1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include <drm/drm_print.h> 40 41 #include "i915_drv.h" 42 #include "i915_reg.h" 43 #include "display/intel_display_regs.h" 44 #include "gt/intel_engine_regs.h" 45 #include "gt/intel_gpu_commands.h" 46 #include "gt/intel_gt_regs.h" 47 #include "gt/intel_lrc.h" 48 #include "gt/intel_ring.h" 49 #include "gt/intel_gt_requests.h" 50 #include "gt/shmem_utils.h" 51 #include "gvt.h" 52 #include "i915_pvinfo.h" 53 #include "trace.h" 54 55 #include "display/i9xx_plane_regs.h" 56 #include "display/intel_display_core.h" 57 #include "display/intel_sprite_regs.h" 58 #include "gem/i915_gem_context.h" 59 #include "gem/i915_gem_pm.h" 60 #include "gt/intel_context.h" 61 62 #define INVALID_OP (~0U) 63 64 #define OP_LEN_MI 9 65 #define OP_LEN_2D 10 66 #define OP_LEN_3D_MEDIA 16 67 #define OP_LEN_MFX_VC 16 68 #define OP_LEN_VEBOX 16 69 70 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 71 72 struct sub_op_bits { 73 int hi; 74 int low; 75 }; 76 struct decode_info { 77 const char *name; 78 int op_len; 79 int nr_sub_op; 80 const struct sub_op_bits *sub_op; 81 }; 82 83 #define MAX_CMD_BUDGET 0x7fffffff 84 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 85 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 86 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 87 88 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 89 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 90 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 91 92 /* Render Command Map */ 93 94 /* MI_* command Opcode (28:23) */ 95 #define OP_MI_NOOP 0x0 96 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 97 #define OP_MI_USER_INTERRUPT 0x2 98 #define OP_MI_WAIT_FOR_EVENT 0x3 99 #define OP_MI_FLUSH 0x4 100 #define OP_MI_ARB_CHECK 0x5 101 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 102 #define OP_MI_REPORT_HEAD 0x7 103 #define OP_MI_ARB_ON_OFF 0x8 104 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 105 #define OP_MI_BATCH_BUFFER_END 0xA 106 #define OP_MI_SUSPEND_FLUSH 0xB 107 #define OP_MI_PREDICATE 0xC /* IVB+ */ 108 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 109 #define OP_MI_SET_APPID 0xE /* IVB+ */ 110 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 111 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 112 #define OP_MI_DISPLAY_FLIP 0x14 113 #define OP_MI_SEMAPHORE_MBOX 0x16 114 #define OP_MI_SET_CONTEXT 0x18 115 #define OP_MI_MATH 0x1A 116 #define OP_MI_URB_CLEAR 0x19 117 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 118 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 119 120 #define OP_MI_STORE_DATA_IMM 0x20 121 #define OP_MI_STORE_DATA_INDEX 0x21 122 #define OP_MI_LOAD_REGISTER_IMM 0x22 123 #define OP_MI_UPDATE_GTT 0x23 124 #define OP_MI_STORE_REGISTER_MEM 0x24 125 #define OP_MI_FLUSH_DW 0x26 126 #define OP_MI_CLFLUSH 0x27 127 #define OP_MI_REPORT_PERF_COUNT 0x28 128 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 129 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 130 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 131 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 132 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 133 #define OP_MI_2E 0x2E /* BDW+ */ 134 #define OP_MI_2F 0x2F /* BDW+ */ 135 #define OP_MI_BATCH_BUFFER_START 0x31 136 137 /* Bit definition for dword 0 */ 138 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 139 140 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 141 142 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 143 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 144 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 145 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 146 147 /* 2D command: Opcode (28:22) */ 148 #define OP_2D(x) ((2<<7) | x) 149 150 #define OP_XY_SETUP_BLT OP_2D(0x1) 151 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 152 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 153 #define OP_XY_PIXEL_BLT OP_2D(0x24) 154 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 155 #define OP_XY_TEXT_BLT OP_2D(0x26) 156 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 157 #define OP_XY_COLOR_BLT OP_2D(0x50) 158 #define OP_XY_PAT_BLT OP_2D(0x51) 159 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 160 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 161 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 162 #define OP_XY_FULL_BLT OP_2D(0x55) 163 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 164 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 165 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 166 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 167 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 168 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 169 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 170 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 171 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 172 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 173 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 174 175 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 176 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 177 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 178 179 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 180 181 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 182 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 183 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 184 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 185 186 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 187 188 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 189 190 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 191 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 192 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 193 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 194 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 195 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 196 197 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 198 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 199 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 200 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 201 202 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 203 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 204 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 205 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 206 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 207 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 208 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 209 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 210 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 211 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 212 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 213 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 214 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 215 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 216 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 217 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 218 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 219 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 220 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 221 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 222 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 223 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 224 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 225 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 226 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 227 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 228 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 229 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 230 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 231 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 232 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 233 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 234 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 235 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 236 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 237 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 238 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 239 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 240 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 241 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 242 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 243 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 244 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 245 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 246 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 247 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 248 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 249 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 250 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 251 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 252 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 253 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 254 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 255 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 256 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 257 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 258 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 259 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 260 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 261 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 262 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 263 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 264 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 265 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 266 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 267 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 268 269 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 270 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 271 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 272 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 273 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 274 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 275 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 276 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 277 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 278 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 279 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 280 281 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 282 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 283 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 284 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 285 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 286 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 287 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 288 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 289 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 290 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 291 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 292 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 293 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 294 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 295 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 296 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 297 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 298 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 299 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 300 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 301 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 302 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 303 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 304 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 305 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 306 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 307 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 308 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 309 310 /* VCCP Command Parser */ 311 312 /* 313 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 314 * git://anongit.freedesktop.org/vaapi/intel-driver 315 * src/i965_defines.h 316 * 317 */ 318 319 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 320 (3 << 13 | \ 321 (pipeline) << 11 | \ 322 (op) << 8 | \ 323 (sub_opa) << 5 | \ 324 (sub_opb)) 325 326 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 327 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 328 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 329 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 330 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 331 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 332 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 333 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 334 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 335 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 336 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 337 338 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 339 340 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 341 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 342 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 343 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 344 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 345 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 346 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 347 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 348 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 349 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 350 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 351 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 352 353 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 354 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 355 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 356 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 357 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 358 359 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 360 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 361 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 362 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 363 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 364 365 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 366 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 367 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 368 369 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 370 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 371 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 372 373 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 374 (3 << 13 | \ 375 (pipeline) << 11 | \ 376 (op) << 8 | \ 377 (sub_opa) << 5 | \ 378 (sub_opb)) 379 380 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 381 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 382 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 383 384 struct parser_exec_state; 385 386 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 387 388 #define GVT_CMD_HASH_BITS 7 389 390 /* which DWords need address fix */ 391 #define ADDR_FIX_1(x1) (1 << (x1)) 392 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 393 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 394 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 395 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 396 397 #define DWORD_FIELD(dword, end, start) \ 398 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 399 400 #define OP_LENGTH_BIAS 2 401 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 402 403 static int gvt_check_valid_cmd_length(int len, int valid_len) 404 { 405 if (valid_len != len) { 406 gvt_err("len is not valid: len=%u valid_len=%u\n", 407 len, valid_len); 408 return -EFAULT; 409 } 410 return 0; 411 } 412 413 struct cmd_info { 414 const char *name; 415 u32 opcode; 416 417 #define F_LEN_MASK 3U 418 #define F_LEN_CONST 1U 419 #define F_LEN_VAR 0U 420 /* value is const although LEN maybe variable */ 421 #define F_LEN_VAR_FIXED (1<<1) 422 423 /* 424 * command has its own ip advance logic 425 * e.g. MI_BATCH_START, MI_BATCH_END 426 */ 427 #define F_IP_ADVANCE_CUSTOM (1<<2) 428 u32 flag; 429 430 #define R_RCS BIT(RCS0) 431 #define R_VCS1 BIT(VCS0) 432 #define R_VCS2 BIT(VCS1) 433 #define R_VCS (R_VCS1 | R_VCS2) 434 #define R_BCS BIT(BCS0) 435 #define R_VECS BIT(VECS0) 436 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 437 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 438 intel_engine_mask_t rings; 439 440 /* devices that support this cmd: SNB/IVB/HSW/... */ 441 u16 devices; 442 443 /* which DWords are address that need fix up. 444 * bit 0 means a 32-bit non address operand in command 445 * bit 1 means address operand, which could be 32-bit 446 * or 64-bit depending on different architectures.( 447 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 448 * No matter the address length, each address only takes 449 * one bit in the bitmap. 450 */ 451 u16 addr_bitmap; 452 453 /* flag == F_LEN_CONST : command length 454 * flag == F_LEN_VAR : length bias bits 455 * Note: length is in DWord 456 */ 457 u32 len; 458 459 parser_cmd_handler handler; 460 461 /* valid length in DWord */ 462 u32 valid_len; 463 }; 464 465 struct cmd_entry { 466 struct hlist_node hlist; 467 const struct cmd_info *info; 468 }; 469 470 enum { 471 RING_BUFFER_INSTRUCTION, 472 BATCH_BUFFER_INSTRUCTION, 473 BATCH_BUFFER_2ND_LEVEL, 474 RING_BUFFER_CTX, 475 }; 476 477 enum { 478 GTT_BUFFER, 479 PPGTT_BUFFER 480 }; 481 482 struct parser_exec_state { 483 struct intel_vgpu *vgpu; 484 const struct intel_engine_cs *engine; 485 486 int buf_type; 487 488 /* batch buffer address type */ 489 int buf_addr_type; 490 491 /* graphics memory address of ring buffer start */ 492 unsigned long ring_start; 493 unsigned long ring_size; 494 unsigned long ring_head; 495 unsigned long ring_tail; 496 497 /* instruction graphics memory address */ 498 unsigned long ip_gma; 499 500 /* mapped va of the instr_gma */ 501 void *ip_va; 502 void *rb_va; 503 504 void *ret_bb_va; 505 /* next instruction when return from batch buffer to ring buffer */ 506 unsigned long ret_ip_gma_ring; 507 508 /* next instruction when return from 2nd batch buffer to batch buffer */ 509 unsigned long ret_ip_gma_bb; 510 511 /* batch buffer address type (GTT or PPGTT) 512 * used when ret from 2nd level batch buffer 513 */ 514 int saved_buf_addr_type; 515 bool is_ctx_wa; 516 bool is_init_ctx; 517 518 const struct cmd_info *info; 519 520 struct intel_vgpu_workload *workload; 521 }; 522 523 #define gmadr_dw_number(s) \ 524 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 525 526 static unsigned long bypass_scan_mask = 0; 527 528 /* ring ALL, type = 0 */ 529 static const struct sub_op_bits sub_op_mi[] = { 530 {31, 29}, 531 {28, 23}, 532 }; 533 534 static const struct decode_info decode_info_mi = { 535 "MI", 536 OP_LEN_MI, 537 ARRAY_SIZE(sub_op_mi), 538 sub_op_mi, 539 }; 540 541 /* ring RCS, command type 2 */ 542 static const struct sub_op_bits sub_op_2d[] = { 543 {31, 29}, 544 {28, 22}, 545 }; 546 547 static const struct decode_info decode_info_2d = { 548 "2D", 549 OP_LEN_2D, 550 ARRAY_SIZE(sub_op_2d), 551 sub_op_2d, 552 }; 553 554 /* ring RCS, command type 3 */ 555 static const struct sub_op_bits sub_op_3d_media[] = { 556 {31, 29}, 557 {28, 27}, 558 {26, 24}, 559 {23, 16}, 560 }; 561 562 static const struct decode_info decode_info_3d_media = { 563 "3D_Media", 564 OP_LEN_3D_MEDIA, 565 ARRAY_SIZE(sub_op_3d_media), 566 sub_op_3d_media, 567 }; 568 569 /* ring VCS, command type 3 */ 570 static const struct sub_op_bits sub_op_mfx_vc[] = { 571 {31, 29}, 572 {28, 27}, 573 {26, 24}, 574 {23, 21}, 575 {20, 16}, 576 }; 577 578 static const struct decode_info decode_info_mfx_vc = { 579 "MFX_VC", 580 OP_LEN_MFX_VC, 581 ARRAY_SIZE(sub_op_mfx_vc), 582 sub_op_mfx_vc, 583 }; 584 585 /* ring VECS, command type 3 */ 586 static const struct sub_op_bits sub_op_vebox[] = { 587 {31, 29}, 588 {28, 27}, 589 {26, 24}, 590 {23, 21}, 591 {20, 16}, 592 }; 593 594 static const struct decode_info decode_info_vebox = { 595 "VEBOX", 596 OP_LEN_VEBOX, 597 ARRAY_SIZE(sub_op_vebox), 598 sub_op_vebox, 599 }; 600 601 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 602 [RCS0] = { 603 &decode_info_mi, 604 NULL, 605 NULL, 606 &decode_info_3d_media, 607 NULL, 608 NULL, 609 NULL, 610 NULL, 611 }, 612 613 [VCS0] = { 614 &decode_info_mi, 615 NULL, 616 NULL, 617 &decode_info_mfx_vc, 618 NULL, 619 NULL, 620 NULL, 621 NULL, 622 }, 623 624 [BCS0] = { 625 &decode_info_mi, 626 NULL, 627 &decode_info_2d, 628 NULL, 629 NULL, 630 NULL, 631 NULL, 632 NULL, 633 }, 634 635 [VECS0] = { 636 &decode_info_mi, 637 NULL, 638 NULL, 639 &decode_info_vebox, 640 NULL, 641 NULL, 642 NULL, 643 NULL, 644 }, 645 646 [VCS1] = { 647 &decode_info_mi, 648 NULL, 649 NULL, 650 &decode_info_mfx_vc, 651 NULL, 652 NULL, 653 NULL, 654 NULL, 655 }, 656 }; 657 658 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 659 { 660 const struct decode_info *d_info; 661 662 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 663 if (d_info == NULL) 664 return INVALID_OP; 665 666 return cmd >> (32 - d_info->op_len); 667 } 668 669 static inline const struct cmd_info * 670 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 671 const struct intel_engine_cs *engine) 672 { 673 struct cmd_entry *e; 674 675 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 676 if (opcode == e->info->opcode && 677 e->info->rings & engine->mask) 678 return e->info; 679 } 680 return NULL; 681 } 682 683 static inline const struct cmd_info * 684 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 685 const struct intel_engine_cs *engine) 686 { 687 u32 opcode; 688 689 opcode = get_opcode(cmd, engine); 690 if (opcode == INVALID_OP) 691 return NULL; 692 693 return find_cmd_entry(gvt, opcode, engine); 694 } 695 696 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 697 { 698 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 699 } 700 701 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 702 { 703 const struct decode_info *d_info; 704 int i; 705 706 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 707 if (d_info == NULL) 708 return; 709 710 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 711 cmd >> (32 - d_info->op_len), d_info->name); 712 713 for (i = 0; i < d_info->nr_sub_op; i++) 714 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 715 d_info->sub_op[i].low)); 716 717 pr_err("\n"); 718 } 719 720 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 721 { 722 return s->ip_va + (index << 2); 723 } 724 725 static inline u32 cmd_val(struct parser_exec_state *s, int index) 726 { 727 return *cmd_ptr(s, index); 728 } 729 730 static inline bool is_init_ctx(struct parser_exec_state *s) 731 { 732 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 733 } 734 735 static void parser_exec_state_dump(struct parser_exec_state *s) 736 { 737 int cnt = 0; 738 int i; 739 740 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 741 " ring_head(%08lx) ring_tail(%08lx)\n", 742 s->vgpu->id, s->engine->name, 743 s->ring_start, s->ring_start + s->ring_size, 744 s->ring_head, s->ring_tail); 745 746 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 747 s->buf_type == RING_BUFFER_INSTRUCTION ? 748 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 749 "CTX_BUFFER" : "BATCH_BUFFER"), 750 s->buf_addr_type == GTT_BUFFER ? 751 "GTT" : "PPGTT", s->ip_gma); 752 753 if (s->ip_va == NULL) { 754 gvt_dbg_cmd(" ip_va(NULL)"); 755 return; 756 } 757 758 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 759 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 760 cmd_val(s, 2), cmd_val(s, 3)); 761 762 print_opcode(cmd_val(s, 0), s->engine); 763 764 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 765 766 while (cnt < 1024) { 767 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 768 for (i = 0; i < 8; i++) 769 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 770 gvt_dbg_cmd("\n"); 771 772 s->ip_va += 8 * sizeof(u32); 773 cnt += 8; 774 } 775 } 776 777 static inline void update_ip_va(struct parser_exec_state *s) 778 { 779 unsigned long len = 0; 780 781 if (WARN_ON(s->ring_head == s->ring_tail)) 782 return; 783 784 if (s->buf_type == RING_BUFFER_INSTRUCTION || 785 s->buf_type == RING_BUFFER_CTX) { 786 unsigned long ring_top = s->ring_start + s->ring_size; 787 788 if (s->ring_head > s->ring_tail) { 789 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 790 len = (s->ip_gma - s->ring_head); 791 else if (s->ip_gma >= s->ring_start && 792 s->ip_gma <= s->ring_tail) 793 len = (ring_top - s->ring_head) + 794 (s->ip_gma - s->ring_start); 795 } else 796 len = (s->ip_gma - s->ring_head); 797 798 s->ip_va = s->rb_va + len; 799 } else {/* shadow batch buffer */ 800 s->ip_va = s->ret_bb_va; 801 } 802 } 803 804 static inline int ip_gma_set(struct parser_exec_state *s, 805 unsigned long ip_gma) 806 { 807 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 808 809 s->ip_gma = ip_gma; 810 update_ip_va(s); 811 return 0; 812 } 813 814 static inline int ip_gma_advance(struct parser_exec_state *s, 815 unsigned int dw_len) 816 { 817 s->ip_gma += (dw_len << 2); 818 819 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 820 if (s->ip_gma >= s->ring_start + s->ring_size) 821 s->ip_gma -= s->ring_size; 822 update_ip_va(s); 823 } else { 824 s->ip_va += (dw_len << 2); 825 } 826 827 return 0; 828 } 829 830 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 831 { 832 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 833 return info->len; 834 else 835 return (cmd & ((1U << info->len) - 1)) + 2; 836 return 0; 837 } 838 839 static inline int cmd_length(struct parser_exec_state *s) 840 { 841 return get_cmd_length(s->info, cmd_val(s, 0)); 842 } 843 844 /* do not remove this, some platform may need clflush here */ 845 #define patch_value(s, addr, val) do { \ 846 *addr = val; \ 847 } while (0) 848 849 static inline bool is_mocs_mmio(unsigned int offset) 850 { 851 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 852 ((offset >= 0xb020) && (offset <= 0xb0a0)); 853 } 854 855 static int is_cmd_update_pdps(unsigned int offset, 856 struct parser_exec_state *s) 857 { 858 u32 base = s->workload->engine->mmio_base; 859 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 860 } 861 862 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 863 unsigned int offset, unsigned int index) 864 { 865 struct intel_vgpu *vgpu = s->vgpu; 866 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 867 struct intel_vgpu_mm *mm; 868 u64 pdps[GEN8_3LVL_PDPES]; 869 870 if (shadow_mm->ppgtt_mm.root_entry_type == 871 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 872 pdps[0] = (u64)cmd_val(s, 2) << 32; 873 pdps[0] |= cmd_val(s, 4); 874 875 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 876 if (!mm) { 877 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 878 return -EINVAL; 879 } 880 intel_vgpu_mm_get(mm); 881 list_add_tail(&mm->ppgtt_mm.link, 882 &s->workload->lri_shadow_mm); 883 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 884 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 885 } else { 886 /* Currently all guests use PML4 table and now can't 887 * have a guest with 3-level table but uses LRI for 888 * PPGTT update. So this is simply un-testable. */ 889 GEM_BUG_ON(1); 890 gvt_vgpu_err("invalid shared shadow vm type\n"); 891 return -EINVAL; 892 } 893 return 0; 894 } 895 896 static int cmd_reg_handler(struct parser_exec_state *s, 897 unsigned int offset, unsigned int index, char *cmd) 898 { 899 struct intel_vgpu *vgpu = s->vgpu; 900 struct intel_gvt *gvt = vgpu->gvt; 901 u32 ctx_sr_ctl; 902 u32 *vreg, vreg_old; 903 904 if (offset + 4 > gvt->device_info.mmio_size) { 905 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 906 cmd, offset); 907 return -EFAULT; 908 } 909 910 if (is_init_ctx(s)) { 911 struct intel_gvt_mmio_info *mmio_info; 912 913 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 914 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 915 if (mmio_info && mmio_info->write) 916 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 917 return 0; 918 } 919 920 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 921 gvt_vgpu_err("%s access to non-render register (%x)\n", 922 cmd, offset); 923 return -EBADRQC; 924 } 925 926 if (!strncmp(cmd, "srm", 3) || 927 !strncmp(cmd, "lrm", 3)) { 928 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 929 offset == 0x21f0 || 930 (IS_BROADWELL(gvt->gt->i915) && 931 offset == i915_mmio_reg_offset(INSTPM))) 932 return 0; 933 else { 934 gvt_vgpu_err("%s access to register (%x)\n", 935 cmd, offset); 936 return -EPERM; 937 } 938 } 939 940 if (!strncmp(cmd, "lrr-src", 7) || 941 !strncmp(cmd, "lrr-dst", 7)) { 942 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 943 return 0; 944 else { 945 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 946 return -EPERM; 947 } 948 } 949 950 if (!strncmp(cmd, "pipe_ctrl", 9)) { 951 /* TODO: add LRI POST logic here */ 952 return 0; 953 } 954 955 if (strncmp(cmd, "lri", 3)) 956 return -EPERM; 957 958 /* below are all lri handlers */ 959 vreg = &vgpu_vreg(s->vgpu, offset); 960 961 if (is_cmd_update_pdps(offset, s) && 962 cmd_pdp_mmio_update_handler(s, offset, index)) 963 return -EINVAL; 964 965 if (offset == i915_mmio_reg_offset(DERRMR) || 966 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 967 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 968 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 969 } 970 971 if (is_mocs_mmio(offset)) 972 *vreg = cmd_val(s, index + 1); 973 974 vreg_old = *vreg; 975 976 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 977 u32 cmdval_new, cmdval; 978 struct intel_gvt_mmio_info *mmio_info; 979 980 cmdval = cmd_val(s, index + 1); 981 982 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 983 if (!mmio_info) { 984 cmdval_new = cmdval; 985 } else { 986 u64 ro_mask = mmio_info->ro_mask; 987 int ret; 988 989 if (likely(!ro_mask)) 990 ret = mmio_info->write(s->vgpu, offset, 991 &cmdval, 4); 992 else { 993 gvt_vgpu_err("try to write RO reg %x\n", 994 offset); 995 ret = -EBADRQC; 996 } 997 if (ret) 998 return ret; 999 cmdval_new = *vreg; 1000 } 1001 if (cmdval_new != cmdval) 1002 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 1003 } 1004 1005 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 1006 *vreg = vreg_old; 1007 1008 /* TODO 1009 * In order to let workload with inhibit context to generate 1010 * correct image data into memory, vregs values will be loaded to 1011 * hw via LRIs in the workload with inhibit context. But as 1012 * indirect context is loaded prior to LRIs in workload, we don't 1013 * want reg values specified in indirect context overwritten by 1014 * LRIs in workloads. So, when scanning an indirect context, we 1015 * update reg values in it into vregs, so LRIs in workload with 1016 * inhibit context will restore with correct values 1017 */ 1018 if (GRAPHICS_VER(s->engine->i915) == 9 && 1019 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1020 !strncmp(cmd, "lri", 3)) { 1021 intel_gvt_read_gpa(s->vgpu, 1022 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1023 /* check inhibit context */ 1024 if (ctx_sr_ctl & 1) { 1025 u32 data = cmd_val(s, index + 1); 1026 1027 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1028 intel_vgpu_mask_mmio_write(vgpu, 1029 offset, &data, 4); 1030 else 1031 vgpu_vreg(vgpu, offset) = data; 1032 } 1033 } 1034 1035 return 0; 1036 } 1037 1038 #define cmd_reg(s, i) \ 1039 (cmd_val(s, i) & GENMASK(22, 2)) 1040 1041 #define cmd_reg_inhibit(s, i) \ 1042 (cmd_val(s, i) & GENMASK(22, 18)) 1043 1044 #define cmd_gma(s, i) \ 1045 (cmd_val(s, i) & GENMASK(31, 2)) 1046 1047 #define cmd_gma_hi(s, i) \ 1048 (cmd_val(s, i) & GENMASK(15, 0)) 1049 1050 static int cmd_handler_lri(struct parser_exec_state *s) 1051 { 1052 int i, ret = 0; 1053 int cmd_len = cmd_length(s); 1054 1055 for (i = 1; i < cmd_len; i += 2) { 1056 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1057 if (s->engine->id == BCS0 && 1058 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1059 ret |= 0; 1060 else 1061 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1062 } 1063 if (ret) 1064 break; 1065 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1066 if (ret) 1067 break; 1068 } 1069 return ret; 1070 } 1071 1072 static int cmd_handler_lrr(struct parser_exec_state *s) 1073 { 1074 int i, ret = 0; 1075 int cmd_len = cmd_length(s); 1076 1077 for (i = 1; i < cmd_len; i += 2) { 1078 if (IS_BROADWELL(s->engine->i915)) 1079 ret |= ((cmd_reg_inhibit(s, i) || 1080 (cmd_reg_inhibit(s, i + 1)))) ? 1081 -EBADRQC : 0; 1082 if (ret) 1083 break; 1084 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1085 if (ret) 1086 break; 1087 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1088 if (ret) 1089 break; 1090 } 1091 return ret; 1092 } 1093 1094 static inline int cmd_address_audit(struct parser_exec_state *s, 1095 unsigned long guest_gma, int op_size, bool index_mode); 1096 1097 static int cmd_handler_lrm(struct parser_exec_state *s) 1098 { 1099 struct intel_gvt *gvt = s->vgpu->gvt; 1100 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1101 unsigned long gma; 1102 int i, ret = 0; 1103 int cmd_len = cmd_length(s); 1104 1105 for (i = 1; i < cmd_len;) { 1106 if (IS_BROADWELL(s->engine->i915)) 1107 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1108 if (ret) 1109 break; 1110 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1111 if (ret) 1112 break; 1113 if (cmd_val(s, 0) & (1 << 22)) { 1114 gma = cmd_gma(s, i + 1); 1115 if (gmadr_bytes == 8) 1116 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1117 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1118 if (ret) 1119 break; 1120 } 1121 i += gmadr_dw_number(s) + 1; 1122 } 1123 return ret; 1124 } 1125 1126 static int cmd_handler_srm(struct parser_exec_state *s) 1127 { 1128 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1129 unsigned long gma; 1130 int i, ret = 0; 1131 int cmd_len = cmd_length(s); 1132 1133 for (i = 1; i < cmd_len;) { 1134 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1135 if (ret) 1136 break; 1137 if (cmd_val(s, 0) & (1 << 22)) { 1138 gma = cmd_gma(s, i + 1); 1139 if (gmadr_bytes == 8) 1140 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1141 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1142 if (ret) 1143 break; 1144 } 1145 i += gmadr_dw_number(s) + 1; 1146 } 1147 return ret; 1148 } 1149 1150 struct cmd_interrupt_event { 1151 int pipe_control_notify; 1152 int mi_flush_dw; 1153 int mi_user_interrupt; 1154 }; 1155 1156 static const struct cmd_interrupt_event cmd_interrupt_events[] = { 1157 [RCS0] = { 1158 .pipe_control_notify = RCS_PIPE_CONTROL, 1159 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1160 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1161 }, 1162 [BCS0] = { 1163 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1164 .mi_flush_dw = BCS_MI_FLUSH_DW, 1165 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1166 }, 1167 [VCS0] = { 1168 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1169 .mi_flush_dw = VCS_MI_FLUSH_DW, 1170 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1171 }, 1172 [VCS1] = { 1173 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1174 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1175 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1176 }, 1177 [VECS0] = { 1178 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1179 .mi_flush_dw = VECS_MI_FLUSH_DW, 1180 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1181 }, 1182 }; 1183 1184 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1185 { 1186 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1187 unsigned long gma; 1188 bool index_mode = false; 1189 unsigned int post_sync; 1190 int ret = 0; 1191 u32 hws_pga, val; 1192 1193 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1194 1195 /* LRI post sync */ 1196 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1197 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1198 /* post sync */ 1199 else if (post_sync) { 1200 if (post_sync == 2) 1201 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1202 else if (post_sync == 3) 1203 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1204 else if (post_sync == 1) { 1205 /* check ggtt*/ 1206 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1207 gma = cmd_val(s, 2) & GENMASK(31, 3); 1208 if (gmadr_bytes == 8) 1209 gma |= (cmd_gma_hi(s, 3)) << 32; 1210 /* Store Data Index */ 1211 if (cmd_val(s, 1) & (1 << 21)) 1212 index_mode = true; 1213 ret |= cmd_address_audit(s, gma, sizeof(u64), 1214 index_mode); 1215 if (ret) 1216 return ret; 1217 if (index_mode) { 1218 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1219 gma = hws_pga + gma; 1220 patch_value(s, cmd_ptr(s, 2), gma); 1221 val = cmd_val(s, 1) & (~(1 << 21)); 1222 patch_value(s, cmd_ptr(s, 1), val); 1223 } 1224 } 1225 } 1226 } 1227 1228 if (ret) 1229 return ret; 1230 1231 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1232 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1233 s->workload->pending_events); 1234 return 0; 1235 } 1236 1237 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1238 { 1239 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1240 s->workload->pending_events); 1241 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1242 return 0; 1243 } 1244 1245 static int cmd_advance_default(struct parser_exec_state *s) 1246 { 1247 return ip_gma_advance(s, cmd_length(s)); 1248 } 1249 1250 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1251 { 1252 int ret; 1253 1254 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1255 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1256 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1257 s->buf_addr_type = s->saved_buf_addr_type; 1258 } else if (s->buf_type == RING_BUFFER_CTX) { 1259 ret = ip_gma_set(s, s->ring_tail); 1260 } else { 1261 s->buf_type = RING_BUFFER_INSTRUCTION; 1262 s->buf_addr_type = GTT_BUFFER; 1263 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1264 s->ret_ip_gma_ring -= s->ring_size; 1265 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1266 } 1267 return ret; 1268 } 1269 1270 struct mi_display_flip_command_info { 1271 int pipe; 1272 int plane; 1273 int event; 1274 i915_reg_t stride_reg; 1275 i915_reg_t ctrl_reg; 1276 i915_reg_t surf_reg; 1277 u64 stride_val; 1278 u64 tile_val; 1279 u64 surf_val; 1280 bool async_flip; 1281 }; 1282 1283 struct plane_code_mapping { 1284 int pipe; 1285 int plane; 1286 int event; 1287 }; 1288 1289 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1290 struct mi_display_flip_command_info *info) 1291 { 1292 struct drm_i915_private *dev_priv = s->engine->i915; 1293 struct intel_display *display = dev_priv->display; 1294 struct plane_code_mapping gen8_plane_code[] = { 1295 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1296 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1297 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1298 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1299 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1300 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1301 }; 1302 u32 dword0, dword1, dword2; 1303 u32 v; 1304 1305 dword0 = cmd_val(s, 0); 1306 dword1 = cmd_val(s, 1); 1307 dword2 = cmd_val(s, 2); 1308 1309 v = (dword0 & GENMASK(21, 19)) >> 19; 1310 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1311 return -EBADRQC; 1312 1313 info->pipe = gen8_plane_code[v].pipe; 1314 info->plane = gen8_plane_code[v].plane; 1315 info->event = gen8_plane_code[v].event; 1316 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1317 info->tile_val = (dword1 & 0x1); 1318 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1319 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1320 1321 if (info->plane == PLANE_A) { 1322 info->ctrl_reg = DSPCNTR(display, info->pipe); 1323 info->stride_reg = DSPSTRIDE(display, info->pipe); 1324 info->surf_reg = DSPSURF(display, info->pipe); 1325 } else if (info->plane == PLANE_B) { 1326 info->ctrl_reg = SPRCTL(info->pipe); 1327 info->stride_reg = SPRSTRIDE(info->pipe); 1328 info->surf_reg = SPRSURF(info->pipe); 1329 } else { 1330 drm_WARN_ON(&dev_priv->drm, 1); 1331 return -EBADRQC; 1332 } 1333 return 0; 1334 } 1335 1336 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1337 struct mi_display_flip_command_info *info) 1338 { 1339 struct drm_i915_private *dev_priv = s->engine->i915; 1340 struct intel_display *display = dev_priv->display; 1341 struct intel_vgpu *vgpu = s->vgpu; 1342 u32 dword0 = cmd_val(s, 0); 1343 u32 dword1 = cmd_val(s, 1); 1344 u32 dword2 = cmd_val(s, 2); 1345 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1346 1347 info->plane = PRIMARY_PLANE; 1348 1349 switch (plane) { 1350 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1351 info->pipe = PIPE_A; 1352 info->event = PRIMARY_A_FLIP_DONE; 1353 break; 1354 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1355 info->pipe = PIPE_B; 1356 info->event = PRIMARY_B_FLIP_DONE; 1357 break; 1358 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1359 info->pipe = PIPE_C; 1360 info->event = PRIMARY_C_FLIP_DONE; 1361 break; 1362 1363 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1364 info->pipe = PIPE_A; 1365 info->event = SPRITE_A_FLIP_DONE; 1366 info->plane = SPRITE_PLANE; 1367 break; 1368 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1369 info->pipe = PIPE_B; 1370 info->event = SPRITE_B_FLIP_DONE; 1371 info->plane = SPRITE_PLANE; 1372 break; 1373 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1374 info->pipe = PIPE_C; 1375 info->event = SPRITE_C_FLIP_DONE; 1376 info->plane = SPRITE_PLANE; 1377 break; 1378 1379 default: 1380 gvt_vgpu_err("unknown plane code %d\n", plane); 1381 return -EBADRQC; 1382 } 1383 1384 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1385 info->tile_val = (dword1 & GENMASK(2, 0)); 1386 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1387 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1388 1389 info->ctrl_reg = DSPCNTR(display, info->pipe); 1390 info->stride_reg = DSPSTRIDE(display, info->pipe); 1391 info->surf_reg = DSPSURF(display, info->pipe); 1392 1393 return 0; 1394 } 1395 1396 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1397 struct mi_display_flip_command_info *info) 1398 { 1399 u32 stride, tile; 1400 1401 if (!info->async_flip) 1402 return 0; 1403 1404 if (GRAPHICS_VER(s->engine->i915) >= 9) { 1405 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1406 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1407 GENMASK(12, 10)) >> 10; 1408 } else { 1409 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1410 GENMASK(15, 6)) >> 6; 1411 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1412 } 1413 1414 if (stride != info->stride_val) 1415 gvt_dbg_cmd("cannot change stride during async flip\n"); 1416 1417 if (tile != info->tile_val) 1418 gvt_dbg_cmd("cannot change tile during async flip\n"); 1419 1420 return 0; 1421 } 1422 1423 static int gen8_update_plane_mmio_from_mi_display_flip( 1424 struct parser_exec_state *s, 1425 struct mi_display_flip_command_info *info) 1426 { 1427 struct drm_i915_private *dev_priv = s->engine->i915; 1428 struct intel_display *display = dev_priv->display; 1429 struct intel_vgpu *vgpu = s->vgpu; 1430 1431 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1432 info->surf_val << 12); 1433 if (GRAPHICS_VER(dev_priv) >= 9) { 1434 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1435 info->stride_val); 1436 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1437 info->tile_val << 10); 1438 } else { 1439 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1440 info->stride_val << 6); 1441 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1442 info->tile_val << 10); 1443 } 1444 1445 if (info->plane == PLANE_PRIMARY) 1446 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, info->pipe))++; 1447 1448 if (info->async_flip) 1449 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1450 else 1451 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1452 1453 return 0; 1454 } 1455 1456 static int decode_mi_display_flip(struct parser_exec_state *s, 1457 struct mi_display_flip_command_info *info) 1458 { 1459 if (IS_BROADWELL(s->engine->i915)) 1460 return gen8_decode_mi_display_flip(s, info); 1461 if (GRAPHICS_VER(s->engine->i915) >= 9) 1462 return skl_decode_mi_display_flip(s, info); 1463 1464 return -ENODEV; 1465 } 1466 1467 static int check_mi_display_flip(struct parser_exec_state *s, 1468 struct mi_display_flip_command_info *info) 1469 { 1470 return gen8_check_mi_display_flip(s, info); 1471 } 1472 1473 static int update_plane_mmio_from_mi_display_flip( 1474 struct parser_exec_state *s, 1475 struct mi_display_flip_command_info *info) 1476 { 1477 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1478 } 1479 1480 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1481 { 1482 struct mi_display_flip_command_info info; 1483 struct intel_vgpu *vgpu = s->vgpu; 1484 int ret; 1485 int i; 1486 int len = cmd_length(s); 1487 u32 valid_len = CMD_LEN(1); 1488 1489 /* Flip Type == Stereo 3D Flip */ 1490 if (DWORD_FIELD(2, 1, 0) == 2) 1491 valid_len++; 1492 ret = gvt_check_valid_cmd_length(cmd_length(s), 1493 valid_len); 1494 if (ret) 1495 return ret; 1496 1497 ret = decode_mi_display_flip(s, &info); 1498 if (ret) { 1499 gvt_vgpu_err("fail to decode MI display flip command\n"); 1500 return ret; 1501 } 1502 1503 ret = check_mi_display_flip(s, &info); 1504 if (ret) { 1505 gvt_vgpu_err("invalid MI display flip command\n"); 1506 return ret; 1507 } 1508 1509 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1510 if (ret) { 1511 gvt_vgpu_err("fail to update plane mmio\n"); 1512 return ret; 1513 } 1514 1515 for (i = 0; i < len; i++) 1516 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1517 return 0; 1518 } 1519 1520 static bool is_wait_for_flip_pending(u32 cmd) 1521 { 1522 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1523 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1524 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1525 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1526 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1527 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1528 } 1529 1530 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1531 { 1532 u32 cmd = cmd_val(s, 0); 1533 1534 if (!is_wait_for_flip_pending(cmd)) 1535 return 0; 1536 1537 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1538 return 0; 1539 } 1540 1541 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1542 { 1543 unsigned long addr; 1544 unsigned long gma_high, gma_low; 1545 struct intel_vgpu *vgpu = s->vgpu; 1546 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1547 1548 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1549 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1550 return INTEL_GVT_INVALID_ADDR; 1551 } 1552 1553 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1554 if (gmadr_bytes == 4) { 1555 addr = gma_low; 1556 } else { 1557 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1558 addr = (((unsigned long)gma_high) << 32) | gma_low; 1559 } 1560 return addr; 1561 } 1562 1563 static inline int cmd_address_audit(struct parser_exec_state *s, 1564 unsigned long guest_gma, int op_size, bool index_mode) 1565 { 1566 struct intel_vgpu *vgpu = s->vgpu; 1567 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1568 int i; 1569 int ret; 1570 1571 if (op_size > max_surface_size) { 1572 gvt_vgpu_err("command address audit fail name %s\n", 1573 s->info->name); 1574 return -EFAULT; 1575 } 1576 1577 if (index_mode) { 1578 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1579 ret = -EFAULT; 1580 goto err; 1581 } 1582 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1583 ret = -EFAULT; 1584 goto err; 1585 } 1586 1587 return 0; 1588 1589 err: 1590 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1591 s->info->name, guest_gma, op_size); 1592 1593 pr_err("cmd dump: "); 1594 for (i = 0; i < cmd_length(s); i++) { 1595 if (!(i % 4)) 1596 pr_err("\n%08x ", cmd_val(s, i)); 1597 else 1598 pr_err("%08x ", cmd_val(s, i)); 1599 } 1600 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1601 vgpu->id, 1602 vgpu_aperture_gmadr_base(vgpu), 1603 vgpu_aperture_gmadr_end(vgpu), 1604 vgpu_hidden_gmadr_base(vgpu), 1605 vgpu_hidden_gmadr_end(vgpu)); 1606 return ret; 1607 } 1608 1609 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1610 { 1611 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1612 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1613 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1614 unsigned long gma, gma_low, gma_high; 1615 u32 valid_len = CMD_LEN(2); 1616 int ret = 0; 1617 1618 /* check ppggt */ 1619 if (!(cmd_val(s, 0) & (1 << 22))) 1620 return 0; 1621 1622 /* check if QWORD */ 1623 if (DWORD_FIELD(0, 21, 21)) 1624 valid_len++; 1625 ret = gvt_check_valid_cmd_length(cmd_length(s), 1626 valid_len); 1627 if (ret) 1628 return ret; 1629 1630 gma = cmd_val(s, 2) & GENMASK(31, 2); 1631 1632 if (gmadr_bytes == 8) { 1633 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1634 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1635 gma = (gma_high << 32) | gma_low; 1636 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1637 } 1638 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1639 return ret; 1640 } 1641 1642 static inline int unexpected_cmd(struct parser_exec_state *s) 1643 { 1644 struct intel_vgpu *vgpu = s->vgpu; 1645 1646 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1647 1648 return -EBADRQC; 1649 } 1650 1651 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1652 { 1653 return unexpected_cmd(s); 1654 } 1655 1656 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1657 { 1658 return unexpected_cmd(s); 1659 } 1660 1661 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1662 { 1663 return unexpected_cmd(s); 1664 } 1665 1666 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1667 { 1668 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1669 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1670 sizeof(u32); 1671 unsigned long gma, gma_high; 1672 u32 valid_len = CMD_LEN(1); 1673 int ret = 0; 1674 1675 if (!(cmd_val(s, 0) & (1 << 22))) 1676 return ret; 1677 1678 /* check inline data */ 1679 if (cmd_val(s, 0) & BIT(18)) 1680 valid_len = CMD_LEN(9); 1681 ret = gvt_check_valid_cmd_length(cmd_length(s), 1682 valid_len); 1683 if (ret) 1684 return ret; 1685 1686 gma = cmd_val(s, 1) & GENMASK(31, 2); 1687 if (gmadr_bytes == 8) { 1688 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1689 gma = (gma_high << 32) | gma; 1690 } 1691 ret = cmd_address_audit(s, gma, op_size, false); 1692 return ret; 1693 } 1694 1695 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1696 { 1697 return unexpected_cmd(s); 1698 } 1699 1700 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1701 { 1702 return unexpected_cmd(s); 1703 } 1704 1705 static int cmd_handler_mi_conditional_batch_buffer_end( 1706 struct parser_exec_state *s) 1707 { 1708 return unexpected_cmd(s); 1709 } 1710 1711 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1712 { 1713 return unexpected_cmd(s); 1714 } 1715 1716 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1717 { 1718 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1719 unsigned long gma; 1720 bool index_mode = false; 1721 int ret = 0; 1722 u32 hws_pga, val; 1723 u32 valid_len = CMD_LEN(2); 1724 1725 ret = gvt_check_valid_cmd_length(cmd_length(s), 1726 valid_len); 1727 if (ret) { 1728 /* Check again for Qword */ 1729 ret = gvt_check_valid_cmd_length(cmd_length(s), 1730 ++valid_len); 1731 return ret; 1732 } 1733 1734 /* Check post-sync and ppgtt bit */ 1735 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1736 gma = cmd_val(s, 1) & GENMASK(31, 3); 1737 if (gmadr_bytes == 8) 1738 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1739 /* Store Data Index */ 1740 if (cmd_val(s, 0) & (1 << 21)) 1741 index_mode = true; 1742 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1743 if (ret) 1744 return ret; 1745 if (index_mode) { 1746 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1747 gma = hws_pga + gma; 1748 patch_value(s, cmd_ptr(s, 1), gma); 1749 val = cmd_val(s, 0) & (~(1 << 21)); 1750 patch_value(s, cmd_ptr(s, 0), val); 1751 } 1752 } 1753 /* Check notify bit */ 1754 if ((cmd_val(s, 0) & (1 << 8))) 1755 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1756 s->workload->pending_events); 1757 return ret; 1758 } 1759 1760 static void addr_type_update_snb(struct parser_exec_state *s) 1761 { 1762 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1763 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1764 s->buf_addr_type = PPGTT_BUFFER; 1765 } 1766 } 1767 1768 1769 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1770 unsigned long gma, unsigned long end_gma, void *va) 1771 { 1772 unsigned long copy_len, offset; 1773 unsigned long len = 0; 1774 unsigned long gpa; 1775 1776 while (gma != end_gma) { 1777 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1778 if (gpa == INTEL_GVT_INVALID_ADDR) { 1779 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1780 return -EFAULT; 1781 } 1782 1783 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1784 1785 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1786 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1787 1788 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len); 1789 1790 len += copy_len; 1791 gma += copy_len; 1792 } 1793 return len; 1794 } 1795 1796 1797 /* 1798 * Check whether a batch buffer needs to be scanned. Currently 1799 * the only criteria is based on privilege. 1800 */ 1801 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1802 { 1803 /* Decide privilege based on address space */ 1804 if (cmd_val(s, 0) & BIT(8) && 1805 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1806 return 0; 1807 1808 return 1; 1809 } 1810 1811 static const char *repr_addr_type(unsigned int type) 1812 { 1813 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1814 } 1815 1816 static int find_bb_size(struct parser_exec_state *s, 1817 unsigned long *bb_size, 1818 unsigned long *bb_end_cmd_offset) 1819 { 1820 unsigned long gma = 0; 1821 const struct cmd_info *info; 1822 u32 cmd_len = 0; 1823 bool bb_end = false; 1824 struct intel_vgpu *vgpu = s->vgpu; 1825 u32 cmd; 1826 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1827 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1828 1829 *bb_size = 0; 1830 *bb_end_cmd_offset = 0; 1831 1832 /* get the start gm address of the batch buffer */ 1833 gma = get_gma_bb_from_cmd(s, 1); 1834 if (gma == INTEL_GVT_INVALID_ADDR) 1835 return -EFAULT; 1836 1837 cmd = cmd_val(s, 0); 1838 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1839 if (info == NULL) { 1840 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1841 cmd, get_opcode(cmd, s->engine), 1842 repr_addr_type(s->buf_addr_type), 1843 s->engine->name, s->workload); 1844 return -EBADRQC; 1845 } 1846 do { 1847 if (copy_gma_to_hva(s->vgpu, mm, 1848 gma, gma + 4, &cmd) < 0) 1849 return -EFAULT; 1850 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1851 if (info == NULL) { 1852 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1853 cmd, get_opcode(cmd, s->engine), 1854 repr_addr_type(s->buf_addr_type), 1855 s->engine->name, s->workload); 1856 return -EBADRQC; 1857 } 1858 1859 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1860 bb_end = true; 1861 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1862 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1863 /* chained batch buffer */ 1864 bb_end = true; 1865 } 1866 1867 if (bb_end) 1868 *bb_end_cmd_offset = *bb_size; 1869 1870 cmd_len = get_cmd_length(info, cmd) << 2; 1871 *bb_size += cmd_len; 1872 gma += cmd_len; 1873 } while (!bb_end); 1874 1875 return 0; 1876 } 1877 1878 static int audit_bb_end(struct parser_exec_state *s, void *va) 1879 { 1880 struct intel_vgpu *vgpu = s->vgpu; 1881 u32 cmd = *(u32 *)va; 1882 const struct cmd_info *info; 1883 1884 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1885 if (info == NULL) { 1886 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1887 cmd, get_opcode(cmd, s->engine), 1888 repr_addr_type(s->buf_addr_type), 1889 s->engine->name, s->workload); 1890 return -EBADRQC; 1891 } 1892 1893 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1894 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1895 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1896 return 0; 1897 1898 return -EBADRQC; 1899 } 1900 1901 static int perform_bb_shadow(struct parser_exec_state *s) 1902 { 1903 struct intel_vgpu *vgpu = s->vgpu; 1904 struct intel_vgpu_shadow_bb *bb; 1905 unsigned long gma = 0; 1906 unsigned long bb_size; 1907 unsigned long bb_end_cmd_offset; 1908 int ret = 0; 1909 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1910 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1911 unsigned long start_offset = 0; 1912 1913 /* Get the start gm address of the batch buffer */ 1914 gma = get_gma_bb_from_cmd(s, 1); 1915 if (gma == INTEL_GVT_INVALID_ADDR) 1916 return -EFAULT; 1917 1918 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1919 if (ret) 1920 return ret; 1921 1922 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1923 if (!bb) 1924 return -ENOMEM; 1925 1926 bb->ppgtt = s->buf_addr_type != GTT_BUFFER; 1927 1928 /* 1929 * The start_offset stores the batch buffer's start gma's 1930 * offset relative to page boundary. So for non-privileged batch 1931 * buffer, the shadowed gem object holds exactly the same page 1932 * layout as original gem object. This is for the convenience of 1933 * replacing the whole non-privilged batch buffer page to this 1934 * shadowed one in PPGTT at the same gma address. (This replacing 1935 * action is not implemented yet now, but may be necessary in 1936 * future). 1937 * For prileged batch buffer, we just change start gma address to 1938 * that of shadowed page. 1939 */ 1940 if (bb->ppgtt) 1941 start_offset = gma & ~I915_GTT_PAGE_MASK; 1942 1943 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1944 round_up(bb_size + start_offset, 1945 PAGE_SIZE)); 1946 if (IS_ERR(bb->obj)) { 1947 ret = PTR_ERR(bb->obj); 1948 goto err_free_bb; 1949 } 1950 1951 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1952 if (IS_ERR(bb->va)) { 1953 ret = PTR_ERR(bb->va); 1954 goto err_free_obj; 1955 } 1956 1957 ret = copy_gma_to_hva(s->vgpu, mm, 1958 gma, gma + bb_size, 1959 bb->va + start_offset); 1960 if (ret < 0) { 1961 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1962 ret = -EFAULT; 1963 goto err_unmap; 1964 } 1965 1966 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1967 if (ret) 1968 goto err_unmap; 1969 1970 i915_gem_object_unlock(bb->obj); 1971 INIT_LIST_HEAD(&bb->list); 1972 list_add(&bb->list, &s->workload->shadow_bb); 1973 1974 bb->bb_start_cmd_va = s->ip_va; 1975 1976 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1977 bb->bb_offset = s->ip_va - s->rb_va; 1978 else 1979 bb->bb_offset = 0; 1980 1981 /* 1982 * ip_va saves the virtual address of the shadow batch buffer, while 1983 * ip_gma saves the graphics address of the original batch buffer. 1984 * As the shadow batch buffer is just a copy from the original one, 1985 * it should be right to use shadow batch buffer'va and original batch 1986 * buffer's gma in pair. After all, we don't want to pin the shadow 1987 * buffer here (too early). 1988 */ 1989 s->ip_va = bb->va + start_offset; 1990 s->ip_gma = gma; 1991 return 0; 1992 err_unmap: 1993 i915_gem_object_unpin_map(bb->obj); 1994 err_free_obj: 1995 i915_gem_object_put(bb->obj); 1996 err_free_bb: 1997 kfree(bb); 1998 return ret; 1999 } 2000 2001 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 2002 { 2003 bool second_level; 2004 int ret = 0; 2005 struct intel_vgpu *vgpu = s->vgpu; 2006 2007 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 2008 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 2009 return -EFAULT; 2010 } 2011 2012 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2013 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2014 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2015 return -EFAULT; 2016 } 2017 2018 s->saved_buf_addr_type = s->buf_addr_type; 2019 addr_type_update_snb(s); 2020 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2021 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2022 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2023 } else if (second_level) { 2024 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2025 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2026 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2027 } 2028 2029 if (batch_buffer_needs_scan(s)) { 2030 ret = perform_bb_shadow(s); 2031 if (ret < 0) 2032 gvt_vgpu_err("invalid shadow batch buffer\n"); 2033 } else { 2034 /* emulate a batch buffer end to do return right */ 2035 ret = cmd_handler_mi_batch_buffer_end(s); 2036 if (ret < 0) 2037 return ret; 2038 } 2039 return ret; 2040 } 2041 2042 static int mi_noop_index; 2043 2044 static const struct cmd_info cmd_info[] = { 2045 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2046 2047 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2048 0, 1, NULL}, 2049 2050 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2051 0, 1, cmd_handler_mi_user_interrupt}, 2052 2053 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2054 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2055 2056 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2057 2058 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2059 NULL}, 2060 2061 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2062 NULL}, 2063 2064 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2065 NULL}, 2066 2067 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2068 NULL}, 2069 2070 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2071 D_ALL, 0, 1, NULL}, 2072 2073 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2074 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2075 cmd_handler_mi_batch_buffer_end}, 2076 2077 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2078 0, 1, NULL}, 2079 2080 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2081 NULL}, 2082 2083 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2084 D_ALL, 0, 1, NULL}, 2085 2086 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2087 NULL}, 2088 2089 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2090 NULL}, 2091 2092 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2093 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2094 2095 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2096 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2097 2098 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2099 2100 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2101 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2102 2103 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2104 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2105 NULL, CMD_LEN(0)}, 2106 2107 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2108 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2109 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2110 2111 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2112 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2113 2114 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2115 0, 8, cmd_handler_mi_store_data_index}, 2116 2117 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2118 D_ALL, 0, 8, cmd_handler_lri}, 2119 2120 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2121 cmd_handler_mi_update_gtt}, 2122 2123 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2124 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2125 cmd_handler_srm, CMD_LEN(2)}, 2126 2127 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2128 cmd_handler_mi_flush_dw}, 2129 2130 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2131 10, cmd_handler_mi_clflush}, 2132 2133 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2134 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2135 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2136 2137 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2138 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2139 cmd_handler_lrm, CMD_LEN(2)}, 2140 2141 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2142 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2143 cmd_handler_lrr, CMD_LEN(1)}, 2144 2145 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2146 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2147 8, NULL, CMD_LEN(2)}, 2148 2149 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2150 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2151 2152 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2153 ADDR_FIX_1(2), 8, NULL}, 2154 2155 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2156 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2157 2158 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2159 8, cmd_handler_mi_op_2f}, 2160 2161 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2162 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2163 cmd_handler_mi_batch_buffer_start}, 2164 2165 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2166 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2167 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2168 2169 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2170 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2171 2172 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2173 ADDR_FIX_2(4, 7), 8, NULL}, 2174 2175 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2176 0, 8, NULL}, 2177 2178 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2179 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2180 2181 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2182 2183 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2184 0, 8, NULL}, 2185 2186 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2187 ADDR_FIX_1(3), 8, NULL}, 2188 2189 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2190 D_ALL, 0, 8, NULL}, 2191 2192 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2193 ADDR_FIX_1(4), 8, NULL}, 2194 2195 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2196 ADDR_FIX_2(4, 5), 8, NULL}, 2197 2198 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2199 ADDR_FIX_1(4), 8, NULL}, 2200 2201 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2202 ADDR_FIX_2(4, 7), 8, NULL}, 2203 2204 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2205 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2206 2207 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2208 2209 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2210 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2211 2212 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2213 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2214 2215 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2216 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2217 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2218 2219 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2220 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2221 2222 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2223 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2224 2225 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2226 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2227 2228 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2229 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2230 2231 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2232 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2233 2234 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2235 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2236 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2237 2238 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2239 ADDR_FIX_2(4, 5), 8, NULL}, 2240 2241 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2242 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2243 2244 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2245 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2246 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2247 2248 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2249 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2250 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2251 2252 {"3DSTATE_BLEND_STATE_POINTERS", 2253 OP_3DSTATE_BLEND_STATE_POINTERS, 2254 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2255 2256 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2257 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2258 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2259 2260 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2261 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2263 2264 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2265 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2266 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2267 2268 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2269 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2271 2272 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2273 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2275 2276 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2277 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2278 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2279 2280 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2281 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2282 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2283 2284 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2285 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2286 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2287 2288 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2289 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2290 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2291 2292 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2293 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2294 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2295 2296 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2297 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2298 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2299 2300 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2301 0, 8, NULL}, 2302 2303 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2304 0, 8, NULL}, 2305 2306 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2307 0, 8, NULL}, 2308 2309 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2310 0, 8, NULL}, 2311 2312 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2313 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2314 2315 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2316 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2317 2318 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2319 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2320 2321 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2322 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2323 2324 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2325 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2326 2327 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2328 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2329 2330 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2331 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2332 2333 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2334 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2335 2336 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2337 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2338 2339 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2340 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2341 2342 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2343 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2344 2345 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2346 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2347 2348 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2349 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2350 2351 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2352 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2353 2354 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2355 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2356 2357 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2358 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2359 2360 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2361 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2362 2363 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2364 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2365 2366 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2367 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2368 2369 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2370 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2371 2372 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2373 D_BDW_PLUS, 0, 8, NULL}, 2374 2375 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2376 NULL}, 2377 2378 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2379 D_BDW_PLUS, 0, 8, NULL}, 2380 2381 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2382 D_BDW_PLUS, 0, 8, NULL}, 2383 2384 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2385 8, NULL}, 2386 2387 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2388 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2389 2390 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2391 8, NULL}, 2392 2393 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2394 NULL}, 2395 2396 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2397 NULL}, 2398 2399 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2400 NULL}, 2401 2402 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2403 D_BDW_PLUS, 0, 8, NULL}, 2404 2405 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2406 R_RCS, D_ALL, 0, 8, NULL}, 2407 2408 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2409 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2410 2411 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2412 R_RCS, D_ALL, 0, 1, NULL}, 2413 2414 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2415 2416 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2417 R_RCS, D_ALL, 0, 8, NULL}, 2418 2419 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2420 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2421 2422 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2423 2424 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2425 2426 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2427 2428 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2429 D_BDW_PLUS, 0, 8, NULL}, 2430 2431 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2432 D_BDW_PLUS, 0, 8, NULL}, 2433 2434 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2435 D_ALL, 0, 8, NULL}, 2436 2437 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2438 D_BDW_PLUS, 0, 8, NULL}, 2439 2440 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2441 D_BDW_PLUS, 0, 8, NULL}, 2442 2443 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2444 2445 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2446 2447 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2448 2449 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2450 D_ALL, 0, 8, NULL}, 2451 2452 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2453 2454 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2455 2456 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2457 R_RCS, D_ALL, 0, 8, NULL}, 2458 2459 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2460 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2461 2462 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2463 0, 8, NULL}, 2464 2465 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2466 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2467 2468 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2469 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2470 2471 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2472 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2473 2474 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2475 D_ALL, 0, 8, NULL}, 2476 2477 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2478 D_ALL, 0, 8, NULL}, 2479 2480 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2481 D_ALL, 0, 8, NULL}, 2482 2483 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2484 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2485 2486 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2487 D_BDW_PLUS, 0, 8, NULL}, 2488 2489 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2490 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2491 2492 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2493 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2494 2495 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2496 R_RCS, D_ALL, 0, 8, NULL}, 2497 2498 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2499 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2500 2501 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2502 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2503 2504 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2505 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2506 2507 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2508 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2509 2510 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2511 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2512 2513 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2514 R_RCS, D_ALL, 0, 8, NULL}, 2515 2516 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2517 D_ALL, 0, 9, NULL}, 2518 2519 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2520 ADDR_FIX_2(2, 4), 8, NULL}, 2521 2522 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2523 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2524 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2525 2526 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2527 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2528 2529 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2530 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2531 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2532 2533 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2534 D_BDW_PLUS, 0, 8, NULL}, 2535 2536 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2537 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2538 2539 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2540 2541 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2542 1, NULL}, 2543 2544 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2545 ADDR_FIX_1(1), 8, NULL}, 2546 2547 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2548 2549 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2550 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2551 2552 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2553 ADDR_FIX_1(1), 8, NULL}, 2554 2555 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2556 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2557 2558 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2559 2560 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2561 2562 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2563 0, 8, NULL}, 2564 2565 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2566 D_SKL_PLUS, 0, 8, NULL}, 2567 2568 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2569 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2570 2571 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2572 0, 16, NULL}, 2573 2574 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2575 0, 16, NULL}, 2576 2577 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2578 0, 16, NULL}, 2579 2580 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2581 2582 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2583 0, 16, NULL}, 2584 2585 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2586 0, 16, NULL}, 2587 2588 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2589 0, 16, NULL}, 2590 2591 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2592 0, 8, NULL}, 2593 2594 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2595 NULL}, 2596 2597 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2598 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2599 2600 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2601 R_VCS, D_ALL, 0, 12, NULL}, 2602 2603 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2604 R_VCS, D_ALL, 0, 12, NULL}, 2605 2606 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2607 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2608 2609 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2610 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2611 2612 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2613 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2614 2615 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2616 2617 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2618 R_VCS, D_ALL, 0, 12, NULL}, 2619 2620 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2621 R_VCS, D_ALL, 0, 12, NULL}, 2622 2623 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2624 R_VCS, D_ALL, 0, 12, NULL}, 2625 2626 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2627 R_VCS, D_ALL, 0, 12, NULL}, 2628 2629 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2630 R_VCS, D_ALL, 0, 12, NULL}, 2631 2632 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2633 R_VCS, D_ALL, 0, 12, NULL}, 2634 2635 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2636 R_VCS, D_ALL, 0, 6, NULL}, 2637 2638 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2639 R_VCS, D_ALL, 0, 12, NULL}, 2640 2641 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2642 R_VCS, D_ALL, 0, 12, NULL}, 2643 2644 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2645 R_VCS, D_ALL, 0, 12, NULL}, 2646 2647 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2648 R_VCS, D_ALL, 0, 12, NULL}, 2649 2650 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2651 R_VCS, D_ALL, 0, 12, NULL}, 2652 2653 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2654 R_VCS, D_ALL, 0, 12, NULL}, 2655 2656 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2657 R_VCS, D_ALL, 0, 12, NULL}, 2658 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2659 R_VCS, D_ALL, 0, 12, NULL}, 2660 2661 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2662 R_VCS, D_ALL, 0, 12, NULL}, 2663 2664 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2665 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2666 2667 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2668 R_VCS, D_ALL, 0, 12, NULL}, 2669 2670 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2671 R_VCS, D_ALL, 0, 12, NULL}, 2672 2673 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2674 R_VCS, D_ALL, 0, 12, NULL}, 2675 2676 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2677 R_VCS, D_ALL, 0, 12, NULL}, 2678 2679 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2680 R_VCS, D_ALL, 0, 12, NULL}, 2681 2682 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2683 R_VCS, D_ALL, 0, 12, NULL}, 2684 2685 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2686 R_VCS, D_ALL, 0, 12, NULL}, 2687 2688 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2689 R_VCS, D_ALL, 0, 12, NULL}, 2690 2691 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2692 R_VCS, D_ALL, 0, 12, NULL}, 2693 2694 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2695 R_VCS, D_ALL, 0, 12, NULL}, 2696 2697 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2698 R_VCS, D_ALL, 0, 12, NULL}, 2699 2700 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2701 0, 16, NULL}, 2702 2703 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2704 2705 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2706 2707 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2708 R_VCS, D_ALL, 0, 12, NULL}, 2709 2710 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2711 R_VCS, D_ALL, 0, 12, NULL}, 2712 2713 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2714 R_VCS, D_ALL, 0, 12, NULL}, 2715 2716 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2717 2718 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2719 0, 12, NULL}, 2720 2721 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2722 0, 12, NULL}, 2723 }; 2724 2725 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2726 { 2727 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2728 } 2729 2730 /* call the cmd handler, and advance ip */ 2731 static int cmd_parser_exec(struct parser_exec_state *s) 2732 { 2733 struct intel_vgpu *vgpu = s->vgpu; 2734 const struct cmd_info *info; 2735 u32 cmd; 2736 int ret = 0; 2737 2738 cmd = cmd_val(s, 0); 2739 2740 /* fastpath for MI_NOOP */ 2741 if (cmd == MI_NOOP) 2742 info = &cmd_info[mi_noop_index]; 2743 else 2744 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2745 2746 if (info == NULL) { 2747 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2748 cmd, get_opcode(cmd, s->engine), 2749 repr_addr_type(s->buf_addr_type), 2750 s->engine->name, s->workload); 2751 return -EBADRQC; 2752 } 2753 2754 s->info = info; 2755 2756 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2757 cmd_length(s), s->buf_type, s->buf_addr_type, 2758 s->workload, info->name); 2759 2760 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2761 ret = gvt_check_valid_cmd_length(cmd_length(s), 2762 info->valid_len); 2763 if (ret) 2764 return ret; 2765 } 2766 2767 if (info->handler) { 2768 ret = info->handler(s); 2769 if (ret < 0) { 2770 gvt_vgpu_err("%s handler error\n", info->name); 2771 return ret; 2772 } 2773 } 2774 2775 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2776 ret = cmd_advance_default(s); 2777 if (ret) { 2778 gvt_vgpu_err("%s IP advance error\n", info->name); 2779 return ret; 2780 } 2781 } 2782 return 0; 2783 } 2784 2785 static inline bool gma_out_of_range(unsigned long gma, 2786 unsigned long gma_head, unsigned int gma_tail) 2787 { 2788 if (gma_tail >= gma_head) 2789 return (gma < gma_head) || (gma > gma_tail); 2790 else 2791 return (gma > gma_tail) && (gma < gma_head); 2792 } 2793 2794 /* Keep the consistent return type, e.g EBADRQC for unknown 2795 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2796 * works as the input of VM healthy status. 2797 */ 2798 static int command_scan(struct parser_exec_state *s, 2799 unsigned long rb_head, unsigned long rb_tail, 2800 unsigned long rb_start, unsigned long rb_len) 2801 { 2802 2803 unsigned long gma_head, gma_tail, gma_bottom; 2804 int ret = 0; 2805 struct intel_vgpu *vgpu = s->vgpu; 2806 2807 gma_head = rb_start + rb_head; 2808 gma_tail = rb_start + rb_tail; 2809 gma_bottom = rb_start + rb_len; 2810 2811 while (s->ip_gma != gma_tail) { 2812 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2813 s->buf_type == RING_BUFFER_CTX) { 2814 if (!(s->ip_gma >= rb_start) || 2815 !(s->ip_gma < gma_bottom)) { 2816 gvt_vgpu_err("ip_gma %lx out of ring scope." 2817 "(base:0x%lx, bottom: 0x%lx)\n", 2818 s->ip_gma, rb_start, 2819 gma_bottom); 2820 parser_exec_state_dump(s); 2821 return -EFAULT; 2822 } 2823 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2824 gvt_vgpu_err("ip_gma %lx out of range." 2825 "base 0x%lx head 0x%lx tail 0x%lx\n", 2826 s->ip_gma, rb_start, 2827 rb_head, rb_tail); 2828 parser_exec_state_dump(s); 2829 break; 2830 } 2831 } 2832 ret = cmd_parser_exec(s); 2833 if (ret) { 2834 gvt_vgpu_err("cmd parser error\n"); 2835 parser_exec_state_dump(s); 2836 break; 2837 } 2838 } 2839 2840 return ret; 2841 } 2842 2843 static int scan_workload(struct intel_vgpu_workload *workload) 2844 { 2845 unsigned long gma_head, gma_tail; 2846 struct parser_exec_state s; 2847 int ret = 0; 2848 2849 /* ring base is page aligned */ 2850 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2851 return -EINVAL; 2852 2853 gma_head = workload->rb_start + workload->rb_head; 2854 gma_tail = workload->rb_start + workload->rb_tail; 2855 2856 s.buf_type = RING_BUFFER_INSTRUCTION; 2857 s.buf_addr_type = GTT_BUFFER; 2858 s.vgpu = workload->vgpu; 2859 s.engine = workload->engine; 2860 s.ring_start = workload->rb_start; 2861 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2862 s.ring_head = gma_head; 2863 s.ring_tail = gma_tail; 2864 s.rb_va = workload->shadow_ring_buffer_va; 2865 s.workload = workload; 2866 s.is_ctx_wa = false; 2867 2868 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2869 return 0; 2870 2871 ret = ip_gma_set(&s, gma_head); 2872 if (ret) 2873 goto out; 2874 2875 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2876 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2877 2878 out: 2879 return ret; 2880 } 2881 2882 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2883 { 2884 2885 unsigned long gma_head, gma_tail, ring_size, ring_tail; 2886 struct parser_exec_state s; 2887 int ret = 0; 2888 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2889 struct intel_vgpu_workload, 2890 wa_ctx); 2891 2892 /* ring base is page aligned */ 2893 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2894 I915_GTT_PAGE_SIZE))) 2895 return -EINVAL; 2896 2897 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2898 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2899 PAGE_SIZE); 2900 gma_head = wa_ctx->indirect_ctx.guest_gma; 2901 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2902 2903 s.buf_type = RING_BUFFER_INSTRUCTION; 2904 s.buf_addr_type = GTT_BUFFER; 2905 s.vgpu = workload->vgpu; 2906 s.engine = workload->engine; 2907 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2908 s.ring_size = ring_size; 2909 s.ring_head = gma_head; 2910 s.ring_tail = gma_tail; 2911 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2912 s.workload = workload; 2913 s.is_ctx_wa = true; 2914 2915 ret = ip_gma_set(&s, gma_head); 2916 if (ret) 2917 goto out; 2918 2919 ret = command_scan(&s, 0, ring_tail, 2920 wa_ctx->indirect_ctx.guest_gma, ring_size); 2921 out: 2922 return ret; 2923 } 2924 2925 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2926 { 2927 struct intel_vgpu *vgpu = workload->vgpu; 2928 struct intel_vgpu_submission *s = &vgpu->submission; 2929 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2930 void *shadow_ring_buffer_va; 2931 int ret; 2932 2933 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2934 2935 /* calculate workload ring buffer size */ 2936 workload->rb_len = (workload->rb_tail + guest_rb_size - 2937 workload->rb_head) % guest_rb_size; 2938 2939 gma_head = workload->rb_start + workload->rb_head; 2940 gma_tail = workload->rb_start + workload->rb_tail; 2941 gma_top = workload->rb_start + guest_rb_size; 2942 2943 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2944 void *p; 2945 2946 /* realloc the new ring buffer if needed */ 2947 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2948 workload->rb_len, GFP_KERNEL); 2949 if (!p) { 2950 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2951 return -ENOMEM; 2952 } 2953 s->ring_scan_buffer[workload->engine->id] = p; 2954 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2955 } 2956 2957 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2958 2959 /* get shadow ring buffer va */ 2960 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2961 2962 /* head > tail --> copy head <-> top */ 2963 if (gma_head > gma_tail) { 2964 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2965 gma_head, gma_top, shadow_ring_buffer_va); 2966 if (ret < 0) { 2967 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2968 return ret; 2969 } 2970 shadow_ring_buffer_va += ret; 2971 gma_head = workload->rb_start; 2972 } 2973 2974 /* copy head or start <-> tail */ 2975 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2976 shadow_ring_buffer_va); 2977 if (ret < 0) { 2978 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2979 return ret; 2980 } 2981 return 0; 2982 } 2983 2984 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2985 { 2986 int ret; 2987 struct intel_vgpu *vgpu = workload->vgpu; 2988 2989 ret = shadow_workload_ring_buffer(workload); 2990 if (ret) { 2991 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2992 return ret; 2993 } 2994 2995 ret = scan_workload(workload); 2996 if (ret) { 2997 gvt_vgpu_err("scan workload error\n"); 2998 return ret; 2999 } 3000 return 0; 3001 } 3002 3003 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3004 { 3005 int ctx_size = wa_ctx->indirect_ctx.size; 3006 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 3007 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3008 struct intel_vgpu_workload, 3009 wa_ctx); 3010 struct intel_vgpu *vgpu = workload->vgpu; 3011 struct drm_i915_gem_object *obj; 3012 int ret = 0; 3013 void *map; 3014 3015 obj = i915_gem_object_create_shmem(workload->engine->i915, 3016 roundup(ctx_size + CACHELINE_BYTES, 3017 PAGE_SIZE)); 3018 if (IS_ERR(obj)) 3019 return PTR_ERR(obj); 3020 3021 /* get the va of the shadow batch buffer */ 3022 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3023 if (IS_ERR(map)) { 3024 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3025 ret = PTR_ERR(map); 3026 goto put_obj; 3027 } 3028 3029 i915_gem_object_lock(obj, NULL); 3030 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3031 i915_gem_object_unlock(obj); 3032 if (ret) { 3033 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3034 goto unmap_src; 3035 } 3036 3037 ret = copy_gma_to_hva(workload->vgpu, 3038 workload->vgpu->gtt.ggtt_mm, 3039 guest_gma, guest_gma + ctx_size, 3040 map); 3041 if (ret < 0) { 3042 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3043 goto unmap_src; 3044 } 3045 3046 wa_ctx->indirect_ctx.obj = obj; 3047 wa_ctx->indirect_ctx.shadow_va = map; 3048 return 0; 3049 3050 unmap_src: 3051 i915_gem_object_unpin_map(obj); 3052 put_obj: 3053 i915_gem_object_put(obj); 3054 return ret; 3055 } 3056 3057 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3058 { 3059 u32 per_ctx_start[CACHELINE_DWORDS] = {}; 3060 unsigned char *bb_start_sva; 3061 3062 if (!wa_ctx->per_ctx.valid) 3063 return 0; 3064 3065 per_ctx_start[0] = 0x18800001; 3066 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3067 3068 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3069 wa_ctx->indirect_ctx.size; 3070 3071 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3072 3073 return 0; 3074 } 3075 3076 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3077 { 3078 int ret; 3079 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3080 struct intel_vgpu_workload, 3081 wa_ctx); 3082 struct intel_vgpu *vgpu = workload->vgpu; 3083 3084 if (wa_ctx->indirect_ctx.size == 0) 3085 return 0; 3086 3087 ret = shadow_indirect_ctx(wa_ctx); 3088 if (ret) { 3089 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3090 return ret; 3091 } 3092 3093 combine_wa_ctx(wa_ctx); 3094 3095 ret = scan_wa_ctx(wa_ctx); 3096 if (ret) { 3097 gvt_vgpu_err("scan wa ctx error\n"); 3098 return ret; 3099 } 3100 3101 return 0; 3102 } 3103 3104 /* generate dummy contexts by sending empty requests to HW, and let 3105 * the HW to fill Engine Contexts. This dummy contexts are used for 3106 * initialization purpose (update reg whitelist), so referred to as 3107 * init context here 3108 */ 3109 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3110 { 3111 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3112 struct intel_gvt *gvt = vgpu->gvt; 3113 struct intel_engine_cs *engine; 3114 enum intel_engine_id id; 3115 3116 if (gvt->is_reg_whitelist_updated) 3117 return; 3118 3119 /* scan init ctx to update cmd accessible list */ 3120 for_each_engine(engine, gvt->gt, id) { 3121 struct parser_exec_state s; 3122 void *vaddr; 3123 int ret; 3124 3125 if (!engine->default_state) 3126 continue; 3127 3128 vaddr = shmem_pin_map(engine->default_state); 3129 if (!vaddr) { 3130 gvt_err("failed to map %s->default state\n", 3131 engine->name); 3132 return; 3133 } 3134 3135 s.buf_type = RING_BUFFER_CTX; 3136 s.buf_addr_type = GTT_BUFFER; 3137 s.vgpu = vgpu; 3138 s.engine = engine; 3139 s.ring_start = 0; 3140 s.ring_size = engine->context_size - start; 3141 s.ring_head = 0; 3142 s.ring_tail = s.ring_size; 3143 s.rb_va = vaddr + start; 3144 s.workload = NULL; 3145 s.is_ctx_wa = false; 3146 s.is_init_ctx = true; 3147 3148 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3149 ret = ip_gma_set(&s, RING_CTX_SIZE); 3150 if (ret == 0) { 3151 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3152 if (ret) 3153 gvt_err("Scan init ctx error\n"); 3154 } 3155 3156 shmem_unpin_map(engine->default_state, vaddr); 3157 if (ret) 3158 return; 3159 } 3160 3161 gvt->is_reg_whitelist_updated = true; 3162 } 3163 3164 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3165 { 3166 struct intel_vgpu *vgpu = workload->vgpu; 3167 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3168 struct parser_exec_state s; 3169 int ring_id = workload->engine->id; 3170 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3171 int ret; 3172 3173 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3174 3175 ctx_size = workload->engine->context_size - PAGE_SIZE; 3176 3177 /* Only ring contxt is loaded to HW for inhibit context, no need to 3178 * scan engine context 3179 */ 3180 if (is_inhibit_context(ce)) 3181 return 0; 3182 3183 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3184 gma_head = 0; 3185 gma_tail = ctx_size; 3186 3187 s.buf_type = RING_BUFFER_CTX; 3188 s.buf_addr_type = GTT_BUFFER; 3189 s.vgpu = workload->vgpu; 3190 s.engine = workload->engine; 3191 s.ring_start = gma_start; 3192 s.ring_size = ctx_size; 3193 s.ring_head = gma_start + gma_head; 3194 s.ring_tail = gma_start + gma_tail; 3195 s.rb_va = ce->lrc_reg_state; 3196 s.workload = workload; 3197 s.is_ctx_wa = false; 3198 s.is_init_ctx = false; 3199 3200 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3201 * context 3202 */ 3203 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3204 if (ret) 3205 goto out; 3206 3207 ret = command_scan(&s, gma_head, gma_tail, 3208 gma_start, ctx_size); 3209 out: 3210 if (ret) 3211 gvt_vgpu_err("scan shadow ctx error\n"); 3212 3213 return ret; 3214 } 3215 3216 static int init_cmd_table(struct intel_gvt *gvt) 3217 { 3218 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3219 int i; 3220 3221 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3222 struct cmd_entry *e; 3223 3224 if (!(cmd_info[i].devices & gen_type)) 3225 continue; 3226 3227 e = kzalloc(sizeof(*e), GFP_KERNEL); 3228 if (!e) 3229 return -ENOMEM; 3230 3231 e->info = &cmd_info[i]; 3232 if (cmd_info[i].opcode == OP_MI_NOOP) 3233 mi_noop_index = i; 3234 3235 INIT_HLIST_NODE(&e->hlist); 3236 add_cmd_entry(gvt, e); 3237 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3238 e->info->name, e->info->opcode, e->info->flag, 3239 e->info->devices, e->info->rings); 3240 } 3241 3242 return 0; 3243 } 3244 3245 static void clean_cmd_table(struct intel_gvt *gvt) 3246 { 3247 struct hlist_node *tmp; 3248 struct cmd_entry *e; 3249 int i; 3250 3251 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3252 kfree(e); 3253 3254 hash_init(gvt->cmd_table); 3255 } 3256 3257 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3258 { 3259 clean_cmd_table(gvt); 3260 } 3261 3262 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3263 { 3264 int ret; 3265 3266 ret = init_cmd_table(gvt); 3267 if (ret) { 3268 intel_gvt_clean_cmd_parser(gvt); 3269 return ret; 3270 } 3271 return 0; 3272 } 3273