xref: /linux/drivers/gpu/drm/i915/gvt/cmd_parser.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36 
37 #include <linux/slab.h>
38 
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
44 
45 #define INVALID_OP    (~0U)
46 
47 #define OP_LEN_MI           9
48 #define OP_LEN_2D           10
49 #define OP_LEN_3D_MEDIA     16
50 #define OP_LEN_MFX_VC       16
51 #define OP_LEN_VEBOX	    16
52 
53 #define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
54 
55 struct sub_op_bits {
56 	int hi;
57 	int low;
58 };
59 struct decode_info {
60 	const char *name;
61 	int op_len;
62 	int nr_sub_op;
63 	const struct sub_op_bits *sub_op;
64 };
65 
66 #define   MAX_CMD_BUDGET			0x7fffffff
67 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
68 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
69 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
70 
71 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
72 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
73 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
74 
75 /* Render Command Map */
76 
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP                          0x0
79 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
80 #define OP_MI_USER_INTERRUPT                0x2
81 #define OP_MI_WAIT_FOR_EVENT                0x3
82 #define OP_MI_FLUSH                         0x4
83 #define OP_MI_ARB_CHECK                     0x5
84 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
85 #define OP_MI_REPORT_HEAD                   0x7
86 #define OP_MI_ARB_ON_OFF                    0x8
87 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END              0xA
89 #define OP_MI_SUSPEND_FLUSH                 0xB
90 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
92 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
93 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP                  0x14
96 #define OP_MI_SEMAPHORE_MBOX                0x16
97 #define OP_MI_SET_CONTEXT                   0x18
98 #define OP_MI_MATH                          0x1A
99 #define OP_MI_URB_CLEAR                     0x19
100 #define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
102 
103 #define OP_MI_STORE_DATA_IMM                0x20
104 #define OP_MI_STORE_DATA_INDEX              0x21
105 #define OP_MI_LOAD_REGISTER_IMM             0x22
106 #define OP_MI_UPDATE_GTT                    0x23
107 #define OP_MI_STORE_REGISTER_MEM            0x24
108 #define OP_MI_FLUSH_DW                      0x26
109 #define OP_MI_CLFLUSH                       0x27
110 #define OP_MI_REPORT_PERF_COUNT             0x28
111 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
115 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
116 #define OP_MI_2E			    0x2E  /* BDW+ */
117 #define OP_MI_2F			    0x2F  /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START            0x31
119 
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
122 
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
124 
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
129 
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x)    ((2<<7) | x)
132 
133 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
138 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
140 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
141 #define OP_XY_PAT_BLT                               OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
145 #define OP_XY_FULL_BLT                              OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
157 
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160 	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
161 
162 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
163 
164 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
167 #define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
168 
169 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
170 
171 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
172 
173 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
174 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
175 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
176 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
177 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
178 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
179 
180 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
181 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
182 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
183 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
184 
185 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
186 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
187 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
188 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
189 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
190 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
191 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
192 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
193 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
194 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
195 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
196 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
197 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
198 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
199 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
200 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
201 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
202 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
203 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
204 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
205 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
206 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
207 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
208 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
209 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
210 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
211 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
212 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
215 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
216 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
227 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
228 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
229 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
230 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
235 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
241 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
243 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
250 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
251 
252 #define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
253 #define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
254 #define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
255 #define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
256 #define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
257 #define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
258 #define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
259 #define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
260 #define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
261 #define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
262 #define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
263 
264 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
265 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
266 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
267 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
268 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
269 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
270 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
271 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
272 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
274 #define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
275 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
276 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
277 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
278 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
284 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
285 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
286 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
287 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
288 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
289 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
290 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
291 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
292 
293 /* VCCP Command Parser */
294 
295 /*
296  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
297  * git://anongit.freedesktop.org/vaapi/intel-driver
298  * src/i965_defines.h
299  *
300  */
301 
302 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
303 	(3 << 13 | \
304 	 (pipeline) << 11 | \
305 	 (op) << 8 | \
306 	 (sub_opa) << 5 | \
307 	 (sub_opb))
308 
309 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
310 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
311 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
312 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
313 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
314 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
315 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
316 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
317 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
318 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
319 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
320 
321 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
322 
323 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
324 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
325 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
326 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
327 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
328 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
329 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
330 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
331 #define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
332 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
333 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
334 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
335 
336 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
337 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
338 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
339 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
340 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
341 
342 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
343 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
344 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
345 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
346 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
347 
348 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
349 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
350 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
351 
352 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
353 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
354 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
355 
356 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
357 	(3 << 13 | \
358 	 (pipeline) << 11 | \
359 	 (op) << 8 | \
360 	 (sub_opa) << 5 | \
361 	 (sub_opb))
362 
363 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
364 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
365 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
366 
367 struct parser_exec_state;
368 
369 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
370 
371 #define GVT_CMD_HASH_BITS   7
372 
373 /* which DWords need address fix */
374 #define ADDR_FIX_1(x1)			(1 << (x1))
375 #define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
376 #define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
377 #define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
378 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
379 
380 #define DWORD_FIELD(dword, end, start) \
381 	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
382 
383 #define OP_LENGTH_BIAS 2
384 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
385 
386 static int gvt_check_valid_cmd_length(int len, int valid_len)
387 {
388 	if (valid_len != len) {
389 		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
390 			len, valid_len);
391 		return -EFAULT;
392 	}
393 	return 0;
394 }
395 
396 struct cmd_info {
397 	const char *name;
398 	u32 opcode;
399 
400 #define F_LEN_MASK	3U
401 #define F_LEN_CONST  1U
402 #define F_LEN_VAR    0U
403 /* value is const although LEN maybe variable */
404 #define F_LEN_VAR_FIXED    (1<<1)
405 
406 /*
407  * command has its own ip advance logic
408  * e.g. MI_BATCH_START, MI_BATCH_END
409  */
410 #define F_IP_ADVANCE_CUSTOM (1<<2)
411 	u32 flag;
412 
413 #define R_RCS	BIT(RCS0)
414 #define R_VCS1  BIT(VCS0)
415 #define R_VCS2  BIT(VCS1)
416 #define R_VCS	(R_VCS1 | R_VCS2)
417 #define R_BCS	BIT(BCS0)
418 #define R_VECS	BIT(VECS0)
419 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
420 	/* rings that support this cmd: BLT/RCS/VCS/VECS */
421 	u16 rings;
422 
423 	/* devices that support this cmd: SNB/IVB/HSW/... */
424 	u16 devices;
425 
426 	/* which DWords are address that need fix up.
427 	 * bit 0 means a 32-bit non address operand in command
428 	 * bit 1 means address operand, which could be 32-bit
429 	 * or 64-bit depending on different architectures.(
430 	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
431 	 * No matter the address length, each address only takes
432 	 * one bit in the bitmap.
433 	 */
434 	u16 addr_bitmap;
435 
436 	/* flag == F_LEN_CONST : command length
437 	 * flag == F_LEN_VAR : length bias bits
438 	 * Note: length is in DWord
439 	 */
440 	u32 len;
441 
442 	parser_cmd_handler handler;
443 
444 	/* valid length in DWord */
445 	u32 valid_len;
446 };
447 
448 struct cmd_entry {
449 	struct hlist_node hlist;
450 	const struct cmd_info *info;
451 };
452 
453 enum {
454 	RING_BUFFER_INSTRUCTION,
455 	BATCH_BUFFER_INSTRUCTION,
456 	BATCH_BUFFER_2ND_LEVEL,
457 };
458 
459 enum {
460 	GTT_BUFFER,
461 	PPGTT_BUFFER
462 };
463 
464 struct parser_exec_state {
465 	struct intel_vgpu *vgpu;
466 	const struct intel_engine_cs *engine;
467 
468 	int buf_type;
469 
470 	/* batch buffer address type */
471 	int buf_addr_type;
472 
473 	/* graphics memory address of ring buffer start */
474 	unsigned long ring_start;
475 	unsigned long ring_size;
476 	unsigned long ring_head;
477 	unsigned long ring_tail;
478 
479 	/* instruction graphics memory address */
480 	unsigned long ip_gma;
481 
482 	/* mapped va of the instr_gma */
483 	void *ip_va;
484 	void *rb_va;
485 
486 	void *ret_bb_va;
487 	/* next instruction when return from  batch buffer to ring buffer */
488 	unsigned long ret_ip_gma_ring;
489 
490 	/* next instruction when return from 2nd batch buffer to batch buffer */
491 	unsigned long ret_ip_gma_bb;
492 
493 	/* batch buffer address type (GTT or PPGTT)
494 	 * used when ret from 2nd level batch buffer
495 	 */
496 	int saved_buf_addr_type;
497 	bool is_ctx_wa;
498 
499 	const struct cmd_info *info;
500 
501 	struct intel_vgpu_workload *workload;
502 };
503 
504 #define gmadr_dw_number(s)	\
505 	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
506 
507 static unsigned long bypass_scan_mask = 0;
508 
509 /* ring ALL, type = 0 */
510 static const struct sub_op_bits sub_op_mi[] = {
511 	{31, 29},
512 	{28, 23},
513 };
514 
515 static const struct decode_info decode_info_mi = {
516 	"MI",
517 	OP_LEN_MI,
518 	ARRAY_SIZE(sub_op_mi),
519 	sub_op_mi,
520 };
521 
522 /* ring RCS, command type 2 */
523 static const struct sub_op_bits sub_op_2d[] = {
524 	{31, 29},
525 	{28, 22},
526 };
527 
528 static const struct decode_info decode_info_2d = {
529 	"2D",
530 	OP_LEN_2D,
531 	ARRAY_SIZE(sub_op_2d),
532 	sub_op_2d,
533 };
534 
535 /* ring RCS, command type 3 */
536 static const struct sub_op_bits sub_op_3d_media[] = {
537 	{31, 29},
538 	{28, 27},
539 	{26, 24},
540 	{23, 16},
541 };
542 
543 static const struct decode_info decode_info_3d_media = {
544 	"3D_Media",
545 	OP_LEN_3D_MEDIA,
546 	ARRAY_SIZE(sub_op_3d_media),
547 	sub_op_3d_media,
548 };
549 
550 /* ring VCS, command type 3 */
551 static const struct sub_op_bits sub_op_mfx_vc[] = {
552 	{31, 29},
553 	{28, 27},
554 	{26, 24},
555 	{23, 21},
556 	{20, 16},
557 };
558 
559 static const struct decode_info decode_info_mfx_vc = {
560 	"MFX_VC",
561 	OP_LEN_MFX_VC,
562 	ARRAY_SIZE(sub_op_mfx_vc),
563 	sub_op_mfx_vc,
564 };
565 
566 /* ring VECS, command type 3 */
567 static const struct sub_op_bits sub_op_vebox[] = {
568 	{31, 29},
569 	{28, 27},
570 	{26, 24},
571 	{23, 21},
572 	{20, 16},
573 };
574 
575 static const struct decode_info decode_info_vebox = {
576 	"VEBOX",
577 	OP_LEN_VEBOX,
578 	ARRAY_SIZE(sub_op_vebox),
579 	sub_op_vebox,
580 };
581 
582 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
583 	[RCS0] = {
584 		&decode_info_mi,
585 		NULL,
586 		NULL,
587 		&decode_info_3d_media,
588 		NULL,
589 		NULL,
590 		NULL,
591 		NULL,
592 	},
593 
594 	[VCS0] = {
595 		&decode_info_mi,
596 		NULL,
597 		NULL,
598 		&decode_info_mfx_vc,
599 		NULL,
600 		NULL,
601 		NULL,
602 		NULL,
603 	},
604 
605 	[BCS0] = {
606 		&decode_info_mi,
607 		NULL,
608 		&decode_info_2d,
609 		NULL,
610 		NULL,
611 		NULL,
612 		NULL,
613 		NULL,
614 	},
615 
616 	[VECS0] = {
617 		&decode_info_mi,
618 		NULL,
619 		NULL,
620 		&decode_info_vebox,
621 		NULL,
622 		NULL,
623 		NULL,
624 		NULL,
625 	},
626 
627 	[VCS1] = {
628 		&decode_info_mi,
629 		NULL,
630 		NULL,
631 		&decode_info_mfx_vc,
632 		NULL,
633 		NULL,
634 		NULL,
635 		NULL,
636 	},
637 };
638 
639 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
640 {
641 	const struct decode_info *d_info;
642 
643 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
644 	if (d_info == NULL)
645 		return INVALID_OP;
646 
647 	return cmd >> (32 - d_info->op_len);
648 }
649 
650 static inline const struct cmd_info *
651 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
652 	       const struct intel_engine_cs *engine)
653 {
654 	struct cmd_entry *e;
655 
656 	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
657 		if (opcode == e->info->opcode &&
658 		    e->info->rings & engine->mask)
659 			return e->info;
660 	}
661 	return NULL;
662 }
663 
664 static inline const struct cmd_info *
665 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
666 	     const struct intel_engine_cs *engine)
667 {
668 	u32 opcode;
669 
670 	opcode = get_opcode(cmd, engine);
671 	if (opcode == INVALID_OP)
672 		return NULL;
673 
674 	return find_cmd_entry(gvt, opcode, engine);
675 }
676 
677 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
678 {
679 	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
680 }
681 
682 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
683 {
684 	const struct decode_info *d_info;
685 	int i;
686 
687 	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
688 	if (d_info == NULL)
689 		return;
690 
691 	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
692 			cmd >> (32 - d_info->op_len), d_info->name);
693 
694 	for (i = 0; i < d_info->nr_sub_op; i++)
695 		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
696 					d_info->sub_op[i].low));
697 
698 	pr_err("\n");
699 }
700 
701 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
702 {
703 	return s->ip_va + (index << 2);
704 }
705 
706 static inline u32 cmd_val(struct parser_exec_state *s, int index)
707 {
708 	return *cmd_ptr(s, index);
709 }
710 
711 static void parser_exec_state_dump(struct parser_exec_state *s)
712 {
713 	int cnt = 0;
714 	int i;
715 
716 	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
717 		    " ring_head(%08lx) ring_tail(%08lx)\n",
718 		    s->vgpu->id, s->engine->name,
719 		    s->ring_start, s->ring_start + s->ring_size,
720 		    s->ring_head, s->ring_tail);
721 
722 	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
723 			s->buf_type == RING_BUFFER_INSTRUCTION ?
724 			"RING_BUFFER" : "BATCH_BUFFER",
725 			s->buf_addr_type == GTT_BUFFER ?
726 			"GTT" : "PPGTT", s->ip_gma);
727 
728 	if (s->ip_va == NULL) {
729 		gvt_dbg_cmd(" ip_va(NULL)");
730 		return;
731 	}
732 
733 	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
734 			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
735 			cmd_val(s, 2), cmd_val(s, 3));
736 
737 	print_opcode(cmd_val(s, 0), s->engine);
738 
739 	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
740 
741 	while (cnt < 1024) {
742 		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
743 		for (i = 0; i < 8; i++)
744 			gvt_dbg_cmd("%08x ", cmd_val(s, i));
745 		gvt_dbg_cmd("\n");
746 
747 		s->ip_va += 8 * sizeof(u32);
748 		cnt += 8;
749 	}
750 }
751 
752 static inline void update_ip_va(struct parser_exec_state *s)
753 {
754 	unsigned long len = 0;
755 
756 	if (WARN_ON(s->ring_head == s->ring_tail))
757 		return;
758 
759 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
760 		unsigned long ring_top = s->ring_start + s->ring_size;
761 
762 		if (s->ring_head > s->ring_tail) {
763 			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
764 				len = (s->ip_gma - s->ring_head);
765 			else if (s->ip_gma >= s->ring_start &&
766 					s->ip_gma <= s->ring_tail)
767 				len = (ring_top - s->ring_head) +
768 					(s->ip_gma - s->ring_start);
769 		} else
770 			len = (s->ip_gma - s->ring_head);
771 
772 		s->ip_va = s->rb_va + len;
773 	} else {/* shadow batch buffer */
774 		s->ip_va = s->ret_bb_va;
775 	}
776 }
777 
778 static inline int ip_gma_set(struct parser_exec_state *s,
779 		unsigned long ip_gma)
780 {
781 	WARN_ON(!IS_ALIGNED(ip_gma, 4));
782 
783 	s->ip_gma = ip_gma;
784 	update_ip_va(s);
785 	return 0;
786 }
787 
788 static inline int ip_gma_advance(struct parser_exec_state *s,
789 		unsigned int dw_len)
790 {
791 	s->ip_gma += (dw_len << 2);
792 
793 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
794 		if (s->ip_gma >= s->ring_start + s->ring_size)
795 			s->ip_gma -= s->ring_size;
796 		update_ip_va(s);
797 	} else {
798 		s->ip_va += (dw_len << 2);
799 	}
800 
801 	return 0;
802 }
803 
804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
805 {
806 	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
807 		return info->len;
808 	else
809 		return (cmd & ((1U << info->len) - 1)) + 2;
810 	return 0;
811 }
812 
813 static inline int cmd_length(struct parser_exec_state *s)
814 {
815 	return get_cmd_length(s->info, cmd_val(s, 0));
816 }
817 
818 /* do not remove this, some platform may need clflush here */
819 #define patch_value(s, addr, val) do { \
820 	*addr = val; \
821 } while (0)
822 
823 static bool is_shadowed_mmio(unsigned int offset)
824 {
825 	bool ret = false;
826 
827 	if ((offset == 0x2168) || /*BB current head register UDW */
828 	    (offset == 0x2140) || /*BB current header register */
829 	    (offset == 0x211c) || /*second BB header register UDW */
830 	    (offset == 0x2114)) { /*second BB header register UDW */
831 		ret = true;
832 	}
833 	return ret;
834 }
835 
836 static inline bool is_force_nonpriv_mmio(unsigned int offset)
837 {
838 	return (offset >= 0x24d0 && offset < 0x2500);
839 }
840 
841 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
842 		unsigned int offset, unsigned int index, char *cmd)
843 {
844 	struct intel_gvt *gvt = s->vgpu->gvt;
845 	unsigned int data;
846 	u32 ring_base;
847 	u32 nopid;
848 
849 	if (!strcmp(cmd, "lri"))
850 		data = cmd_val(s, index + 1);
851 	else {
852 		gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
853 			offset, cmd);
854 		return -EINVAL;
855 	}
856 
857 	ring_base = s->engine->mmio_base;
858 	nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
859 
860 	if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
861 			data != nopid) {
862 		gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
863 			offset, data);
864 		patch_value(s, cmd_ptr(s, index), nopid);
865 		return 0;
866 	}
867 	return 0;
868 }
869 
870 static inline bool is_mocs_mmio(unsigned int offset)
871 {
872 	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
873 		((offset >= 0xb020) && (offset <= 0xb0a0));
874 }
875 
876 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
877 				unsigned int offset, unsigned int index)
878 {
879 	if (!is_mocs_mmio(offset))
880 		return -EINVAL;
881 	vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
882 	return 0;
883 }
884 
885 static int is_cmd_update_pdps(unsigned int offset,
886 			      struct parser_exec_state *s)
887 {
888 	u32 base = s->workload->engine->mmio_base;
889 	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
890 }
891 
892 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
893 				       unsigned int offset, unsigned int index)
894 {
895 	struct intel_vgpu *vgpu = s->vgpu;
896 	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
897 	struct intel_vgpu_mm *mm;
898 	u64 pdps[GEN8_3LVL_PDPES];
899 
900 	if (shadow_mm->ppgtt_mm.root_entry_type ==
901 	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
902 		pdps[0] = (u64)cmd_val(s, 2) << 32;
903 		pdps[0] |= cmd_val(s, 4);
904 
905 		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
906 		if (!mm) {
907 			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
908 			return -EINVAL;
909 		}
910 		intel_vgpu_mm_get(mm);
911 		list_add_tail(&mm->ppgtt_mm.link,
912 			      &s->workload->lri_shadow_mm);
913 		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
914 		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
915 	} else {
916 		/* Currently all guests use PML4 table and now can't
917 		 * have a guest with 3-level table but uses LRI for
918 		 * PPGTT update. So this is simply un-testable. */
919 		GEM_BUG_ON(1);
920 		gvt_vgpu_err("invalid shared shadow vm type\n");
921 		return -EINVAL;
922 	}
923 	return 0;
924 }
925 
926 static int cmd_reg_handler(struct parser_exec_state *s,
927 	unsigned int offset, unsigned int index, char *cmd)
928 {
929 	struct intel_vgpu *vgpu = s->vgpu;
930 	struct intel_gvt *gvt = vgpu->gvt;
931 	u32 ctx_sr_ctl;
932 
933 	if (offset + 4 > gvt->device_info.mmio_size) {
934 		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
935 				cmd, offset);
936 		return -EFAULT;
937 	}
938 
939 	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
940 		gvt_vgpu_err("%s access to non-render register (%x)\n",
941 				cmd, offset);
942 		return -EBADRQC;
943 	}
944 
945 	if (is_shadowed_mmio(offset)) {
946 		gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
947 		return 0;
948 	}
949 
950 	if (is_mocs_mmio(offset) &&
951 	    mocs_cmd_reg_handler(s, offset, index))
952 		return -EINVAL;
953 
954 	if (is_force_nonpriv_mmio(offset) &&
955 		force_nonpriv_reg_handler(s, offset, index, cmd))
956 		return -EPERM;
957 
958 	if (offset == i915_mmio_reg_offset(DERRMR) ||
959 		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
960 		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
961 		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
962 	}
963 
964 	if (is_cmd_update_pdps(offset, s) &&
965 	    cmd_pdp_mmio_update_handler(s, offset, index))
966 		return -EINVAL;
967 
968 	/* TODO
969 	 * In order to let workload with inhibit context to generate
970 	 * correct image data into memory, vregs values will be loaded to
971 	 * hw via LRIs in the workload with inhibit context. But as
972 	 * indirect context is loaded prior to LRIs in workload, we don't
973 	 * want reg values specified in indirect context overwritten by
974 	 * LRIs in workloads. So, when scanning an indirect context, we
975 	 * update reg values in it into vregs, so LRIs in workload with
976 	 * inhibit context will restore with correct values
977 	 */
978 	if (IS_GEN(s->engine->i915, 9) &&
979 	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
980 	    !strncmp(cmd, "lri", 3)) {
981 		intel_gvt_hypervisor_read_gpa(s->vgpu,
982 			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
983 		/* check inhibit context */
984 		if (ctx_sr_ctl & 1) {
985 			u32 data = cmd_val(s, index + 1);
986 
987 			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
988 				intel_vgpu_mask_mmio_write(vgpu,
989 							offset, &data, 4);
990 			else
991 				vgpu_vreg(vgpu, offset) = data;
992 		}
993 	}
994 
995 	return 0;
996 }
997 
998 #define cmd_reg(s, i) \
999 	(cmd_val(s, i) & GENMASK(22, 2))
1000 
1001 #define cmd_reg_inhibit(s, i) \
1002 	(cmd_val(s, i) & GENMASK(22, 18))
1003 
1004 #define cmd_gma(s, i) \
1005 	(cmd_val(s, i) & GENMASK(31, 2))
1006 
1007 #define cmd_gma_hi(s, i) \
1008 	(cmd_val(s, i) & GENMASK(15, 0))
1009 
1010 static int cmd_handler_lri(struct parser_exec_state *s)
1011 {
1012 	int i, ret = 0;
1013 	int cmd_len = cmd_length(s);
1014 
1015 	for (i = 1; i < cmd_len; i += 2) {
1016 		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1017 			if (s->engine->id == BCS0 &&
1018 			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1019 				ret |= 0;
1020 			else
1021 				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1022 		}
1023 		if (ret)
1024 			break;
1025 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1026 		if (ret)
1027 			break;
1028 	}
1029 	return ret;
1030 }
1031 
1032 static int cmd_handler_lrr(struct parser_exec_state *s)
1033 {
1034 	int i, ret = 0;
1035 	int cmd_len = cmd_length(s);
1036 
1037 	for (i = 1; i < cmd_len; i += 2) {
1038 		if (IS_BROADWELL(s->engine->i915))
1039 			ret |= ((cmd_reg_inhibit(s, i) ||
1040 				 (cmd_reg_inhibit(s, i + 1)))) ?
1041 				-EBADRQC : 0;
1042 		if (ret)
1043 			break;
1044 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1045 		if (ret)
1046 			break;
1047 		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1048 		if (ret)
1049 			break;
1050 	}
1051 	return ret;
1052 }
1053 
1054 static inline int cmd_address_audit(struct parser_exec_state *s,
1055 		unsigned long guest_gma, int op_size, bool index_mode);
1056 
1057 static int cmd_handler_lrm(struct parser_exec_state *s)
1058 {
1059 	struct intel_gvt *gvt = s->vgpu->gvt;
1060 	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1061 	unsigned long gma;
1062 	int i, ret = 0;
1063 	int cmd_len = cmd_length(s);
1064 
1065 	for (i = 1; i < cmd_len;) {
1066 		if (IS_BROADWELL(s->engine->i915))
1067 			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1068 		if (ret)
1069 			break;
1070 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1071 		if (ret)
1072 			break;
1073 		if (cmd_val(s, 0) & (1 << 22)) {
1074 			gma = cmd_gma(s, i + 1);
1075 			if (gmadr_bytes == 8)
1076 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1077 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1078 			if (ret)
1079 				break;
1080 		}
1081 		i += gmadr_dw_number(s) + 1;
1082 	}
1083 	return ret;
1084 }
1085 
1086 static int cmd_handler_srm(struct parser_exec_state *s)
1087 {
1088 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1089 	unsigned long gma;
1090 	int i, ret = 0;
1091 	int cmd_len = cmd_length(s);
1092 
1093 	for (i = 1; i < cmd_len;) {
1094 		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1095 		if (ret)
1096 			break;
1097 		if (cmd_val(s, 0) & (1 << 22)) {
1098 			gma = cmd_gma(s, i + 1);
1099 			if (gmadr_bytes == 8)
1100 				gma |= (cmd_gma_hi(s, i + 2)) << 32;
1101 			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1102 			if (ret)
1103 				break;
1104 		}
1105 		i += gmadr_dw_number(s) + 1;
1106 	}
1107 	return ret;
1108 }
1109 
1110 struct cmd_interrupt_event {
1111 	int pipe_control_notify;
1112 	int mi_flush_dw;
1113 	int mi_user_interrupt;
1114 };
1115 
1116 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1117 	[RCS0] = {
1118 		.pipe_control_notify = RCS_PIPE_CONTROL,
1119 		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1120 		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1121 	},
1122 	[BCS0] = {
1123 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1124 		.mi_flush_dw = BCS_MI_FLUSH_DW,
1125 		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1126 	},
1127 	[VCS0] = {
1128 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1129 		.mi_flush_dw = VCS_MI_FLUSH_DW,
1130 		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1131 	},
1132 	[VCS1] = {
1133 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1134 		.mi_flush_dw = VCS2_MI_FLUSH_DW,
1135 		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1136 	},
1137 	[VECS0] = {
1138 		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1139 		.mi_flush_dw = VECS_MI_FLUSH_DW,
1140 		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1141 	},
1142 };
1143 
1144 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1145 {
1146 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1147 	unsigned long gma;
1148 	bool index_mode = false;
1149 	unsigned int post_sync;
1150 	int ret = 0;
1151 	u32 hws_pga, val;
1152 
1153 	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1154 
1155 	/* LRI post sync */
1156 	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1157 		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1158 	/* post sync */
1159 	else if (post_sync) {
1160 		if (post_sync == 2)
1161 			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1162 		else if (post_sync == 3)
1163 			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1164 		else if (post_sync == 1) {
1165 			/* check ggtt*/
1166 			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1167 				gma = cmd_val(s, 2) & GENMASK(31, 3);
1168 				if (gmadr_bytes == 8)
1169 					gma |= (cmd_gma_hi(s, 3)) << 32;
1170 				/* Store Data Index */
1171 				if (cmd_val(s, 1) & (1 << 21))
1172 					index_mode = true;
1173 				ret |= cmd_address_audit(s, gma, sizeof(u64),
1174 						index_mode);
1175 				if (ret)
1176 					return ret;
1177 				if (index_mode) {
1178 					hws_pga = s->vgpu->hws_pga[s->engine->id];
1179 					gma = hws_pga + gma;
1180 					patch_value(s, cmd_ptr(s, 2), gma);
1181 					val = cmd_val(s, 1) & (~(1 << 21));
1182 					patch_value(s, cmd_ptr(s, 1), val);
1183 				}
1184 			}
1185 		}
1186 	}
1187 
1188 	if (ret)
1189 		return ret;
1190 
1191 	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1192 		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1193 			s->workload->pending_events);
1194 	return 0;
1195 }
1196 
1197 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1198 {
1199 	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1200 		s->workload->pending_events);
1201 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1202 	return 0;
1203 }
1204 
1205 static int cmd_advance_default(struct parser_exec_state *s)
1206 {
1207 	return ip_gma_advance(s, cmd_length(s));
1208 }
1209 
1210 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1211 {
1212 	int ret;
1213 
1214 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1215 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1216 		ret = ip_gma_set(s, s->ret_ip_gma_bb);
1217 		s->buf_addr_type = s->saved_buf_addr_type;
1218 	} else {
1219 		s->buf_type = RING_BUFFER_INSTRUCTION;
1220 		s->buf_addr_type = GTT_BUFFER;
1221 		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1222 			s->ret_ip_gma_ring -= s->ring_size;
1223 		ret = ip_gma_set(s, s->ret_ip_gma_ring);
1224 	}
1225 	return ret;
1226 }
1227 
1228 struct mi_display_flip_command_info {
1229 	int pipe;
1230 	int plane;
1231 	int event;
1232 	i915_reg_t stride_reg;
1233 	i915_reg_t ctrl_reg;
1234 	i915_reg_t surf_reg;
1235 	u64 stride_val;
1236 	u64 tile_val;
1237 	u64 surf_val;
1238 	bool async_flip;
1239 };
1240 
1241 struct plane_code_mapping {
1242 	int pipe;
1243 	int plane;
1244 	int event;
1245 };
1246 
1247 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1248 		struct mi_display_flip_command_info *info)
1249 {
1250 	struct drm_i915_private *dev_priv = s->engine->i915;
1251 	struct plane_code_mapping gen8_plane_code[] = {
1252 		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1253 		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1254 		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1255 		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1256 		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1257 		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1258 	};
1259 	u32 dword0, dword1, dword2;
1260 	u32 v;
1261 
1262 	dword0 = cmd_val(s, 0);
1263 	dword1 = cmd_val(s, 1);
1264 	dword2 = cmd_val(s, 2);
1265 
1266 	v = (dword0 & GENMASK(21, 19)) >> 19;
1267 	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1268 		return -EBADRQC;
1269 
1270 	info->pipe = gen8_plane_code[v].pipe;
1271 	info->plane = gen8_plane_code[v].plane;
1272 	info->event = gen8_plane_code[v].event;
1273 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1274 	info->tile_val = (dword1 & 0x1);
1275 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1276 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1277 
1278 	if (info->plane == PLANE_A) {
1279 		info->ctrl_reg = DSPCNTR(info->pipe);
1280 		info->stride_reg = DSPSTRIDE(info->pipe);
1281 		info->surf_reg = DSPSURF(info->pipe);
1282 	} else if (info->plane == PLANE_B) {
1283 		info->ctrl_reg = SPRCTL(info->pipe);
1284 		info->stride_reg = SPRSTRIDE(info->pipe);
1285 		info->surf_reg = SPRSURF(info->pipe);
1286 	} else {
1287 		drm_WARN_ON(&dev_priv->drm, 1);
1288 		return -EBADRQC;
1289 	}
1290 	return 0;
1291 }
1292 
1293 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1294 		struct mi_display_flip_command_info *info)
1295 {
1296 	struct drm_i915_private *dev_priv = s->engine->i915;
1297 	struct intel_vgpu *vgpu = s->vgpu;
1298 	u32 dword0 = cmd_val(s, 0);
1299 	u32 dword1 = cmd_val(s, 1);
1300 	u32 dword2 = cmd_val(s, 2);
1301 	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1302 
1303 	info->plane = PRIMARY_PLANE;
1304 
1305 	switch (plane) {
1306 	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1307 		info->pipe = PIPE_A;
1308 		info->event = PRIMARY_A_FLIP_DONE;
1309 		break;
1310 	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1311 		info->pipe = PIPE_B;
1312 		info->event = PRIMARY_B_FLIP_DONE;
1313 		break;
1314 	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1315 		info->pipe = PIPE_C;
1316 		info->event = PRIMARY_C_FLIP_DONE;
1317 		break;
1318 
1319 	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1320 		info->pipe = PIPE_A;
1321 		info->event = SPRITE_A_FLIP_DONE;
1322 		info->plane = SPRITE_PLANE;
1323 		break;
1324 	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1325 		info->pipe = PIPE_B;
1326 		info->event = SPRITE_B_FLIP_DONE;
1327 		info->plane = SPRITE_PLANE;
1328 		break;
1329 	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1330 		info->pipe = PIPE_C;
1331 		info->event = SPRITE_C_FLIP_DONE;
1332 		info->plane = SPRITE_PLANE;
1333 		break;
1334 
1335 	default:
1336 		gvt_vgpu_err("unknown plane code %d\n", plane);
1337 		return -EBADRQC;
1338 	}
1339 
1340 	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1341 	info->tile_val = (dword1 & GENMASK(2, 0));
1342 	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1343 	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1344 
1345 	info->ctrl_reg = DSPCNTR(info->pipe);
1346 	info->stride_reg = DSPSTRIDE(info->pipe);
1347 	info->surf_reg = DSPSURF(info->pipe);
1348 
1349 	return 0;
1350 }
1351 
1352 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1353 		struct mi_display_flip_command_info *info)
1354 {
1355 	u32 stride, tile;
1356 
1357 	if (!info->async_flip)
1358 		return 0;
1359 
1360 	if (INTEL_GEN(s->engine->i915) >= 9) {
1361 		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1362 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1363 				GENMASK(12, 10)) >> 10;
1364 	} else {
1365 		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1366 				GENMASK(15, 6)) >> 6;
1367 		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1368 	}
1369 
1370 	if (stride != info->stride_val)
1371 		gvt_dbg_cmd("cannot change stride during async flip\n");
1372 
1373 	if (tile != info->tile_val)
1374 		gvt_dbg_cmd("cannot change tile during async flip\n");
1375 
1376 	return 0;
1377 }
1378 
1379 static int gen8_update_plane_mmio_from_mi_display_flip(
1380 		struct parser_exec_state *s,
1381 		struct mi_display_flip_command_info *info)
1382 {
1383 	struct drm_i915_private *dev_priv = s->engine->i915;
1384 	struct intel_vgpu *vgpu = s->vgpu;
1385 
1386 	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1387 		      info->surf_val << 12);
1388 	if (INTEL_GEN(dev_priv) >= 9) {
1389 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1390 			      info->stride_val);
1391 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1392 			      info->tile_val << 10);
1393 	} else {
1394 		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1395 			      info->stride_val << 6);
1396 		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1397 			      info->tile_val << 10);
1398 	}
1399 
1400 	if (info->plane == PLANE_PRIMARY)
1401 		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1402 
1403 	if (info->async_flip)
1404 		intel_vgpu_trigger_virtual_event(vgpu, info->event);
1405 	else
1406 		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1407 
1408 	return 0;
1409 }
1410 
1411 static int decode_mi_display_flip(struct parser_exec_state *s,
1412 		struct mi_display_flip_command_info *info)
1413 {
1414 	if (IS_BROADWELL(s->engine->i915))
1415 		return gen8_decode_mi_display_flip(s, info);
1416 	if (INTEL_GEN(s->engine->i915) >= 9)
1417 		return skl_decode_mi_display_flip(s, info);
1418 
1419 	return -ENODEV;
1420 }
1421 
1422 static int check_mi_display_flip(struct parser_exec_state *s,
1423 		struct mi_display_flip_command_info *info)
1424 {
1425 	return gen8_check_mi_display_flip(s, info);
1426 }
1427 
1428 static int update_plane_mmio_from_mi_display_flip(
1429 		struct parser_exec_state *s,
1430 		struct mi_display_flip_command_info *info)
1431 {
1432 	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1433 }
1434 
1435 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1436 {
1437 	struct mi_display_flip_command_info info;
1438 	struct intel_vgpu *vgpu = s->vgpu;
1439 	int ret;
1440 	int i;
1441 	int len = cmd_length(s);
1442 	u32 valid_len = CMD_LEN(1);
1443 
1444 	/* Flip Type == Stereo 3D Flip */
1445 	if (DWORD_FIELD(2, 1, 0) == 2)
1446 		valid_len++;
1447 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1448 			valid_len);
1449 	if (ret)
1450 		return ret;
1451 
1452 	ret = decode_mi_display_flip(s, &info);
1453 	if (ret) {
1454 		gvt_vgpu_err("fail to decode MI display flip command\n");
1455 		return ret;
1456 	}
1457 
1458 	ret = check_mi_display_flip(s, &info);
1459 	if (ret) {
1460 		gvt_vgpu_err("invalid MI display flip command\n");
1461 		return ret;
1462 	}
1463 
1464 	ret = update_plane_mmio_from_mi_display_flip(s, &info);
1465 	if (ret) {
1466 		gvt_vgpu_err("fail to update plane mmio\n");
1467 		return ret;
1468 	}
1469 
1470 	for (i = 0; i < len; i++)
1471 		patch_value(s, cmd_ptr(s, i), MI_NOOP);
1472 	return 0;
1473 }
1474 
1475 static bool is_wait_for_flip_pending(u32 cmd)
1476 {
1477 	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1478 			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1479 			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1480 			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1481 			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1482 			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1483 }
1484 
1485 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1486 {
1487 	u32 cmd = cmd_val(s, 0);
1488 
1489 	if (!is_wait_for_flip_pending(cmd))
1490 		return 0;
1491 
1492 	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1493 	return 0;
1494 }
1495 
1496 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1497 {
1498 	unsigned long addr;
1499 	unsigned long gma_high, gma_low;
1500 	struct intel_vgpu *vgpu = s->vgpu;
1501 	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1502 
1503 	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1504 		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1505 		return INTEL_GVT_INVALID_ADDR;
1506 	}
1507 
1508 	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1509 	if (gmadr_bytes == 4) {
1510 		addr = gma_low;
1511 	} else {
1512 		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1513 		addr = (((unsigned long)gma_high) << 32) | gma_low;
1514 	}
1515 	return addr;
1516 }
1517 
1518 static inline int cmd_address_audit(struct parser_exec_state *s,
1519 		unsigned long guest_gma, int op_size, bool index_mode)
1520 {
1521 	struct intel_vgpu *vgpu = s->vgpu;
1522 	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1523 	int i;
1524 	int ret;
1525 
1526 	if (op_size > max_surface_size) {
1527 		gvt_vgpu_err("command address audit fail name %s\n",
1528 			s->info->name);
1529 		return -EFAULT;
1530 	}
1531 
1532 	if (index_mode)	{
1533 		if (guest_gma >= I915_GTT_PAGE_SIZE) {
1534 			ret = -EFAULT;
1535 			goto err;
1536 		}
1537 	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1538 		ret = -EFAULT;
1539 		goto err;
1540 	}
1541 
1542 	return 0;
1543 
1544 err:
1545 	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1546 			s->info->name, guest_gma, op_size);
1547 
1548 	pr_err("cmd dump: ");
1549 	for (i = 0; i < cmd_length(s); i++) {
1550 		if (!(i % 4))
1551 			pr_err("\n%08x ", cmd_val(s, i));
1552 		else
1553 			pr_err("%08x ", cmd_val(s, i));
1554 	}
1555 	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1556 			vgpu->id,
1557 			vgpu_aperture_gmadr_base(vgpu),
1558 			vgpu_aperture_gmadr_end(vgpu),
1559 			vgpu_hidden_gmadr_base(vgpu),
1560 			vgpu_hidden_gmadr_end(vgpu));
1561 	return ret;
1562 }
1563 
1564 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1565 {
1566 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1567 	int op_size = (cmd_length(s) - 3) * sizeof(u32);
1568 	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1569 	unsigned long gma, gma_low, gma_high;
1570 	u32 valid_len = CMD_LEN(2);
1571 	int ret = 0;
1572 
1573 	/* check ppggt */
1574 	if (!(cmd_val(s, 0) & (1 << 22)))
1575 		return 0;
1576 
1577 	/* check if QWORD */
1578 	if (DWORD_FIELD(0, 21, 21))
1579 		valid_len++;
1580 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1581 			valid_len);
1582 	if (ret)
1583 		return ret;
1584 
1585 	gma = cmd_val(s, 2) & GENMASK(31, 2);
1586 
1587 	if (gmadr_bytes == 8) {
1588 		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1589 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1590 		gma = (gma_high << 32) | gma_low;
1591 		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1592 	}
1593 	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1594 	return ret;
1595 }
1596 
1597 static inline int unexpected_cmd(struct parser_exec_state *s)
1598 {
1599 	struct intel_vgpu *vgpu = s->vgpu;
1600 
1601 	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1602 
1603 	return -EBADRQC;
1604 }
1605 
1606 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1607 {
1608 	return unexpected_cmd(s);
1609 }
1610 
1611 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1612 {
1613 	return unexpected_cmd(s);
1614 }
1615 
1616 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1617 {
1618 	return unexpected_cmd(s);
1619 }
1620 
1621 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1622 {
1623 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1624 	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1625 			sizeof(u32);
1626 	unsigned long gma, gma_high;
1627 	u32 valid_len = CMD_LEN(1);
1628 	int ret = 0;
1629 
1630 	if (!(cmd_val(s, 0) & (1 << 22)))
1631 		return ret;
1632 
1633 	/* check inline data */
1634 	if (cmd_val(s, 0) & BIT(18))
1635 		valid_len = CMD_LEN(9);
1636 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1637 			valid_len);
1638 	if (ret)
1639 		return ret;
1640 
1641 	gma = cmd_val(s, 1) & GENMASK(31, 2);
1642 	if (gmadr_bytes == 8) {
1643 		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1644 		gma = (gma_high << 32) | gma;
1645 	}
1646 	ret = cmd_address_audit(s, gma, op_size, false);
1647 	return ret;
1648 }
1649 
1650 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1651 {
1652 	return unexpected_cmd(s);
1653 }
1654 
1655 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1656 {
1657 	return unexpected_cmd(s);
1658 }
1659 
1660 static int cmd_handler_mi_conditional_batch_buffer_end(
1661 		struct parser_exec_state *s)
1662 {
1663 	return unexpected_cmd(s);
1664 }
1665 
1666 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1667 {
1668 	return unexpected_cmd(s);
1669 }
1670 
1671 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1672 {
1673 	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1674 	unsigned long gma;
1675 	bool index_mode = false;
1676 	int ret = 0;
1677 	u32 hws_pga, val;
1678 	u32 valid_len = CMD_LEN(2);
1679 
1680 	ret = gvt_check_valid_cmd_length(cmd_length(s),
1681 			valid_len);
1682 	if (ret) {
1683 		/* Check again for Qword */
1684 		ret = gvt_check_valid_cmd_length(cmd_length(s),
1685 			++valid_len);
1686 		return ret;
1687 	}
1688 
1689 	/* Check post-sync and ppgtt bit */
1690 	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1691 		gma = cmd_val(s, 1) & GENMASK(31, 3);
1692 		if (gmadr_bytes == 8)
1693 			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1694 		/* Store Data Index */
1695 		if (cmd_val(s, 0) & (1 << 21))
1696 			index_mode = true;
1697 		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1698 		if (ret)
1699 			return ret;
1700 		if (index_mode) {
1701 			hws_pga = s->vgpu->hws_pga[s->engine->id];
1702 			gma = hws_pga + gma;
1703 			patch_value(s, cmd_ptr(s, 1), gma);
1704 			val = cmd_val(s, 0) & (~(1 << 21));
1705 			patch_value(s, cmd_ptr(s, 0), val);
1706 		}
1707 	}
1708 	/* Check notify bit */
1709 	if ((cmd_val(s, 0) & (1 << 8)))
1710 		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1711 			s->workload->pending_events);
1712 	return ret;
1713 }
1714 
1715 static void addr_type_update_snb(struct parser_exec_state *s)
1716 {
1717 	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1718 			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1719 		s->buf_addr_type = PPGTT_BUFFER;
1720 	}
1721 }
1722 
1723 
1724 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1725 		unsigned long gma, unsigned long end_gma, void *va)
1726 {
1727 	unsigned long copy_len, offset;
1728 	unsigned long len = 0;
1729 	unsigned long gpa;
1730 
1731 	while (gma != end_gma) {
1732 		gpa = intel_vgpu_gma_to_gpa(mm, gma);
1733 		if (gpa == INTEL_GVT_INVALID_ADDR) {
1734 			gvt_vgpu_err("invalid gma address: %lx\n", gma);
1735 			return -EFAULT;
1736 		}
1737 
1738 		offset = gma & (I915_GTT_PAGE_SIZE - 1);
1739 
1740 		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1741 			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1742 
1743 		intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1744 
1745 		len += copy_len;
1746 		gma += copy_len;
1747 	}
1748 	return len;
1749 }
1750 
1751 
1752 /*
1753  * Check whether a batch buffer needs to be scanned. Currently
1754  * the only criteria is based on privilege.
1755  */
1756 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1757 {
1758 	/* Decide privilege based on address space */
1759 	if (cmd_val(s, 0) & BIT(8) &&
1760 	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
1761 		return 0;
1762 
1763 	return 1;
1764 }
1765 
1766 static const char *repr_addr_type(unsigned int type)
1767 {
1768 	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1769 }
1770 
1771 static int find_bb_size(struct parser_exec_state *s,
1772 			unsigned long *bb_size,
1773 			unsigned long *bb_end_cmd_offset)
1774 {
1775 	unsigned long gma = 0;
1776 	const struct cmd_info *info;
1777 	u32 cmd_len = 0;
1778 	bool bb_end = false;
1779 	struct intel_vgpu *vgpu = s->vgpu;
1780 	u32 cmd;
1781 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1782 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1783 
1784 	*bb_size = 0;
1785 	*bb_end_cmd_offset = 0;
1786 
1787 	/* get the start gm address of the batch buffer */
1788 	gma = get_gma_bb_from_cmd(s, 1);
1789 	if (gma == INTEL_GVT_INVALID_ADDR)
1790 		return -EFAULT;
1791 
1792 	cmd = cmd_val(s, 0);
1793 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1794 	if (info == NULL) {
1795 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1796 			     cmd, get_opcode(cmd, s->engine),
1797 			     repr_addr_type(s->buf_addr_type),
1798 			     s->engine->name, s->workload);
1799 		return -EBADRQC;
1800 	}
1801 	do {
1802 		if (copy_gma_to_hva(s->vgpu, mm,
1803 				    gma, gma + 4, &cmd) < 0)
1804 			return -EFAULT;
1805 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1806 		if (info == NULL) {
1807 			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1808 				     cmd, get_opcode(cmd, s->engine),
1809 				     repr_addr_type(s->buf_addr_type),
1810 				     s->engine->name, s->workload);
1811 			return -EBADRQC;
1812 		}
1813 
1814 		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1815 			bb_end = true;
1816 		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1817 			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1818 				/* chained batch buffer */
1819 				bb_end = true;
1820 		}
1821 
1822 		if (bb_end)
1823 			*bb_end_cmd_offset = *bb_size;
1824 
1825 		cmd_len = get_cmd_length(info, cmd) << 2;
1826 		*bb_size += cmd_len;
1827 		gma += cmd_len;
1828 	} while (!bb_end);
1829 
1830 	return 0;
1831 }
1832 
1833 static int audit_bb_end(struct parser_exec_state *s, void *va)
1834 {
1835 	struct intel_vgpu *vgpu = s->vgpu;
1836 	u32 cmd = *(u32 *)va;
1837 	const struct cmd_info *info;
1838 
1839 	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1840 	if (info == NULL) {
1841 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1842 			     cmd, get_opcode(cmd, s->engine),
1843 			     repr_addr_type(s->buf_addr_type),
1844 			     s->engine->name, s->workload);
1845 		return -EBADRQC;
1846 	}
1847 
1848 	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1849 	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1850 	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1851 		return 0;
1852 
1853 	return -EBADRQC;
1854 }
1855 
1856 static int perform_bb_shadow(struct parser_exec_state *s)
1857 {
1858 	struct intel_vgpu *vgpu = s->vgpu;
1859 	struct intel_vgpu_shadow_bb *bb;
1860 	unsigned long gma = 0;
1861 	unsigned long bb_size;
1862 	unsigned long bb_end_cmd_offset;
1863 	int ret = 0;
1864 	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1865 		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1866 	unsigned long start_offset = 0;
1867 
1868 	/* get the start gm address of the batch buffer */
1869 	gma = get_gma_bb_from_cmd(s, 1);
1870 	if (gma == INTEL_GVT_INVALID_ADDR)
1871 		return -EFAULT;
1872 
1873 	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1874 	if (ret)
1875 		return ret;
1876 
1877 	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1878 	if (!bb)
1879 		return -ENOMEM;
1880 
1881 	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1882 
1883 	/* the start_offset stores the batch buffer's start gma's
1884 	 * offset relative to page boundary. so for non-privileged batch
1885 	 * buffer, the shadowed gem object holds exactly the same page
1886 	 * layout as original gem object. This is for the convience of
1887 	 * replacing the whole non-privilged batch buffer page to this
1888 	 * shadowed one in PPGTT at the same gma address. (this replacing
1889 	 * action is not implemented yet now, but may be necessary in
1890 	 * future).
1891 	 * for prileged batch buffer, we just change start gma address to
1892 	 * that of shadowed page.
1893 	 */
1894 	if (bb->ppgtt)
1895 		start_offset = gma & ~I915_GTT_PAGE_MASK;
1896 
1897 	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1898 					       round_up(bb_size + start_offset,
1899 							PAGE_SIZE));
1900 	if (IS_ERR(bb->obj)) {
1901 		ret = PTR_ERR(bb->obj);
1902 		goto err_free_bb;
1903 	}
1904 
1905 	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1906 	if (IS_ERR(bb->va)) {
1907 		ret = PTR_ERR(bb->va);
1908 		goto err_free_obj;
1909 	}
1910 
1911 	ret = copy_gma_to_hva(s->vgpu, mm,
1912 			      gma, gma + bb_size,
1913 			      bb->va + start_offset);
1914 	if (ret < 0) {
1915 		gvt_vgpu_err("fail to copy guest ring buffer\n");
1916 		ret = -EFAULT;
1917 		goto err_unmap;
1918 	}
1919 
1920 	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1921 	if (ret)
1922 		goto err_unmap;
1923 
1924 	i915_gem_object_unlock(bb->obj);
1925 	INIT_LIST_HEAD(&bb->list);
1926 	list_add(&bb->list, &s->workload->shadow_bb);
1927 
1928 	bb->bb_start_cmd_va = s->ip_va;
1929 
1930 	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1931 		bb->bb_offset = s->ip_va - s->rb_va;
1932 	else
1933 		bb->bb_offset = 0;
1934 
1935 	/*
1936 	 * ip_va saves the virtual address of the shadow batch buffer, while
1937 	 * ip_gma saves the graphics address of the original batch buffer.
1938 	 * As the shadow batch buffer is just a copy from the originial one,
1939 	 * it should be right to use shadow batch buffer'va and original batch
1940 	 * buffer's gma in pair. After all, we don't want to pin the shadow
1941 	 * buffer here (too early).
1942 	 */
1943 	s->ip_va = bb->va + start_offset;
1944 	s->ip_gma = gma;
1945 	return 0;
1946 err_unmap:
1947 	i915_gem_object_unpin_map(bb->obj);
1948 err_free_obj:
1949 	i915_gem_object_put(bb->obj);
1950 err_free_bb:
1951 	kfree(bb);
1952 	return ret;
1953 }
1954 
1955 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1956 {
1957 	bool second_level;
1958 	int ret = 0;
1959 	struct intel_vgpu *vgpu = s->vgpu;
1960 
1961 	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1962 		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1963 		return -EFAULT;
1964 	}
1965 
1966 	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1967 	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1968 		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1969 		return -EFAULT;
1970 	}
1971 
1972 	s->saved_buf_addr_type = s->buf_addr_type;
1973 	addr_type_update_snb(s);
1974 	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1975 		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1976 		s->buf_type = BATCH_BUFFER_INSTRUCTION;
1977 	} else if (second_level) {
1978 		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1979 		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1980 		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1981 	}
1982 
1983 	if (batch_buffer_needs_scan(s)) {
1984 		ret = perform_bb_shadow(s);
1985 		if (ret < 0)
1986 			gvt_vgpu_err("invalid shadow batch buffer\n");
1987 	} else {
1988 		/* emulate a batch buffer end to do return right */
1989 		ret = cmd_handler_mi_batch_buffer_end(s);
1990 		if (ret < 0)
1991 			return ret;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static int mi_noop_index;
1997 
1998 static const struct cmd_info cmd_info[] = {
1999 	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2000 
2001 	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2002 		0, 1, NULL},
2003 
2004 	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2005 		0, 1, cmd_handler_mi_user_interrupt},
2006 
2007 	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2008 		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2009 
2010 	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2011 
2012 	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2013 		NULL},
2014 
2015 	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2016 		NULL},
2017 
2018 	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2019 		NULL},
2020 
2021 	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2022 		NULL},
2023 
2024 	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2025 		D_ALL, 0, 1, NULL},
2026 
2027 	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2028 		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2029 		cmd_handler_mi_batch_buffer_end},
2030 
2031 	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2032 		0, 1, NULL},
2033 
2034 	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2035 		NULL},
2036 
2037 	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2038 		D_ALL, 0, 1, NULL},
2039 
2040 	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2041 		NULL},
2042 
2043 	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2044 		NULL},
2045 
2046 	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2047 		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2048 
2049 	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2050 		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2051 
2052 	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2053 
2054 	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2055 		D_ALL, 0, 8, NULL, CMD_LEN(0)},
2056 
2057 	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2058 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2059 		NULL, CMD_LEN(0)},
2060 
2061 	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2062 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2063 		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2064 
2065 	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2066 		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2067 
2068 	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2069 		0, 8, cmd_handler_mi_store_data_index},
2070 
2071 	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2072 		D_ALL, 0, 8, cmd_handler_lri},
2073 
2074 	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2075 		cmd_handler_mi_update_gtt},
2076 
2077 	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2078 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2079 		cmd_handler_srm, CMD_LEN(2)},
2080 
2081 	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2082 		cmd_handler_mi_flush_dw},
2083 
2084 	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2085 		10, cmd_handler_mi_clflush},
2086 
2087 	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2088 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2089 		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2090 
2091 	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2092 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2093 		cmd_handler_lrm, CMD_LEN(2)},
2094 
2095 	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2096 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2097 		cmd_handler_lrr, CMD_LEN(1)},
2098 
2099 	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2100 		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2101 		8, NULL, CMD_LEN(2)},
2102 
2103 	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2104 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2105 
2106 	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2107 		ADDR_FIX_1(2), 8, NULL},
2108 
2109 	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2110 		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2111 
2112 	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2113 		8, cmd_handler_mi_op_2f},
2114 
2115 	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2116 		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2117 		cmd_handler_mi_batch_buffer_start},
2118 
2119 	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2120 		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2121 		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2122 
2123 	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2124 		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2125 
2126 	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2127 		ADDR_FIX_2(4, 7), 8, NULL},
2128 
2129 	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2130 		0, 8, NULL},
2131 
2132 	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2133 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2134 
2135 	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2136 
2137 	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2138 		0, 8, NULL},
2139 
2140 	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2141 		ADDR_FIX_1(3), 8, NULL},
2142 
2143 	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2144 		D_ALL, 0, 8, NULL},
2145 
2146 	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2147 		ADDR_FIX_1(4), 8, NULL},
2148 
2149 	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2150 		ADDR_FIX_2(4, 5), 8, NULL},
2151 
2152 	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2153 		ADDR_FIX_1(4), 8, NULL},
2154 
2155 	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2156 		ADDR_FIX_2(4, 7), 8, NULL},
2157 
2158 	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2159 		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2160 
2161 	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2162 
2163 	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2164 		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2165 
2166 	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2167 		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2168 
2169 	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2170 		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2171 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2172 
2173 	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2174 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2175 
2176 	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2177 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2178 
2179 	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2180 		D_ALL, ADDR_FIX_1(4), 8, NULL},
2181 
2182 	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2183 		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2184 
2185 	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2186 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2187 
2188 	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2189 		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2190 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2191 
2192 	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2193 		ADDR_FIX_2(4, 5), 8, NULL},
2194 
2195 	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2196 		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2197 
2198 	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2199 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2200 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2201 
2202 	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2203 		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2204 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2205 
2206 	{"3DSTATE_BLEND_STATE_POINTERS",
2207 		OP_3DSTATE_BLEND_STATE_POINTERS,
2208 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2209 
2210 	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2211 		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2212 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2213 
2214 	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
2215 		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2216 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2217 
2218 	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
2219 		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2220 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2221 
2222 	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
2223 		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2224 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2225 
2226 	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
2227 		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2228 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2229 
2230 	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
2231 		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2232 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233 
2234 	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2235 		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2236 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237 
2238 	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2239 		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2240 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241 
2242 	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2243 		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2244 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245 
2246 	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2247 		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2248 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249 
2250 	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2251 		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2252 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253 
2254 	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2255 		0, 8, NULL},
2256 
2257 	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2258 		0, 8, NULL},
2259 
2260 	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2261 		0, 8, NULL},
2262 
2263 	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2264 		0, 8, NULL},
2265 
2266 	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2267 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268 
2269 	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2270 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271 
2272 	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2273 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274 
2275 	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2276 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277 
2278 	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2279 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280 
2281 	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2282 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2283 
2284 	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2285 		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2286 
2287 	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2288 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289 
2290 	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2291 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2292 
2293 	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2294 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2295 
2296 	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2297 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2298 
2299 	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2300 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301 
2302 	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2303 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304 
2305 	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2306 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307 
2308 	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2309 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310 
2311 	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2312 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2313 
2314 	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2315 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2316 
2317 	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2318 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2319 
2320 	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2321 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2322 
2323 	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2324 		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2325 
2326 	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2327 		D_BDW_PLUS, 0, 8, NULL},
2328 
2329 	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2330 		NULL},
2331 
2332 	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2333 		D_BDW_PLUS, 0, 8, NULL},
2334 
2335 	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2336 		D_BDW_PLUS, 0, 8, NULL},
2337 
2338 	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2339 		8, NULL},
2340 
2341 	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2342 		R_RCS, D_BDW_PLUS, 0, 8, NULL},
2343 
2344 	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2345 		8, NULL},
2346 
2347 	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2348 		NULL},
2349 
2350 	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2351 		NULL},
2352 
2353 	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2354 		NULL},
2355 
2356 	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2357 		D_BDW_PLUS, 0, 8, NULL},
2358 
2359 	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2360 		R_RCS, D_ALL, 0, 8, NULL},
2361 
2362 	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2363 		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2364 
2365 	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2366 		R_RCS, D_ALL, 0, 1, NULL},
2367 
2368 	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2369 
2370 	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2371 		R_RCS, D_ALL, 0, 8, NULL},
2372 
2373 	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2374 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2375 
2376 	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2377 
2378 	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2379 
2380 	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2381 
2382 	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2383 		D_BDW_PLUS, 0, 8, NULL},
2384 
2385 	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2386 		D_BDW_PLUS, 0, 8, NULL},
2387 
2388 	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2389 		D_ALL, 0, 8, NULL},
2390 
2391 	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2392 		D_BDW_PLUS, 0, 8, NULL},
2393 
2394 	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2395 		D_BDW_PLUS, 0, 8, NULL},
2396 
2397 	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2398 
2399 	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2400 
2401 	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2402 
2403 	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2404 		D_ALL, 0, 8, NULL},
2405 
2406 	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2407 
2408 	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2409 
2410 	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2411 		R_RCS, D_ALL, 0, 8, NULL},
2412 
2413 	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2414 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2415 
2416 	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2417 		0, 8, NULL},
2418 
2419 	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2420 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2421 
2422 	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2423 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2424 
2425 	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2426 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2427 
2428 	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2429 		D_ALL, 0, 8, NULL},
2430 
2431 	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2432 		D_ALL, 0, 8, NULL},
2433 
2434 	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2435 		D_ALL, 0, 8, NULL},
2436 
2437 	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2438 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439 
2440 	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2441 		D_BDW_PLUS, 0, 8, NULL},
2442 
2443 	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2444 		D_ALL, ADDR_FIX_1(2), 8, NULL},
2445 
2446 	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2447 		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2448 
2449 	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2450 		R_RCS, D_ALL, 0, 8, NULL},
2451 
2452 	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2453 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2454 
2455 	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2456 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457 
2458 	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2459 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2460 
2461 	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2462 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2463 
2464 	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2465 		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2466 
2467 	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2468 		R_RCS, D_ALL, 0, 8, NULL},
2469 
2470 	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2471 		D_ALL, 0, 9, NULL},
2472 
2473 	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2474 		ADDR_FIX_2(2, 4), 8, NULL},
2475 
2476 	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2477 		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2478 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2479 
2480 	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2481 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2482 
2483 	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2484 		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2485 		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2486 
2487 	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2488 		D_BDW_PLUS, 0, 8, NULL},
2489 
2490 	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2491 		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2492 
2493 	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494 
2495 	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2496 		1, NULL},
2497 
2498 	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2499 		ADDR_FIX_1(1), 8, NULL},
2500 
2501 	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2502 
2503 	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2504 		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2505 
2506 	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2507 		ADDR_FIX_1(1), 8, NULL},
2508 
2509 	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2510 		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2511 
2512 	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2513 
2514 	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2515 
2516 	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2517 		0, 8, NULL},
2518 
2519 	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2520 		D_SKL_PLUS, 0, 8, NULL},
2521 
2522 	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2523 		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2524 
2525 	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2526 		0, 16, NULL},
2527 
2528 	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2529 		0, 16, NULL},
2530 
2531 	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2532 		0, 16, NULL},
2533 
2534 	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2535 
2536 	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2537 		0, 16, NULL},
2538 
2539 	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2540 		0, 16, NULL},
2541 
2542 	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2543 		0, 16, NULL},
2544 
2545 	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2546 		0, 8, NULL},
2547 
2548 	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2549 		NULL},
2550 
2551 	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2552 		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2553 
2554 	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2555 		R_VCS, D_ALL, 0, 12, NULL},
2556 
2557 	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2558 		R_VCS, D_ALL, 0, 12, NULL},
2559 
2560 	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2561 		R_VCS, D_BDW_PLUS, 0, 12, NULL},
2562 
2563 	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2564 		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2565 
2566 	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2567 		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2568 
2569 	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2570 
2571 	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2572 		R_VCS, D_ALL, 0, 12, NULL},
2573 
2574 	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2575 		R_VCS, D_ALL, 0, 12, NULL},
2576 
2577 	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2578 		R_VCS, D_ALL, 0, 12, NULL},
2579 
2580 	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2581 		R_VCS, D_ALL, 0, 12, NULL},
2582 
2583 	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2584 		R_VCS, D_ALL, 0, 12, NULL},
2585 
2586 	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2587 		R_VCS, D_ALL, 0, 12, NULL},
2588 
2589 	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2590 		R_VCS, D_ALL, 0, 6, NULL},
2591 
2592 	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2593 		R_VCS, D_ALL, 0, 12, NULL},
2594 
2595 	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2596 		R_VCS, D_ALL, 0, 12, NULL},
2597 
2598 	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2599 		R_VCS, D_ALL, 0, 12, NULL},
2600 
2601 	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2602 		R_VCS, D_ALL, 0, 12, NULL},
2603 
2604 	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2605 		R_VCS, D_ALL, 0, 12, NULL},
2606 
2607 	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2608 		R_VCS, D_ALL, 0, 12, NULL},
2609 
2610 	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2611 		R_VCS, D_ALL, 0, 12, NULL},
2612 	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2613 		R_VCS, D_ALL, 0, 12, NULL},
2614 
2615 	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2616 		R_VCS, D_ALL, 0, 12, NULL},
2617 
2618 	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2619 		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2620 
2621 	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2622 		R_VCS, D_ALL, 0, 12, NULL},
2623 
2624 	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2625 		R_VCS, D_ALL, 0, 12, NULL},
2626 
2627 	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2628 		R_VCS, D_ALL, 0, 12, NULL},
2629 
2630 	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2631 		R_VCS, D_ALL, 0, 12, NULL},
2632 
2633 	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2634 		R_VCS, D_ALL, 0, 12, NULL},
2635 
2636 	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2637 		R_VCS, D_ALL, 0, 12, NULL},
2638 
2639 	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2640 		R_VCS, D_ALL, 0, 12, NULL},
2641 
2642 	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2643 		R_VCS, D_ALL, 0, 12, NULL},
2644 
2645 	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2646 		R_VCS, D_ALL, 0, 12, NULL},
2647 
2648 	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2649 		R_VCS, D_ALL, 0, 12, NULL},
2650 
2651 	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2652 		R_VCS, D_ALL, 0, 12, NULL},
2653 
2654 	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2655 		0, 16, NULL},
2656 
2657 	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2658 
2659 	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2660 
2661 	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2662 		R_VCS, D_ALL, 0, 12, NULL},
2663 
2664 	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2665 		R_VCS, D_ALL, 0, 12, NULL},
2666 
2667 	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2668 		R_VCS, D_ALL, 0, 12, NULL},
2669 
2670 	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2671 
2672 	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2673 		0, 12, NULL},
2674 
2675 	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2676 		0, 12, NULL},
2677 };
2678 
2679 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2680 {
2681 	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2682 }
2683 
2684 /* call the cmd handler, and advance ip */
2685 static int cmd_parser_exec(struct parser_exec_state *s)
2686 {
2687 	struct intel_vgpu *vgpu = s->vgpu;
2688 	const struct cmd_info *info;
2689 	u32 cmd;
2690 	int ret = 0;
2691 
2692 	cmd = cmd_val(s, 0);
2693 
2694 	/* fastpath for MI_NOOP */
2695 	if (cmd == MI_NOOP)
2696 		info = &cmd_info[mi_noop_index];
2697 	else
2698 		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2699 
2700 	if (info == NULL) {
2701 		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2702 			     cmd, get_opcode(cmd, s->engine),
2703 			     repr_addr_type(s->buf_addr_type),
2704 			     s->engine->name, s->workload);
2705 		return -EBADRQC;
2706 	}
2707 
2708 	s->info = info;
2709 
2710 	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2711 			  cmd_length(s), s->buf_type, s->buf_addr_type,
2712 			  s->workload, info->name);
2713 
2714 	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2715 		ret = gvt_check_valid_cmd_length(cmd_length(s),
2716 						 info->valid_len);
2717 		if (ret)
2718 			return ret;
2719 	}
2720 
2721 	if (info->handler) {
2722 		ret = info->handler(s);
2723 		if (ret < 0) {
2724 			gvt_vgpu_err("%s handler error\n", info->name);
2725 			return ret;
2726 		}
2727 	}
2728 
2729 	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2730 		ret = cmd_advance_default(s);
2731 		if (ret) {
2732 			gvt_vgpu_err("%s IP advance error\n", info->name);
2733 			return ret;
2734 		}
2735 	}
2736 	return 0;
2737 }
2738 
2739 static inline bool gma_out_of_range(unsigned long gma,
2740 		unsigned long gma_head, unsigned int gma_tail)
2741 {
2742 	if (gma_tail >= gma_head)
2743 		return (gma < gma_head) || (gma > gma_tail);
2744 	else
2745 		return (gma > gma_tail) && (gma < gma_head);
2746 }
2747 
2748 /* Keep the consistent return type, e.g EBADRQC for unknown
2749  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2750  * works as the input of VM healthy status.
2751  */
2752 static int command_scan(struct parser_exec_state *s,
2753 		unsigned long rb_head, unsigned long rb_tail,
2754 		unsigned long rb_start, unsigned long rb_len)
2755 {
2756 
2757 	unsigned long gma_head, gma_tail, gma_bottom;
2758 	int ret = 0;
2759 	struct intel_vgpu *vgpu = s->vgpu;
2760 
2761 	gma_head = rb_start + rb_head;
2762 	gma_tail = rb_start + rb_tail;
2763 	gma_bottom = rb_start +  rb_len;
2764 
2765 	while (s->ip_gma != gma_tail) {
2766 		if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2767 			if (!(s->ip_gma >= rb_start) ||
2768 				!(s->ip_gma < gma_bottom)) {
2769 				gvt_vgpu_err("ip_gma %lx out of ring scope."
2770 					"(base:0x%lx, bottom: 0x%lx)\n",
2771 					s->ip_gma, rb_start,
2772 					gma_bottom);
2773 				parser_exec_state_dump(s);
2774 				return -EFAULT;
2775 			}
2776 			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2777 				gvt_vgpu_err("ip_gma %lx out of range."
2778 					"base 0x%lx head 0x%lx tail 0x%lx\n",
2779 					s->ip_gma, rb_start,
2780 					rb_head, rb_tail);
2781 				parser_exec_state_dump(s);
2782 				break;
2783 			}
2784 		}
2785 		ret = cmd_parser_exec(s);
2786 		if (ret) {
2787 			gvt_vgpu_err("cmd parser error\n");
2788 			parser_exec_state_dump(s);
2789 			break;
2790 		}
2791 	}
2792 
2793 	return ret;
2794 }
2795 
2796 static int scan_workload(struct intel_vgpu_workload *workload)
2797 {
2798 	unsigned long gma_head, gma_tail, gma_bottom;
2799 	struct parser_exec_state s;
2800 	int ret = 0;
2801 
2802 	/* ring base is page aligned */
2803 	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2804 		return -EINVAL;
2805 
2806 	gma_head = workload->rb_start + workload->rb_head;
2807 	gma_tail = workload->rb_start + workload->rb_tail;
2808 	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2809 
2810 	s.buf_type = RING_BUFFER_INSTRUCTION;
2811 	s.buf_addr_type = GTT_BUFFER;
2812 	s.vgpu = workload->vgpu;
2813 	s.engine = workload->engine;
2814 	s.ring_start = workload->rb_start;
2815 	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2816 	s.ring_head = gma_head;
2817 	s.ring_tail = gma_tail;
2818 	s.rb_va = workload->shadow_ring_buffer_va;
2819 	s.workload = workload;
2820 	s.is_ctx_wa = false;
2821 
2822 	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2823 		return 0;
2824 
2825 	ret = ip_gma_set(&s, gma_head);
2826 	if (ret)
2827 		goto out;
2828 
2829 	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2830 		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2831 
2832 out:
2833 	return ret;
2834 }
2835 
2836 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2837 {
2838 
2839 	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2840 	struct parser_exec_state s;
2841 	int ret = 0;
2842 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2843 				struct intel_vgpu_workload,
2844 				wa_ctx);
2845 
2846 	/* ring base is page aligned */
2847 	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2848 					I915_GTT_PAGE_SIZE)))
2849 		return -EINVAL;
2850 
2851 	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2852 	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2853 			PAGE_SIZE);
2854 	gma_head = wa_ctx->indirect_ctx.guest_gma;
2855 	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2856 	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2857 
2858 	s.buf_type = RING_BUFFER_INSTRUCTION;
2859 	s.buf_addr_type = GTT_BUFFER;
2860 	s.vgpu = workload->vgpu;
2861 	s.engine = workload->engine;
2862 	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2863 	s.ring_size = ring_size;
2864 	s.ring_head = gma_head;
2865 	s.ring_tail = gma_tail;
2866 	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2867 	s.workload = workload;
2868 	s.is_ctx_wa = true;
2869 
2870 	ret = ip_gma_set(&s, gma_head);
2871 	if (ret)
2872 		goto out;
2873 
2874 	ret = command_scan(&s, 0, ring_tail,
2875 		wa_ctx->indirect_ctx.guest_gma, ring_size);
2876 out:
2877 	return ret;
2878 }
2879 
2880 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2881 {
2882 	struct intel_vgpu *vgpu = workload->vgpu;
2883 	struct intel_vgpu_submission *s = &vgpu->submission;
2884 	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2885 	void *shadow_ring_buffer_va;
2886 	int ret;
2887 
2888 	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2889 
2890 	/* calculate workload ring buffer size */
2891 	workload->rb_len = (workload->rb_tail + guest_rb_size -
2892 			workload->rb_head) % guest_rb_size;
2893 
2894 	gma_head = workload->rb_start + workload->rb_head;
2895 	gma_tail = workload->rb_start + workload->rb_tail;
2896 	gma_top = workload->rb_start + guest_rb_size;
2897 
2898 	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2899 		void *p;
2900 
2901 		/* realloc the new ring buffer if needed */
2902 		p = krealloc(s->ring_scan_buffer[workload->engine->id],
2903 			     workload->rb_len, GFP_KERNEL);
2904 		if (!p) {
2905 			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2906 			return -ENOMEM;
2907 		}
2908 		s->ring_scan_buffer[workload->engine->id] = p;
2909 		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2910 	}
2911 
2912 	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2913 
2914 	/* get shadow ring buffer va */
2915 	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2916 
2917 	/* head > tail --> copy head <-> top */
2918 	if (gma_head > gma_tail) {
2919 		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2920 				      gma_head, gma_top, shadow_ring_buffer_va);
2921 		if (ret < 0) {
2922 			gvt_vgpu_err("fail to copy guest ring buffer\n");
2923 			return ret;
2924 		}
2925 		shadow_ring_buffer_va += ret;
2926 		gma_head = workload->rb_start;
2927 	}
2928 
2929 	/* copy head or start <-> tail */
2930 	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2931 				shadow_ring_buffer_va);
2932 	if (ret < 0) {
2933 		gvt_vgpu_err("fail to copy guest ring buffer\n");
2934 		return ret;
2935 	}
2936 	return 0;
2937 }
2938 
2939 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2940 {
2941 	int ret;
2942 	struct intel_vgpu *vgpu = workload->vgpu;
2943 
2944 	ret = shadow_workload_ring_buffer(workload);
2945 	if (ret) {
2946 		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2947 		return ret;
2948 	}
2949 
2950 	ret = scan_workload(workload);
2951 	if (ret) {
2952 		gvt_vgpu_err("scan workload error\n");
2953 		return ret;
2954 	}
2955 	return 0;
2956 }
2957 
2958 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2959 {
2960 	int ctx_size = wa_ctx->indirect_ctx.size;
2961 	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2962 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
2963 					struct intel_vgpu_workload,
2964 					wa_ctx);
2965 	struct intel_vgpu *vgpu = workload->vgpu;
2966 	struct drm_i915_gem_object *obj;
2967 	int ret = 0;
2968 	void *map;
2969 
2970 	obj = i915_gem_object_create_shmem(workload->engine->i915,
2971 					   roundup(ctx_size + CACHELINE_BYTES,
2972 						   PAGE_SIZE));
2973 	if (IS_ERR(obj))
2974 		return PTR_ERR(obj);
2975 
2976 	/* get the va of the shadow batch buffer */
2977 	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2978 	if (IS_ERR(map)) {
2979 		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2980 		ret = PTR_ERR(map);
2981 		goto put_obj;
2982 	}
2983 
2984 	i915_gem_object_lock(obj, NULL);
2985 	ret = i915_gem_object_set_to_cpu_domain(obj, false);
2986 	i915_gem_object_unlock(obj);
2987 	if (ret) {
2988 		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2989 		goto unmap_src;
2990 	}
2991 
2992 	ret = copy_gma_to_hva(workload->vgpu,
2993 				workload->vgpu->gtt.ggtt_mm,
2994 				guest_gma, guest_gma + ctx_size,
2995 				map);
2996 	if (ret < 0) {
2997 		gvt_vgpu_err("fail to copy guest indirect ctx\n");
2998 		goto unmap_src;
2999 	}
3000 
3001 	wa_ctx->indirect_ctx.obj = obj;
3002 	wa_ctx->indirect_ctx.shadow_va = map;
3003 	return 0;
3004 
3005 unmap_src:
3006 	i915_gem_object_unpin_map(obj);
3007 put_obj:
3008 	i915_gem_object_put(obj);
3009 	return ret;
3010 }
3011 
3012 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3013 {
3014 	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3015 	unsigned char *bb_start_sva;
3016 
3017 	if (!wa_ctx->per_ctx.valid)
3018 		return 0;
3019 
3020 	per_ctx_start[0] = 0x18800001;
3021 	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3022 
3023 	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3024 				wa_ctx->indirect_ctx.size;
3025 
3026 	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3027 
3028 	return 0;
3029 }
3030 
3031 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3032 {
3033 	int ret;
3034 	struct intel_vgpu_workload *workload = container_of(wa_ctx,
3035 					struct intel_vgpu_workload,
3036 					wa_ctx);
3037 	struct intel_vgpu *vgpu = workload->vgpu;
3038 
3039 	if (wa_ctx->indirect_ctx.size == 0)
3040 		return 0;
3041 
3042 	ret = shadow_indirect_ctx(wa_ctx);
3043 	if (ret) {
3044 		gvt_vgpu_err("fail to shadow indirect ctx\n");
3045 		return ret;
3046 	}
3047 
3048 	combine_wa_ctx(wa_ctx);
3049 
3050 	ret = scan_wa_ctx(wa_ctx);
3051 	if (ret) {
3052 		gvt_vgpu_err("scan wa ctx error\n");
3053 		return ret;
3054 	}
3055 
3056 	return 0;
3057 }
3058 
3059 static int init_cmd_table(struct intel_gvt *gvt)
3060 {
3061 	unsigned int gen_type = intel_gvt_get_device_type(gvt);
3062 	int i;
3063 
3064 	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3065 		struct cmd_entry *e;
3066 
3067 		if (!(cmd_info[i].devices & gen_type))
3068 			continue;
3069 
3070 		e = kzalloc(sizeof(*e), GFP_KERNEL);
3071 		if (!e)
3072 			return -ENOMEM;
3073 
3074 		e->info = &cmd_info[i];
3075 		if (cmd_info[i].opcode == OP_MI_NOOP)
3076 			mi_noop_index = i;
3077 
3078 		INIT_HLIST_NODE(&e->hlist);
3079 		add_cmd_entry(gvt, e);
3080 		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3081 			    e->info->name, e->info->opcode, e->info->flag,
3082 			    e->info->devices, e->info->rings);
3083 	}
3084 
3085 	return 0;
3086 }
3087 
3088 static void clean_cmd_table(struct intel_gvt *gvt)
3089 {
3090 	struct hlist_node *tmp;
3091 	struct cmd_entry *e;
3092 	int i;
3093 
3094 	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3095 		kfree(e);
3096 
3097 	hash_init(gvt->cmd_table);
3098 }
3099 
3100 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3101 {
3102 	clean_cmd_table(gvt);
3103 }
3104 
3105 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3106 {
3107 	int ret;
3108 
3109 	ret = init_cmd_table(gvt);
3110 	if (ret) {
3111 		intel_gvt_clean_cmd_parser(gvt);
3112 		return ret;
3113 	}
3114 	return 0;
3115 }
3116