xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_huc.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/types.h>
7 
8 #include "gt/intel_gt.h"
9 #include "gt/intel_rps.h"
10 #include "intel_guc_reg.h"
11 #include "intel_huc.h"
12 #include "intel_huc_print.h"
13 #include "i915_drv.h"
14 #include "i915_reg.h"
15 #include "pxp/intel_pxp_cmd_interface_43.h"
16 
17 #include <linux/device/bus.h>
18 #include <linux/mei_aux.h>
19 
20 /**
21  * DOC: HuC
22  *
23  * The HuC is a dedicated microcontroller for usage in media HEVC (High
24  * Efficiency Video Coding) operations. Userspace can directly use the firmware
25  * capabilities by adding HuC specific commands to batch buffers.
26  *
27  * The kernel driver is only responsible for loading the HuC firmware and
28  * triggering its security authentication. This is done differently depending
29  * on the platform:
30  *
31  * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
32  *   and the authentication via GuC
33  * - DG2: load and authentication are both performed via GSC.
34  * - MTL and newer platforms: the load is performed via DMA (same as with
35  *   not-DG2 older platforms), while the authentication is done in 2-steps,
36  *   a first auth for clear-media workloads via GuC and a second one for all
37  *   workloads via GSC.
38  *
39  * On platforms where the GuC does the authentication, to correctly do so the
40  * HuC binary must be loaded before the GuC one.
41  * Loading the HuC is optional; however, not using the HuC might negatively
42  * impact power usage and/or performance of media workloads, depending on the
43  * use-cases.
44  * HuC must be reloaded on events that cause the WOPCM to lose its contents
45  * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
46  * reset, while on newer ones it will survive that.
47  *
48  * See https://github.com/intel/media-driver for the latest details on HuC
49  * functionality.
50  */
51 
52 /**
53  * DOC: HuC Memory Management
54  *
55  * Similarly to the GuC, the HuC can't do any memory allocations on its own,
56  * with the difference being that the allocations for HuC usage are handled by
57  * the userspace driver instead of the kernel one. The HuC accesses the memory
58  * via the PPGTT belonging to the context loaded on the VCS executing the
59  * HuC-specific commands.
60  */
61 
62 /*
63  * MEI-GSC load is an async process. The probing of the exposed aux device
64  * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
65  * on when the kernel schedules it. Unless something goes terribly wrong, we're
66  * guaranteed for this to happen during boot, so the big timeout is a safety net
67  * that we never expect to need.
68  * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
69  * and/or reset, this can take longer. Note that the kernel might schedule
70  * other work between the i915 init/resume and the MEI one, which can add to
71  * the delay.
72  */
73 #define GSC_INIT_TIMEOUT_MS 10000
74 #define PXP_INIT_TIMEOUT_MS 5000
75 
76 static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
77 				 enum i915_sw_fence_notify state)
78 {
79 	return NOTIFY_DONE;
80 }
81 
82 static void __delayed_huc_load_complete(struct intel_huc *huc)
83 {
84 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
85 		i915_sw_fence_complete(&huc->delayed_load.fence);
86 }
87 
88 static void delayed_huc_load_complete(struct intel_huc *huc)
89 {
90 	hrtimer_cancel(&huc->delayed_load.timer);
91 	__delayed_huc_load_complete(huc);
92 }
93 
94 static void __gsc_init_error(struct intel_huc *huc)
95 {
96 	huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
97 	__delayed_huc_load_complete(huc);
98 }
99 
100 static void gsc_init_error(struct intel_huc *huc)
101 {
102 	hrtimer_cancel(&huc->delayed_load.timer);
103 	__gsc_init_error(huc);
104 }
105 
106 static void gsc_init_done(struct intel_huc *huc)
107 {
108 	hrtimer_cancel(&huc->delayed_load.timer);
109 
110 	/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
111 	huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
112 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
113 		hrtimer_start(&huc->delayed_load.timer,
114 			      ms_to_ktime(PXP_INIT_TIMEOUT_MS),
115 			      HRTIMER_MODE_REL);
116 }
117 
118 static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
119 {
120 	struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
121 
122 	if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
123 		if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
124 			huc_notice(huc, "timed out waiting for MEI GSC\n");
125 		else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
126 			huc_notice(huc, "timed out waiting for MEI PXP\n");
127 		else
128 			MISSING_CASE(huc->delayed_load.status);
129 
130 		__gsc_init_error(huc);
131 	}
132 
133 	return HRTIMER_NORESTART;
134 }
135 
136 static void huc_delayed_load_start(struct intel_huc *huc)
137 {
138 	ktime_t delay;
139 
140 	GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
141 
142 	/*
143 	 * On resume we don't have to wait for MEI-GSC to be re-probed, but we
144 	 * do need to wait for MEI-PXP to reset & re-bind
145 	 */
146 	switch (huc->delayed_load.status) {
147 	case INTEL_HUC_WAITING_ON_GSC:
148 		delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
149 		break;
150 	case INTEL_HUC_WAITING_ON_PXP:
151 		delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
152 		break;
153 	default:
154 		gsc_init_error(huc);
155 		return;
156 	}
157 
158 	/*
159 	 * This fence is always complete unless we're waiting for the
160 	 * GSC device to come up to load the HuC. We arm the fence here
161 	 * and complete it when we confirm that the HuC is loaded from
162 	 * the PXP bind callback.
163 	 */
164 	GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
165 	i915_sw_fence_fini(&huc->delayed_load.fence);
166 	i915_sw_fence_reinit(&huc->delayed_load.fence);
167 	i915_sw_fence_await(&huc->delayed_load.fence);
168 	i915_sw_fence_commit(&huc->delayed_load.fence);
169 
170 	hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
171 }
172 
173 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
174 {
175 	struct device *dev = data;
176 	struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
177 	struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
178 
179 	if (!intf->adev || &intf->adev->aux_dev.dev != dev)
180 		return 0;
181 
182 	switch (action) {
183 	case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
184 		gsc_init_done(huc);
185 		break;
186 
187 	case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
188 	case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
189 		huc_info(huc, "MEI driver not bound, disabling load\n");
190 		gsc_init_error(huc);
191 		break;
192 	}
193 
194 	return 0;
195 }
196 
197 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
198 {
199 	int ret;
200 
201 	if (!intel_huc_is_loaded_by_gsc(huc))
202 		return;
203 
204 	huc->delayed_load.nb.notifier_call = gsc_notifier;
205 	ret = bus_register_notifier(bus, &huc->delayed_load.nb);
206 	if (ret) {
207 		huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
208 		huc->delayed_load.nb.notifier_call = NULL;
209 		gsc_init_error(huc);
210 	}
211 }
212 
213 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
214 {
215 	if (!huc->delayed_load.nb.notifier_call)
216 		return;
217 
218 	delayed_huc_load_complete(huc);
219 
220 	bus_unregister_notifier(bus, &huc->delayed_load.nb);
221 	huc->delayed_load.nb.notifier_call = NULL;
222 }
223 
224 static void delayed_huc_load_init(struct intel_huc *huc)
225 {
226 	/*
227 	 * Initialize fence to be complete as this is expected to be complete
228 	 * unless there is a delayed HuC load in progress.
229 	 */
230 	i915_sw_fence_init(&huc->delayed_load.fence,
231 			   sw_fence_dummy_notify);
232 	i915_sw_fence_commit(&huc->delayed_load.fence);
233 
234 	hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
235 	huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
236 }
237 
238 static void delayed_huc_load_fini(struct intel_huc *huc)
239 {
240 	/*
241 	 * the fence is initialized in init_early, so we need to clean it up
242 	 * even if HuC loading is off.
243 	 */
244 	delayed_huc_load_complete(huc);
245 	i915_sw_fence_fini(&huc->delayed_load.fence);
246 }
247 
248 int intel_huc_sanitize(struct intel_huc *huc)
249 {
250 	delayed_huc_load_complete(huc);
251 	intel_uc_fw_sanitize(&huc->fw);
252 	return 0;
253 }
254 
255 static bool vcs_supported(struct intel_gt *gt)
256 {
257 	intel_engine_mask_t mask = gt->info.engine_mask;
258 
259 	/*
260 	 * We reach here from i915_driver_early_probe for the primary GT before
261 	 * its engine mask is set, so we use the device info engine mask for it;
262 	 * this means we're not taking VCS fusing into account, but if the
263 	 * primary GT supports VCS engines we expect at least one of them to
264 	 * remain unfused so we're fine.
265 	 * For other GTs we expect the GT-specific mask to be set before we
266 	 * call this function.
267 	 */
268 	GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
269 
270 	if (gt_is_root(gt))
271 		mask = INTEL_INFO(gt->i915)->platform_engine_mask;
272 	else
273 		mask = gt->info.engine_mask;
274 
275 	return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
276 }
277 
278 void intel_huc_init_early(struct intel_huc *huc)
279 {
280 	struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
281 	struct intel_gt *gt = huc_to_gt(huc);
282 
283 	intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
284 
285 	/*
286 	 * we always init the fence as already completed, even if HuC is not
287 	 * supported. This way we don't have to distinguish between HuC not
288 	 * supported/disabled or already loaded, and can focus on if the load
289 	 * is currently in progress (fence not complete) or not, which is what
290 	 * we care about for stalling userspace submissions.
291 	 */
292 	delayed_huc_load_init(huc);
293 
294 	if (!vcs_supported(gt)) {
295 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
296 		return;
297 	}
298 
299 	if (GRAPHICS_VER(i915) >= 11) {
300 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
301 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
302 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
303 	} else {
304 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
305 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
306 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
307 	}
308 
309 	if (IS_DG2(i915)) {
310 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
311 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
312 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
313 	} else {
314 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5);
315 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE;
316 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE;
317 	}
318 }
319 
320 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
321 static int check_huc_loading_mode(struct intel_huc *huc)
322 {
323 	struct intel_gt *gt = huc_to_gt(huc);
324 	bool gsc_enabled = huc->fw.has_gsc_headers;
325 
326 	/*
327 	 * The fuse for HuC load via GSC is only valid on platforms that have
328 	 * GuC deprivilege.
329 	 */
330 	if (HAS_GUC_DEPRIVILEGE(gt->i915))
331 		huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
332 				      GSC_LOADS_HUC;
333 
334 	if (huc->loaded_via_gsc && !gsc_enabled) {
335 		huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
336 		return -ENOEXEC;
337 	}
338 
339 	/*
340 	 * On newer platforms we have GSC-enabled binaries but we load the HuC
341 	 * via DMA. To do so we need to find the location of the legacy-style
342 	 * binary inside the GSC-enabled one, which we do at fetch time. Make
343 	 * sure that we were able to do so if the fuse says we need to load via
344 	 * DMA and the binary is GSC-enabled.
345 	 */
346 	if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
347 		huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
348 		return -ENOEXEC;
349 	}
350 
351 	/*
352 	 * If the HuC is loaded via GSC, we need to be able to access the GSC.
353 	 * On DG2 this is done via the mei components, while on newer platforms
354 	 * it is done via the GSCCS,
355 	 */
356 	if (huc->loaded_via_gsc) {
357 		if (IS_DG2(gt->i915)) {
358 			if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
359 			    !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
360 				huc_info(huc, "can't load due to missing mei modules\n");
361 				return -EIO;
362 			}
363 		} else {
364 			if (!HAS_ENGINE(gt, GSC0)) {
365 				huc_info(huc, "can't load due to missing GSCCS\n");
366 				return -EIO;
367 			}
368 		}
369 	}
370 
371 	huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
372 
373 	return 0;
374 }
375 
376 int intel_huc_init(struct intel_huc *huc)
377 {
378 	struct intel_gt *gt = huc_to_gt(huc);
379 	int err;
380 
381 	err = check_huc_loading_mode(huc);
382 	if (err)
383 		goto out;
384 
385 	if (HAS_ENGINE(gt, GSC0)) {
386 		struct i915_vma *vma;
387 
388 		vma = intel_guc_allocate_vma(gt_to_guc(gt), PXP43_HUC_AUTH_INOUT_SIZE * 2);
389 		if (IS_ERR(vma)) {
390 			err = PTR_ERR(vma);
391 			huc_info(huc, "Failed to allocate heci pkt\n");
392 			goto out;
393 		}
394 
395 		huc->heci_pkt = vma;
396 	}
397 
398 	err = intel_uc_fw_init(&huc->fw);
399 	if (err)
400 		goto out_pkt;
401 
402 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
403 
404 	return 0;
405 
406 out_pkt:
407 	if (huc->heci_pkt)
408 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
409 out:
410 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
411 	huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
412 	return err;
413 }
414 
415 void intel_huc_fini(struct intel_huc *huc)
416 {
417 	/*
418 	 * the fence is initialized in init_early, so we need to clean it up
419 	 * even if HuC loading is off.
420 	 */
421 	delayed_huc_load_fini(huc);
422 
423 	if (huc->heci_pkt)
424 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
425 
426 	if (intel_uc_fw_is_loadable(&huc->fw))
427 		intel_uc_fw_fini(&huc->fw);
428 }
429 
430 void intel_huc_suspend(struct intel_huc *huc)
431 {
432 	if (!intel_uc_fw_is_loadable(&huc->fw))
433 		return;
434 
435 	/*
436 	 * in the unlikely case that we're suspending before the GSC has
437 	 * completed its loading sequence, just stop waiting. We'll restart
438 	 * on resume.
439 	 */
440 	delayed_huc_load_complete(huc);
441 }
442 
443 static const char *auth_mode_string(struct intel_huc *huc,
444 				    enum intel_huc_authentication_type type)
445 {
446 	bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
447 
448 	return partial ? "clear media" : "all workloads";
449 }
450 
451 /*
452  * Use a longer timeout for debug builds so that problems can be detected
453  * and analysed. But a shorter timeout for releases so that user's don't
454  * wait forever to find out there is a problem. Note that the only reason
455  * an end user should hit the timeout is in case of extreme thermal throttling.
456  * And a system that is that hot during boot is probably dead anyway!
457  */
458 #if defined(CONFIG_DRM_I915_DEBUG_GEM)
459 #define HUC_LOAD_RETRY_LIMIT   20
460 #else
461 #define HUC_LOAD_RETRY_LIMIT   3
462 #endif
463 
464 int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
465 				     enum intel_huc_authentication_type type)
466 {
467 	struct intel_gt *gt = huc_to_gt(huc);
468 	struct intel_uncore *uncore = gt->uncore;
469 	ktime_t before, after, delta;
470 	int ret, count;
471 	u64 delta_ms;
472 	u32 before_freq;
473 
474 	/*
475 	 * The KMD requests maximum frequency during driver load, however thermal
476 	 * throttling can force the frequency down to minimum (although the board
477 	 * really should never get that hot in real life!). IFWI  issues have been
478 	 * seen to cause sporadic failures to grant the higher frequency. And at
479 	 * minimum frequency, the authentication time can be in the seconds range.
480 	 * Note that there is a limit on how long an individual wait_for() can wait.
481 	 * So wrap it in a loop.
482 	 */
483 	before_freq = intel_rps_read_actual_frequency(&gt->rps);
484 	before = ktime_get();
485 	for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) {
486 		ret = __intel_wait_for_register(gt->uncore,
487 						huc->status[type].reg,
488 						huc->status[type].mask,
489 						huc->status[type].value,
490 						2, 1000, NULL);
491 		if (!ret)
492 			break;
493 
494 		huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n",
495 			count, intel_rps_read_actual_frequency(&gt->rps),
496 			huc->status[type].reg.reg);
497 	}
498 	after = ktime_get();
499 	delta = ktime_sub(after, before);
500 	delta_ms = ktime_to_ms(delta);
501 
502 	if (delta_ms > 50) {
503 		huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n",
504 			 delta_ms, huc->status[type].reg.reg, count, ret);
505 		huc_warn(huc, "excessive auth time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n",
506 			 intel_rps_read_actual_frequency(&gt->rps), before_freq,
507 			 intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt)));
508 	} else {
509 		huc_dbg(huc, "auth took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
510 			delta_ms, intel_rps_read_actual_frequency(&gt->rps),
511 			before_freq, huc->status[type].reg.reg, count, ret);
512 	}
513 
514 	/* mark the load process as complete even if the wait failed */
515 	delayed_huc_load_complete(huc);
516 
517 	if (ret) {
518 		huc_err(huc, "firmware not verified for %s: %pe\n",
519 			auth_mode_string(huc, type), ERR_PTR(ret));
520 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
521 		return ret;
522 	}
523 
524 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
525 	huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
526 	return 0;
527 }
528 
529 /**
530  * intel_huc_auth() - Authenticate HuC uCode
531  * @huc: intel_huc structure
532  * @type: authentication type (via GuC or via GSC)
533  *
534  * Called after HuC and GuC firmware loading during intel_uc_init_hw().
535  *
536  * This function invokes the GuC action to authenticate the HuC firmware,
537  * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
538  * waits for up to 50ms for firmware verification ACK.
539  */
540 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
541 {
542 	struct intel_gt *gt = huc_to_gt(huc);
543 	struct intel_guc *guc = gt_to_guc(gt);
544 	int ret;
545 
546 	if (!intel_uc_fw_is_loaded(&huc->fw))
547 		return -ENOEXEC;
548 
549 	/* GSC will do the auth with the load */
550 	if (intel_huc_is_loaded_by_gsc(huc))
551 		return -ENODEV;
552 
553 	if (intel_huc_is_authenticated(huc, type))
554 		return -EEXIST;
555 
556 	ret = i915_inject_probe_error(gt->i915, -ENXIO);
557 	if (ret)
558 		goto fail;
559 
560 	switch (type) {
561 	case INTEL_HUC_AUTH_BY_GUC:
562 		ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
563 		break;
564 	case INTEL_HUC_AUTH_BY_GSC:
565 		ret = intel_huc_fw_auth_via_gsccs(huc);
566 		break;
567 	default:
568 		MISSING_CASE(type);
569 		ret = -EINVAL;
570 	}
571 	if (ret)
572 		goto fail;
573 
574 	/* Check authentication status, it should be done by now */
575 	ret = intel_huc_wait_for_auth_complete(huc, type);
576 	if (ret)
577 		goto fail;
578 
579 	return 0;
580 
581 fail:
582 	huc_probe_error(huc, "%s authentication failed %pe\n",
583 			auth_mode_string(huc, type), ERR_PTR(ret));
584 	return ret;
585 }
586 
587 bool intel_huc_is_authenticated(struct intel_huc *huc,
588 				enum intel_huc_authentication_type type)
589 {
590 	struct intel_gt *gt = huc_to_gt(huc);
591 	intel_wakeref_t wakeref;
592 	u32 status = 0;
593 
594 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
595 		status = intel_uncore_read(gt->uncore, huc->status[type].reg);
596 
597 	return (status & huc->status[type].mask) == huc->status[type].value;
598 }
599 
600 static bool huc_is_fully_authenticated(struct intel_huc *huc)
601 {
602 	struct intel_uc_fw *huc_fw = &huc->fw;
603 
604 	if (!huc_fw->has_gsc_headers)
605 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
606 	else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
607 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
608 	else
609 		return false;
610 }
611 
612 /**
613  * intel_huc_check_status() - check HuC status
614  * @huc: intel_huc structure
615  *
616  * This function reads status register to verify if HuC
617  * firmware was successfully loaded.
618  *
619  * The return values match what is expected for the I915_PARAM_HUC_STATUS
620  * getparam.
621  */
622 int intel_huc_check_status(struct intel_huc *huc)
623 {
624 	struct intel_uc_fw *huc_fw = &huc->fw;
625 
626 	switch (__intel_uc_fw_status(huc_fw)) {
627 	case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
628 		return -ENODEV;
629 	case INTEL_UC_FIRMWARE_DISABLED:
630 		return -EOPNOTSUPP;
631 	case INTEL_UC_FIRMWARE_MISSING:
632 		return -ENOPKG;
633 	case INTEL_UC_FIRMWARE_ERROR:
634 		return -ENOEXEC;
635 	case INTEL_UC_FIRMWARE_INIT_FAIL:
636 		return -ENOMEM;
637 	case INTEL_UC_FIRMWARE_LOAD_FAIL:
638 		return -EIO;
639 	default:
640 		break;
641 	}
642 
643 	/*
644 	 * GSC-enabled binaries loaded via DMA are first partially
645 	 * authenticated by GuC and then fully authenticated by GSC
646 	 */
647 	if (huc_is_fully_authenticated(huc))
648 		return 1; /* full auth */
649 	else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
650 		 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
651 		return 2; /* clear media only */
652 	else
653 		return 0;
654 }
655 
656 static bool huc_has_delayed_load(struct intel_huc *huc)
657 {
658 	return intel_huc_is_loaded_by_gsc(huc) &&
659 	       (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
660 }
661 
662 void intel_huc_update_auth_status(struct intel_huc *huc)
663 {
664 	if (!intel_uc_fw_is_loadable(&huc->fw))
665 		return;
666 
667 	if (!huc->fw.has_gsc_headers)
668 		return;
669 
670 	if (huc_is_fully_authenticated(huc))
671 		intel_uc_fw_change_status(&huc->fw,
672 					  INTEL_UC_FIRMWARE_RUNNING);
673 	else if (huc_has_delayed_load(huc))
674 		huc_delayed_load_start(huc);
675 }
676 
677 /**
678  * intel_huc_load_status - dump information about HuC load status
679  * @huc: the HuC
680  * @p: the &drm_printer
681  *
682  * Pretty printer for HuC load status.
683  */
684 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
685 {
686 	struct intel_gt *gt = huc_to_gt(huc);
687 	intel_wakeref_t wakeref;
688 
689 	if (!intel_huc_is_supported(huc)) {
690 		drm_printf(p, "HuC not supported\n");
691 		return;
692 	}
693 
694 	if (!intel_huc_is_wanted(huc)) {
695 		drm_printf(p, "HuC disabled\n");
696 		return;
697 	}
698 
699 	intel_uc_fw_dump(&huc->fw, p);
700 
701 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
702 		drm_printf(p, "HuC status: 0x%08x\n",
703 			   intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
704 }
705