
2914 
2915 	ret = ip_gma_set(&s, gma_head);
2916 	if (ret)
2917 		goto out;
2918 
2919 	ret = command_scan(&s, 0, ring_tail,
2920 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2921 out:
2922 	return ret;
2923 }
2924 
2925 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2926 {
2927 	struct intel_vgpu *vgpu = workload->vgpu;
2928 	struct intel_vgpu_submission *s = &vgpu->submission;
2929 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2930 	void *shadow_ring_buffer_va;
2931 	int ret;
2932 
2933 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2934 
2935 	/* calculate workload ring buffer size */
2936 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2937 			workload->rb_head) % guest_rb_size;
2938 
2939 	gma_head = workload->rb_start + workload->rb_head;
2940 	gma_tail = workload->rb_start + workload->rb_tail;
2941 	gma_top = workload->rb_start + guest_rb_size;
2942 
2943 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2944 		void *p;
2945 
2946 		/* realloc the new ring buffer if needed */
2947 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2948 			     workload->rb_len, GFP_KERNEL);
2949 		if (!p) {
2950 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2951 			return -ENOMEM;
2952 		}
2953 		s->ring_scan_buffer[workload->engine->id] = p;
2954 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2955 	}
2956 
2957 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2958 
2959 	/* get shadow ring buffer va */
2960 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2961 
2962 	/* head > tail --> copy head <-> top */
2963 	if (gma_head > gma_tail) {
2964 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2965 				      gma_head, gma_top, shadow_ring_buffer_va);
2966 		if (ret < 0) {
2967 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2968 			return ret;
2969 		}
2970 		shadow_ring_buffer_va += ret;
2971 		gma_head = workload->rb_start;
2972 	}
2973 
2974 	/* copy head or start <-> tail */
2975 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2976 				shadow_ring_buffer_va);
2977 	if (ret < 0) {
2978 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2979 		return ret;
2980 	}
2981 	return 0;
2982 }
2983 
2984 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2985 {
2986 	int ret;
2987 	struct intel_vgpu *vgpu = workload->vgpu;
2988 
2989 	ret = shadow_workload_ring_buffer(workload);
2990 	if (ret) {
2991 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2992 		return ret;
2993 	}
2994 
2995 	ret = scan_workload(workload);
2996 	if (ret) {
2997 		gvt_vgpu_err("scan workload error\n");
2998 		return ret;
2999 	}
3000 	return 0;
3001 }
3002 
3003 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3004 {
3005 	int ctx_size = wa_ctx->indirect_ctx.size;
3006 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
3007 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3008 					struct intel_vgpu_workload,
3009 					wa_ctx);
3010 	struct intel_vgpu *vgpu = workload->vgpu;
3011 	struct drm_i915_gem_object *obj;
3012 	int ret = 0;
3013 	void *map;
3014 
3015 	obj = i915_gem_object_create_shmem(workload->engine->i915,
3016 					   roundup(ctx_size + CACHELINE_BYTES,
3017 						   PAGE_SIZE));
3018 	if (IS_ERR(obj))
3019 		return PTR_ERR(obj);
3020 
3021 	/* get the va of the shadow batch buffer */
3022 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3023 	if (IS_ERR(map)) {
3024 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3025 		ret = PTR_ERR(map);
3026 		goto put_obj;
3027 	}
3028 
3029 	i915_gem_object_lock(obj, NULL);
3030 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
3031 	i915_gem_object_unlock(obj);
3032 	if (ret) {
3033 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3034 		goto unmap_src;
3035 	}
3036 
3037 	ret = copy_gma_to_hva(workload->vgpu,
3038 				workload->vgpu->gtt.ggtt_mm,
3039 				guest_gma, guest_gma + ctx_size,
3040 				map);
3041 	if (ret < 0) {
3042 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
3043 		goto unmap_src;
3044 	}
3045 
3046 	wa_ctx->indirect_ctx.obj = obj;
3047 	wa_ctx->indirect_ctx.shadow_va = map;
3048 	return 0;
3049 
3050 unmap_src:
3051 	i915_gem_object_unpin_map(obj);
3052 put_obj:
3053 	i915_gem_object_put(obj);
3054 	return ret;
3055 }
3056 
3057 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3058 {
3059 	u32 per_ctx_start[CACHELINE_DWORDS] = {};
3060 	unsigned char *bb_start_sva;
3061 
3062 	if (!wa_ctx->per_ctx.valid)
3063 		return 0;
3064 
3065 	per_ctx_start[0] = 0x18800001;
3066 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3067 
3068 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3069 				wa_ctx->indirect_ctx.size;
3070 
3071 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3072 
3073 	return 0;
3074 }
3075 
3076 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3077 {
3078 	int ret;
3079 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3080 					struct intel_vgpu_workload,
3081 					wa_ctx);
3082 	struct intel_vgpu *vgpu = workload->vgpu;
3083 
3084 	if (wa_ctx->indirect_ctx.size == 0)
3085 		return 0;
3086 
3087 	ret = shadow_indirect_ctx(wa_ctx);
3088 	if (ret) {
3089 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3090 		return ret;
3091 	}
3092 
3093 	combine_wa_ctx(wa_ctx);
3094 
3095 	ret = scan_wa_ctx(wa_ctx);
3096 	if (ret) {
3097 		gvt_vgpu_err("scan wa ctx error\n");
3098 		return ret;
3099 	}
3100 
3101 	return 0;
3102 }
3103 
3104 /* generate dummy contexts by sending empty requests to HW, and let
3105  * the HW to fill Engine Contexts. This dummy contexts are used for
3106  * initialization purpose (update reg whitelist), so referred to as
3107  * init context here
3108  */
3109 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3110 {
3111 	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3112 	struct intel_gvt *gvt = vgpu->gvt;
3113 	struct intel_engine_cs *engine;
3114 	enum intel_engine_id id;
3115 
3116 	if (gvt->is_reg_whitelist_updated)
3117 		return;
3118 
3119 	/* scan init ctx to update cmd accessible list */
3120 	for_each_engine(engine, gvt->gt, id) {
3121 		struct parser_exec_state s;
3122 		void *vaddr;
3123 		int ret;
3124 
3125 		if (!engine->default_state)
3126 			continue;
3127 
3128 		vaddr = shmem_pin_map(engine->default_state);
3129 		if (!vaddr) {
3130 			gvt_err("failed to map %s->default state\n",
3131 				engine->name);
3132 			return;
3133 		}
3134 
3135 		s.buf_type = RING_BUFFER_CTX;
3136 		s.buf_addr_type = GTT_BUFFER;
3137 		s.vgpu = vgpu;
3138 		s.engine = engine;
3139 		s.ring_start = 0;
3140 		s.ring_size = engine->context_size - start;
3141 		s.ring_head = 0;
3142 		s.ring_tail = s.ring_size;
3143 		s.rb_va = vaddr + start;
3144 		s.workload = NULL;
3145 		s.is_ctx_wa = false;
3146 		s.is_init_ctx = true;
3147 
3148 		/* skipping the first RING_CTX_SIZE(0x50) dwords */
3149 		ret = ip_gma_set(&s, RING_CTX_SIZE);
3150 		if (ret == 0) {
3151 			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3152 			if (ret)
3153 				gvt_err("Scan init ctx error\n");
3154 		}
3155 
3156 		shmem_unpin_map(engine->default_state, vaddr);
3157 		if (ret)
3158 			return;
3159 	}
3160 
3161 	gvt->is_reg_whitelist_updated = true;
3162 }
3163 
3164 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3165 {
3166 	struct intel_vgpu *vgpu = workload->vgpu;
3167 	unsigned long gma_head, gma_tail, gma_start, ctx_size;
3168 	struct parser_exec_state s;
3169 	int ring_id = workload->engine->id;
3170 	struct intel_context *ce = vgpu->submission.shadow[ring_id];
3171 	int ret;
3172 
3173 	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3174 
3175 	ctx_size = workload->engine->context_size - PAGE_SIZE;
3176 
3177 	/* Only ring contxt is loaded to HW for inhibit context, no need to
3178 	 * scan engine context
3179 	 */
3180 	if (is_inhibit_context(ce))
3181 		return 0;
3182 
3183 	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3184 	gma_head = 0;
3185 	gma_tail = ctx_size;
3186 
3187 	s.buf_type = RING_BUFFER_CTX;
3188 	s.buf_addr_type = GTT_BUFFER;
3189 	s.vgpu = workload->vgpu;
3190 	s.engine = workload->engine;
3191 	s.ring_start = gma_start;
3192 	s.ring_size = ctx_size;
3193 	s.ring_head = gma_start + gma_head;
3194 	s.ring_tail = gma_start + gma_tail;
3195 	s.rb_va = ce->lrc_reg_state;
3196 	s.workload = workload;
3197 	s.is_ctx_wa = false;
3198 	s.is_init_ctx = false;
3199 
3200 	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3201 	 * context
3202 	 */
3203 	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3204 	if (ret)
3205 		goto out;
3206 
3207 	ret = command_scan(&s, gma_head, gma_tail,
3208 		gma_start, ctx_size);
3209 out:
3210 	if (ret)
3211 		gvt_vgpu_err("scan shadow ctx error\n");
3212 
3213 	return ret;
3214 }
3215 
3216 static int init_cmd_table(struct intel_gvt *gvt)
3217 {
3218 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3219 	int i;
3220 
3221 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3222 		struct cmd_entry *e;
3223 
3224 		if (!(cmd_info[i].devices & gen_type))
3225 			continue;
3226 
3227 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3228 		if (!e)
3229 			return -ENOMEM;
3230 
3231 		e->info = &cmd_info[i];
3232 		if (cmd_info[i].opcode == OP_MI_NOOP)
3233 			mi_noop_index = i;
3234 
3235 		INIT_HLIST_NODE(&e->hlist);
3236 		add_cmd_entry(gvt, e);
3237 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3238 			    e->info->name, e->info->opcode, e->info->flag,
3239 			    e->info->devices, e->info->rings);
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 static void clean_cmd_table(struct intel_gvt *gvt)
3246 {
3247 	struct hlist_node *tmp;
3248 	struct cmd_entry *e;
3249 	int i;
3250 
3251 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3252 		kfree(e);
3253 
3254 	hash_init(gvt->cmd_table);
3255 }
3256 
3257 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3258 {
3259 	clean_cmd_table(gvt);
3260 }
3261 
3262 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3263 {
3264 	int ret;
3265 
3266 	ret = init_cmd_table(gvt);
3267 	if (ret) {
3268 		intel_gvt_clean_cmd_parser(gvt);
3269 		return ret;
3270 	}
3271 	return 0;
3272 }
3273