1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "i915_reg.h" 41 #include "gt/intel_engine_regs.h" 42 #include "gt/intel_gpu_commands.h" 43 #include "gt/intel_gt_regs.h" 44 #include "gt/intel_lrc.h" 45 #include "gt/intel_ring.h" 46 #include "gt/intel_gt_requests.h" 47 #include "gt/shmem_utils.h" 48 #include "gvt.h" 49 #include "i915_pvinfo.h" 50 #include "trace.h" 51 52 #include "display/i9xx_plane_regs.h" 53 #include "display/intel_display.h" 54 #include "display/intel_sprite_regs.h" 55 #include "gem/i915_gem_context.h" 56 #include "gem/i915_gem_pm.h" 57 #include "gt/intel_context.h" 58 59 #define INVALID_OP (~0U) 60 61 #define OP_LEN_MI 9 62 #define OP_LEN_2D 10 63 #define OP_LEN_3D_MEDIA 16 64 #define OP_LEN_MFX_VC 16 65 #define OP_LEN_VEBOX 16 66 67 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 68 69 struct sub_op_bits { 70 int hi; 71 int low; 72 }; 73 struct decode_info { 74 const char *name; 75 int op_len; 76 int nr_sub_op; 77 const struct sub_op_bits *sub_op; 78 }; 79 80 #define MAX_CMD_BUDGET 0x7fffffff 81 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 82 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 83 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 84 85 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 86 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 87 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 88 89 /* Render Command Map */ 90 91 /* MI_* command Opcode (28:23) */ 92 #define OP_MI_NOOP 0x0 93 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 94 #define OP_MI_USER_INTERRUPT 0x2 95 #define OP_MI_WAIT_FOR_EVENT 0x3 96 #define OP_MI_FLUSH 0x4 97 #define OP_MI_ARB_CHECK 0x5 98 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 99 #define OP_MI_REPORT_HEAD 0x7 100 #define OP_MI_ARB_ON_OFF 0x8 101 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 102 #define OP_MI_BATCH_BUFFER_END 0xA 103 #define OP_MI_SUSPEND_FLUSH 0xB 104 #define OP_MI_PREDICATE 0xC /* IVB+ */ 105 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 106 #define OP_MI_SET_APPID 0xE /* IVB+ */ 107 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 108 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 109 #define OP_MI_DISPLAY_FLIP 0x14 110 #define OP_MI_SEMAPHORE_MBOX 0x16 111 #define OP_MI_SET_CONTEXT 0x18 112 #define OP_MI_MATH 0x1A 113 #define OP_MI_URB_CLEAR 0x19 114 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 115 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 116 117 #define OP_MI_STORE_DATA_IMM 0x20 118 #define OP_MI_STORE_DATA_INDEX 0x21 119 #define OP_MI_LOAD_REGISTER_IMM 0x22 120 #define OP_MI_UPDATE_GTT 0x23 121 #define OP_MI_STORE_REGISTER_MEM 0x24 122 #define OP_MI_FLUSH_DW 0x26 123 #define OP_MI_CLFLUSH 0x27 124 #define OP_MI_REPORT_PERF_COUNT 0x28 125 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 126 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 127 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 128 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 129 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 130 #define OP_MI_2E 0x2E /* BDW+ */ 131 #define OP_MI_2F 0x2F /* BDW+ */ 132 #define OP_MI_BATCH_BUFFER_START 0x31 133 134 /* Bit definition for dword 0 */ 135 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 136 137 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 138 139 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 140 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 141 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 142 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 143 144 /* 2D command: Opcode (28:22) */ 145 #define OP_2D(x) ((2<<7) | x) 146 147 #define OP_XY_SETUP_BLT OP_2D(0x1) 148 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 149 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 150 #define OP_XY_PIXEL_BLT OP_2D(0x24) 151 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 152 #define OP_XY_TEXT_BLT OP_2D(0x26) 153 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 154 #define OP_XY_COLOR_BLT OP_2D(0x50) 155 #define OP_XY_PAT_BLT OP_2D(0x51) 156 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 157 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 158 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 159 #define OP_XY_FULL_BLT OP_2D(0x55) 160 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 161 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 162 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 163 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 164 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 165 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 166 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 167 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 168 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 169 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 170 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 171 172 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 173 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 174 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 175 176 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 177 178 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 179 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 180 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 181 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 182 183 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 184 185 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 186 187 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 188 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 189 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 190 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 191 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 192 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 193 194 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 195 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 196 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 197 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 198 199 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 200 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 201 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 202 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 203 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 204 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 205 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 206 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 207 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 208 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 209 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 210 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 211 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 212 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 213 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 214 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 215 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 216 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 217 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 218 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 219 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 220 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 221 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 222 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 223 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 224 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 225 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 226 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 227 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 228 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 229 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 230 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 234 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 235 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 239 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 240 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 241 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 242 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 243 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 244 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 245 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 246 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 247 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 248 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 249 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 250 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 251 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 252 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 253 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 254 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 255 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 256 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 257 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 258 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 259 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 260 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 261 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 262 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 263 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 264 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 265 266 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 267 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 268 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 269 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 270 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 271 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 272 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 273 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 274 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 275 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 276 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 277 278 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 279 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 280 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 281 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 282 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 283 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 284 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 285 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 286 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 287 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 288 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 289 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 290 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 291 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 292 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 296 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 297 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 298 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 299 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 300 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 301 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 302 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 303 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 304 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 305 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 306 307 /* VCCP Command Parser */ 308 309 /* 310 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 311 * git://anongit.freedesktop.org/vaapi/intel-driver 312 * src/i965_defines.h 313 * 314 */ 315 316 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 317 (3 << 13 | \ 318 (pipeline) << 11 | \ 319 (op) << 8 | \ 320 (sub_opa) << 5 | \ 321 (sub_opb)) 322 323 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 324 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 325 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 326 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 327 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 328 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 329 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 330 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 331 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 332 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 333 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 334 335 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 336 337 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 338 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 339 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 340 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 341 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 342 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 343 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 344 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 345 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 346 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 347 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 348 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 349 350 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 351 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 352 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 353 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 354 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 355 356 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 357 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 358 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 359 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 360 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 361 362 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 363 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 364 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 365 366 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 367 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 368 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 369 370 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 371 (3 << 13 | \ 372 (pipeline) << 11 | \ 373 (op) << 8 | \ 374 (sub_opa) << 5 | \ 375 (sub_opb)) 376 377 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 378 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 379 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 380 381 struct parser_exec_state; 382 383 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 384 385 #define GVT_CMD_HASH_BITS 7 386 387 /* which DWords need address fix */ 388 #define ADDR_FIX_1(x1) (1 << (x1)) 389 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 390 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 391 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 392 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 393 394 #define DWORD_FIELD(dword, end, start) \ 395 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 396 397 #define OP_LENGTH_BIAS 2 398 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 399 400 static int gvt_check_valid_cmd_length(int len, int valid_len) 401 { 402 if (valid_len != len) { 403 gvt_err("len is not valid: len=%u valid_len=%u\n", 404 len, valid_len); 405 return -EFAULT; 406 } 407 return 0; 408 } 409 410 struct cmd_info { 411 const char *name; 412 u32 opcode; 413 414 #define F_LEN_MASK 3U 415 #define F_LEN_CONST 1U 416 #define F_LEN_VAR 0U 417 /* value is const although LEN maybe variable */ 418 #define F_LEN_VAR_FIXED (1<<1) 419 420 /* 421 * command has its own ip advance logic 422 * e.g. MI_BATCH_START, MI_BATCH_END 423 */ 424 #define F_IP_ADVANCE_CUSTOM (1<<2) 425 u32 flag; 426 427 #define R_RCS BIT(RCS0) 428 #define R_VCS1 BIT(VCS0) 429 #define R_VCS2 BIT(VCS1) 430 #define R_VCS (R_VCS1 | R_VCS2) 431 #define R_BCS BIT(BCS0) 432 #define R_VECS BIT(VECS0) 433 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 434 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 435 intel_engine_mask_t rings; 436 437 /* devices that support this cmd: SNB/IVB/HSW/... */ 438 u16 devices; 439 440 /* which DWords are address that need fix up. 441 * bit 0 means a 32-bit non address operand in command 442 * bit 1 means address operand, which could be 32-bit 443 * or 64-bit depending on different architectures.( 444 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 445 * No matter the address length, each address only takes 446 * one bit in the bitmap. 447 */ 448 u16 addr_bitmap; 449 450 /* flag == F_LEN_CONST : command length 451 * flag == F_LEN_VAR : length bias bits 452 * Note: length is in DWord 453 */ 454 u32 len; 455 456 parser_cmd_handler handler; 457 458 /* valid length in DWord */ 459 u32 valid_len; 460 }; 461 462 struct cmd_entry { 463 struct hlist_node hlist; 464 const struct cmd_info *info; 465 }; 466 467 enum { 468 RING_BUFFER_INSTRUCTION, 469 BATCH_BUFFER_INSTRUCTION, 470 BATCH_BUFFER_2ND_LEVEL, 471 RING_BUFFER_CTX, 472 }; 473 474 enum { 475 GTT_BUFFER, 476 PPGTT_BUFFER 477 }; 478 479 struct parser_exec_state { 480 struct intel_vgpu *vgpu; 481 const struct intel_engine_cs *engine; 482 483 int buf_type; 484 485 /* batch buffer address type */ 486 int buf_addr_type; 487 488 /* graphics memory address of ring buffer start */ 489 unsigned long ring_start; 490 unsigned long ring_size; 491 unsigned long ring_head; 492 unsigned long ring_tail; 493 494 /* instruction graphics memory address */ 495 unsigned long ip_gma; 496 497 /* mapped va of the instr_gma */ 498 void *ip_va; 499 void *rb_va; 500 501 void *ret_bb_va; 502 /* next instruction when return from batch buffer to ring buffer */ 503 unsigned long ret_ip_gma_ring; 504 505 /* next instruction when return from 2nd batch buffer to batch buffer */ 506 unsigned long ret_ip_gma_bb; 507 508 /* batch buffer address type (GTT or PPGTT) 509 * used when ret from 2nd level batch buffer 510 */ 511 int saved_buf_addr_type; 512 bool is_ctx_wa; 513 bool is_init_ctx; 514 515 const struct cmd_info *info; 516 517 struct intel_vgpu_workload *workload; 518 }; 519 520 #define gmadr_dw_number(s) \ 521 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 522 523 static unsigned long bypass_scan_mask = 0; 524 525 /* ring ALL, type = 0 */ 526 static const struct sub_op_bits sub_op_mi[] = { 527 {31, 29}, 528 {28, 23}, 529 }; 530 531 static const struct decode_info decode_info_mi = { 532 "MI", 533 OP_LEN_MI, 534 ARRAY_SIZE(sub_op_mi), 535 sub_op_mi, 536 }; 537 538 /* ring RCS, command type 2 */ 539 static const struct sub_op_bits sub_op_2d[] = { 540 {31, 29}, 541 {28, 22}, 542 }; 543 544 static const struct decode_info decode_info_2d = { 545 "2D", 546 OP_LEN_2D, 547 ARRAY_SIZE(sub_op_2d), 548 sub_op_2d, 549 }; 550 551 /* ring RCS, command type 3 */ 552 static const struct sub_op_bits sub_op_3d_media[] = { 553 {31, 29}, 554 {28, 27}, 555 {26, 24}, 556 {23, 16}, 557 }; 558 559 static const struct decode_info decode_info_3d_media = { 560 "3D_Media", 561 OP_LEN_3D_MEDIA, 562 ARRAY_SIZE(sub_op_3d_media), 563 sub_op_3d_media, 564 }; 565 566 /* ring VCS, command type 3 */ 567 static const struct sub_op_bits sub_op_mfx_vc[] = { 568 {31, 29}, 569 {28, 27}, 570 {26, 24}, 571 {23, 21}, 572 {20, 16}, 573 }; 574 575 static const struct decode_info decode_info_mfx_vc = { 576 "MFX_VC", 577 OP_LEN_MFX_VC, 578 ARRAY_SIZE(sub_op_mfx_vc), 579 sub_op_mfx_vc, 580 }; 581 582 /* ring VECS, command type 3 */ 583 static const struct sub_op_bits sub_op_vebox[] = { 584 {31, 29}, 585 {28, 27}, 586 {26, 24}, 587 {23, 21}, 588 {20, 16}, 589 }; 590 591 static const struct decode_info decode_info_vebox = { 592 "VEBOX", 593 OP_LEN_VEBOX, 594 ARRAY_SIZE(sub_op_vebox), 595 sub_op_vebox, 596 }; 597 598 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 599 [RCS0] = { 600 &decode_info_mi, 601 NULL, 602 NULL, 603 &decode_info_3d_media, 604 NULL, 605 NULL, 606 NULL, 607 NULL, 608 }, 609 610 [VCS0] = { 611 &decode_info_mi, 612 NULL, 613 NULL, 614 &decode_info_mfx_vc, 615 NULL, 616 NULL, 617 NULL, 618 NULL, 619 }, 620 621 [BCS0] = { 622 &decode_info_mi, 623 NULL, 624 &decode_info_2d, 625 NULL, 626 NULL, 627 NULL, 628 NULL, 629 NULL, 630 }, 631 632 [VECS0] = { 633 &decode_info_mi, 634 NULL, 635 NULL, 636 &decode_info_vebox, 637 NULL, 638 NULL, 639 NULL, 640 NULL, 641 }, 642 643 [VCS1] = { 644 &decode_info_mi, 645 NULL, 646 NULL, 647 &decode_info_mfx_vc, 648 NULL, 649 NULL, 650 NULL, 651 NULL, 652 }, 653 }; 654 655 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 656 { 657 const struct decode_info *d_info; 658 659 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 660 if (d_info == NULL) 661 return INVALID_OP; 662 663 return cmd >> (32 - d_info->op_len); 664 } 665 666 static inline const struct cmd_info * 667 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 668 const struct intel_engine_cs *engine) 669 { 670 struct cmd_entry *e; 671 672 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 673 if (opcode == e->info->opcode && 674 e->info->rings & engine->mask) 675 return e->info; 676 } 677 return NULL; 678 } 679 680 static inline const struct cmd_info * 681 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 682 const struct intel_engine_cs *engine) 683 { 684 u32 opcode; 685 686 opcode = get_opcode(cmd, engine); 687 if (opcode == INVALID_OP) 688 return NULL; 689 690 return find_cmd_entry(gvt, opcode, engine); 691 } 692 693 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 694 { 695 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 696 } 697 698 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 699 { 700 const struct decode_info *d_info; 701 int i; 702 703 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 704 if (d_info == NULL) 705 return; 706 707 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 708 cmd >> (32 - d_info->op_len), d_info->name); 709 710 for (i = 0; i < d_info->nr_sub_op; i++) 711 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 712 d_info->sub_op[i].low)); 713 714 pr_err("\n"); 715 } 716 717 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 718 { 719 return s->ip_va + (index << 2); 720 } 721 722 static inline u32 cmd_val(struct parser_exec_state *s, int index) 723 { 724 return *cmd_ptr(s, index); 725 } 726 727 static inline bool is_init_ctx(struct parser_exec_state *s) 728 { 729 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 730 } 731 732 static void parser_exec_state_dump(struct parser_exec_state *s) 733 { 734 int cnt = 0; 735 int i; 736 737 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 738 " ring_head(%08lx) ring_tail(%08lx)\n", 739 s->vgpu->id, s->engine->name, 740 s->ring_start, s->ring_start + s->ring_size, 741 s->ring_head, s->ring_tail); 742 743 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 744 s->buf_type == RING_BUFFER_INSTRUCTION ? 745 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 746 "CTX_BUFFER" : "BATCH_BUFFER"), 747 s->buf_addr_type == GTT_BUFFER ? 748 "GTT" : "PPGTT", s->ip_gma); 749 750 if (s->ip_va == NULL) { 751 gvt_dbg_cmd(" ip_va(NULL)"); 752 return; 753 } 754 755 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 756 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 757 cmd_val(s, 2), cmd_val(s, 3)); 758 759 print_opcode(cmd_val(s, 0), s->engine); 760 761 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 762 763 while (cnt < 1024) { 764 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 765 for (i = 0; i < 8; i++) 766 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 767 gvt_dbg_cmd("\n"); 768 769 s->ip_va += 8 * sizeof(u32); 770 cnt += 8; 771 } 772 } 773 774 static inline void update_ip_va(struct parser_exec_state *s) 775 { 776 unsigned long len = 0; 777 778 if (WARN_ON(s->ring_head == s->ring_tail)) 779 return; 780 781 if (s->buf_type == RING_BUFFER_INSTRUCTION || 782 s->buf_type == RING_BUFFER_CTX) { 783 unsigned long ring_top = s->ring_start + s->ring_size; 784 785 if (s->ring_head > s->ring_tail) { 786 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 787 len = (s->ip_gma - s->ring_head); 788 else if (s->ip_gma >= s->ring_start && 789 s->ip_gma <= s->ring_tail) 790 len = (ring_top - s->ring_head) + 791 (s->ip_gma - s->ring_start); 792 } else 793 len = (s->ip_gma - s->ring_head); 794 795 s->ip_va = s->rb_va + len; 796 } else {/* shadow batch buffer */ 797 s->ip_va = s->ret_bb_va; 798 } 799 } 800 801 static inline int ip_gma_set(struct parser_exec_state *s, 802 unsigned long ip_gma) 803 { 804 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 805 806 s->ip_gma = ip_gma; 807 update_ip_va(s); 808 return 0; 809 } 810 811 static inline int ip_gma_advance(struct parser_exec_state *s, 812 unsigned int dw_len) 813 { 814 s->ip_gma += (dw_len << 2); 815 816 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 817 if (s->ip_gma >= s->ring_start + s->ring_size) 818 s->ip_gma -= s->ring_size; 819 update_ip_va(s); 820 } else { 821 s->ip_va += (dw_len << 2); 822 } 823 824 return 0; 825 } 826 827 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 828 { 829 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 830 return info->len; 831 else 832 return (cmd & ((1U << info->len) - 1)) + 2; 833 return 0; 834 } 835 836 static inline int cmd_length(struct parser_exec_state *s) 837 { 838 return get_cmd_length(s->info, cmd_val(s, 0)); 839 } 840 841 /* do not remove this, some platform may need clflush here */ 842 #define patch_value(s, addr, val) do { \ 843 *addr = val; \ 844 } while (0) 845 846 static inline bool is_mocs_mmio(unsigned int offset) 847 { 848 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 849 ((offset >= 0xb020) && (offset <= 0xb0a0)); 850 } 851 852 static int is_cmd_update_pdps(unsigned int offset, 853 struct parser_exec_state *s) 854 { 855 u32 base = s->workload->engine->mmio_base; 856 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 857 } 858 859 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 860 unsigned int offset, unsigned int index) 861 { 862 struct intel_vgpu *vgpu = s->vgpu; 863 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 864 struct intel_vgpu_mm *mm; 865 u64 pdps[GEN8_3LVL_PDPES]; 866 867 if (shadow_mm->ppgtt_mm.root_entry_type == 868 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 869 pdps[0] = (u64)cmd_val(s, 2) << 32; 870 pdps[0] |= cmd_val(s, 4); 871 872 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 873 if (!mm) { 874 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 875 return -EINVAL; 876 } 877 intel_vgpu_mm_get(mm); 878 list_add_tail(&mm->ppgtt_mm.link, 879 &s->workload->lri_shadow_mm); 880 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 881 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 882 } else { 883 /* Currently all guests use PML4 table and now can't 884 * have a guest with 3-level table but uses LRI for 885 * PPGTT update. So this is simply un-testable. */ 886 GEM_BUG_ON(1); 887 gvt_vgpu_err("invalid shared shadow vm type\n"); 888 return -EINVAL; 889 } 890 return 0; 891 } 892 893 static int cmd_reg_handler(struct parser_exec_state *s, 894 unsigned int offset, unsigned int index, char *cmd) 895 { 896 struct intel_vgpu *vgpu = s->vgpu; 897 struct intel_gvt *gvt = vgpu->gvt; 898 u32 ctx_sr_ctl; 899 u32 *vreg, vreg_old; 900 901 if (offset + 4 > gvt->device_info.mmio_size) { 902 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 903 cmd, offset); 904 return -EFAULT; 905 } 906 907 if (is_init_ctx(s)) { 908 struct intel_gvt_mmio_info *mmio_info; 909 910 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 911 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 912 if (mmio_info && mmio_info->write) 913 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 914 return 0; 915 } 916 917 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 918 gvt_vgpu_err("%s access to non-render register (%x)\n", 919 cmd, offset); 920 return -EBADRQC; 921 } 922 923 if (!strncmp(cmd, "srm", 3) || 924 !strncmp(cmd, "lrm", 3)) { 925 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 926 offset == 0x21f0 || 927 (IS_BROADWELL(gvt->gt->i915) && 928 offset == i915_mmio_reg_offset(INSTPM))) 929 return 0; 930 else { 931 gvt_vgpu_err("%s access to register (%x)\n", 932 cmd, offset); 933 return -EPERM; 934 } 935 } 936 937 if (!strncmp(cmd, "lrr-src", 7) || 938 !strncmp(cmd, "lrr-dst", 7)) { 939 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 940 return 0; 941 else { 942 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 943 return -EPERM; 944 } 945 } 946 947 if (!strncmp(cmd, "pipe_ctrl", 9)) { 948 /* TODO: add LRI POST logic here */ 949 return 0; 950 } 951 952 if (strncmp(cmd, "lri", 3)) 953 return -EPERM; 954 955 /* below are all lri handlers */ 956 vreg = &vgpu_vreg(s->vgpu, offset); 957 958 if (is_cmd_update_pdps(offset, s) && 959 cmd_pdp_mmio_update_handler(s, offset, index)) 960 return -EINVAL; 961 962 if (offset == i915_mmio_reg_offset(DERRMR) || 963 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 964 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 965 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 966 } 967 968 if (is_mocs_mmio(offset)) 969 *vreg = cmd_val(s, index + 1); 970 971 vreg_old = *vreg; 972 973 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 974 u32 cmdval_new, cmdval; 975 struct intel_gvt_mmio_info *mmio_info; 976 977 cmdval = cmd_val(s, index + 1); 978 979 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 980 if (!mmio_info) { 981 cmdval_new = cmdval; 982 } else { 983 u64 ro_mask = mmio_info->ro_mask; 984 int ret; 985 986 if (likely(!ro_mask)) 987 ret = mmio_info->write(s->vgpu, offset, 988 &cmdval, 4); 989 else { 990 gvt_vgpu_err("try to write RO reg %x\n", 991 offset); 992 ret = -EBADRQC; 993 } 994 if (ret) 995 return ret; 996 cmdval_new = *vreg; 997 } 998 if (cmdval_new != cmdval) 999 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 1000 } 1001 1002 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 1003 *vreg = vreg_old; 1004 1005 /* TODO 1006 * In order to let workload with inhibit context to generate 1007 * correct image data into memory, vregs values will be loaded to 1008 * hw via LRIs in the workload with inhibit context. But as 1009 * indirect context is loaded prior to LRIs in workload, we don't 1010 * want reg values specified in indirect context overwritten by 1011 * LRIs in workloads. So, when scanning an indirect context, we 1012 * update reg values in it into vregs, so LRIs in workload with 1013 * inhibit context will restore with correct values 1014 */ 1015 if (GRAPHICS_VER(s->engine->i915) == 9 && 1016 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1017 !strncmp(cmd, "lri", 3)) { 1018 intel_gvt_read_gpa(s->vgpu, 1019 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1020 /* check inhibit context */ 1021 if (ctx_sr_ctl & 1) { 1022 u32 data = cmd_val(s, index + 1); 1023 1024 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1025 intel_vgpu_mask_mmio_write(vgpu, 1026 offset, &data, 4); 1027 else 1028 vgpu_vreg(vgpu, offset) = data; 1029 } 1030 } 1031 1032 return 0; 1033 } 1034 1035 #define cmd_reg(s, i) \ 1036 (cmd_val(s, i) & GENMASK(22, 2)) 1037 1038 #define cmd_reg_inhibit(s, i) \ 1039 (cmd_val(s, i) & GENMASK(22, 18)) 1040 1041 #define cmd_gma(s, i) \ 1042 (cmd_val(s, i) & GENMASK(31, 2)) 1043 1044 #define cmd_gma_hi(s, i) \ 1045 (cmd_val(s, i) & GENMASK(15, 0)) 1046 1047 static int cmd_handler_lri(struct parser_exec_state *s) 1048 { 1049 int i, ret = 0; 1050 int cmd_len = cmd_length(s); 1051 1052 for (i = 1; i < cmd_len; i += 2) { 1053 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1054 if (s->engine->id == BCS0 && 1055 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1056 ret |= 0; 1057 else 1058 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1059 } 1060 if (ret) 1061 break; 1062 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1063 if (ret) 1064 break; 1065 } 1066 return ret; 1067 } 1068 1069 static int cmd_handler_lrr(struct parser_exec_state *s) 1070 { 1071 int i, ret = 0; 1072 int cmd_len = cmd_length(s); 1073 1074 for (i = 1; i < cmd_len; i += 2) { 1075 if (IS_BROADWELL(s->engine->i915)) 1076 ret |= ((cmd_reg_inhibit(s, i) || 1077 (cmd_reg_inhibit(s, i + 1)))) ? 1078 -EBADRQC : 0; 1079 if (ret) 1080 break; 1081 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1082 if (ret) 1083 break; 1084 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1085 if (ret) 1086 break; 1087 } 1088 return ret; 1089 } 1090 1091 static inline int cmd_address_audit(struct parser_exec_state *s, 1092 unsigned long guest_gma, int op_size, bool index_mode); 1093 1094 static int cmd_handler_lrm(struct parser_exec_state *s) 1095 { 1096 struct intel_gvt *gvt = s->vgpu->gvt; 1097 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1098 unsigned long gma; 1099 int i, ret = 0; 1100 int cmd_len = cmd_length(s); 1101 1102 for (i = 1; i < cmd_len;) { 1103 if (IS_BROADWELL(s->engine->i915)) 1104 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1105 if (ret) 1106 break; 1107 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1108 if (ret) 1109 break; 1110 if (cmd_val(s, 0) & (1 << 22)) { 1111 gma = cmd_gma(s, i + 1); 1112 if (gmadr_bytes == 8) 1113 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1114 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1115 if (ret) 1116 break; 1117 } 1118 i += gmadr_dw_number(s) + 1; 1119 } 1120 return ret; 1121 } 1122 1123 static int cmd_handler_srm(struct parser_exec_state *s) 1124 { 1125 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1126 unsigned long gma; 1127 int i, ret = 0; 1128 int cmd_len = cmd_length(s); 1129 1130 for (i = 1; i < cmd_len;) { 1131 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1132 if (ret) 1133 break; 1134 if (cmd_val(s, 0) & (1 << 22)) { 1135 gma = cmd_gma(s, i + 1); 1136 if (gmadr_bytes == 8) 1137 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1138 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1139 if (ret) 1140 break; 1141 } 1142 i += gmadr_dw_number(s) + 1; 1143 } 1144 return ret; 1145 } 1146 1147 struct cmd_interrupt_event { 1148 int pipe_control_notify; 1149 int mi_flush_dw; 1150 int mi_user_interrupt; 1151 }; 1152 1153 static const struct cmd_interrupt_event cmd_interrupt_events[] = { 1154 [RCS0] = { 1155 .pipe_control_notify = RCS_PIPE_CONTROL, 1156 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1157 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1158 }, 1159 [BCS0] = { 1160 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1161 .mi_flush_dw = BCS_MI_FLUSH_DW, 1162 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1163 }, 1164 [VCS0] = { 1165 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1166 .mi_flush_dw = VCS_MI_FLUSH_DW, 1167 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1168 }, 1169 [VCS1] = { 1170 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1171 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1172 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1173 }, 1174 [VECS0] = { 1175 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1176 .mi_flush_dw = VECS_MI_FLUSH_DW, 1177 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1178 }, 1179 }; 1180 1181 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1182 { 1183 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1184 unsigned long gma; 1185 bool index_mode = false; 1186 unsigned int post_sync; 1187 int ret = 0; 1188 u32 hws_pga, val; 1189 1190 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1191 1192 /* LRI post sync */ 1193 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1194 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1195 /* post sync */ 1196 else if (post_sync) { 1197 if (post_sync == 2) 1198 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1199 else if (post_sync == 3) 1200 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1201 else if (post_sync == 1) { 1202 /* check ggtt*/ 1203 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1204 gma = cmd_val(s, 2) & GENMASK(31, 3); 1205 if (gmadr_bytes == 8) 1206 gma |= (cmd_gma_hi(s, 3)) << 32; 1207 /* Store Data Index */ 1208 if (cmd_val(s, 1) & (1 << 21)) 1209 index_mode = true; 1210 ret |= cmd_address_audit(s, gma, sizeof(u64), 1211 index_mode); 1212 if (ret) 1213 return ret; 1214 if (index_mode) { 1215 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1216 gma = hws_pga + gma; 1217 patch_value(s, cmd_ptr(s, 2), gma); 1218 val = cmd_val(s, 1) & (~(1 << 21)); 1219 patch_value(s, cmd_ptr(s, 1), val); 1220 } 1221 } 1222 } 1223 } 1224 1225 if (ret) 1226 return ret; 1227 1228 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1229 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1230 s->workload->pending_events); 1231 return 0; 1232 } 1233 1234 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1235 { 1236 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1237 s->workload->pending_events); 1238 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1239 return 0; 1240 } 1241 1242 static int cmd_advance_default(struct parser_exec_state *s) 1243 { 1244 return ip_gma_advance(s, cmd_length(s)); 1245 } 1246 1247 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1248 { 1249 int ret; 1250 1251 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1252 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1253 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1254 s->buf_addr_type = s->saved_buf_addr_type; 1255 } else if (s->buf_type == RING_BUFFER_CTX) { 1256 ret = ip_gma_set(s, s->ring_tail); 1257 } else { 1258 s->buf_type = RING_BUFFER_INSTRUCTION; 1259 s->buf_addr_type = GTT_BUFFER; 1260 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1261 s->ret_ip_gma_ring -= s->ring_size; 1262 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1263 } 1264 return ret; 1265 } 1266 1267 struct mi_display_flip_command_info { 1268 int pipe; 1269 int plane; 1270 int event; 1271 i915_reg_t stride_reg; 1272 i915_reg_t ctrl_reg; 1273 i915_reg_t surf_reg; 1274 u64 stride_val; 1275 u64 tile_val; 1276 u64 surf_val; 1277 bool async_flip; 1278 }; 1279 1280 struct plane_code_mapping { 1281 int pipe; 1282 int plane; 1283 int event; 1284 }; 1285 1286 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1287 struct mi_display_flip_command_info *info) 1288 { 1289 struct drm_i915_private *dev_priv = s->engine->i915; 1290 struct plane_code_mapping gen8_plane_code[] = { 1291 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1292 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1293 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1294 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1295 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1296 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1297 }; 1298 u32 dword0, dword1, dword2; 1299 u32 v; 1300 1301 dword0 = cmd_val(s, 0); 1302 dword1 = cmd_val(s, 1); 1303 dword2 = cmd_val(s, 2); 1304 1305 v = (dword0 & GENMASK(21, 19)) >> 19; 1306 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1307 return -EBADRQC; 1308 1309 info->pipe = gen8_plane_code[v].pipe; 1310 info->plane = gen8_plane_code[v].plane; 1311 info->event = gen8_plane_code[v].event; 1312 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1313 info->tile_val = (dword1 & 0x1); 1314 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1315 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1316 1317 if (info->plane == PLANE_A) { 1318 info->ctrl_reg = DSPCNTR(dev_priv, info->pipe); 1319 info->stride_reg = DSPSTRIDE(dev_priv, info->pipe); 1320 info->surf_reg = DSPSURF(dev_priv, info->pipe); 1321 } else if (info->plane == PLANE_B) { 1322 info->ctrl_reg = SPRCTL(info->pipe); 1323 info->stride_reg = SPRSTRIDE(info->pipe); 1324 info->surf_reg = SPRSURF(info->pipe); 1325 } else { 1326 drm_WARN_ON(&dev_priv->drm, 1); 1327 return -EBADRQC; 1328 } 1329 return 0; 1330 } 1331 1332 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1333 struct mi_display_flip_command_info *info) 1334 { 1335 struct drm_i915_private *dev_priv = s->engine->i915; 1336 struct intel_vgpu *vgpu = s->vgpu; 1337 u32 dword0 = cmd_val(s, 0); 1338 u32 dword1 = cmd_val(s, 1); 1339 u32 dword2 = cmd_val(s, 2); 1340 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1341 1342 info->plane = PRIMARY_PLANE; 1343 1344 switch (plane) { 1345 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1346 info->pipe = PIPE_A; 1347 info->event = PRIMARY_A_FLIP_DONE; 1348 break; 1349 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1350 info->pipe = PIPE_B; 1351 info->event = PRIMARY_B_FLIP_DONE; 1352 break; 1353 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1354 info->pipe = PIPE_C; 1355 info->event = PRIMARY_C_FLIP_DONE; 1356 break; 1357 1358 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1359 info->pipe = PIPE_A; 1360 info->event = SPRITE_A_FLIP_DONE; 1361 info->plane = SPRITE_PLANE; 1362 break; 1363 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1364 info->pipe = PIPE_B; 1365 info->event = SPRITE_B_FLIP_DONE; 1366 info->plane = SPRITE_PLANE; 1367 break; 1368 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1369 info->pipe = PIPE_C; 1370 info->event = SPRITE_C_FLIP_DONE; 1371 info->plane = SPRITE_PLANE; 1372 break; 1373 1374 default: 1375 gvt_vgpu_err("unknown plane code %d\n", plane); 1376 return -EBADRQC; 1377 } 1378 1379 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1380 info->tile_val = (dword1 & GENMASK(2, 0)); 1381 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1382 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1383 1384 info->ctrl_reg = DSPCNTR(dev_priv, info->pipe); 1385 info->stride_reg = DSPSTRIDE(dev_priv, info->pipe); 1386 info->surf_reg = DSPSURF(dev_priv, info->pipe); 1387 1388 return 0; 1389 } 1390 1391 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1392 struct mi_display_flip_command_info *info) 1393 { 1394 u32 stride, tile; 1395 1396 if (!info->async_flip) 1397 return 0; 1398 1399 if (GRAPHICS_VER(s->engine->i915) >= 9) { 1400 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1401 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1402 GENMASK(12, 10)) >> 10; 1403 } else { 1404 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1405 GENMASK(15, 6)) >> 6; 1406 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1407 } 1408 1409 if (stride != info->stride_val) 1410 gvt_dbg_cmd("cannot change stride during async flip\n"); 1411 1412 if (tile != info->tile_val) 1413 gvt_dbg_cmd("cannot change tile during async flip\n"); 1414 1415 return 0; 1416 } 1417 1418 static int gen8_update_plane_mmio_from_mi_display_flip( 1419 struct parser_exec_state *s, 1420 struct mi_display_flip_command_info *info) 1421 { 1422 struct drm_i915_private *dev_priv = s->engine->i915; 1423 struct intel_vgpu *vgpu = s->vgpu; 1424 1425 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1426 info->surf_val << 12); 1427 if (GRAPHICS_VER(dev_priv) >= 9) { 1428 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1429 info->stride_val); 1430 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1431 info->tile_val << 10); 1432 } else { 1433 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1434 info->stride_val << 6); 1435 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1436 info->tile_val << 10); 1437 } 1438 1439 if (info->plane == PLANE_PRIMARY) 1440 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, info->pipe))++; 1441 1442 if (info->async_flip) 1443 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1444 else 1445 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1446 1447 return 0; 1448 } 1449 1450 static int decode_mi_display_flip(struct parser_exec_state *s, 1451 struct mi_display_flip_command_info *info) 1452 { 1453 if (IS_BROADWELL(s->engine->i915)) 1454 return gen8_decode_mi_display_flip(s, info); 1455 if (GRAPHICS_VER(s->engine->i915) >= 9) 1456 return skl_decode_mi_display_flip(s, info); 1457 1458 return -ENODEV; 1459 } 1460 1461 static int check_mi_display_flip(struct parser_exec_state *s, 1462 struct mi_display_flip_command_info *info) 1463 { 1464 return gen8_check_mi_display_flip(s, info); 1465 } 1466 1467 static int update_plane_mmio_from_mi_display_flip( 1468 struct parser_exec_state *s, 1469 struct mi_display_flip_command_info *info) 1470 { 1471 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1472 } 1473 1474 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1475 { 1476 struct mi_display_flip_command_info info; 1477 struct intel_vgpu *vgpu = s->vgpu; 1478 int ret; 1479 int i; 1480 int len = cmd_length(s); 1481 u32 valid_len = CMD_LEN(1); 1482 1483 /* Flip Type == Stereo 3D Flip */ 1484 if (DWORD_FIELD(2, 1, 0) == 2) 1485 valid_len++; 1486 ret = gvt_check_valid_cmd_length(cmd_length(s), 1487 valid_len); 1488 if (ret) 1489 return ret; 1490 1491 ret = decode_mi_display_flip(s, &info); 1492 if (ret) { 1493 gvt_vgpu_err("fail to decode MI display flip command\n"); 1494 return ret; 1495 } 1496 1497 ret = check_mi_display_flip(s, &info); 1498 if (ret) { 1499 gvt_vgpu_err("invalid MI display flip command\n"); 1500 return ret; 1501 } 1502 1503 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1504 if (ret) { 1505 gvt_vgpu_err("fail to update plane mmio\n"); 1506 return ret; 1507 } 1508 1509 for (i = 0; i < len; i++) 1510 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1511 return 0; 1512 } 1513 1514 static bool is_wait_for_flip_pending(u32 cmd) 1515 { 1516 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1517 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1518 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1519 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1520 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1521 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1522 } 1523 1524 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1525 { 1526 u32 cmd = cmd_val(s, 0); 1527 1528 if (!is_wait_for_flip_pending(cmd)) 1529 return 0; 1530 1531 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1532 return 0; 1533 } 1534 1535 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1536 { 1537 unsigned long addr; 1538 unsigned long gma_high, gma_low; 1539 struct intel_vgpu *vgpu = s->vgpu; 1540 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1541 1542 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1543 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1544 return INTEL_GVT_INVALID_ADDR; 1545 } 1546 1547 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1548 if (gmadr_bytes == 4) { 1549 addr = gma_low; 1550 } else { 1551 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1552 addr = (((unsigned long)gma_high) << 32) | gma_low; 1553 } 1554 return addr; 1555 } 1556 1557 static inline int cmd_address_audit(struct parser_exec_state *s, 1558 unsigned long guest_gma, int op_size, bool index_mode) 1559 { 1560 struct intel_vgpu *vgpu = s->vgpu; 1561 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1562 int i; 1563 int ret; 1564 1565 if (op_size > max_surface_size) { 1566 gvt_vgpu_err("command address audit fail name %s\n", 1567 s->info->name); 1568 return -EFAULT; 1569 } 1570 1571 if (index_mode) { 1572 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1573 ret = -EFAULT; 1574 goto err; 1575 } 1576 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1577 ret = -EFAULT; 1578 goto err; 1579 } 1580 1581 return 0; 1582 1583 err: 1584 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1585 s->info->name, guest_gma, op_size); 1586 1587 pr_err("cmd dump: "); 1588 for (i = 0; i < cmd_length(s); i++) { 1589 if (!(i % 4)) 1590 pr_err("\n%08x ", cmd_val(s, i)); 1591 else 1592 pr_err("%08x ", cmd_val(s, i)); 1593 } 1594 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1595 vgpu->id, 1596 vgpu_aperture_gmadr_base(vgpu), 1597 vgpu_aperture_gmadr_end(vgpu), 1598 vgpu_hidden_gmadr_base(vgpu), 1599 vgpu_hidden_gmadr_end(vgpu)); 1600 return ret; 1601 } 1602 1603 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1604 { 1605 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1606 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1607 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1608 unsigned long gma, gma_low, gma_high; 1609 u32 valid_len = CMD_LEN(2); 1610 int ret = 0; 1611 1612 /* check ppggt */ 1613 if (!(cmd_val(s, 0) & (1 << 22))) 1614 return 0; 1615 1616 /* check if QWORD */ 1617 if (DWORD_FIELD(0, 21, 21)) 1618 valid_len++; 1619 ret = gvt_check_valid_cmd_length(cmd_length(s), 1620 valid_len); 1621 if (ret) 1622 return ret; 1623 1624 gma = cmd_val(s, 2) & GENMASK(31, 2); 1625 1626 if (gmadr_bytes == 8) { 1627 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1628 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1629 gma = (gma_high << 32) | gma_low; 1630 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1631 } 1632 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1633 return ret; 1634 } 1635 1636 static inline int unexpected_cmd(struct parser_exec_state *s) 1637 { 1638 struct intel_vgpu *vgpu = s->vgpu; 1639 1640 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1641 1642 return -EBADRQC; 1643 } 1644 1645 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1646 { 1647 return unexpected_cmd(s); 1648 } 1649 1650 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1651 { 1652 return unexpected_cmd(s); 1653 } 1654 1655 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1656 { 1657 return unexpected_cmd(s); 1658 } 1659 1660 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1661 { 1662 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1663 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1664 sizeof(u32); 1665 unsigned long gma, gma_high; 1666 u32 valid_len = CMD_LEN(1); 1667 int ret = 0; 1668 1669 if (!(cmd_val(s, 0) & (1 << 22))) 1670 return ret; 1671 1672 /* check inline data */ 1673 if (cmd_val(s, 0) & BIT(18)) 1674 valid_len = CMD_LEN(9); 1675 ret = gvt_check_valid_cmd_length(cmd_length(s), 1676 valid_len); 1677 if (ret) 1678 return ret; 1679 1680 gma = cmd_val(s, 1) & GENMASK(31, 2); 1681 if (gmadr_bytes == 8) { 1682 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1683 gma = (gma_high << 32) | gma; 1684 } 1685 ret = cmd_address_audit(s, gma, op_size, false); 1686 return ret; 1687 } 1688 1689 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1690 { 1691 return unexpected_cmd(s); 1692 } 1693 1694 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1695 { 1696 return unexpected_cmd(s); 1697 } 1698 1699 static int cmd_handler_mi_conditional_batch_buffer_end( 1700 struct parser_exec_state *s) 1701 { 1702 return unexpected_cmd(s); 1703 } 1704 1705 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1706 { 1707 return unexpected_cmd(s); 1708 } 1709 1710 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1711 { 1712 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1713 unsigned long gma; 1714 bool index_mode = false; 1715 int ret = 0; 1716 u32 hws_pga, val; 1717 u32 valid_len = CMD_LEN(2); 1718 1719 ret = gvt_check_valid_cmd_length(cmd_length(s), 1720 valid_len); 1721 if (ret) { 1722 /* Check again for Qword */ 1723 ret = gvt_check_valid_cmd_length(cmd_length(s), 1724 ++valid_len); 1725 return ret; 1726 } 1727 1728 /* Check post-sync and ppgtt bit */ 1729 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1730 gma = cmd_val(s, 1) & GENMASK(31, 3); 1731 if (gmadr_bytes == 8) 1732 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1733 /* Store Data Index */ 1734 if (cmd_val(s, 0) & (1 << 21)) 1735 index_mode = true; 1736 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1737 if (ret) 1738 return ret; 1739 if (index_mode) { 1740 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1741 gma = hws_pga + gma; 1742 patch_value(s, cmd_ptr(s, 1), gma); 1743 val = cmd_val(s, 0) & (~(1 << 21)); 1744 patch_value(s, cmd_ptr(s, 0), val); 1745 } 1746 } 1747 /* Check notify bit */ 1748 if ((cmd_val(s, 0) & (1 << 8))) 1749 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1750 s->workload->pending_events); 1751 return ret; 1752 } 1753 1754 static void addr_type_update_snb(struct parser_exec_state *s) 1755 { 1756 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1757 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1758 s->buf_addr_type = PPGTT_BUFFER; 1759 } 1760 } 1761 1762 1763 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1764 unsigned long gma, unsigned long end_gma, void *va) 1765 { 1766 unsigned long copy_len, offset; 1767 unsigned long len = 0; 1768 unsigned long gpa; 1769 1770 while (gma != end_gma) { 1771 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1772 if (gpa == INTEL_GVT_INVALID_ADDR) { 1773 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1774 return -EFAULT; 1775 } 1776 1777 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1778 1779 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1780 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1781 1782 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len); 1783 1784 len += copy_len; 1785 gma += copy_len; 1786 } 1787 return len; 1788 } 1789 1790 1791 /* 1792 * Check whether a batch buffer needs to be scanned. Currently 1793 * the only criteria is based on privilege. 1794 */ 1795 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1796 { 1797 /* Decide privilege based on address space */ 1798 if (cmd_val(s, 0) & BIT(8) && 1799 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1800 return 0; 1801 1802 return 1; 1803 } 1804 1805 static const char *repr_addr_type(unsigned int type) 1806 { 1807 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1808 } 1809 1810 static int find_bb_size(struct parser_exec_state *s, 1811 unsigned long *bb_size, 1812 unsigned long *bb_end_cmd_offset) 1813 { 1814 unsigned long gma = 0; 1815 const struct cmd_info *info; 1816 u32 cmd_len = 0; 1817 bool bb_end = false; 1818 struct intel_vgpu *vgpu = s->vgpu; 1819 u32 cmd; 1820 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1821 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1822 1823 *bb_size = 0; 1824 *bb_end_cmd_offset = 0; 1825 1826 /* get the start gm address of the batch buffer */ 1827 gma = get_gma_bb_from_cmd(s, 1); 1828 if (gma == INTEL_GVT_INVALID_ADDR) 1829 return -EFAULT; 1830 1831 cmd = cmd_val(s, 0); 1832 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1833 if (info == NULL) { 1834 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1835 cmd, get_opcode(cmd, s->engine), 1836 repr_addr_type(s->buf_addr_type), 1837 s->engine->name, s->workload); 1838 return -EBADRQC; 1839 } 1840 do { 1841 if (copy_gma_to_hva(s->vgpu, mm, 1842 gma, gma + 4, &cmd) < 0) 1843 return -EFAULT; 1844 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1845 if (info == NULL) { 1846 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1847 cmd, get_opcode(cmd, s->engine), 1848 repr_addr_type(s->buf_addr_type), 1849 s->engine->name, s->workload); 1850 return -EBADRQC; 1851 } 1852 1853 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1854 bb_end = true; 1855 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1856 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1857 /* chained batch buffer */ 1858 bb_end = true; 1859 } 1860 1861 if (bb_end) 1862 *bb_end_cmd_offset = *bb_size; 1863 1864 cmd_len = get_cmd_length(info, cmd) << 2; 1865 *bb_size += cmd_len; 1866 gma += cmd_len; 1867 } while (!bb_end); 1868 1869 return 0; 1870 } 1871 1872 static int audit_bb_end(struct parser_exec_state *s, void *va) 1873 { 1874 struct intel_vgpu *vgpu = s->vgpu; 1875 u32 cmd = *(u32 *)va; 1876 const struct cmd_info *info; 1877 1878 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1879 if (info == NULL) { 1880 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1881 cmd, get_opcode(cmd, s->engine), 1882 repr_addr_type(s->buf_addr_type), 1883 s->engine->name, s->workload); 1884 return -EBADRQC; 1885 } 1886 1887 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1888 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1889 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1890 return 0; 1891 1892 return -EBADRQC; 1893 } 1894 1895 static int perform_bb_shadow(struct parser_exec_state *s) 1896 { 1897 struct intel_vgpu *vgpu = s->vgpu; 1898 struct intel_vgpu_shadow_bb *bb; 1899 unsigned long gma = 0; 1900 unsigned long bb_size; 1901 unsigned long bb_end_cmd_offset; 1902 int ret = 0; 1903 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1904 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1905 unsigned long start_offset = 0; 1906 1907 /* get the start gm address of the batch buffer */ 1908 gma = get_gma_bb_from_cmd(s, 1); 1909 if (gma == INTEL_GVT_INVALID_ADDR) 1910 return -EFAULT; 1911 1912 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1913 if (ret) 1914 return ret; 1915 1916 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1917 if (!bb) 1918 return -ENOMEM; 1919 1920 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1921 1922 /* the start_offset stores the batch buffer's start gma's 1923 * offset relative to page boundary. so for non-privileged batch 1924 * buffer, the shadowed gem object holds exactly the same page 1925 * layout as original gem object. This is for the convience of 1926 * replacing the whole non-privilged batch buffer page to this 1927 * shadowed one in PPGTT at the same gma address. (this replacing 1928 * action is not implemented yet now, but may be necessary in 1929 * future). 1930 * for prileged batch buffer, we just change start gma address to 1931 * that of shadowed page. 1932 */ 1933 if (bb->ppgtt) 1934 start_offset = gma & ~I915_GTT_PAGE_MASK; 1935 1936 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1937 round_up(bb_size + start_offset, 1938 PAGE_SIZE)); 1939 if (IS_ERR(bb->obj)) { 1940 ret = PTR_ERR(bb->obj); 1941 goto err_free_bb; 1942 } 1943 1944 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1945 if (IS_ERR(bb->va)) { 1946 ret = PTR_ERR(bb->va); 1947 goto err_free_obj; 1948 } 1949 1950 ret = copy_gma_to_hva(s->vgpu, mm, 1951 gma, gma + bb_size, 1952 bb->va + start_offset); 1953 if (ret < 0) { 1954 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1955 ret = -EFAULT; 1956 goto err_unmap; 1957 } 1958 1959 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1960 if (ret) 1961 goto err_unmap; 1962 1963 i915_gem_object_unlock(bb->obj); 1964 INIT_LIST_HEAD(&bb->list); 1965 list_add(&bb->list, &s->workload->shadow_bb); 1966 1967 bb->bb_start_cmd_va = s->ip_va; 1968 1969 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1970 bb->bb_offset = s->ip_va - s->rb_va; 1971 else 1972 bb->bb_offset = 0; 1973 1974 /* 1975 * ip_va saves the virtual address of the shadow batch buffer, while 1976 * ip_gma saves the graphics address of the original batch buffer. 1977 * As the shadow batch buffer is just a copy from the originial one, 1978 * it should be right to use shadow batch buffer'va and original batch 1979 * buffer's gma in pair. After all, we don't want to pin the shadow 1980 * buffer here (too early). 1981 */ 1982 s->ip_va = bb->va + start_offset; 1983 s->ip_gma = gma; 1984 return 0; 1985 err_unmap: 1986 i915_gem_object_unpin_map(bb->obj); 1987 err_free_obj: 1988 i915_gem_object_put(bb->obj); 1989 err_free_bb: 1990 kfree(bb); 1991 return ret; 1992 } 1993 1994 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 1995 { 1996 bool second_level; 1997 int ret = 0; 1998 struct intel_vgpu *vgpu = s->vgpu; 1999 2000 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 2001 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 2002 return -EFAULT; 2003 } 2004 2005 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2006 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2007 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2008 return -EFAULT; 2009 } 2010 2011 s->saved_buf_addr_type = s->buf_addr_type; 2012 addr_type_update_snb(s); 2013 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2014 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2015 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2016 } else if (second_level) { 2017 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2018 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2019 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2020 } 2021 2022 if (batch_buffer_needs_scan(s)) { 2023 ret = perform_bb_shadow(s); 2024 if (ret < 0) 2025 gvt_vgpu_err("invalid shadow batch buffer\n"); 2026 } else { 2027 /* emulate a batch buffer end to do return right */ 2028 ret = cmd_handler_mi_batch_buffer_end(s); 2029 if (ret < 0) 2030 return ret; 2031 } 2032 return ret; 2033 } 2034 2035 static int mi_noop_index; 2036 2037 static const struct cmd_info cmd_info[] = { 2038 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2039 2040 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2041 0, 1, NULL}, 2042 2043 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2044 0, 1, cmd_handler_mi_user_interrupt}, 2045 2046 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2047 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2048 2049 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2050 2051 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2052 NULL}, 2053 2054 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2055 NULL}, 2056 2057 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2058 NULL}, 2059 2060 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2061 NULL}, 2062 2063 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2064 D_ALL, 0, 1, NULL}, 2065 2066 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2067 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2068 cmd_handler_mi_batch_buffer_end}, 2069 2070 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2071 0, 1, NULL}, 2072 2073 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2074 NULL}, 2075 2076 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2077 D_ALL, 0, 1, NULL}, 2078 2079 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2080 NULL}, 2081 2082 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2083 NULL}, 2084 2085 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2086 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2087 2088 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2089 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2090 2091 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2092 2093 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2094 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2095 2096 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2097 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2098 NULL, CMD_LEN(0)}, 2099 2100 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2101 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2102 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2103 2104 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2105 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2106 2107 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2108 0, 8, cmd_handler_mi_store_data_index}, 2109 2110 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2111 D_ALL, 0, 8, cmd_handler_lri}, 2112 2113 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2114 cmd_handler_mi_update_gtt}, 2115 2116 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2117 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2118 cmd_handler_srm, CMD_LEN(2)}, 2119 2120 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2121 cmd_handler_mi_flush_dw}, 2122 2123 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2124 10, cmd_handler_mi_clflush}, 2125 2126 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2127 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2128 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2129 2130 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2131 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2132 cmd_handler_lrm, CMD_LEN(2)}, 2133 2134 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2135 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2136 cmd_handler_lrr, CMD_LEN(1)}, 2137 2138 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2139 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2140 8, NULL, CMD_LEN(2)}, 2141 2142 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2143 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2144 2145 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2146 ADDR_FIX_1(2), 8, NULL}, 2147 2148 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2149 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2150 2151 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2152 8, cmd_handler_mi_op_2f}, 2153 2154 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2155 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2156 cmd_handler_mi_batch_buffer_start}, 2157 2158 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2159 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2160 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2161 2162 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2163 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2164 2165 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2166 ADDR_FIX_2(4, 7), 8, NULL}, 2167 2168 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2169 0, 8, NULL}, 2170 2171 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2172 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2173 2174 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2175 2176 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2177 0, 8, NULL}, 2178 2179 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2180 ADDR_FIX_1(3), 8, NULL}, 2181 2182 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2183 D_ALL, 0, 8, NULL}, 2184 2185 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2186 ADDR_FIX_1(4), 8, NULL}, 2187 2188 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2189 ADDR_FIX_2(4, 5), 8, NULL}, 2190 2191 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2192 ADDR_FIX_1(4), 8, NULL}, 2193 2194 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2195 ADDR_FIX_2(4, 7), 8, NULL}, 2196 2197 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2198 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2199 2200 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2201 2202 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2203 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2204 2205 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2206 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2207 2208 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2209 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2210 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2211 2212 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2213 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2214 2215 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2216 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2217 2218 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2219 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2220 2221 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2222 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2223 2224 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2225 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2226 2227 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2228 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2229 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2230 2231 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2232 ADDR_FIX_2(4, 5), 8, NULL}, 2233 2234 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2235 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2236 2237 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2238 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2239 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2240 2241 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2242 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2243 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2244 2245 {"3DSTATE_BLEND_STATE_POINTERS", 2246 OP_3DSTATE_BLEND_STATE_POINTERS, 2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2248 2249 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2250 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2251 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2252 2253 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2254 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2255 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2256 2257 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2258 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2259 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2260 2261 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2262 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2263 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2264 2265 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2266 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2268 2269 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2270 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2272 2273 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2274 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2275 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2276 2277 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2278 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2280 2281 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2282 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2284 2285 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2286 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2287 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2288 2289 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2290 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2291 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2292 2293 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2294 0, 8, NULL}, 2295 2296 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2297 0, 8, NULL}, 2298 2299 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2300 0, 8, NULL}, 2301 2302 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2303 0, 8, NULL}, 2304 2305 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2307 2308 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2310 2311 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2312 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2313 2314 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2315 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2316 2317 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2318 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2319 2320 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2321 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2322 2323 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2324 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2325 2326 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2327 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2328 2329 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2330 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2331 2332 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2333 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2334 2335 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2336 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2337 2338 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2339 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2340 2341 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2342 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2343 2344 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2345 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2346 2347 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2348 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2349 2350 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2351 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2352 2353 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2354 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2355 2356 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2357 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2358 2359 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2360 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2361 2362 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2363 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2364 2365 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2366 D_BDW_PLUS, 0, 8, NULL}, 2367 2368 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2369 NULL}, 2370 2371 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2372 D_BDW_PLUS, 0, 8, NULL}, 2373 2374 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2375 D_BDW_PLUS, 0, 8, NULL}, 2376 2377 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2378 8, NULL}, 2379 2380 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2381 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2382 2383 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2384 8, NULL}, 2385 2386 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2387 NULL}, 2388 2389 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2390 NULL}, 2391 2392 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2393 NULL}, 2394 2395 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2396 D_BDW_PLUS, 0, 8, NULL}, 2397 2398 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2399 R_RCS, D_ALL, 0, 8, NULL}, 2400 2401 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2402 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2403 2404 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2405 R_RCS, D_ALL, 0, 1, NULL}, 2406 2407 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2408 2409 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2410 R_RCS, D_ALL, 0, 8, NULL}, 2411 2412 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2413 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2414 2415 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2416 2417 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2418 2419 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2420 2421 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2422 D_BDW_PLUS, 0, 8, NULL}, 2423 2424 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2425 D_BDW_PLUS, 0, 8, NULL}, 2426 2427 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2428 D_ALL, 0, 8, NULL}, 2429 2430 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2431 D_BDW_PLUS, 0, 8, NULL}, 2432 2433 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2434 D_BDW_PLUS, 0, 8, NULL}, 2435 2436 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2437 2438 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2439 2440 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2441 2442 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2443 D_ALL, 0, 8, NULL}, 2444 2445 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2446 2447 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2448 2449 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2450 R_RCS, D_ALL, 0, 8, NULL}, 2451 2452 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2453 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2454 2455 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2456 0, 8, NULL}, 2457 2458 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2459 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2460 2461 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2462 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2463 2464 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2465 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2466 2467 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2468 D_ALL, 0, 8, NULL}, 2469 2470 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2471 D_ALL, 0, 8, NULL}, 2472 2473 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2474 D_ALL, 0, 8, NULL}, 2475 2476 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2477 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2478 2479 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2480 D_BDW_PLUS, 0, 8, NULL}, 2481 2482 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2483 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2484 2485 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2486 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2487 2488 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2489 R_RCS, D_ALL, 0, 8, NULL}, 2490 2491 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2492 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2493 2494 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2495 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2496 2497 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2498 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2499 2500 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2501 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2502 2503 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2504 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2505 2506 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2507 R_RCS, D_ALL, 0, 8, NULL}, 2508 2509 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2510 D_ALL, 0, 9, NULL}, 2511 2512 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2513 ADDR_FIX_2(2, 4), 8, NULL}, 2514 2515 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2516 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2517 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2518 2519 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2520 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2521 2522 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2523 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2524 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2525 2526 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2527 D_BDW_PLUS, 0, 8, NULL}, 2528 2529 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2530 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2531 2532 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2533 2534 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2535 1, NULL}, 2536 2537 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2538 ADDR_FIX_1(1), 8, NULL}, 2539 2540 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2541 2542 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2543 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2544 2545 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2546 ADDR_FIX_1(1), 8, NULL}, 2547 2548 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2549 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2550 2551 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2552 2553 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2554 2555 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2556 0, 8, NULL}, 2557 2558 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2559 D_SKL_PLUS, 0, 8, NULL}, 2560 2561 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2562 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2563 2564 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2565 0, 16, NULL}, 2566 2567 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2568 0, 16, NULL}, 2569 2570 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2571 0, 16, NULL}, 2572 2573 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2574 2575 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2576 0, 16, NULL}, 2577 2578 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2579 0, 16, NULL}, 2580 2581 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2582 0, 16, NULL}, 2583 2584 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2585 0, 8, NULL}, 2586 2587 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2588 NULL}, 2589 2590 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2591 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2592 2593 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2594 R_VCS, D_ALL, 0, 12, NULL}, 2595 2596 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2597 R_VCS, D_ALL, 0, 12, NULL}, 2598 2599 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2600 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2601 2602 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2603 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2604 2605 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2606 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2607 2608 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2609 2610 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2611 R_VCS, D_ALL, 0, 12, NULL}, 2612 2613 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2614 R_VCS, D_ALL, 0, 12, NULL}, 2615 2616 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2617 R_VCS, D_ALL, 0, 12, NULL}, 2618 2619 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2620 R_VCS, D_ALL, 0, 12, NULL}, 2621 2622 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2623 R_VCS, D_ALL, 0, 12, NULL}, 2624 2625 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2626 R_VCS, D_ALL, 0, 12, NULL}, 2627 2628 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2629 R_VCS, D_ALL, 0, 6, NULL}, 2630 2631 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2632 R_VCS, D_ALL, 0, 12, NULL}, 2633 2634 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2635 R_VCS, D_ALL, 0, 12, NULL}, 2636 2637 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2638 R_VCS, D_ALL, 0, 12, NULL}, 2639 2640 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2641 R_VCS, D_ALL, 0, 12, NULL}, 2642 2643 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2644 R_VCS, D_ALL, 0, 12, NULL}, 2645 2646 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2647 R_VCS, D_ALL, 0, 12, NULL}, 2648 2649 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2650 R_VCS, D_ALL, 0, 12, NULL}, 2651 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2652 R_VCS, D_ALL, 0, 12, NULL}, 2653 2654 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2655 R_VCS, D_ALL, 0, 12, NULL}, 2656 2657 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2658 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2659 2660 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2661 R_VCS, D_ALL, 0, 12, NULL}, 2662 2663 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2664 R_VCS, D_ALL, 0, 12, NULL}, 2665 2666 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2667 R_VCS, D_ALL, 0, 12, NULL}, 2668 2669 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2670 R_VCS, D_ALL, 0, 12, NULL}, 2671 2672 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2673 R_VCS, D_ALL, 0, 12, NULL}, 2674 2675 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2676 R_VCS, D_ALL, 0, 12, NULL}, 2677 2678 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2679 R_VCS, D_ALL, 0, 12, NULL}, 2680 2681 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2682 R_VCS, D_ALL, 0, 12, NULL}, 2683 2684 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2685 R_VCS, D_ALL, 0, 12, NULL}, 2686 2687 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2688 R_VCS, D_ALL, 0, 12, NULL}, 2689 2690 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2691 R_VCS, D_ALL, 0, 12, NULL}, 2692 2693 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2694 0, 16, NULL}, 2695 2696 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2697 2698 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2699 2700 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2701 R_VCS, D_ALL, 0, 12, NULL}, 2702 2703 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2704 R_VCS, D_ALL, 0, 12, NULL}, 2705 2706 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2707 R_VCS, D_ALL, 0, 12, NULL}, 2708 2709 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2710 2711 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2712 0, 12, NULL}, 2713 2714 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2715 0, 12, NULL}, 2716 }; 2717 2718 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2719 { 2720 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2721 } 2722 2723 /* call the cmd handler, and advance ip */ 2724 static int cmd_parser_exec(struct parser_exec_state *s) 2725 { 2726 struct intel_vgpu *vgpu = s->vgpu; 2727 const struct cmd_info *info; 2728 u32 cmd; 2729 int ret = 0; 2730 2731 cmd = cmd_val(s, 0); 2732 2733 /* fastpath for MI_NOOP */ 2734 if (cmd == MI_NOOP) 2735 info = &cmd_info[mi_noop_index]; 2736 else 2737 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2738 2739 if (info == NULL) { 2740 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2741 cmd, get_opcode(cmd, s->engine), 2742 repr_addr_type(s->buf_addr_type), 2743 s->engine->name, s->workload); 2744 return -EBADRQC; 2745 } 2746 2747 s->info = info; 2748 2749 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2750 cmd_length(s), s->buf_type, s->buf_addr_type, 2751 s->workload, info->name); 2752 2753 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2754 ret = gvt_check_valid_cmd_length(cmd_length(s), 2755 info->valid_len); 2756 if (ret) 2757 return ret; 2758 } 2759 2760 if (info->handler) { 2761 ret = info->handler(s); 2762 if (ret < 0) { 2763 gvt_vgpu_err("%s handler error\n", info->name); 2764 return ret; 2765 } 2766 } 2767 2768 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2769 ret = cmd_advance_default(s); 2770 if (ret) { 2771 gvt_vgpu_err("%s IP advance error\n", info->name); 2772 return ret; 2773 } 2774 } 2775 return 0; 2776 } 2777 2778 static inline bool gma_out_of_range(unsigned long gma, 2779 unsigned long gma_head, unsigned int gma_tail) 2780 { 2781 if (gma_tail >= gma_head) 2782 return (gma < gma_head) || (gma > gma_tail); 2783 else 2784 return (gma > gma_tail) && (gma < gma_head); 2785 } 2786 2787 /* Keep the consistent return type, e.g EBADRQC for unknown 2788 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2789 * works as the input of VM healthy status. 2790 */ 2791 static int command_scan(struct parser_exec_state *s, 2792 unsigned long rb_head, unsigned long rb_tail, 2793 unsigned long rb_start, unsigned long rb_len) 2794 { 2795 2796 unsigned long gma_head, gma_tail, gma_bottom; 2797 int ret = 0; 2798 struct intel_vgpu *vgpu = s->vgpu; 2799 2800 gma_head = rb_start + rb_head; 2801 gma_tail = rb_start + rb_tail; 2802 gma_bottom = rb_start + rb_len; 2803 2804 while (s->ip_gma != gma_tail) { 2805 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2806 s->buf_type == RING_BUFFER_CTX) { 2807 if (!(s->ip_gma >= rb_start) || 2808 !(s->ip_gma < gma_bottom)) { 2809 gvt_vgpu_err("ip_gma %lx out of ring scope." 2810 "(base:0x%lx, bottom: 0x%lx)\n", 2811 s->ip_gma, rb_start, 2812 gma_bottom); 2813 parser_exec_state_dump(s); 2814 return -EFAULT; 2815 } 2816 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2817 gvt_vgpu_err("ip_gma %lx out of range." 2818 "base 0x%lx head 0x%lx tail 0x%lx\n", 2819 s->ip_gma, rb_start, 2820 rb_head, rb_tail); 2821 parser_exec_state_dump(s); 2822 break; 2823 } 2824 } 2825 ret = cmd_parser_exec(s); 2826 if (ret) { 2827 gvt_vgpu_err("cmd parser error\n"); 2828 parser_exec_state_dump(s); 2829 break; 2830 } 2831 } 2832 2833 return ret; 2834 } 2835 2836 static int scan_workload(struct intel_vgpu_workload *workload) 2837 { 2838 unsigned long gma_head, gma_tail; 2839 struct parser_exec_state s; 2840 int ret = 0; 2841 2842 /* ring base is page aligned */ 2843 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2844 return -EINVAL; 2845 2846 gma_head = workload->rb_start + workload->rb_head; 2847 gma_tail = workload->rb_start + workload->rb_tail; 2848 2849 s.buf_type = RING_BUFFER_INSTRUCTION; 2850 s.buf_addr_type = GTT_BUFFER; 2851 s.vgpu = workload->vgpu; 2852 s.engine = workload->engine; 2853 s.ring_start = workload->rb_start; 2854 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2855 s.ring_head = gma_head; 2856 s.ring_tail = gma_tail; 2857 s.rb_va = workload->shadow_ring_buffer_va; 2858 s.workload = workload; 2859 s.is_ctx_wa = false; 2860 2861 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2862 return 0; 2863 2864 ret = ip_gma_set(&s, gma_head); 2865 if (ret) 2866 goto out; 2867 2868 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2869 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2870 2871 out: 2872 return ret; 2873 } 2874 2875 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2876 { 2877 2878 unsigned long gma_head, gma_tail, ring_size, ring_tail; 2879 struct parser_exec_state s; 2880 int ret = 0; 2881 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2882 struct intel_vgpu_workload, 2883 wa_ctx); 2884 2885 /* ring base is page aligned */ 2886 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2887 I915_GTT_PAGE_SIZE))) 2888 return -EINVAL; 2889 2890 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2891 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2892 PAGE_SIZE); 2893 gma_head = wa_ctx->indirect_ctx.guest_gma; 2894 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2895 2896 s.buf_type = RING_BUFFER_INSTRUCTION; 2897 s.buf_addr_type = GTT_BUFFER; 2898 s.vgpu = workload->vgpu; 2899 s.engine = workload->engine; 2900 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2901 s.ring_size = ring_size; 2902 s.ring_head = gma_head; 2903 s.ring_tail = gma_tail; 2904 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2905 s.workload = workload; 2906 s.is_ctx_wa = true; 2907 2908 ret = ip_gma_set(&s, gma_head); 2909 if (ret) 2910 goto out; 2911 2912 ret = command_scan(&s, 0, ring_tail, 2913 wa_ctx->indirect_ctx.guest_gma, ring_size); 2914 out: 2915 return ret; 2916 } 2917 2918 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2919 { 2920 struct intel_vgpu *vgpu = workload->vgpu; 2921 struct intel_vgpu_submission *s = &vgpu->submission; 2922 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2923 void *shadow_ring_buffer_va; 2924 int ret; 2925 2926 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2927 2928 /* calculate workload ring buffer size */ 2929 workload->rb_len = (workload->rb_tail + guest_rb_size - 2930 workload->rb_head) % guest_rb_size; 2931 2932 gma_head = workload->rb_start + workload->rb_head; 2933 gma_tail = workload->rb_start + workload->rb_tail; 2934 gma_top = workload->rb_start + guest_rb_size; 2935 2936 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2937 void *p; 2938 2939 /* realloc the new ring buffer if needed */ 2940 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2941 workload->rb_len, GFP_KERNEL); 2942 if (!p) { 2943 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2944 return -ENOMEM; 2945 } 2946 s->ring_scan_buffer[workload->engine->id] = p; 2947 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2948 } 2949 2950 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2951 2952 /* get shadow ring buffer va */ 2953 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2954 2955 /* head > tail --> copy head <-> top */ 2956 if (gma_head > gma_tail) { 2957 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2958 gma_head, gma_top, shadow_ring_buffer_va); 2959 if (ret < 0) { 2960 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2961 return ret; 2962 } 2963 shadow_ring_buffer_va += ret; 2964 gma_head = workload->rb_start; 2965 } 2966 2967 /* copy head or start <-> tail */ 2968 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2969 shadow_ring_buffer_va); 2970 if (ret < 0) { 2971 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2972 return ret; 2973 } 2974 return 0; 2975 } 2976 2977 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2978 { 2979 int ret; 2980 struct intel_vgpu *vgpu = workload->vgpu; 2981 2982 ret = shadow_workload_ring_buffer(workload); 2983 if (ret) { 2984 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2985 return ret; 2986 } 2987 2988 ret = scan_workload(workload); 2989 if (ret) { 2990 gvt_vgpu_err("scan workload error\n"); 2991 return ret; 2992 } 2993 return 0; 2994 } 2995 2996 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2997 { 2998 int ctx_size = wa_ctx->indirect_ctx.size; 2999 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 3000 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3001 struct intel_vgpu_workload, 3002 wa_ctx); 3003 struct intel_vgpu *vgpu = workload->vgpu; 3004 struct drm_i915_gem_object *obj; 3005 int ret = 0; 3006 void *map; 3007 3008 obj = i915_gem_object_create_shmem(workload->engine->i915, 3009 roundup(ctx_size + CACHELINE_BYTES, 3010 PAGE_SIZE)); 3011 if (IS_ERR(obj)) 3012 return PTR_ERR(obj); 3013 3014 /* get the va of the shadow batch buffer */ 3015 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3016 if (IS_ERR(map)) { 3017 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3018 ret = PTR_ERR(map); 3019 goto put_obj; 3020 } 3021 3022 i915_gem_object_lock(obj, NULL); 3023 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3024 i915_gem_object_unlock(obj); 3025 if (ret) { 3026 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3027 goto unmap_src; 3028 } 3029 3030 ret = copy_gma_to_hva(workload->vgpu, 3031 workload->vgpu->gtt.ggtt_mm, 3032 guest_gma, guest_gma + ctx_size, 3033 map); 3034 if (ret < 0) { 3035 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3036 goto unmap_src; 3037 } 3038 3039 wa_ctx->indirect_ctx.obj = obj; 3040 wa_ctx->indirect_ctx.shadow_va = map; 3041 return 0; 3042 3043 unmap_src: 3044 i915_gem_object_unpin_map(obj); 3045 put_obj: 3046 i915_gem_object_put(obj); 3047 return ret; 3048 } 3049 3050 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3051 { 3052 u32 per_ctx_start[CACHELINE_DWORDS] = {}; 3053 unsigned char *bb_start_sva; 3054 3055 if (!wa_ctx->per_ctx.valid) 3056 return 0; 3057 3058 per_ctx_start[0] = 0x18800001; 3059 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3060 3061 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3062 wa_ctx->indirect_ctx.size; 3063 3064 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3065 3066 return 0; 3067 } 3068 3069 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3070 { 3071 int ret; 3072 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3073 struct intel_vgpu_workload, 3074 wa_ctx); 3075 struct intel_vgpu *vgpu = workload->vgpu; 3076 3077 if (wa_ctx->indirect_ctx.size == 0) 3078 return 0; 3079 3080 ret = shadow_indirect_ctx(wa_ctx); 3081 if (ret) { 3082 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3083 return ret; 3084 } 3085 3086 combine_wa_ctx(wa_ctx); 3087 3088 ret = scan_wa_ctx(wa_ctx); 3089 if (ret) { 3090 gvt_vgpu_err("scan wa ctx error\n"); 3091 return ret; 3092 } 3093 3094 return 0; 3095 } 3096 3097 /* generate dummy contexts by sending empty requests to HW, and let 3098 * the HW to fill Engine Contexts. This dummy contexts are used for 3099 * initialization purpose (update reg whitelist), so referred to as 3100 * init context here 3101 */ 3102 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3103 { 3104 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3105 struct intel_gvt *gvt = vgpu->gvt; 3106 struct intel_engine_cs *engine; 3107 enum intel_engine_id id; 3108 3109 if (gvt->is_reg_whitelist_updated) 3110 return; 3111 3112 /* scan init ctx to update cmd accessible list */ 3113 for_each_engine(engine, gvt->gt, id) { 3114 struct parser_exec_state s; 3115 void *vaddr; 3116 int ret; 3117 3118 if (!engine->default_state) 3119 continue; 3120 3121 vaddr = shmem_pin_map(engine->default_state); 3122 if (!vaddr) { 3123 gvt_err("failed to map %s->default state\n", 3124 engine->name); 3125 return; 3126 } 3127 3128 s.buf_type = RING_BUFFER_CTX; 3129 s.buf_addr_type = GTT_BUFFER; 3130 s.vgpu = vgpu; 3131 s.engine = engine; 3132 s.ring_start = 0; 3133 s.ring_size = engine->context_size - start; 3134 s.ring_head = 0; 3135 s.ring_tail = s.ring_size; 3136 s.rb_va = vaddr + start; 3137 s.workload = NULL; 3138 s.is_ctx_wa = false; 3139 s.is_init_ctx = true; 3140 3141 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3142 ret = ip_gma_set(&s, RING_CTX_SIZE); 3143 if (ret == 0) { 3144 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3145 if (ret) 3146 gvt_err("Scan init ctx error\n"); 3147 } 3148 3149 shmem_unpin_map(engine->default_state, vaddr); 3150 if (ret) 3151 return; 3152 } 3153 3154 gvt->is_reg_whitelist_updated = true; 3155 } 3156 3157 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3158 { 3159 struct intel_vgpu *vgpu = workload->vgpu; 3160 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3161 struct parser_exec_state s; 3162 int ring_id = workload->engine->id; 3163 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3164 int ret; 3165 3166 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3167 3168 ctx_size = workload->engine->context_size - PAGE_SIZE; 3169 3170 /* Only ring contxt is loaded to HW for inhibit context, no need to 3171 * scan engine context 3172 */ 3173 if (is_inhibit_context(ce)) 3174 return 0; 3175 3176 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3177 gma_head = 0; 3178 gma_tail = ctx_size; 3179 3180 s.buf_type = RING_BUFFER_CTX; 3181 s.buf_addr_type = GTT_BUFFER; 3182 s.vgpu = workload->vgpu; 3183 s.engine = workload->engine; 3184 s.ring_start = gma_start; 3185 s.ring_size = ctx_size; 3186 s.ring_head = gma_start + gma_head; 3187 s.ring_tail = gma_start + gma_tail; 3188 s.rb_va = ce->lrc_reg_state; 3189 s.workload = workload; 3190 s.is_ctx_wa = false; 3191 s.is_init_ctx = false; 3192 3193 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3194 * context 3195 */ 3196 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3197 if (ret) 3198 goto out; 3199 3200 ret = command_scan(&s, gma_head, gma_tail, 3201 gma_start, ctx_size); 3202 out: 3203 if (ret) 3204 gvt_vgpu_err("scan shadow ctx error\n"); 3205 3206 return ret; 3207 } 3208 3209 static int init_cmd_table(struct intel_gvt *gvt) 3210 { 3211 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3212 int i; 3213 3214 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3215 struct cmd_entry *e; 3216 3217 if (!(cmd_info[i].devices & gen_type)) 3218 continue; 3219 3220 e = kzalloc(sizeof(*e), GFP_KERNEL); 3221 if (!e) 3222 return -ENOMEM; 3223 3224 e->info = &cmd_info[i]; 3225 if (cmd_info[i].opcode == OP_MI_NOOP) 3226 mi_noop_index = i; 3227 3228 INIT_HLIST_NODE(&e->hlist); 3229 add_cmd_entry(gvt, e); 3230 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3231 e->info->name, e->info->opcode, e->info->flag, 3232 e->info->devices, e->info->rings); 3233 } 3234 3235 return 0; 3236 } 3237 3238 static void clean_cmd_table(struct intel_gvt *gvt) 3239 { 3240 struct hlist_node *tmp; 3241 struct cmd_entry *e; 3242 int i; 3243 3244 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3245 kfree(e); 3246 3247 hash_init(gvt->cmd_table); 3248 } 3249 3250 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3251 { 3252 clean_cmd_table(gvt); 3253 } 3254 3255 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3256 { 3257 int ret; 3258 3259 ret = init_cmd_table(gvt); 3260 if (ret) { 3261 intel_gvt_clean_cmd_parser(gvt); 3262 return ret; 3263 } 3264 return 0; 3265 } 3266