1 /* 2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 * 23 * Authors: 24 * Ke Yu 25 * Kevin Tian <kevin.tian@intel.com> 26 * Zhiyuan Lv <zhiyuan.lv@intel.com> 27 * 28 * Contributors: 29 * Min He <min.he@intel.com> 30 * Ping Gao <ping.a.gao@intel.com> 31 * Tina Zhang <tina.zhang@intel.com> 32 * Yulei Zhang <yulei.zhang@intel.com> 33 * Zhi Wang <zhi.a.wang@intel.com> 34 * 35 */ 36 37 #include <linux/slab.h> 38 39 #include "i915_drv.h" 40 #include "i915_reg.h" 41 #include "display/intel_display_regs.h" 42 #include "gt/intel_engine_regs.h" 43 #include "gt/intel_gpu_commands.h" 44 #include "gt/intel_gt_regs.h" 45 #include "gt/intel_lrc.h" 46 #include "gt/intel_ring.h" 47 #include "gt/intel_gt_requests.h" 48 #include "gt/shmem_utils.h" 49 #include "gvt.h" 50 #include "i915_pvinfo.h" 51 #include "trace.h" 52 53 #include "display/i9xx_plane_regs.h" 54 #include "display/intel_display_core.h" 55 #include "display/intel_sprite_regs.h" 56 #include "gem/i915_gem_context.h" 57 #include "gem/i915_gem_pm.h" 58 #include "gt/intel_context.h" 59 60 #define INVALID_OP (~0U) 61 62 #define OP_LEN_MI 9 63 #define OP_LEN_2D 10 64 #define OP_LEN_3D_MEDIA 16 65 #define OP_LEN_MFX_VC 16 66 #define OP_LEN_VEBOX 16 67 68 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7) 69 70 struct sub_op_bits { 71 int hi; 72 int low; 73 }; 74 struct decode_info { 75 const char *name; 76 int op_len; 77 int nr_sub_op; 78 const struct sub_op_bits *sub_op; 79 }; 80 81 #define MAX_CMD_BUDGET 0x7fffffff 82 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15) 83 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9) 84 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1) 85 86 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20) 87 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10) 88 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2) 89 90 /* Render Command Map */ 91 92 /* MI_* command Opcode (28:23) */ 93 #define OP_MI_NOOP 0x0 94 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */ 95 #define OP_MI_USER_INTERRUPT 0x2 96 #define OP_MI_WAIT_FOR_EVENT 0x3 97 #define OP_MI_FLUSH 0x4 98 #define OP_MI_ARB_CHECK 0x5 99 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */ 100 #define OP_MI_REPORT_HEAD 0x7 101 #define OP_MI_ARB_ON_OFF 0x8 102 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */ 103 #define OP_MI_BATCH_BUFFER_END 0xA 104 #define OP_MI_SUSPEND_FLUSH 0xB 105 #define OP_MI_PREDICATE 0xC /* IVB+ */ 106 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */ 107 #define OP_MI_SET_APPID 0xE /* IVB+ */ 108 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */ 109 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */ 110 #define OP_MI_DISPLAY_FLIP 0x14 111 #define OP_MI_SEMAPHORE_MBOX 0x16 112 #define OP_MI_SET_CONTEXT 0x18 113 #define OP_MI_MATH 0x1A 114 #define OP_MI_URB_CLEAR 0x19 115 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */ 116 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */ 117 118 #define OP_MI_STORE_DATA_IMM 0x20 119 #define OP_MI_STORE_DATA_INDEX 0x21 120 #define OP_MI_LOAD_REGISTER_IMM 0x22 121 #define OP_MI_UPDATE_GTT 0x23 122 #define OP_MI_STORE_REGISTER_MEM 0x24 123 #define OP_MI_FLUSH_DW 0x26 124 #define OP_MI_CLFLUSH 0x27 125 #define OP_MI_REPORT_PERF_COUNT 0x28 126 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */ 127 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */ 128 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */ 129 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */ 130 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */ 131 #define OP_MI_2E 0x2E /* BDW+ */ 132 #define OP_MI_2F 0x2F /* BDW+ */ 133 #define OP_MI_BATCH_BUFFER_START 0x31 134 135 /* Bit definition for dword 0 */ 136 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8) 137 138 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36 139 140 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2)) 141 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U)) 142 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U) 143 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U) 144 145 /* 2D command: Opcode (28:22) */ 146 #define OP_2D(x) ((2<<7) | x) 147 148 #define OP_XY_SETUP_BLT OP_2D(0x1) 149 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3) 150 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11) 151 #define OP_XY_PIXEL_BLT OP_2D(0x24) 152 #define OP_XY_SCANLINES_BLT OP_2D(0x25) 153 #define OP_XY_TEXT_BLT OP_2D(0x26) 154 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31) 155 #define OP_XY_COLOR_BLT OP_2D(0x50) 156 #define OP_XY_PAT_BLT OP_2D(0x51) 157 #define OP_XY_MONO_PAT_BLT OP_2D(0x52) 158 #define OP_XY_SRC_COPY_BLT OP_2D(0x53) 159 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54) 160 #define OP_XY_FULL_BLT OP_2D(0x55) 161 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56) 162 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57) 163 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58) 164 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59) 165 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71) 166 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72) 167 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73) 168 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74) 169 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75) 170 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76) 171 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77) 172 173 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */ 174 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \ 175 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode)) 176 177 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03) 178 179 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01) 180 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02) 181 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04) 182 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03) 183 184 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B) 185 186 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04) 187 188 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0) 189 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1) 190 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2) 191 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3) 192 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4) 193 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5) 194 195 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0) 196 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2) 197 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3) 198 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5) 199 200 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */ 201 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */ 202 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */ 203 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */ 204 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08) 205 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09) 206 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A) 207 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B) 208 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */ 209 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E) 210 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F) 211 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10) 212 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11) 213 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12) 214 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13) 215 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14) 216 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15) 217 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16) 218 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17) 219 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18) 220 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */ 221 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */ 222 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */ 223 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */ 224 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */ 225 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */ 226 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */ 227 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */ 228 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */ 229 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */ 230 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */ 231 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */ 232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */ 233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */ 234 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */ 235 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */ 236 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */ 237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */ 238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */ 239 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */ 240 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */ 241 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */ 242 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */ 243 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */ 244 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */ 245 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */ 246 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */ 247 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */ 248 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */ 249 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */ 250 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */ 251 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */ 252 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */ 253 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */ 254 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */ 255 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */ 256 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */ 257 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */ 258 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */ 259 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */ 260 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */ 261 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */ 262 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */ 263 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */ 264 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */ 265 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */ 266 267 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */ 268 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */ 269 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */ 270 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */ 271 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */ 272 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */ 273 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */ 274 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */ 275 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */ 276 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */ 277 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */ 278 279 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00) 280 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02) 281 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04) 282 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05) 283 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06) 284 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07) 285 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08) 286 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A) 287 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B) 288 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C) 289 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D) 290 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E) 291 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F) 292 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10) 293 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11) 294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */ 295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */ 296 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */ 297 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */ 298 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */ 299 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17) 300 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18) 301 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */ 302 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */ 303 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */ 304 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C) 305 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00) 306 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00) 307 308 /* VCCP Command Parser */ 309 310 /* 311 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License) 312 * git://anongit.freedesktop.org/vaapi/intel-driver 313 * src/i965_defines.h 314 * 315 */ 316 317 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \ 318 (3 << 13 | \ 319 (pipeline) << 11 | \ 320 (op) << 8 | \ 321 (sub_opa) << 5 | \ 322 (sub_opb)) 323 324 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */ 325 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */ 326 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */ 327 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */ 328 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */ 329 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */ 330 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */ 331 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */ 332 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */ 333 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */ 334 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */ 335 336 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */ 337 338 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */ 339 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */ 340 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */ 341 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */ 342 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */ 343 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */ 344 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */ 345 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */ 346 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */ 347 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */ 348 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */ 349 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */ 350 351 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */ 352 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */ 353 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */ 354 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */ 355 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */ 356 357 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */ 358 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */ 359 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */ 360 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */ 361 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */ 362 363 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */ 364 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */ 365 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */ 366 367 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0) 368 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2) 369 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8) 370 371 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \ 372 (3 << 13 | \ 373 (pipeline) << 11 | \ 374 (op) << 8 | \ 375 (sub_opa) << 5 | \ 376 (sub_opb)) 377 378 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0) 379 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2) 380 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3) 381 382 struct parser_exec_state; 383 384 typedef int (*parser_cmd_handler)(struct parser_exec_state *s); 385 386 #define GVT_CMD_HASH_BITS 7 387 388 /* which DWords need address fix */ 389 #define ADDR_FIX_1(x1) (1 << (x1)) 390 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2)) 391 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3)) 392 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4)) 393 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5)) 394 395 #define DWORD_FIELD(dword, end, start) \ 396 FIELD_GET(GENMASK(end, start), cmd_val(s, dword)) 397 398 #define OP_LENGTH_BIAS 2 399 #define CMD_LEN(value) (value + OP_LENGTH_BIAS) 400 401 static int gvt_check_valid_cmd_length(int len, int valid_len) 402 { 403 if (valid_len != len) { 404 gvt_err("len is not valid: len=%u valid_len=%u\n", 405 len, valid_len); 406 return -EFAULT; 407 } 408 return 0; 409 } 410 411 struct cmd_info { 412 const char *name; 413 u32 opcode; 414 415 #define F_LEN_MASK 3U 416 #define F_LEN_CONST 1U 417 #define F_LEN_VAR 0U 418 /* value is const although LEN maybe variable */ 419 #define F_LEN_VAR_FIXED (1<<1) 420 421 /* 422 * command has its own ip advance logic 423 * e.g. MI_BATCH_START, MI_BATCH_END 424 */ 425 #define F_IP_ADVANCE_CUSTOM (1<<2) 426 u32 flag; 427 428 #define R_RCS BIT(RCS0) 429 #define R_VCS1 BIT(VCS0) 430 #define R_VCS2 BIT(VCS1) 431 #define R_VCS (R_VCS1 | R_VCS2) 432 #define R_BCS BIT(BCS0) 433 #define R_VECS BIT(VECS0) 434 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS) 435 /* rings that support this cmd: BLT/RCS/VCS/VECS */ 436 intel_engine_mask_t rings; 437 438 /* devices that support this cmd: SNB/IVB/HSW/... */ 439 u16 devices; 440 441 /* which DWords are address that need fix up. 442 * bit 0 means a 32-bit non address operand in command 443 * bit 1 means address operand, which could be 32-bit 444 * or 64-bit depending on different architectures.( 445 * defined by "gmadr_bytes_in_cmd" in intel_gvt. 446 * No matter the address length, each address only takes 447 * one bit in the bitmap. 448 */ 449 u16 addr_bitmap; 450 451 /* flag == F_LEN_CONST : command length 452 * flag == F_LEN_VAR : length bias bits 453 * Note: length is in DWord 454 */ 455 u32 len; 456 457 parser_cmd_handler handler; 458 459 /* valid length in DWord */ 460 u32 valid_len; 461 }; 462 463 struct cmd_entry { 464 struct hlist_node hlist; 465 const struct cmd_info *info; 466 }; 467 468 enum { 469 RING_BUFFER_INSTRUCTION, 470 BATCH_BUFFER_INSTRUCTION, 471 BATCH_BUFFER_2ND_LEVEL, 472 RING_BUFFER_CTX, 473 }; 474 475 enum { 476 GTT_BUFFER, 477 PPGTT_BUFFER 478 }; 479 480 struct parser_exec_state { 481 struct intel_vgpu *vgpu; 482 const struct intel_engine_cs *engine; 483 484 int buf_type; 485 486 /* batch buffer address type */ 487 int buf_addr_type; 488 489 /* graphics memory address of ring buffer start */ 490 unsigned long ring_start; 491 unsigned long ring_size; 492 unsigned long ring_head; 493 unsigned long ring_tail; 494 495 /* instruction graphics memory address */ 496 unsigned long ip_gma; 497 498 /* mapped va of the instr_gma */ 499 void *ip_va; 500 void *rb_va; 501 502 void *ret_bb_va; 503 /* next instruction when return from batch buffer to ring buffer */ 504 unsigned long ret_ip_gma_ring; 505 506 /* next instruction when return from 2nd batch buffer to batch buffer */ 507 unsigned long ret_ip_gma_bb; 508 509 /* batch buffer address type (GTT or PPGTT) 510 * used when ret from 2nd level batch buffer 511 */ 512 int saved_buf_addr_type; 513 bool is_ctx_wa; 514 bool is_init_ctx; 515 516 const struct cmd_info *info; 517 518 struct intel_vgpu_workload *workload; 519 }; 520 521 #define gmadr_dw_number(s) \ 522 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2) 523 524 static unsigned long bypass_scan_mask = 0; 525 526 /* ring ALL, type = 0 */ 527 static const struct sub_op_bits sub_op_mi[] = { 528 {31, 29}, 529 {28, 23}, 530 }; 531 532 static const struct decode_info decode_info_mi = { 533 "MI", 534 OP_LEN_MI, 535 ARRAY_SIZE(sub_op_mi), 536 sub_op_mi, 537 }; 538 539 /* ring RCS, command type 2 */ 540 static const struct sub_op_bits sub_op_2d[] = { 541 {31, 29}, 542 {28, 22}, 543 }; 544 545 static const struct decode_info decode_info_2d = { 546 "2D", 547 OP_LEN_2D, 548 ARRAY_SIZE(sub_op_2d), 549 sub_op_2d, 550 }; 551 552 /* ring RCS, command type 3 */ 553 static const struct sub_op_bits sub_op_3d_media[] = { 554 {31, 29}, 555 {28, 27}, 556 {26, 24}, 557 {23, 16}, 558 }; 559 560 static const struct decode_info decode_info_3d_media = { 561 "3D_Media", 562 OP_LEN_3D_MEDIA, 563 ARRAY_SIZE(sub_op_3d_media), 564 sub_op_3d_media, 565 }; 566 567 /* ring VCS, command type 3 */ 568 static const struct sub_op_bits sub_op_mfx_vc[] = { 569 {31, 29}, 570 {28, 27}, 571 {26, 24}, 572 {23, 21}, 573 {20, 16}, 574 }; 575 576 static const struct decode_info decode_info_mfx_vc = { 577 "MFX_VC", 578 OP_LEN_MFX_VC, 579 ARRAY_SIZE(sub_op_mfx_vc), 580 sub_op_mfx_vc, 581 }; 582 583 /* ring VECS, command type 3 */ 584 static const struct sub_op_bits sub_op_vebox[] = { 585 {31, 29}, 586 {28, 27}, 587 {26, 24}, 588 {23, 21}, 589 {20, 16}, 590 }; 591 592 static const struct decode_info decode_info_vebox = { 593 "VEBOX", 594 OP_LEN_VEBOX, 595 ARRAY_SIZE(sub_op_vebox), 596 sub_op_vebox, 597 }; 598 599 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = { 600 [RCS0] = { 601 &decode_info_mi, 602 NULL, 603 NULL, 604 &decode_info_3d_media, 605 NULL, 606 NULL, 607 NULL, 608 NULL, 609 }, 610 611 [VCS0] = { 612 &decode_info_mi, 613 NULL, 614 NULL, 615 &decode_info_mfx_vc, 616 NULL, 617 NULL, 618 NULL, 619 NULL, 620 }, 621 622 [BCS0] = { 623 &decode_info_mi, 624 NULL, 625 &decode_info_2d, 626 NULL, 627 NULL, 628 NULL, 629 NULL, 630 NULL, 631 }, 632 633 [VECS0] = { 634 &decode_info_mi, 635 NULL, 636 NULL, 637 &decode_info_vebox, 638 NULL, 639 NULL, 640 NULL, 641 NULL, 642 }, 643 644 [VCS1] = { 645 &decode_info_mi, 646 NULL, 647 NULL, 648 &decode_info_mfx_vc, 649 NULL, 650 NULL, 651 NULL, 652 NULL, 653 }, 654 }; 655 656 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine) 657 { 658 const struct decode_info *d_info; 659 660 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 661 if (d_info == NULL) 662 return INVALID_OP; 663 664 return cmd >> (32 - d_info->op_len); 665 } 666 667 static inline const struct cmd_info * 668 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode, 669 const struct intel_engine_cs *engine) 670 { 671 struct cmd_entry *e; 672 673 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) { 674 if (opcode == e->info->opcode && 675 e->info->rings & engine->mask) 676 return e->info; 677 } 678 return NULL; 679 } 680 681 static inline const struct cmd_info * 682 get_cmd_info(struct intel_gvt *gvt, u32 cmd, 683 const struct intel_engine_cs *engine) 684 { 685 u32 opcode; 686 687 opcode = get_opcode(cmd, engine); 688 if (opcode == INVALID_OP) 689 return NULL; 690 691 return find_cmd_entry(gvt, opcode, engine); 692 } 693 694 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low) 695 { 696 return (cmd >> low) & ((1U << (hi - low + 1)) - 1); 697 } 698 699 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine) 700 { 701 const struct decode_info *d_info; 702 int i; 703 704 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)]; 705 if (d_info == NULL) 706 return; 707 708 gvt_dbg_cmd("opcode=0x%x %s sub_ops:", 709 cmd >> (32 - d_info->op_len), d_info->name); 710 711 for (i = 0; i < d_info->nr_sub_op; i++) 712 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi, 713 d_info->sub_op[i].low)); 714 715 pr_err("\n"); 716 } 717 718 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index) 719 { 720 return s->ip_va + (index << 2); 721 } 722 723 static inline u32 cmd_val(struct parser_exec_state *s, int index) 724 { 725 return *cmd_ptr(s, index); 726 } 727 728 static inline bool is_init_ctx(struct parser_exec_state *s) 729 { 730 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx); 731 } 732 733 static void parser_exec_state_dump(struct parser_exec_state *s) 734 { 735 int cnt = 0; 736 int i; 737 738 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)" 739 " ring_head(%08lx) ring_tail(%08lx)\n", 740 s->vgpu->id, s->engine->name, 741 s->ring_start, s->ring_start + s->ring_size, 742 s->ring_head, s->ring_tail); 743 744 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ", 745 s->buf_type == RING_BUFFER_INSTRUCTION ? 746 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ? 747 "CTX_BUFFER" : "BATCH_BUFFER"), 748 s->buf_addr_type == GTT_BUFFER ? 749 "GTT" : "PPGTT", s->ip_gma); 750 751 if (s->ip_va == NULL) { 752 gvt_dbg_cmd(" ip_va(NULL)"); 753 return; 754 } 755 756 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n", 757 s->ip_va, cmd_val(s, 0), cmd_val(s, 1), 758 cmd_val(s, 2), cmd_val(s, 3)); 759 760 print_opcode(cmd_val(s, 0), s->engine); 761 762 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12); 763 764 while (cnt < 1024) { 765 gvt_dbg_cmd("ip_va=%p: ", s->ip_va); 766 for (i = 0; i < 8; i++) 767 gvt_dbg_cmd("%08x ", cmd_val(s, i)); 768 gvt_dbg_cmd("\n"); 769 770 s->ip_va += 8 * sizeof(u32); 771 cnt += 8; 772 } 773 } 774 775 static inline void update_ip_va(struct parser_exec_state *s) 776 { 777 unsigned long len = 0; 778 779 if (WARN_ON(s->ring_head == s->ring_tail)) 780 return; 781 782 if (s->buf_type == RING_BUFFER_INSTRUCTION || 783 s->buf_type == RING_BUFFER_CTX) { 784 unsigned long ring_top = s->ring_start + s->ring_size; 785 786 if (s->ring_head > s->ring_tail) { 787 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top) 788 len = (s->ip_gma - s->ring_head); 789 else if (s->ip_gma >= s->ring_start && 790 s->ip_gma <= s->ring_tail) 791 len = (ring_top - s->ring_head) + 792 (s->ip_gma - s->ring_start); 793 } else 794 len = (s->ip_gma - s->ring_head); 795 796 s->ip_va = s->rb_va + len; 797 } else {/* shadow batch buffer */ 798 s->ip_va = s->ret_bb_va; 799 } 800 } 801 802 static inline int ip_gma_set(struct parser_exec_state *s, 803 unsigned long ip_gma) 804 { 805 WARN_ON(!IS_ALIGNED(ip_gma, 4)); 806 807 s->ip_gma = ip_gma; 808 update_ip_va(s); 809 return 0; 810 } 811 812 static inline int ip_gma_advance(struct parser_exec_state *s, 813 unsigned int dw_len) 814 { 815 s->ip_gma += (dw_len << 2); 816 817 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 818 if (s->ip_gma >= s->ring_start + s->ring_size) 819 s->ip_gma -= s->ring_size; 820 update_ip_va(s); 821 } else { 822 s->ip_va += (dw_len << 2); 823 } 824 825 return 0; 826 } 827 828 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd) 829 { 830 if ((info->flag & F_LEN_MASK) == F_LEN_CONST) 831 return info->len; 832 else 833 return (cmd & ((1U << info->len) - 1)) + 2; 834 return 0; 835 } 836 837 static inline int cmd_length(struct parser_exec_state *s) 838 { 839 return get_cmd_length(s->info, cmd_val(s, 0)); 840 } 841 842 /* do not remove this, some platform may need clflush here */ 843 #define patch_value(s, addr, val) do { \ 844 *addr = val; \ 845 } while (0) 846 847 static inline bool is_mocs_mmio(unsigned int offset) 848 { 849 return ((offset >= 0xc800) && (offset <= 0xcff8)) || 850 ((offset >= 0xb020) && (offset <= 0xb0a0)); 851 } 852 853 static int is_cmd_update_pdps(unsigned int offset, 854 struct parser_exec_state *s) 855 { 856 u32 base = s->workload->engine->mmio_base; 857 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0)); 858 } 859 860 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s, 861 unsigned int offset, unsigned int index) 862 { 863 struct intel_vgpu *vgpu = s->vgpu; 864 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; 865 struct intel_vgpu_mm *mm; 866 u64 pdps[GEN8_3LVL_PDPES]; 867 868 if (shadow_mm->ppgtt_mm.root_entry_type == 869 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 870 pdps[0] = (u64)cmd_val(s, 2) << 32; 871 pdps[0] |= cmd_val(s, 4); 872 873 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 874 if (!mm) { 875 gvt_vgpu_err("failed to get the 4-level shadow vm\n"); 876 return -EINVAL; 877 } 878 intel_vgpu_mm_get(mm); 879 list_add_tail(&mm->ppgtt_mm.link, 880 &s->workload->lri_shadow_mm); 881 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 882 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]); 883 } else { 884 /* Currently all guests use PML4 table and now can't 885 * have a guest with 3-level table but uses LRI for 886 * PPGTT update. So this is simply un-testable. */ 887 GEM_BUG_ON(1); 888 gvt_vgpu_err("invalid shared shadow vm type\n"); 889 return -EINVAL; 890 } 891 return 0; 892 } 893 894 static int cmd_reg_handler(struct parser_exec_state *s, 895 unsigned int offset, unsigned int index, char *cmd) 896 { 897 struct intel_vgpu *vgpu = s->vgpu; 898 struct intel_gvt *gvt = vgpu->gvt; 899 u32 ctx_sr_ctl; 900 u32 *vreg, vreg_old; 901 902 if (offset + 4 > gvt->device_info.mmio_size) { 903 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n", 904 cmd, offset); 905 return -EFAULT; 906 } 907 908 if (is_init_ctx(s)) { 909 struct intel_gvt_mmio_info *mmio_info; 910 911 intel_gvt_mmio_set_cmd_accessible(gvt, offset); 912 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 913 if (mmio_info && mmio_info->write) 914 intel_gvt_mmio_set_cmd_write_patch(gvt, offset); 915 return 0; 916 } 917 918 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) { 919 gvt_vgpu_err("%s access to non-render register (%x)\n", 920 cmd, offset); 921 return -EBADRQC; 922 } 923 924 if (!strncmp(cmd, "srm", 3) || 925 !strncmp(cmd, "lrm", 3)) { 926 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) || 927 offset == 0x21f0 || 928 (IS_BROADWELL(gvt->gt->i915) && 929 offset == i915_mmio_reg_offset(INSTPM))) 930 return 0; 931 else { 932 gvt_vgpu_err("%s access to register (%x)\n", 933 cmd, offset); 934 return -EPERM; 935 } 936 } 937 938 if (!strncmp(cmd, "lrr-src", 7) || 939 !strncmp(cmd, "lrr-dst", 7)) { 940 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c) 941 return 0; 942 else { 943 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset); 944 return -EPERM; 945 } 946 } 947 948 if (!strncmp(cmd, "pipe_ctrl", 9)) { 949 /* TODO: add LRI POST logic here */ 950 return 0; 951 } 952 953 if (strncmp(cmd, "lri", 3)) 954 return -EPERM; 955 956 /* below are all lri handlers */ 957 vreg = &vgpu_vreg(s->vgpu, offset); 958 959 if (is_cmd_update_pdps(offset, s) && 960 cmd_pdp_mmio_update_handler(s, offset, index)) 961 return -EINVAL; 962 963 if (offset == i915_mmio_reg_offset(DERRMR) || 964 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) { 965 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */ 966 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE); 967 } 968 969 if (is_mocs_mmio(offset)) 970 *vreg = cmd_val(s, index + 1); 971 972 vreg_old = *vreg; 973 974 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) { 975 u32 cmdval_new, cmdval; 976 struct intel_gvt_mmio_info *mmio_info; 977 978 cmdval = cmd_val(s, index + 1); 979 980 mmio_info = intel_gvt_find_mmio_info(gvt, offset); 981 if (!mmio_info) { 982 cmdval_new = cmdval; 983 } else { 984 u64 ro_mask = mmio_info->ro_mask; 985 int ret; 986 987 if (likely(!ro_mask)) 988 ret = mmio_info->write(s->vgpu, offset, 989 &cmdval, 4); 990 else { 991 gvt_vgpu_err("try to write RO reg %x\n", 992 offset); 993 ret = -EBADRQC; 994 } 995 if (ret) 996 return ret; 997 cmdval_new = *vreg; 998 } 999 if (cmdval_new != cmdval) 1000 patch_value(s, cmd_ptr(s, index+1), cmdval_new); 1001 } 1002 1003 /* only patch cmd. restore vreg value if changed in mmio write handler*/ 1004 *vreg = vreg_old; 1005 1006 /* TODO 1007 * In order to let workload with inhibit context to generate 1008 * correct image data into memory, vregs values will be loaded to 1009 * hw via LRIs in the workload with inhibit context. But as 1010 * indirect context is loaded prior to LRIs in workload, we don't 1011 * want reg values specified in indirect context overwritten by 1012 * LRIs in workloads. So, when scanning an indirect context, we 1013 * update reg values in it into vregs, so LRIs in workload with 1014 * inhibit context will restore with correct values 1015 */ 1016 if (GRAPHICS_VER(s->engine->i915) == 9 && 1017 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) && 1018 !strncmp(cmd, "lri", 3)) { 1019 intel_gvt_read_gpa(s->vgpu, 1020 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); 1021 /* check inhibit context */ 1022 if (ctx_sr_ctl & 1) { 1023 u32 data = cmd_val(s, index + 1); 1024 1025 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset)) 1026 intel_vgpu_mask_mmio_write(vgpu, 1027 offset, &data, 4); 1028 else 1029 vgpu_vreg(vgpu, offset) = data; 1030 } 1031 } 1032 1033 return 0; 1034 } 1035 1036 #define cmd_reg(s, i) \ 1037 (cmd_val(s, i) & GENMASK(22, 2)) 1038 1039 #define cmd_reg_inhibit(s, i) \ 1040 (cmd_val(s, i) & GENMASK(22, 18)) 1041 1042 #define cmd_gma(s, i) \ 1043 (cmd_val(s, i) & GENMASK(31, 2)) 1044 1045 #define cmd_gma_hi(s, i) \ 1046 (cmd_val(s, i) & GENMASK(15, 0)) 1047 1048 static int cmd_handler_lri(struct parser_exec_state *s) 1049 { 1050 int i, ret = 0; 1051 int cmd_len = cmd_length(s); 1052 1053 for (i = 1; i < cmd_len; i += 2) { 1054 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) { 1055 if (s->engine->id == BCS0 && 1056 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR)) 1057 ret |= 0; 1058 else 1059 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0; 1060 } 1061 if (ret) 1062 break; 1063 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri"); 1064 if (ret) 1065 break; 1066 } 1067 return ret; 1068 } 1069 1070 static int cmd_handler_lrr(struct parser_exec_state *s) 1071 { 1072 int i, ret = 0; 1073 int cmd_len = cmd_length(s); 1074 1075 for (i = 1; i < cmd_len; i += 2) { 1076 if (IS_BROADWELL(s->engine->i915)) 1077 ret |= ((cmd_reg_inhibit(s, i) || 1078 (cmd_reg_inhibit(s, i + 1)))) ? 1079 -EBADRQC : 0; 1080 if (ret) 1081 break; 1082 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src"); 1083 if (ret) 1084 break; 1085 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst"); 1086 if (ret) 1087 break; 1088 } 1089 return ret; 1090 } 1091 1092 static inline int cmd_address_audit(struct parser_exec_state *s, 1093 unsigned long guest_gma, int op_size, bool index_mode); 1094 1095 static int cmd_handler_lrm(struct parser_exec_state *s) 1096 { 1097 struct intel_gvt *gvt = s->vgpu->gvt; 1098 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; 1099 unsigned long gma; 1100 int i, ret = 0; 1101 int cmd_len = cmd_length(s); 1102 1103 for (i = 1; i < cmd_len;) { 1104 if (IS_BROADWELL(s->engine->i915)) 1105 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0; 1106 if (ret) 1107 break; 1108 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm"); 1109 if (ret) 1110 break; 1111 if (cmd_val(s, 0) & (1 << 22)) { 1112 gma = cmd_gma(s, i + 1); 1113 if (gmadr_bytes == 8) 1114 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1115 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1116 if (ret) 1117 break; 1118 } 1119 i += gmadr_dw_number(s) + 1; 1120 } 1121 return ret; 1122 } 1123 1124 static int cmd_handler_srm(struct parser_exec_state *s) 1125 { 1126 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1127 unsigned long gma; 1128 int i, ret = 0; 1129 int cmd_len = cmd_length(s); 1130 1131 for (i = 1; i < cmd_len;) { 1132 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm"); 1133 if (ret) 1134 break; 1135 if (cmd_val(s, 0) & (1 << 22)) { 1136 gma = cmd_gma(s, i + 1); 1137 if (gmadr_bytes == 8) 1138 gma |= (cmd_gma_hi(s, i + 2)) << 32; 1139 ret |= cmd_address_audit(s, gma, sizeof(u32), false); 1140 if (ret) 1141 break; 1142 } 1143 i += gmadr_dw_number(s) + 1; 1144 } 1145 return ret; 1146 } 1147 1148 struct cmd_interrupt_event { 1149 int pipe_control_notify; 1150 int mi_flush_dw; 1151 int mi_user_interrupt; 1152 }; 1153 1154 static const struct cmd_interrupt_event cmd_interrupt_events[] = { 1155 [RCS0] = { 1156 .pipe_control_notify = RCS_PIPE_CONTROL, 1157 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED, 1158 .mi_user_interrupt = RCS_MI_USER_INTERRUPT, 1159 }, 1160 [BCS0] = { 1161 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1162 .mi_flush_dw = BCS_MI_FLUSH_DW, 1163 .mi_user_interrupt = BCS_MI_USER_INTERRUPT, 1164 }, 1165 [VCS0] = { 1166 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1167 .mi_flush_dw = VCS_MI_FLUSH_DW, 1168 .mi_user_interrupt = VCS_MI_USER_INTERRUPT, 1169 }, 1170 [VCS1] = { 1171 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1172 .mi_flush_dw = VCS2_MI_FLUSH_DW, 1173 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT, 1174 }, 1175 [VECS0] = { 1176 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED, 1177 .mi_flush_dw = VECS_MI_FLUSH_DW, 1178 .mi_user_interrupt = VECS_MI_USER_INTERRUPT, 1179 }, 1180 }; 1181 1182 static int cmd_handler_pipe_control(struct parser_exec_state *s) 1183 { 1184 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1185 unsigned long gma; 1186 bool index_mode = false; 1187 unsigned int post_sync; 1188 int ret = 0; 1189 u32 hws_pga, val; 1190 1191 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14; 1192 1193 /* LRI post sync */ 1194 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE) 1195 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl"); 1196 /* post sync */ 1197 else if (post_sync) { 1198 if (post_sync == 2) 1199 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl"); 1200 else if (post_sync == 3) 1201 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl"); 1202 else if (post_sync == 1) { 1203 /* check ggtt*/ 1204 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) { 1205 gma = cmd_val(s, 2) & GENMASK(31, 3); 1206 if (gmadr_bytes == 8) 1207 gma |= (cmd_gma_hi(s, 3)) << 32; 1208 /* Store Data Index */ 1209 if (cmd_val(s, 1) & (1 << 21)) 1210 index_mode = true; 1211 ret |= cmd_address_audit(s, gma, sizeof(u64), 1212 index_mode); 1213 if (ret) 1214 return ret; 1215 if (index_mode) { 1216 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1217 gma = hws_pga + gma; 1218 patch_value(s, cmd_ptr(s, 2), gma); 1219 val = cmd_val(s, 1) & (~(1 << 21)); 1220 patch_value(s, cmd_ptr(s, 1), val); 1221 } 1222 } 1223 } 1224 } 1225 1226 if (ret) 1227 return ret; 1228 1229 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY) 1230 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify, 1231 s->workload->pending_events); 1232 return 0; 1233 } 1234 1235 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s) 1236 { 1237 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt, 1238 s->workload->pending_events); 1239 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1240 return 0; 1241 } 1242 1243 static int cmd_advance_default(struct parser_exec_state *s) 1244 { 1245 return ip_gma_advance(s, cmd_length(s)); 1246 } 1247 1248 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s) 1249 { 1250 int ret; 1251 1252 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 1253 s->buf_type = BATCH_BUFFER_INSTRUCTION; 1254 ret = ip_gma_set(s, s->ret_ip_gma_bb); 1255 s->buf_addr_type = s->saved_buf_addr_type; 1256 } else if (s->buf_type == RING_BUFFER_CTX) { 1257 ret = ip_gma_set(s, s->ring_tail); 1258 } else { 1259 s->buf_type = RING_BUFFER_INSTRUCTION; 1260 s->buf_addr_type = GTT_BUFFER; 1261 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size) 1262 s->ret_ip_gma_ring -= s->ring_size; 1263 ret = ip_gma_set(s, s->ret_ip_gma_ring); 1264 } 1265 return ret; 1266 } 1267 1268 struct mi_display_flip_command_info { 1269 int pipe; 1270 int plane; 1271 int event; 1272 i915_reg_t stride_reg; 1273 i915_reg_t ctrl_reg; 1274 i915_reg_t surf_reg; 1275 u64 stride_val; 1276 u64 tile_val; 1277 u64 surf_val; 1278 bool async_flip; 1279 }; 1280 1281 struct plane_code_mapping { 1282 int pipe; 1283 int plane; 1284 int event; 1285 }; 1286 1287 static int gen8_decode_mi_display_flip(struct parser_exec_state *s, 1288 struct mi_display_flip_command_info *info) 1289 { 1290 struct drm_i915_private *dev_priv = s->engine->i915; 1291 struct intel_display *display = dev_priv->display; 1292 struct plane_code_mapping gen8_plane_code[] = { 1293 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE}, 1294 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE}, 1295 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE}, 1296 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE}, 1297 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE}, 1298 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE}, 1299 }; 1300 u32 dword0, dword1, dword2; 1301 u32 v; 1302 1303 dword0 = cmd_val(s, 0); 1304 dword1 = cmd_val(s, 1); 1305 dword2 = cmd_val(s, 2); 1306 1307 v = (dword0 & GENMASK(21, 19)) >> 19; 1308 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code))) 1309 return -EBADRQC; 1310 1311 info->pipe = gen8_plane_code[v].pipe; 1312 info->plane = gen8_plane_code[v].plane; 1313 info->event = gen8_plane_code[v].event; 1314 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1315 info->tile_val = (dword1 & 0x1); 1316 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1317 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1318 1319 if (info->plane == PLANE_A) { 1320 info->ctrl_reg = DSPCNTR(display, info->pipe); 1321 info->stride_reg = DSPSTRIDE(display, info->pipe); 1322 info->surf_reg = DSPSURF(display, info->pipe); 1323 } else if (info->plane == PLANE_B) { 1324 info->ctrl_reg = SPRCTL(info->pipe); 1325 info->stride_reg = SPRSTRIDE(info->pipe); 1326 info->surf_reg = SPRSURF(info->pipe); 1327 } else { 1328 drm_WARN_ON(&dev_priv->drm, 1); 1329 return -EBADRQC; 1330 } 1331 return 0; 1332 } 1333 1334 static int skl_decode_mi_display_flip(struct parser_exec_state *s, 1335 struct mi_display_flip_command_info *info) 1336 { 1337 struct drm_i915_private *dev_priv = s->engine->i915; 1338 struct intel_display *display = dev_priv->display; 1339 struct intel_vgpu *vgpu = s->vgpu; 1340 u32 dword0 = cmd_val(s, 0); 1341 u32 dword1 = cmd_val(s, 1); 1342 u32 dword2 = cmd_val(s, 2); 1343 u32 plane = (dword0 & GENMASK(12, 8)) >> 8; 1344 1345 info->plane = PRIMARY_PLANE; 1346 1347 switch (plane) { 1348 case MI_DISPLAY_FLIP_SKL_PLANE_1_A: 1349 info->pipe = PIPE_A; 1350 info->event = PRIMARY_A_FLIP_DONE; 1351 break; 1352 case MI_DISPLAY_FLIP_SKL_PLANE_1_B: 1353 info->pipe = PIPE_B; 1354 info->event = PRIMARY_B_FLIP_DONE; 1355 break; 1356 case MI_DISPLAY_FLIP_SKL_PLANE_1_C: 1357 info->pipe = PIPE_C; 1358 info->event = PRIMARY_C_FLIP_DONE; 1359 break; 1360 1361 case MI_DISPLAY_FLIP_SKL_PLANE_2_A: 1362 info->pipe = PIPE_A; 1363 info->event = SPRITE_A_FLIP_DONE; 1364 info->plane = SPRITE_PLANE; 1365 break; 1366 case MI_DISPLAY_FLIP_SKL_PLANE_2_B: 1367 info->pipe = PIPE_B; 1368 info->event = SPRITE_B_FLIP_DONE; 1369 info->plane = SPRITE_PLANE; 1370 break; 1371 case MI_DISPLAY_FLIP_SKL_PLANE_2_C: 1372 info->pipe = PIPE_C; 1373 info->event = SPRITE_C_FLIP_DONE; 1374 info->plane = SPRITE_PLANE; 1375 break; 1376 1377 default: 1378 gvt_vgpu_err("unknown plane code %d\n", plane); 1379 return -EBADRQC; 1380 } 1381 1382 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6; 1383 info->tile_val = (dword1 & GENMASK(2, 0)); 1384 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12; 1385 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1); 1386 1387 info->ctrl_reg = DSPCNTR(display, info->pipe); 1388 info->stride_reg = DSPSTRIDE(display, info->pipe); 1389 info->surf_reg = DSPSURF(display, info->pipe); 1390 1391 return 0; 1392 } 1393 1394 static int gen8_check_mi_display_flip(struct parser_exec_state *s, 1395 struct mi_display_flip_command_info *info) 1396 { 1397 u32 stride, tile; 1398 1399 if (!info->async_flip) 1400 return 0; 1401 1402 if (GRAPHICS_VER(s->engine->i915) >= 9) { 1403 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0); 1404 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & 1405 GENMASK(12, 10)) >> 10; 1406 } else { 1407 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) & 1408 GENMASK(15, 6)) >> 6; 1409 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10; 1410 } 1411 1412 if (stride != info->stride_val) 1413 gvt_dbg_cmd("cannot change stride during async flip\n"); 1414 1415 if (tile != info->tile_val) 1416 gvt_dbg_cmd("cannot change tile during async flip\n"); 1417 1418 return 0; 1419 } 1420 1421 static int gen8_update_plane_mmio_from_mi_display_flip( 1422 struct parser_exec_state *s, 1423 struct mi_display_flip_command_info *info) 1424 { 1425 struct drm_i915_private *dev_priv = s->engine->i915; 1426 struct intel_display *display = dev_priv->display; 1427 struct intel_vgpu *vgpu = s->vgpu; 1428 1429 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12), 1430 info->surf_val << 12); 1431 if (GRAPHICS_VER(dev_priv) >= 9) { 1432 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0), 1433 info->stride_val); 1434 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10), 1435 info->tile_val << 10); 1436 } else { 1437 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6), 1438 info->stride_val << 6); 1439 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10), 1440 info->tile_val << 10); 1441 } 1442 1443 if (info->plane == PLANE_PRIMARY) 1444 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, info->pipe))++; 1445 1446 if (info->async_flip) 1447 intel_vgpu_trigger_virtual_event(vgpu, info->event); 1448 else 1449 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]); 1450 1451 return 0; 1452 } 1453 1454 static int decode_mi_display_flip(struct parser_exec_state *s, 1455 struct mi_display_flip_command_info *info) 1456 { 1457 if (IS_BROADWELL(s->engine->i915)) 1458 return gen8_decode_mi_display_flip(s, info); 1459 if (GRAPHICS_VER(s->engine->i915) >= 9) 1460 return skl_decode_mi_display_flip(s, info); 1461 1462 return -ENODEV; 1463 } 1464 1465 static int check_mi_display_flip(struct parser_exec_state *s, 1466 struct mi_display_flip_command_info *info) 1467 { 1468 return gen8_check_mi_display_flip(s, info); 1469 } 1470 1471 static int update_plane_mmio_from_mi_display_flip( 1472 struct parser_exec_state *s, 1473 struct mi_display_flip_command_info *info) 1474 { 1475 return gen8_update_plane_mmio_from_mi_display_flip(s, info); 1476 } 1477 1478 static int cmd_handler_mi_display_flip(struct parser_exec_state *s) 1479 { 1480 struct mi_display_flip_command_info info; 1481 struct intel_vgpu *vgpu = s->vgpu; 1482 int ret; 1483 int i; 1484 int len = cmd_length(s); 1485 u32 valid_len = CMD_LEN(1); 1486 1487 /* Flip Type == Stereo 3D Flip */ 1488 if (DWORD_FIELD(2, 1, 0) == 2) 1489 valid_len++; 1490 ret = gvt_check_valid_cmd_length(cmd_length(s), 1491 valid_len); 1492 if (ret) 1493 return ret; 1494 1495 ret = decode_mi_display_flip(s, &info); 1496 if (ret) { 1497 gvt_vgpu_err("fail to decode MI display flip command\n"); 1498 return ret; 1499 } 1500 1501 ret = check_mi_display_flip(s, &info); 1502 if (ret) { 1503 gvt_vgpu_err("invalid MI display flip command\n"); 1504 return ret; 1505 } 1506 1507 ret = update_plane_mmio_from_mi_display_flip(s, &info); 1508 if (ret) { 1509 gvt_vgpu_err("fail to update plane mmio\n"); 1510 return ret; 1511 } 1512 1513 for (i = 0; i < len; i++) 1514 patch_value(s, cmd_ptr(s, i), MI_NOOP); 1515 return 0; 1516 } 1517 1518 static bool is_wait_for_flip_pending(u32 cmd) 1519 { 1520 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING | 1521 MI_WAIT_FOR_PLANE_B_FLIP_PENDING | 1522 MI_WAIT_FOR_PLANE_C_FLIP_PENDING | 1523 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING | 1524 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING | 1525 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING); 1526 } 1527 1528 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s) 1529 { 1530 u32 cmd = cmd_val(s, 0); 1531 1532 if (!is_wait_for_flip_pending(cmd)) 1533 return 0; 1534 1535 patch_value(s, cmd_ptr(s, 0), MI_NOOP); 1536 return 0; 1537 } 1538 1539 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index) 1540 { 1541 unsigned long addr; 1542 unsigned long gma_high, gma_low; 1543 struct intel_vgpu *vgpu = s->vgpu; 1544 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1545 1546 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) { 1547 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes); 1548 return INTEL_GVT_INVALID_ADDR; 1549 } 1550 1551 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK; 1552 if (gmadr_bytes == 4) { 1553 addr = gma_low; 1554 } else { 1555 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK; 1556 addr = (((unsigned long)gma_high) << 32) | gma_low; 1557 } 1558 return addr; 1559 } 1560 1561 static inline int cmd_address_audit(struct parser_exec_state *s, 1562 unsigned long guest_gma, int op_size, bool index_mode) 1563 { 1564 struct intel_vgpu *vgpu = s->vgpu; 1565 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size; 1566 int i; 1567 int ret; 1568 1569 if (op_size > max_surface_size) { 1570 gvt_vgpu_err("command address audit fail name %s\n", 1571 s->info->name); 1572 return -EFAULT; 1573 } 1574 1575 if (index_mode) { 1576 if (guest_gma >= I915_GTT_PAGE_SIZE) { 1577 ret = -EFAULT; 1578 goto err; 1579 } 1580 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) { 1581 ret = -EFAULT; 1582 goto err; 1583 } 1584 1585 return 0; 1586 1587 err: 1588 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n", 1589 s->info->name, guest_gma, op_size); 1590 1591 pr_err("cmd dump: "); 1592 for (i = 0; i < cmd_length(s); i++) { 1593 if (!(i % 4)) 1594 pr_err("\n%08x ", cmd_val(s, i)); 1595 else 1596 pr_err("%08x ", cmd_val(s, i)); 1597 } 1598 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n", 1599 vgpu->id, 1600 vgpu_aperture_gmadr_base(vgpu), 1601 vgpu_aperture_gmadr_end(vgpu), 1602 vgpu_hidden_gmadr_base(vgpu), 1603 vgpu_hidden_gmadr_end(vgpu)); 1604 return ret; 1605 } 1606 1607 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s) 1608 { 1609 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1610 int op_size = (cmd_length(s) - 3) * sizeof(u32); 1611 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0; 1612 unsigned long gma, gma_low, gma_high; 1613 u32 valid_len = CMD_LEN(2); 1614 int ret = 0; 1615 1616 /* check ppggt */ 1617 if (!(cmd_val(s, 0) & (1 << 22))) 1618 return 0; 1619 1620 /* check if QWORD */ 1621 if (DWORD_FIELD(0, 21, 21)) 1622 valid_len++; 1623 ret = gvt_check_valid_cmd_length(cmd_length(s), 1624 valid_len); 1625 if (ret) 1626 return ret; 1627 1628 gma = cmd_val(s, 2) & GENMASK(31, 2); 1629 1630 if (gmadr_bytes == 8) { 1631 gma_low = cmd_val(s, 1) & GENMASK(31, 2); 1632 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1633 gma = (gma_high << 32) | gma_low; 1634 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0; 1635 } 1636 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false); 1637 return ret; 1638 } 1639 1640 static inline int unexpected_cmd(struct parser_exec_state *s) 1641 { 1642 struct intel_vgpu *vgpu = s->vgpu; 1643 1644 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name); 1645 1646 return -EBADRQC; 1647 } 1648 1649 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s) 1650 { 1651 return unexpected_cmd(s); 1652 } 1653 1654 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s) 1655 { 1656 return unexpected_cmd(s); 1657 } 1658 1659 static int cmd_handler_mi_op_2e(struct parser_exec_state *s) 1660 { 1661 return unexpected_cmd(s); 1662 } 1663 1664 static int cmd_handler_mi_op_2f(struct parser_exec_state *s) 1665 { 1666 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1667 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) * 1668 sizeof(u32); 1669 unsigned long gma, gma_high; 1670 u32 valid_len = CMD_LEN(1); 1671 int ret = 0; 1672 1673 if (!(cmd_val(s, 0) & (1 << 22))) 1674 return ret; 1675 1676 /* check inline data */ 1677 if (cmd_val(s, 0) & BIT(18)) 1678 valid_len = CMD_LEN(9); 1679 ret = gvt_check_valid_cmd_length(cmd_length(s), 1680 valid_len); 1681 if (ret) 1682 return ret; 1683 1684 gma = cmd_val(s, 1) & GENMASK(31, 2); 1685 if (gmadr_bytes == 8) { 1686 gma_high = cmd_val(s, 2) & GENMASK(15, 0); 1687 gma = (gma_high << 32) | gma; 1688 } 1689 ret = cmd_address_audit(s, gma, op_size, false); 1690 return ret; 1691 } 1692 1693 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s) 1694 { 1695 return unexpected_cmd(s); 1696 } 1697 1698 static int cmd_handler_mi_clflush(struct parser_exec_state *s) 1699 { 1700 return unexpected_cmd(s); 1701 } 1702 1703 static int cmd_handler_mi_conditional_batch_buffer_end( 1704 struct parser_exec_state *s) 1705 { 1706 return unexpected_cmd(s); 1707 } 1708 1709 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s) 1710 { 1711 return unexpected_cmd(s); 1712 } 1713 1714 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s) 1715 { 1716 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd; 1717 unsigned long gma; 1718 bool index_mode = false; 1719 int ret = 0; 1720 u32 hws_pga, val; 1721 u32 valid_len = CMD_LEN(2); 1722 1723 ret = gvt_check_valid_cmd_length(cmd_length(s), 1724 valid_len); 1725 if (ret) { 1726 /* Check again for Qword */ 1727 ret = gvt_check_valid_cmd_length(cmd_length(s), 1728 ++valid_len); 1729 return ret; 1730 } 1731 1732 /* Check post-sync and ppgtt bit */ 1733 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) { 1734 gma = cmd_val(s, 1) & GENMASK(31, 3); 1735 if (gmadr_bytes == 8) 1736 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32; 1737 /* Store Data Index */ 1738 if (cmd_val(s, 0) & (1 << 21)) 1739 index_mode = true; 1740 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode); 1741 if (ret) 1742 return ret; 1743 if (index_mode) { 1744 hws_pga = s->vgpu->hws_pga[s->engine->id]; 1745 gma = hws_pga + gma; 1746 patch_value(s, cmd_ptr(s, 1), gma); 1747 val = cmd_val(s, 0) & (~(1 << 21)); 1748 patch_value(s, cmd_ptr(s, 0), val); 1749 } 1750 } 1751 /* Check notify bit */ 1752 if ((cmd_val(s, 0) & (1 << 8))) 1753 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw, 1754 s->workload->pending_events); 1755 return ret; 1756 } 1757 1758 static void addr_type_update_snb(struct parser_exec_state *s) 1759 { 1760 if ((s->buf_type == RING_BUFFER_INSTRUCTION) && 1761 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) { 1762 s->buf_addr_type = PPGTT_BUFFER; 1763 } 1764 } 1765 1766 1767 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm, 1768 unsigned long gma, unsigned long end_gma, void *va) 1769 { 1770 unsigned long copy_len, offset; 1771 unsigned long len = 0; 1772 unsigned long gpa; 1773 1774 while (gma != end_gma) { 1775 gpa = intel_vgpu_gma_to_gpa(mm, gma); 1776 if (gpa == INTEL_GVT_INVALID_ADDR) { 1777 gvt_vgpu_err("invalid gma address: %lx\n", gma); 1778 return -EFAULT; 1779 } 1780 1781 offset = gma & (I915_GTT_PAGE_SIZE - 1); 1782 1783 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ? 1784 I915_GTT_PAGE_SIZE - offset : end_gma - gma; 1785 1786 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len); 1787 1788 len += copy_len; 1789 gma += copy_len; 1790 } 1791 return len; 1792 } 1793 1794 1795 /* 1796 * Check whether a batch buffer needs to be scanned. Currently 1797 * the only criteria is based on privilege. 1798 */ 1799 static int batch_buffer_needs_scan(struct parser_exec_state *s) 1800 { 1801 /* Decide privilege based on address space */ 1802 if (cmd_val(s, 0) & BIT(8) && 1803 !(s->vgpu->scan_nonprivbb & s->engine->mask)) 1804 return 0; 1805 1806 return 1; 1807 } 1808 1809 static const char *repr_addr_type(unsigned int type) 1810 { 1811 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt"; 1812 } 1813 1814 static int find_bb_size(struct parser_exec_state *s, 1815 unsigned long *bb_size, 1816 unsigned long *bb_end_cmd_offset) 1817 { 1818 unsigned long gma = 0; 1819 const struct cmd_info *info; 1820 u32 cmd_len = 0; 1821 bool bb_end = false; 1822 struct intel_vgpu *vgpu = s->vgpu; 1823 u32 cmd; 1824 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1825 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1826 1827 *bb_size = 0; 1828 *bb_end_cmd_offset = 0; 1829 1830 /* get the start gm address of the batch buffer */ 1831 gma = get_gma_bb_from_cmd(s, 1); 1832 if (gma == INTEL_GVT_INVALID_ADDR) 1833 return -EFAULT; 1834 1835 cmd = cmd_val(s, 0); 1836 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1837 if (info == NULL) { 1838 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1839 cmd, get_opcode(cmd, s->engine), 1840 repr_addr_type(s->buf_addr_type), 1841 s->engine->name, s->workload); 1842 return -EBADRQC; 1843 } 1844 do { 1845 if (copy_gma_to_hva(s->vgpu, mm, 1846 gma, gma + 4, &cmd) < 0) 1847 return -EFAULT; 1848 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1849 if (info == NULL) { 1850 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1851 cmd, get_opcode(cmd, s->engine), 1852 repr_addr_type(s->buf_addr_type), 1853 s->engine->name, s->workload); 1854 return -EBADRQC; 1855 } 1856 1857 if (info->opcode == OP_MI_BATCH_BUFFER_END) { 1858 bb_end = true; 1859 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) { 1860 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) 1861 /* chained batch buffer */ 1862 bb_end = true; 1863 } 1864 1865 if (bb_end) 1866 *bb_end_cmd_offset = *bb_size; 1867 1868 cmd_len = get_cmd_length(info, cmd) << 2; 1869 *bb_size += cmd_len; 1870 gma += cmd_len; 1871 } while (!bb_end); 1872 1873 return 0; 1874 } 1875 1876 static int audit_bb_end(struct parser_exec_state *s, void *va) 1877 { 1878 struct intel_vgpu *vgpu = s->vgpu; 1879 u32 cmd = *(u32 *)va; 1880 const struct cmd_info *info; 1881 1882 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 1883 if (info == NULL) { 1884 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 1885 cmd, get_opcode(cmd, s->engine), 1886 repr_addr_type(s->buf_addr_type), 1887 s->engine->name, s->workload); 1888 return -EBADRQC; 1889 } 1890 1891 if ((info->opcode == OP_MI_BATCH_BUFFER_END) || 1892 ((info->opcode == OP_MI_BATCH_BUFFER_START) && 1893 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0))) 1894 return 0; 1895 1896 return -EBADRQC; 1897 } 1898 1899 static int perform_bb_shadow(struct parser_exec_state *s) 1900 { 1901 struct intel_vgpu *vgpu = s->vgpu; 1902 struct intel_vgpu_shadow_bb *bb; 1903 unsigned long gma = 0; 1904 unsigned long bb_size; 1905 unsigned long bb_end_cmd_offset; 1906 int ret = 0; 1907 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ? 1908 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; 1909 unsigned long start_offset = 0; 1910 1911 /* Get the start gm address of the batch buffer */ 1912 gma = get_gma_bb_from_cmd(s, 1); 1913 if (gma == INTEL_GVT_INVALID_ADDR) 1914 return -EFAULT; 1915 1916 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset); 1917 if (ret) 1918 return ret; 1919 1920 bb = kzalloc(sizeof(*bb), GFP_KERNEL); 1921 if (!bb) 1922 return -ENOMEM; 1923 1924 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true; 1925 1926 /* 1927 * The start_offset stores the batch buffer's start gma's 1928 * offset relative to page boundary. So for non-privileged batch 1929 * buffer, the shadowed gem object holds exactly the same page 1930 * layout as original gem object. This is for the convenience of 1931 * replacing the whole non-privilged batch buffer page to this 1932 * shadowed one in PPGTT at the same gma address. (This replacing 1933 * action is not implemented yet now, but may be necessary in 1934 * future). 1935 * For prileged batch buffer, we just change start gma address to 1936 * that of shadowed page. 1937 */ 1938 if (bb->ppgtt) 1939 start_offset = gma & ~I915_GTT_PAGE_MASK; 1940 1941 bb->obj = i915_gem_object_create_shmem(s->engine->i915, 1942 round_up(bb_size + start_offset, 1943 PAGE_SIZE)); 1944 if (IS_ERR(bb->obj)) { 1945 ret = PTR_ERR(bb->obj); 1946 goto err_free_bb; 1947 } 1948 1949 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB); 1950 if (IS_ERR(bb->va)) { 1951 ret = PTR_ERR(bb->va); 1952 goto err_free_obj; 1953 } 1954 1955 ret = copy_gma_to_hva(s->vgpu, mm, 1956 gma, gma + bb_size, 1957 bb->va + start_offset); 1958 if (ret < 0) { 1959 gvt_vgpu_err("fail to copy guest ring buffer\n"); 1960 ret = -EFAULT; 1961 goto err_unmap; 1962 } 1963 1964 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset); 1965 if (ret) 1966 goto err_unmap; 1967 1968 i915_gem_object_unlock(bb->obj); 1969 INIT_LIST_HEAD(&bb->list); 1970 list_add(&bb->list, &s->workload->shadow_bb); 1971 1972 bb->bb_start_cmd_va = s->ip_va; 1973 1974 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa)) 1975 bb->bb_offset = s->ip_va - s->rb_va; 1976 else 1977 bb->bb_offset = 0; 1978 1979 /* 1980 * ip_va saves the virtual address of the shadow batch buffer, while 1981 * ip_gma saves the graphics address of the original batch buffer. 1982 * As the shadow batch buffer is just a copy from the original one, 1983 * it should be right to use shadow batch buffer'va and original batch 1984 * buffer's gma in pair. After all, we don't want to pin the shadow 1985 * buffer here (too early). 1986 */ 1987 s->ip_va = bb->va + start_offset; 1988 s->ip_gma = gma; 1989 return 0; 1990 err_unmap: 1991 i915_gem_object_unpin_map(bb->obj); 1992 err_free_obj: 1993 i915_gem_object_put(bb->obj); 1994 err_free_bb: 1995 kfree(bb); 1996 return ret; 1997 } 1998 1999 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s) 2000 { 2001 bool second_level; 2002 int ret = 0; 2003 struct intel_vgpu *vgpu = s->vgpu; 2004 2005 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) { 2006 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n"); 2007 return -EFAULT; 2008 } 2009 2010 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1; 2011 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) { 2012 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n"); 2013 return -EFAULT; 2014 } 2015 2016 s->saved_buf_addr_type = s->buf_addr_type; 2017 addr_type_update_snb(s); 2018 if (s->buf_type == RING_BUFFER_INSTRUCTION) { 2019 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32); 2020 s->buf_type = BATCH_BUFFER_INSTRUCTION; 2021 } else if (second_level) { 2022 s->buf_type = BATCH_BUFFER_2ND_LEVEL; 2023 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32); 2024 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32); 2025 } 2026 2027 if (batch_buffer_needs_scan(s)) { 2028 ret = perform_bb_shadow(s); 2029 if (ret < 0) 2030 gvt_vgpu_err("invalid shadow batch buffer\n"); 2031 } else { 2032 /* emulate a batch buffer end to do return right */ 2033 ret = cmd_handler_mi_batch_buffer_end(s); 2034 if (ret < 0) 2035 return ret; 2036 } 2037 return ret; 2038 } 2039 2040 static int mi_noop_index; 2041 2042 static const struct cmd_info cmd_info[] = { 2043 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2044 2045 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL, 2046 0, 1, NULL}, 2047 2048 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL, 2049 0, 1, cmd_handler_mi_user_interrupt}, 2050 2051 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS, 2052 D_ALL, 0, 1, cmd_handler_mi_wait_for_event}, 2053 2054 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2055 2056 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2057 NULL}, 2058 2059 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2060 NULL}, 2061 2062 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2063 NULL}, 2064 2065 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2066 NULL}, 2067 2068 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS, 2069 D_ALL, 0, 1, NULL}, 2070 2071 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END, 2072 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2073 cmd_handler_mi_batch_buffer_end}, 2074 2075 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 2076 0, 1, NULL}, 2077 2078 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2079 NULL}, 2080 2081 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL, 2082 D_ALL, 0, 1, NULL}, 2083 2084 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1, 2085 NULL}, 2086 2087 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1, 2088 NULL}, 2089 2090 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR, 2091 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip}, 2092 2093 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED, 2094 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)}, 2095 2096 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL}, 2097 2098 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, 2099 D_ALL, 0, 8, NULL, CMD_LEN(0)}, 2100 2101 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, 2102 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8, 2103 NULL, CMD_LEN(0)}, 2104 2105 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, 2106 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2), 2107 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)}, 2108 2109 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS, 2110 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm}, 2111 2112 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL, 2113 0, 8, cmd_handler_mi_store_data_index}, 2114 2115 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL, 2116 D_ALL, 0, 8, cmd_handler_lri}, 2117 2118 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10, 2119 cmd_handler_mi_update_gtt}, 2120 2121 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, 2122 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2123 cmd_handler_srm, CMD_LEN(2)}, 2124 2125 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6, 2126 cmd_handler_mi_flush_dw}, 2127 2128 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1), 2129 10, cmd_handler_mi_clflush}, 2130 2131 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, 2132 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6, 2133 cmd_handler_mi_report_perf_count, CMD_LEN(2)}, 2134 2135 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, 2136 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2137 cmd_handler_lrm, CMD_LEN(2)}, 2138 2139 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, 2140 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8, 2141 cmd_handler_lrr, CMD_LEN(1)}, 2142 2143 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, 2144 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0, 2145 8, NULL, CMD_LEN(2)}, 2146 2147 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED, 2148 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)}, 2149 2150 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL, 2151 ADDR_FIX_1(2), 8, NULL}, 2152 2153 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 2154 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)}, 2155 2156 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1), 2157 8, cmd_handler_mi_op_2f}, 2158 2159 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START, 2160 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8, 2161 cmd_handler_mi_batch_buffer_start}, 2162 2163 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END, 2164 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8, 2165 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)}, 2166 2167 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST, 2168 R_RCS | R_BCS, D_ALL, 0, 2, NULL}, 2169 2170 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2171 ADDR_FIX_2(4, 7), 8, NULL}, 2172 2173 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL, 2174 0, 8, NULL}, 2175 2176 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT, 2177 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2178 2179 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2180 2181 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL, 2182 0, 8, NULL}, 2183 2184 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2185 ADDR_FIX_1(3), 8, NULL}, 2186 2187 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS, 2188 D_ALL, 0, 8, NULL}, 2189 2190 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL, 2191 ADDR_FIX_1(4), 8, NULL}, 2192 2193 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2194 ADDR_FIX_2(4, 5), 8, NULL}, 2195 2196 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL, 2197 ADDR_FIX_1(4), 8, NULL}, 2198 2199 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL, 2200 ADDR_FIX_2(4, 7), 8, NULL}, 2201 2202 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS, 2203 D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2204 2205 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL}, 2206 2207 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS, 2208 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL}, 2209 2210 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR, 2211 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2212 2213 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT", 2214 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT, 2215 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2216 2217 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS, 2218 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2219 2220 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT, 2221 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2222 2223 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS, 2224 D_ALL, ADDR_FIX_1(4), 8, NULL}, 2225 2226 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS, 2227 D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2228 2229 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT, 2230 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL}, 2231 2232 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT", 2233 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT, 2234 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL}, 2235 2236 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL, 2237 ADDR_FIX_2(4, 5), 8, NULL}, 2238 2239 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE, 2240 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL}, 2241 2242 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", 2243 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP, 2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2245 2246 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC", 2247 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC, 2248 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2249 2250 {"3DSTATE_BLEND_STATE_POINTERS", 2251 OP_3DSTATE_BLEND_STATE_POINTERS, 2252 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2253 2254 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS", 2255 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS, 2256 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2257 2258 {"3DSTATE_BINDING_TABLE_POINTERS_VS", 2259 OP_3DSTATE_BINDING_TABLE_POINTERS_VS, 2260 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2261 2262 {"3DSTATE_BINDING_TABLE_POINTERS_HS", 2263 OP_3DSTATE_BINDING_TABLE_POINTERS_HS, 2264 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2265 2266 {"3DSTATE_BINDING_TABLE_POINTERS_DS", 2267 OP_3DSTATE_BINDING_TABLE_POINTERS_DS, 2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2269 2270 {"3DSTATE_BINDING_TABLE_POINTERS_GS", 2271 OP_3DSTATE_BINDING_TABLE_POINTERS_GS, 2272 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2273 2274 {"3DSTATE_BINDING_TABLE_POINTERS_PS", 2275 OP_3DSTATE_BINDING_TABLE_POINTERS_PS, 2276 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2277 2278 {"3DSTATE_SAMPLER_STATE_POINTERS_VS", 2279 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS, 2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2281 2282 {"3DSTATE_SAMPLER_STATE_POINTERS_HS", 2283 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS, 2284 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2285 2286 {"3DSTATE_SAMPLER_STATE_POINTERS_DS", 2287 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS, 2288 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2289 2290 {"3DSTATE_SAMPLER_STATE_POINTERS_GS", 2291 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS, 2292 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2293 2294 {"3DSTATE_SAMPLER_STATE_POINTERS_PS", 2295 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS, 2296 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2297 2298 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL, 2299 0, 8, NULL}, 2300 2301 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL, 2302 0, 8, NULL}, 2303 2304 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL, 2305 0, 8, NULL}, 2306 2307 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL, 2308 0, 8, NULL}, 2309 2310 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS, 2311 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2312 2313 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS, 2314 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2315 2316 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS, 2317 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2318 2319 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS, 2320 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2321 2322 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS, 2323 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2324 2325 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS, 2326 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2327 2328 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS, 2329 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL}, 2330 2331 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS, 2332 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2333 2334 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS, 2335 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2336 2337 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS, 2338 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2339 2340 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS, 2341 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2342 2343 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS, 2344 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2345 2346 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS, 2347 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2348 2349 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS, 2350 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2351 2352 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS, 2353 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2354 2355 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS, 2356 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2357 2358 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS, 2359 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2360 2361 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS, 2362 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2363 2364 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS, 2365 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2366 2367 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS, 2368 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL}, 2369 2370 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS, 2371 D_BDW_PLUS, 0, 8, NULL}, 2372 2373 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2374 NULL}, 2375 2376 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS, 2377 D_BDW_PLUS, 0, 8, NULL}, 2378 2379 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS, 2380 D_BDW_PLUS, 0, 8, NULL}, 2381 2382 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2383 8, NULL}, 2384 2385 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR, 2386 R_RCS, D_BDW_PLUS, 0, 8, NULL}, 2387 2388 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 2389 8, NULL}, 2390 2391 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2392 NULL}, 2393 2394 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2395 NULL}, 2396 2397 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8, 2398 NULL}, 2399 2400 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS, 2401 D_BDW_PLUS, 0, 8, NULL}, 2402 2403 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR, 2404 R_RCS, D_ALL, 0, 8, NULL}, 2405 2406 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS, 2407 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL}, 2408 2409 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST, 2410 R_RCS, D_ALL, 0, 1, NULL}, 2411 2412 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2413 2414 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR, 2415 R_RCS, D_ALL, 0, 8, NULL}, 2416 2417 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS, 2418 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2419 2420 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2421 2422 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2423 2424 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2425 2426 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS, 2427 D_BDW_PLUS, 0, 8, NULL}, 2428 2429 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS, 2430 D_BDW_PLUS, 0, 8, NULL}, 2431 2432 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS, 2433 D_ALL, 0, 8, NULL}, 2434 2435 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS, 2436 D_BDW_PLUS, 0, 8, NULL}, 2437 2438 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS, 2439 D_BDW_PLUS, 0, 8, NULL}, 2440 2441 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2442 2443 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2444 2445 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2446 2447 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS, 2448 D_ALL, 0, 8, NULL}, 2449 2450 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2451 2452 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2453 2454 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR, 2455 R_RCS, D_ALL, 0, 8, NULL}, 2456 2457 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0, 2458 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2459 2460 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL, 2461 0, 8, NULL}, 2462 2463 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS, 2464 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2465 2466 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET, 2467 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2468 2469 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN, 2470 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2471 2472 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS, 2473 D_ALL, 0, 8, NULL}, 2474 2475 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS, 2476 D_ALL, 0, 8, NULL}, 2477 2478 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS, 2479 D_ALL, 0, 8, NULL}, 2480 2481 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1, 2482 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2483 2484 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS, 2485 D_BDW_PLUS, 0, 8, NULL}, 2486 2487 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS, 2488 D_ALL, ADDR_FIX_1(2), 8, NULL}, 2489 2490 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR, 2491 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL}, 2492 2493 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR, 2494 R_RCS, D_ALL, 0, 8, NULL}, 2495 2496 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS, 2497 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2498 2499 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS, 2500 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2501 2502 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS, 2503 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2504 2505 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS, 2506 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2507 2508 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS, 2509 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2510 2511 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR, 2512 R_RCS, D_ALL, 0, 8, NULL}, 2513 2514 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS, 2515 D_ALL, 0, 9, NULL}, 2516 2517 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2518 ADDR_FIX_2(2, 4), 8, NULL}, 2519 2520 {"3DSTATE_BINDING_TABLE_POOL_ALLOC", 2521 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC, 2522 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2523 2524 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC, 2525 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2526 2527 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC", 2528 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC, 2529 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL}, 2530 2531 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS, 2532 D_BDW_PLUS, 0, 8, NULL}, 2533 2534 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL, 2535 ADDR_FIX_1(2), 8, cmd_handler_pipe_control}, 2536 2537 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2538 2539 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0, 2540 1, NULL}, 2541 2542 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL, 2543 ADDR_FIX_1(1), 8, NULL}, 2544 2545 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2546 2547 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2548 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL}, 2549 2550 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL, 2551 ADDR_FIX_1(1), 8, NULL}, 2552 2553 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS, 2554 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL}, 2555 2556 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2557 2558 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL}, 2559 2560 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 2561 0, 8, NULL}, 2562 2563 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS, 2564 D_SKL_PLUS, 0, 8, NULL}, 2565 2566 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD, 2567 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2568 2569 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL, 2570 0, 16, NULL}, 2571 2572 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL, 2573 0, 16, NULL}, 2574 2575 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL, 2576 0, 16, NULL}, 2577 2578 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL}, 2579 2580 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL, 2581 0, 16, NULL}, 2582 2583 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL, 2584 0, 16, NULL}, 2585 2586 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2587 0, 16, NULL}, 2588 2589 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL, 2590 0, 8, NULL}, 2591 2592 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16, 2593 NULL}, 2594 2595 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45, 2596 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL}, 2597 2598 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR, 2599 R_VCS, D_ALL, 0, 12, NULL}, 2600 2601 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR, 2602 R_VCS, D_ALL, 0, 12, NULL}, 2603 2604 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR, 2605 R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2606 2607 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE, 2608 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2609 2610 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE, 2611 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL}, 2612 2613 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL}, 2614 2615 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR, 2616 R_VCS, D_ALL, 0, 12, NULL}, 2617 2618 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR, 2619 R_VCS, D_ALL, 0, 12, NULL}, 2620 2621 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR, 2622 R_VCS, D_ALL, 0, 12, NULL}, 2623 2624 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR, 2625 R_VCS, D_ALL, 0, 12, NULL}, 2626 2627 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR, 2628 R_VCS, D_ALL, 0, 12, NULL}, 2629 2630 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR, 2631 R_VCS, D_ALL, 0, 12, NULL}, 2632 2633 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR, 2634 R_VCS, D_ALL, 0, 6, NULL}, 2635 2636 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR, 2637 R_VCS, D_ALL, 0, 12, NULL}, 2638 2639 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR, 2640 R_VCS, D_ALL, 0, 12, NULL}, 2641 2642 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR, 2643 R_VCS, D_ALL, 0, 12, NULL}, 2644 2645 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR, 2646 R_VCS, D_ALL, 0, 12, NULL}, 2647 2648 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR, 2649 R_VCS, D_ALL, 0, 12, NULL}, 2650 2651 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR, 2652 R_VCS, D_ALL, 0, 12, NULL}, 2653 2654 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR, 2655 R_VCS, D_ALL, 0, 12, NULL}, 2656 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR, 2657 R_VCS, D_ALL, 0, 12, NULL}, 2658 2659 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR, 2660 R_VCS, D_ALL, 0, 12, NULL}, 2661 2662 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR, 2663 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL}, 2664 2665 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR, 2666 R_VCS, D_ALL, 0, 12, NULL}, 2667 2668 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR, 2669 R_VCS, D_ALL, 0, 12, NULL}, 2670 2671 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR, 2672 R_VCS, D_ALL, 0, 12, NULL}, 2673 2674 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR, 2675 R_VCS, D_ALL, 0, 12, NULL}, 2676 2677 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR, 2678 R_VCS, D_ALL, 0, 12, NULL}, 2679 2680 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR, 2681 R_VCS, D_ALL, 0, 12, NULL}, 2682 2683 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR, 2684 R_VCS, D_ALL, 0, 12, NULL}, 2685 2686 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR, 2687 R_VCS, D_ALL, 0, 12, NULL}, 2688 2689 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR, 2690 R_VCS, D_ALL, 0, 12, NULL}, 2691 2692 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR, 2693 R_VCS, D_ALL, 0, 12, NULL}, 2694 2695 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR, 2696 R_VCS, D_ALL, 0, 12, NULL}, 2697 2698 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL, 2699 0, 16, NULL}, 2700 2701 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2702 2703 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL}, 2704 2705 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR, 2706 R_VCS, D_ALL, 0, 12, NULL}, 2707 2708 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR, 2709 R_VCS, D_ALL, 0, 12, NULL}, 2710 2711 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR, 2712 R_VCS, D_ALL, 0, 12, NULL}, 2713 2714 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL}, 2715 2716 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL, 2717 0, 12, NULL}, 2718 2719 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS, 2720 0, 12, NULL}, 2721 }; 2722 2723 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e) 2724 { 2725 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode); 2726 } 2727 2728 /* call the cmd handler, and advance ip */ 2729 static int cmd_parser_exec(struct parser_exec_state *s) 2730 { 2731 struct intel_vgpu *vgpu = s->vgpu; 2732 const struct cmd_info *info; 2733 u32 cmd; 2734 int ret = 0; 2735 2736 cmd = cmd_val(s, 0); 2737 2738 /* fastpath for MI_NOOP */ 2739 if (cmd == MI_NOOP) 2740 info = &cmd_info[mi_noop_index]; 2741 else 2742 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine); 2743 2744 if (info == NULL) { 2745 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n", 2746 cmd, get_opcode(cmd, s->engine), 2747 repr_addr_type(s->buf_addr_type), 2748 s->engine->name, s->workload); 2749 return -EBADRQC; 2750 } 2751 2752 s->info = info; 2753 2754 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va, 2755 cmd_length(s), s->buf_type, s->buf_addr_type, 2756 s->workload, info->name); 2757 2758 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) { 2759 ret = gvt_check_valid_cmd_length(cmd_length(s), 2760 info->valid_len); 2761 if (ret) 2762 return ret; 2763 } 2764 2765 if (info->handler) { 2766 ret = info->handler(s); 2767 if (ret < 0) { 2768 gvt_vgpu_err("%s handler error\n", info->name); 2769 return ret; 2770 } 2771 } 2772 2773 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) { 2774 ret = cmd_advance_default(s); 2775 if (ret) { 2776 gvt_vgpu_err("%s IP advance error\n", info->name); 2777 return ret; 2778 } 2779 } 2780 return 0; 2781 } 2782 2783 static inline bool gma_out_of_range(unsigned long gma, 2784 unsigned long gma_head, unsigned int gma_tail) 2785 { 2786 if (gma_tail >= gma_head) 2787 return (gma < gma_head) || (gma > gma_tail); 2788 else 2789 return (gma > gma_tail) && (gma < gma_head); 2790 } 2791 2792 /* Keep the consistent return type, e.g EBADRQC for unknown 2793 * cmd, EFAULT for invalid address, EPERM for nonpriv. later 2794 * works as the input of VM healthy status. 2795 */ 2796 static int command_scan(struct parser_exec_state *s, 2797 unsigned long rb_head, unsigned long rb_tail, 2798 unsigned long rb_start, unsigned long rb_len) 2799 { 2800 2801 unsigned long gma_head, gma_tail, gma_bottom; 2802 int ret = 0; 2803 struct intel_vgpu *vgpu = s->vgpu; 2804 2805 gma_head = rb_start + rb_head; 2806 gma_tail = rb_start + rb_tail; 2807 gma_bottom = rb_start + rb_len; 2808 2809 while (s->ip_gma != gma_tail) { 2810 if (s->buf_type == RING_BUFFER_INSTRUCTION || 2811 s->buf_type == RING_BUFFER_CTX) { 2812 if (!(s->ip_gma >= rb_start) || 2813 !(s->ip_gma < gma_bottom)) { 2814 gvt_vgpu_err("ip_gma %lx out of ring scope." 2815 "(base:0x%lx, bottom: 0x%lx)\n", 2816 s->ip_gma, rb_start, 2817 gma_bottom); 2818 parser_exec_state_dump(s); 2819 return -EFAULT; 2820 } 2821 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) { 2822 gvt_vgpu_err("ip_gma %lx out of range." 2823 "base 0x%lx head 0x%lx tail 0x%lx\n", 2824 s->ip_gma, rb_start, 2825 rb_head, rb_tail); 2826 parser_exec_state_dump(s); 2827 break; 2828 } 2829 } 2830 ret = cmd_parser_exec(s); 2831 if (ret) { 2832 gvt_vgpu_err("cmd parser error\n"); 2833 parser_exec_state_dump(s); 2834 break; 2835 } 2836 } 2837 2838 return ret; 2839 } 2840 2841 static int scan_workload(struct intel_vgpu_workload *workload) 2842 { 2843 unsigned long gma_head, gma_tail; 2844 struct parser_exec_state s; 2845 int ret = 0; 2846 2847 /* ring base is page aligned */ 2848 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE))) 2849 return -EINVAL; 2850 2851 gma_head = workload->rb_start + workload->rb_head; 2852 gma_tail = workload->rb_start + workload->rb_tail; 2853 2854 s.buf_type = RING_BUFFER_INSTRUCTION; 2855 s.buf_addr_type = GTT_BUFFER; 2856 s.vgpu = workload->vgpu; 2857 s.engine = workload->engine; 2858 s.ring_start = workload->rb_start; 2859 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2860 s.ring_head = gma_head; 2861 s.ring_tail = gma_tail; 2862 s.rb_va = workload->shadow_ring_buffer_va; 2863 s.workload = workload; 2864 s.is_ctx_wa = false; 2865 2866 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail) 2867 return 0; 2868 2869 ret = ip_gma_set(&s, gma_head); 2870 if (ret) 2871 goto out; 2872 2873 ret = command_scan(&s, workload->rb_head, workload->rb_tail, 2874 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl)); 2875 2876 out: 2877 return ret; 2878 } 2879 2880 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 2881 { 2882 2883 unsigned long gma_head, gma_tail, ring_size, ring_tail; 2884 struct parser_exec_state s; 2885 int ret = 0; 2886 struct intel_vgpu_workload *workload = container_of(wa_ctx, 2887 struct intel_vgpu_workload, 2888 wa_ctx); 2889 2890 /* ring base is page aligned */ 2891 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, 2892 I915_GTT_PAGE_SIZE))) 2893 return -EINVAL; 2894 2895 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32); 2896 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES, 2897 PAGE_SIZE); 2898 gma_head = wa_ctx->indirect_ctx.guest_gma; 2899 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail; 2900 2901 s.buf_type = RING_BUFFER_INSTRUCTION; 2902 s.buf_addr_type = GTT_BUFFER; 2903 s.vgpu = workload->vgpu; 2904 s.engine = workload->engine; 2905 s.ring_start = wa_ctx->indirect_ctx.guest_gma; 2906 s.ring_size = ring_size; 2907 s.ring_head = gma_head; 2908 s.ring_tail = gma_tail; 2909 s.rb_va = wa_ctx->indirect_ctx.shadow_va; 2910 s.workload = workload; 2911 s.is_ctx_wa = true; 2912 2913 ret = ip_gma_set(&s, gma_head); 2914 if (ret) 2915 goto out; 2916 2917 ret = command_scan(&s, 0, ring_tail, 2918 wa_ctx->indirect_ctx.guest_gma, ring_size); 2919 out: 2920 return ret; 2921 } 2922 2923 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload) 2924 { 2925 struct intel_vgpu *vgpu = workload->vgpu; 2926 struct intel_vgpu_submission *s = &vgpu->submission; 2927 unsigned long gma_head, gma_tail, gma_top, guest_rb_size; 2928 void *shadow_ring_buffer_va; 2929 int ret; 2930 2931 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl); 2932 2933 /* calculate workload ring buffer size */ 2934 workload->rb_len = (workload->rb_tail + guest_rb_size - 2935 workload->rb_head) % guest_rb_size; 2936 2937 gma_head = workload->rb_start + workload->rb_head; 2938 gma_tail = workload->rb_start + workload->rb_tail; 2939 gma_top = workload->rb_start + guest_rb_size; 2940 2941 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) { 2942 void *p; 2943 2944 /* realloc the new ring buffer if needed */ 2945 p = krealloc(s->ring_scan_buffer[workload->engine->id], 2946 workload->rb_len, GFP_KERNEL); 2947 if (!p) { 2948 gvt_vgpu_err("fail to re-alloc ring scan buffer\n"); 2949 return -ENOMEM; 2950 } 2951 s->ring_scan_buffer[workload->engine->id] = p; 2952 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len; 2953 } 2954 2955 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id]; 2956 2957 /* get shadow ring buffer va */ 2958 workload->shadow_ring_buffer_va = shadow_ring_buffer_va; 2959 2960 /* head > tail --> copy head <-> top */ 2961 if (gma_head > gma_tail) { 2962 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, 2963 gma_head, gma_top, shadow_ring_buffer_va); 2964 if (ret < 0) { 2965 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2966 return ret; 2967 } 2968 shadow_ring_buffer_va += ret; 2969 gma_head = workload->rb_start; 2970 } 2971 2972 /* copy head or start <-> tail */ 2973 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, 2974 shadow_ring_buffer_va); 2975 if (ret < 0) { 2976 gvt_vgpu_err("fail to copy guest ring buffer\n"); 2977 return ret; 2978 } 2979 return 0; 2980 } 2981 2982 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload) 2983 { 2984 int ret; 2985 struct intel_vgpu *vgpu = workload->vgpu; 2986 2987 ret = shadow_workload_ring_buffer(workload); 2988 if (ret) { 2989 gvt_vgpu_err("fail to shadow workload ring_buffer\n"); 2990 return ret; 2991 } 2992 2993 ret = scan_workload(workload); 2994 if (ret) { 2995 gvt_vgpu_err("scan workload error\n"); 2996 return ret; 2997 } 2998 return 0; 2999 } 3000 3001 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3002 { 3003 int ctx_size = wa_ctx->indirect_ctx.size; 3004 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma; 3005 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3006 struct intel_vgpu_workload, 3007 wa_ctx); 3008 struct intel_vgpu *vgpu = workload->vgpu; 3009 struct drm_i915_gem_object *obj; 3010 int ret = 0; 3011 void *map; 3012 3013 obj = i915_gem_object_create_shmem(workload->engine->i915, 3014 roundup(ctx_size + CACHELINE_BYTES, 3015 PAGE_SIZE)); 3016 if (IS_ERR(obj)) 3017 return PTR_ERR(obj); 3018 3019 /* get the va of the shadow batch buffer */ 3020 map = i915_gem_object_pin_map(obj, I915_MAP_WB); 3021 if (IS_ERR(map)) { 3022 gvt_vgpu_err("failed to vmap shadow indirect ctx\n"); 3023 ret = PTR_ERR(map); 3024 goto put_obj; 3025 } 3026 3027 i915_gem_object_lock(obj, NULL); 3028 ret = i915_gem_object_set_to_cpu_domain(obj, false); 3029 i915_gem_object_unlock(obj); 3030 if (ret) { 3031 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n"); 3032 goto unmap_src; 3033 } 3034 3035 ret = copy_gma_to_hva(workload->vgpu, 3036 workload->vgpu->gtt.ggtt_mm, 3037 guest_gma, guest_gma + ctx_size, 3038 map); 3039 if (ret < 0) { 3040 gvt_vgpu_err("fail to copy guest indirect ctx\n"); 3041 goto unmap_src; 3042 } 3043 3044 wa_ctx->indirect_ctx.obj = obj; 3045 wa_ctx->indirect_ctx.shadow_va = map; 3046 return 0; 3047 3048 unmap_src: 3049 i915_gem_object_unpin_map(obj); 3050 put_obj: 3051 i915_gem_object_put(obj); 3052 return ret; 3053 } 3054 3055 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3056 { 3057 u32 per_ctx_start[CACHELINE_DWORDS] = {}; 3058 unsigned char *bb_start_sva; 3059 3060 if (!wa_ctx->per_ctx.valid) 3061 return 0; 3062 3063 per_ctx_start[0] = 0x18800001; 3064 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma; 3065 3066 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va + 3067 wa_ctx->indirect_ctx.size; 3068 3069 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES); 3070 3071 return 0; 3072 } 3073 3074 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) 3075 { 3076 int ret; 3077 struct intel_vgpu_workload *workload = container_of(wa_ctx, 3078 struct intel_vgpu_workload, 3079 wa_ctx); 3080 struct intel_vgpu *vgpu = workload->vgpu; 3081 3082 if (wa_ctx->indirect_ctx.size == 0) 3083 return 0; 3084 3085 ret = shadow_indirect_ctx(wa_ctx); 3086 if (ret) { 3087 gvt_vgpu_err("fail to shadow indirect ctx\n"); 3088 return ret; 3089 } 3090 3091 combine_wa_ctx(wa_ctx); 3092 3093 ret = scan_wa_ctx(wa_ctx); 3094 if (ret) { 3095 gvt_vgpu_err("scan wa ctx error\n"); 3096 return ret; 3097 } 3098 3099 return 0; 3100 } 3101 3102 /* generate dummy contexts by sending empty requests to HW, and let 3103 * the HW to fill Engine Contexts. This dummy contexts are used for 3104 * initialization purpose (update reg whitelist), so referred to as 3105 * init context here 3106 */ 3107 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu) 3108 { 3109 const unsigned long start = LRC_STATE_PN * PAGE_SIZE; 3110 struct intel_gvt *gvt = vgpu->gvt; 3111 struct intel_engine_cs *engine; 3112 enum intel_engine_id id; 3113 3114 if (gvt->is_reg_whitelist_updated) 3115 return; 3116 3117 /* scan init ctx to update cmd accessible list */ 3118 for_each_engine(engine, gvt->gt, id) { 3119 struct parser_exec_state s; 3120 void *vaddr; 3121 int ret; 3122 3123 if (!engine->default_state) 3124 continue; 3125 3126 vaddr = shmem_pin_map(engine->default_state); 3127 if (!vaddr) { 3128 gvt_err("failed to map %s->default state\n", 3129 engine->name); 3130 return; 3131 } 3132 3133 s.buf_type = RING_BUFFER_CTX; 3134 s.buf_addr_type = GTT_BUFFER; 3135 s.vgpu = vgpu; 3136 s.engine = engine; 3137 s.ring_start = 0; 3138 s.ring_size = engine->context_size - start; 3139 s.ring_head = 0; 3140 s.ring_tail = s.ring_size; 3141 s.rb_va = vaddr + start; 3142 s.workload = NULL; 3143 s.is_ctx_wa = false; 3144 s.is_init_ctx = true; 3145 3146 /* skipping the first RING_CTX_SIZE(0x50) dwords */ 3147 ret = ip_gma_set(&s, RING_CTX_SIZE); 3148 if (ret == 0) { 3149 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size); 3150 if (ret) 3151 gvt_err("Scan init ctx error\n"); 3152 } 3153 3154 shmem_unpin_map(engine->default_state, vaddr); 3155 if (ret) 3156 return; 3157 } 3158 3159 gvt->is_reg_whitelist_updated = true; 3160 } 3161 3162 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload) 3163 { 3164 struct intel_vgpu *vgpu = workload->vgpu; 3165 unsigned long gma_head, gma_tail, gma_start, ctx_size; 3166 struct parser_exec_state s; 3167 int ring_id = workload->engine->id; 3168 struct intel_context *ce = vgpu->submission.shadow[ring_id]; 3169 int ret; 3170 3171 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0); 3172 3173 ctx_size = workload->engine->context_size - PAGE_SIZE; 3174 3175 /* Only ring contxt is loaded to HW for inhibit context, no need to 3176 * scan engine context 3177 */ 3178 if (is_inhibit_context(ce)) 3179 return 0; 3180 3181 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE; 3182 gma_head = 0; 3183 gma_tail = ctx_size; 3184 3185 s.buf_type = RING_BUFFER_CTX; 3186 s.buf_addr_type = GTT_BUFFER; 3187 s.vgpu = workload->vgpu; 3188 s.engine = workload->engine; 3189 s.ring_start = gma_start; 3190 s.ring_size = ctx_size; 3191 s.ring_head = gma_start + gma_head; 3192 s.ring_tail = gma_start + gma_tail; 3193 s.rb_va = ce->lrc_reg_state; 3194 s.workload = workload; 3195 s.is_ctx_wa = false; 3196 s.is_init_ctx = false; 3197 3198 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring 3199 * context 3200 */ 3201 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE); 3202 if (ret) 3203 goto out; 3204 3205 ret = command_scan(&s, gma_head, gma_tail, 3206 gma_start, ctx_size); 3207 out: 3208 if (ret) 3209 gvt_vgpu_err("scan shadow ctx error\n"); 3210 3211 return ret; 3212 } 3213 3214 static int init_cmd_table(struct intel_gvt *gvt) 3215 { 3216 unsigned int gen_type = intel_gvt_get_device_type(gvt); 3217 int i; 3218 3219 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) { 3220 struct cmd_entry *e; 3221 3222 if (!(cmd_info[i].devices & gen_type)) 3223 continue; 3224 3225 e = kzalloc(sizeof(*e), GFP_KERNEL); 3226 if (!e) 3227 return -ENOMEM; 3228 3229 e->info = &cmd_info[i]; 3230 if (cmd_info[i].opcode == OP_MI_NOOP) 3231 mi_noop_index = i; 3232 3233 INIT_HLIST_NODE(&e->hlist); 3234 add_cmd_entry(gvt, e); 3235 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n", 3236 e->info->name, e->info->opcode, e->info->flag, 3237 e->info->devices, e->info->rings); 3238 } 3239 3240 return 0; 3241 } 3242 3243 static void clean_cmd_table(struct intel_gvt *gvt) 3244 { 3245 struct hlist_node *tmp; 3246 struct cmd_entry *e; 3247 int i; 3248 3249 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist) 3250 kfree(e); 3251 3252 hash_init(gvt->cmd_table); 3253 } 3254 3255 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt) 3256 { 3257 clean_cmd_table(gvt); 3258 } 3259 3260 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt) 3261 { 3262 int ret; 3263 3264 ret = init_cmd_table(gvt); 3265 if (ret) { 3266 intel_gvt_clean_cmd_parser(gvt); 3267 return ret; 3268 } 3269 return 0; 3270 } 3271