1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2016-2019 Intel Corporation 4 */ 5 6 #include <linux/types.h> 7 8 #include "gt/intel_gt.h" 9 #include "intel_guc_reg.h" 10 #include "intel_huc.h" 11 #include "intel_huc_print.h" 12 #include "i915_drv.h" 13 #include "i915_reg.h" 14 #include "pxp/intel_pxp_cmd_interface_43.h" 15 16 #include <linux/device/bus.h> 17 #include <linux/mei_aux.h> 18 19 /** 20 * DOC: HuC 21 * 22 * The HuC is a dedicated microcontroller for usage in media HEVC (High 23 * Efficiency Video Coding) operations. Userspace can directly use the firmware 24 * capabilities by adding HuC specific commands to batch buffers. 25 * 26 * The kernel driver is only responsible for loading the HuC firmware and 27 * triggering its security authentication. This is done differently depending 28 * on the platform: 29 * 30 * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA 31 * and the authentication via GuC 32 * - DG2: load and authentication are both performed via GSC. 33 * - MTL and newer platforms: the load is performed via DMA (same as with 34 * not-DG2 older platforms), while the authentication is done in 2-steps, 35 * a first auth for clear-media workloads via GuC and a second one for all 36 * workloads via GSC. 37 * 38 * On platforms where the GuC does the authentication, to correctly do so the 39 * HuC binary must be loaded before the GuC one. 40 * Loading the HuC is optional; however, not using the HuC might negatively 41 * impact power usage and/or performance of media workloads, depending on the 42 * use-cases. 43 * HuC must be reloaded on events that cause the WOPCM to lose its contents 44 * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT 45 * reset, while on newer ones it will survive that. 46 * 47 * See https://github.com/intel/media-driver for the latest details on HuC 48 * functionality. 49 */ 50 51 /** 52 * DOC: HuC Memory Management 53 * 54 * Similarly to the GuC, the HuC can't do any memory allocations on its own, 55 * with the difference being that the allocations for HuC usage are handled by 56 * the userspace driver instead of the kernel one. The HuC accesses the memory 57 * via the PPGTT belonging to the context loaded on the VCS executing the 58 * HuC-specific commands. 59 */ 60 61 /* 62 * MEI-GSC load is an async process. The probing of the exposed aux device 63 * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending 64 * on when the kernel schedules it. Unless something goes terribly wrong, we're 65 * guaranteed for this to happen during boot, so the big timeout is a safety net 66 * that we never expect to need. 67 * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed 68 * and/or reset, this can take longer. Note that the kernel might schedule 69 * other work between the i915 init/resume and the MEI one, which can add to 70 * the delay. 71 */ 72 #define GSC_INIT_TIMEOUT_MS 10000 73 #define PXP_INIT_TIMEOUT_MS 5000 74 75 static int sw_fence_dummy_notify(struct i915_sw_fence *sf, 76 enum i915_sw_fence_notify state) 77 { 78 return NOTIFY_DONE; 79 } 80 81 static void __delayed_huc_load_complete(struct intel_huc *huc) 82 { 83 if (!i915_sw_fence_done(&huc->delayed_load.fence)) 84 i915_sw_fence_complete(&huc->delayed_load.fence); 85 } 86 87 static void delayed_huc_load_complete(struct intel_huc *huc) 88 { 89 hrtimer_cancel(&huc->delayed_load.timer); 90 __delayed_huc_load_complete(huc); 91 } 92 93 static void __gsc_init_error(struct intel_huc *huc) 94 { 95 huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR; 96 __delayed_huc_load_complete(huc); 97 } 98 99 static void gsc_init_error(struct intel_huc *huc) 100 { 101 hrtimer_cancel(&huc->delayed_load.timer); 102 __gsc_init_error(huc); 103 } 104 105 static void gsc_init_done(struct intel_huc *huc) 106 { 107 hrtimer_cancel(&huc->delayed_load.timer); 108 109 /* MEI-GSC init is done, now we wait for MEI-PXP to bind */ 110 huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP; 111 if (!i915_sw_fence_done(&huc->delayed_load.fence)) 112 hrtimer_start(&huc->delayed_load.timer, 113 ms_to_ktime(PXP_INIT_TIMEOUT_MS), 114 HRTIMER_MODE_REL); 115 } 116 117 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer) 118 { 119 struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer); 120 121 if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) { 122 if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC) 123 huc_notice(huc, "timed out waiting for MEI GSC\n"); 124 else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP) 125 huc_notice(huc, "timed out waiting for MEI PXP\n"); 126 else 127 MISSING_CASE(huc->delayed_load.status); 128 129 __gsc_init_error(huc); 130 } 131 132 return HRTIMER_NORESTART; 133 } 134 135 static void huc_delayed_load_start(struct intel_huc *huc) 136 { 137 ktime_t delay; 138 139 GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)); 140 141 /* 142 * On resume we don't have to wait for MEI-GSC to be re-probed, but we 143 * do need to wait for MEI-PXP to reset & re-bind 144 */ 145 switch (huc->delayed_load.status) { 146 case INTEL_HUC_WAITING_ON_GSC: 147 delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS); 148 break; 149 case INTEL_HUC_WAITING_ON_PXP: 150 delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS); 151 break; 152 default: 153 gsc_init_error(huc); 154 return; 155 } 156 157 /* 158 * This fence is always complete unless we're waiting for the 159 * GSC device to come up to load the HuC. We arm the fence here 160 * and complete it when we confirm that the HuC is loaded from 161 * the PXP bind callback. 162 */ 163 GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence)); 164 i915_sw_fence_fini(&huc->delayed_load.fence); 165 i915_sw_fence_reinit(&huc->delayed_load.fence); 166 i915_sw_fence_await(&huc->delayed_load.fence); 167 i915_sw_fence_commit(&huc->delayed_load.fence); 168 169 hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL); 170 } 171 172 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data) 173 { 174 struct device *dev = data; 175 struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb); 176 struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0]; 177 178 if (!intf->adev || &intf->adev->aux_dev.dev != dev) 179 return 0; 180 181 switch (action) { 182 case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */ 183 gsc_init_done(huc); 184 break; 185 186 case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */ 187 case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */ 188 huc_info(huc, "MEI driver not bound, disabling load\n"); 189 gsc_init_error(huc); 190 break; 191 } 192 193 return 0; 194 } 195 196 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) 197 { 198 int ret; 199 200 if (!intel_huc_is_loaded_by_gsc(huc)) 201 return; 202 203 huc->delayed_load.nb.notifier_call = gsc_notifier; 204 ret = bus_register_notifier(bus, &huc->delayed_load.nb); 205 if (ret) { 206 huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret)); 207 huc->delayed_load.nb.notifier_call = NULL; 208 gsc_init_error(huc); 209 } 210 } 211 212 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) 213 { 214 if (!huc->delayed_load.nb.notifier_call) 215 return; 216 217 delayed_huc_load_complete(huc); 218 219 bus_unregister_notifier(bus, &huc->delayed_load.nb); 220 huc->delayed_load.nb.notifier_call = NULL; 221 } 222 223 static void delayed_huc_load_init(struct intel_huc *huc) 224 { 225 /* 226 * Initialize fence to be complete as this is expected to be complete 227 * unless there is a delayed HuC load in progress. 228 */ 229 i915_sw_fence_init(&huc->delayed_load.fence, 230 sw_fence_dummy_notify); 231 i915_sw_fence_commit(&huc->delayed_load.fence); 232 233 hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 234 huc->delayed_load.timer.function = huc_delayed_load_timer_callback; 235 } 236 237 static void delayed_huc_load_fini(struct intel_huc *huc) 238 { 239 /* 240 * the fence is initialized in init_early, so we need to clean it up 241 * even if HuC loading is off. 242 */ 243 delayed_huc_load_complete(huc); 244 i915_sw_fence_fini(&huc->delayed_load.fence); 245 } 246 247 int intel_huc_sanitize(struct intel_huc *huc) 248 { 249 delayed_huc_load_complete(huc); 250 intel_uc_fw_sanitize(&huc->fw); 251 return 0; 252 } 253 254 static bool vcs_supported(struct intel_gt *gt) 255 { 256 intel_engine_mask_t mask = gt->info.engine_mask; 257 258 /* 259 * We reach here from i915_driver_early_probe for the primary GT before 260 * its engine mask is set, so we use the device info engine mask for it; 261 * this means we're not taking VCS fusing into account, but if the 262 * primary GT supports VCS engines we expect at least one of them to 263 * remain unfused so we're fine. 264 * For other GTs we expect the GT-specific mask to be set before we 265 * call this function. 266 */ 267 GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); 268 269 if (gt_is_root(gt)) 270 mask = INTEL_INFO(gt->i915)->platform_engine_mask; 271 else 272 mask = gt->info.engine_mask; 273 274 return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS); 275 } 276 277 void intel_huc_init_early(struct intel_huc *huc) 278 { 279 struct drm_i915_private *i915 = huc_to_gt(huc)->i915; 280 struct intel_gt *gt = huc_to_gt(huc); 281 282 intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true); 283 284 /* 285 * we always init the fence as already completed, even if HuC is not 286 * supported. This way we don't have to distinguish between HuC not 287 * supported/disabled or already loaded, and can focus on if the load 288 * is currently in progress (fence not complete) or not, which is what 289 * we care about for stalling userspace submissions. 290 */ 291 delayed_huc_load_init(huc); 292 293 if (!vcs_supported(gt)) { 294 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); 295 return; 296 } 297 298 if (GRAPHICS_VER(i915) >= 11) { 299 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO; 300 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL; 301 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL; 302 } else { 303 huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2; 304 huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED; 305 huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED; 306 } 307 308 if (IS_DG2(i915)) { 309 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO; 310 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL; 311 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL; 312 } else { 313 huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5); 314 huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE; 315 huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE; 316 } 317 } 318 319 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy") 320 static int check_huc_loading_mode(struct intel_huc *huc) 321 { 322 struct intel_gt *gt = huc_to_gt(huc); 323 bool gsc_enabled = huc->fw.has_gsc_headers; 324 325 /* 326 * The fuse for HuC load via GSC is only valid on platforms that have 327 * GuC deprivilege. 328 */ 329 if (HAS_GUC_DEPRIVILEGE(gt->i915)) 330 huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) & 331 GSC_LOADS_HUC; 332 333 if (huc->loaded_via_gsc && !gsc_enabled) { 334 huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n"); 335 return -ENOEXEC; 336 } 337 338 /* 339 * On newer platforms we have GSC-enabled binaries but we load the HuC 340 * via DMA. To do so we need to find the location of the legacy-style 341 * binary inside the GSC-enabled one, which we do at fetch time. Make 342 * sure that we were able to do so if the fuse says we need to load via 343 * DMA and the binary is GSC-enabled. 344 */ 345 if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) { 346 huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n"); 347 return -ENOEXEC; 348 } 349 350 /* 351 * If the HuC is loaded via GSC, we need to be able to access the GSC. 352 * On DG2 this is done via the mei components, while on newer platforms 353 * it is done via the GSCCS, 354 */ 355 if (huc->loaded_via_gsc) { 356 if (IS_DG2(gt->i915)) { 357 if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) || 358 !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) { 359 huc_info(huc, "can't load due to missing mei modules\n"); 360 return -EIO; 361 } 362 } else { 363 if (!HAS_ENGINE(gt, GSC0)) { 364 huc_info(huc, "can't load due to missing GSCCS\n"); 365 return -EIO; 366 } 367 } 368 } 369 370 huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc)); 371 372 return 0; 373 } 374 375 int intel_huc_init(struct intel_huc *huc) 376 { 377 struct intel_gt *gt = huc_to_gt(huc); 378 int err; 379 380 err = check_huc_loading_mode(huc); 381 if (err) 382 goto out; 383 384 if (HAS_ENGINE(gt, GSC0)) { 385 struct i915_vma *vma; 386 387 vma = intel_guc_allocate_vma(>->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2); 388 if (IS_ERR(vma)) { 389 err = PTR_ERR(vma); 390 huc_info(huc, "Failed to allocate heci pkt\n"); 391 goto out; 392 } 393 394 huc->heci_pkt = vma; 395 } 396 397 err = intel_uc_fw_init(&huc->fw); 398 if (err) 399 goto out_pkt; 400 401 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); 402 403 return 0; 404 405 out_pkt: 406 if (huc->heci_pkt) 407 i915_vma_unpin_and_release(&huc->heci_pkt, 0); 408 out: 409 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 410 huc_info(huc, "initialization failed %pe\n", ERR_PTR(err)); 411 return err; 412 } 413 414 void intel_huc_fini(struct intel_huc *huc) 415 { 416 /* 417 * the fence is initialized in init_early, so we need to clean it up 418 * even if HuC loading is off. 419 */ 420 delayed_huc_load_fini(huc); 421 422 if (huc->heci_pkt) 423 i915_vma_unpin_and_release(&huc->heci_pkt, 0); 424 425 if (intel_uc_fw_is_loadable(&huc->fw)) 426 intel_uc_fw_fini(&huc->fw); 427 } 428 429 void intel_huc_suspend(struct intel_huc *huc) 430 { 431 if (!intel_uc_fw_is_loadable(&huc->fw)) 432 return; 433 434 /* 435 * in the unlikely case that we're suspending before the GSC has 436 * completed its loading sequence, just stop waiting. We'll restart 437 * on resume. 438 */ 439 delayed_huc_load_complete(huc); 440 } 441 442 static const char *auth_mode_string(struct intel_huc *huc, 443 enum intel_huc_authentication_type type) 444 { 445 bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC; 446 447 return partial ? "clear media" : "all workloads"; 448 } 449 450 int intel_huc_wait_for_auth_complete(struct intel_huc *huc, 451 enum intel_huc_authentication_type type) 452 { 453 struct intel_gt *gt = huc_to_gt(huc); 454 int ret; 455 456 ret = __intel_wait_for_register(gt->uncore, 457 huc->status[type].reg, 458 huc->status[type].mask, 459 huc->status[type].value, 460 2, 50, NULL); 461 462 /* mark the load process as complete even if the wait failed */ 463 delayed_huc_load_complete(huc); 464 465 if (ret) { 466 huc_err(huc, "firmware not verified for %s: %pe\n", 467 auth_mode_string(huc, type), ERR_PTR(ret)); 468 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); 469 return ret; 470 } 471 472 intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); 473 huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type)); 474 return 0; 475 } 476 477 /** 478 * intel_huc_auth() - Authenticate HuC uCode 479 * @huc: intel_huc structure 480 * @type: authentication type (via GuC or via GSC) 481 * 482 * Called after HuC and GuC firmware loading during intel_uc_init_hw(). 483 * 484 * This function invokes the GuC action to authenticate the HuC firmware, 485 * passing the offset of the RSA signature to intel_guc_auth_huc(). It then 486 * waits for up to 50ms for firmware verification ACK. 487 */ 488 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type) 489 { 490 struct intel_gt *gt = huc_to_gt(huc); 491 struct intel_guc *guc = >->uc.guc; 492 int ret; 493 494 if (!intel_uc_fw_is_loaded(&huc->fw)) 495 return -ENOEXEC; 496 497 /* GSC will do the auth with the load */ 498 if (intel_huc_is_loaded_by_gsc(huc)) 499 return -ENODEV; 500 501 if (intel_huc_is_authenticated(huc, type)) 502 return -EEXIST; 503 504 ret = i915_inject_probe_error(gt->i915, -ENXIO); 505 if (ret) 506 goto fail; 507 508 switch (type) { 509 case INTEL_HUC_AUTH_BY_GUC: 510 ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data)); 511 break; 512 case INTEL_HUC_AUTH_BY_GSC: 513 ret = intel_huc_fw_auth_via_gsccs(huc); 514 break; 515 default: 516 MISSING_CASE(type); 517 ret = -EINVAL; 518 } 519 if (ret) 520 goto fail; 521 522 /* Check authentication status, it should be done by now */ 523 ret = intel_huc_wait_for_auth_complete(huc, type); 524 if (ret) 525 goto fail; 526 527 return 0; 528 529 fail: 530 huc_probe_error(huc, "%s authentication failed %pe\n", 531 auth_mode_string(huc, type), ERR_PTR(ret)); 532 return ret; 533 } 534 535 bool intel_huc_is_authenticated(struct intel_huc *huc, 536 enum intel_huc_authentication_type type) 537 { 538 struct intel_gt *gt = huc_to_gt(huc); 539 intel_wakeref_t wakeref; 540 u32 status = 0; 541 542 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 543 status = intel_uncore_read(gt->uncore, huc->status[type].reg); 544 545 return (status & huc->status[type].mask) == huc->status[type].value; 546 } 547 548 static bool huc_is_fully_authenticated(struct intel_huc *huc) 549 { 550 struct intel_uc_fw *huc_fw = &huc->fw; 551 552 if (!huc_fw->has_gsc_headers) 553 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC); 554 else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0)) 555 return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC); 556 else 557 return false; 558 } 559 560 /** 561 * intel_huc_check_status() - check HuC status 562 * @huc: intel_huc structure 563 * 564 * This function reads status register to verify if HuC 565 * firmware was successfully loaded. 566 * 567 * The return values match what is expected for the I915_PARAM_HUC_STATUS 568 * getparam. 569 */ 570 int intel_huc_check_status(struct intel_huc *huc) 571 { 572 struct intel_uc_fw *huc_fw = &huc->fw; 573 574 switch (__intel_uc_fw_status(huc_fw)) { 575 case INTEL_UC_FIRMWARE_NOT_SUPPORTED: 576 return -ENODEV; 577 case INTEL_UC_FIRMWARE_DISABLED: 578 return -EOPNOTSUPP; 579 case INTEL_UC_FIRMWARE_MISSING: 580 return -ENOPKG; 581 case INTEL_UC_FIRMWARE_ERROR: 582 return -ENOEXEC; 583 case INTEL_UC_FIRMWARE_INIT_FAIL: 584 return -ENOMEM; 585 case INTEL_UC_FIRMWARE_LOAD_FAIL: 586 return -EIO; 587 default: 588 break; 589 } 590 591 /* 592 * GSC-enabled binaries loaded via DMA are first partially 593 * authenticated by GuC and then fully authenticated by GSC 594 */ 595 if (huc_is_fully_authenticated(huc)) 596 return 1; /* full auth */ 597 else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) && 598 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC)) 599 return 2; /* clear media only */ 600 else 601 return 0; 602 } 603 604 static bool huc_has_delayed_load(struct intel_huc *huc) 605 { 606 return intel_huc_is_loaded_by_gsc(huc) && 607 (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR); 608 } 609 610 void intel_huc_update_auth_status(struct intel_huc *huc) 611 { 612 if (!intel_uc_fw_is_loadable(&huc->fw)) 613 return; 614 615 if (!huc->fw.has_gsc_headers) 616 return; 617 618 if (huc_is_fully_authenticated(huc)) 619 intel_uc_fw_change_status(&huc->fw, 620 INTEL_UC_FIRMWARE_RUNNING); 621 else if (huc_has_delayed_load(huc)) 622 huc_delayed_load_start(huc); 623 } 624 625 /** 626 * intel_huc_load_status - dump information about HuC load status 627 * @huc: the HuC 628 * @p: the &drm_printer 629 * 630 * Pretty printer for HuC load status. 631 */ 632 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) 633 { 634 struct intel_gt *gt = huc_to_gt(huc); 635 intel_wakeref_t wakeref; 636 637 if (!intel_huc_is_supported(huc)) { 638 drm_printf(p, "HuC not supported\n"); 639 return; 640 } 641 642 if (!intel_huc_is_wanted(huc)) { 643 drm_printf(p, "HuC disabled\n"); 644 return; 645 } 646 647 intel_uc_fw_dump(&huc->fw, p); 648 649 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 650 drm_printf(p, "HuC status: 0x%08x\n", 651 intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg)); 652 } 653