xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision e7b2b108cdeab76a7e7324459e50b0c1214c0386)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37 
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135 
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 	struct intel_engine_cs base;
139 	struct intel_context context;
140 };
141 
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 		   unsigned long flags);
145 
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 		    unsigned int num_siblings,
149 		    unsigned int width);
150 
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152 
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
162 	((guc)->submission_state.num_guc_ids / 16)
163 
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
169 #define SCHED_STATE_DESTROYED				BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
171 #define SCHED_STATE_BANNED				BIT(3)
172 #define SCHED_STATE_ENABLED				BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
174 #define SCHED_STATE_REGISTERED				BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
176 #define SCHED_STATE_CLOSED				BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT			9
178 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
180 
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 	lockdep_assert_held(&ce->guc_state.lock);
184 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186 
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193 	(SCHED_STATE_BLOCKED_MASK | \
194 	 SCHED_STATE_CLOSED | \
195 	 SCHED_STATE_REGISTERED)
196 
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202 
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 	return ce->guc_state.sched_state &
207 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209 
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 	lockdep_assert_held(&ce->guc_state.lock);
214 	ce->guc_state.sched_state |=
215 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217 
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 	lockdep_assert_held(&ce->guc_state.lock);
222 	ce->guc_state.sched_state &=
223 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225 
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231 
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235 	lockdep_assert_held(&ce->guc_state.lock);
236 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238 
239 static inline bool context_pending_disable(struct intel_context *ce)
240 {
241 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
242 }
243 
244 static inline void set_context_pending_disable(struct intel_context *ce)
245 {
246 	lockdep_assert_held(&ce->guc_state.lock);
247 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
248 }
249 
250 static inline void clr_context_pending_disable(struct intel_context *ce)
251 {
252 	lockdep_assert_held(&ce->guc_state.lock);
253 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
254 }
255 
256 static inline bool context_banned(struct intel_context *ce)
257 {
258 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
259 }
260 
261 static inline void set_context_banned(struct intel_context *ce)
262 {
263 	lockdep_assert_held(&ce->guc_state.lock);
264 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
265 }
266 
267 static inline void clr_context_banned(struct intel_context *ce)
268 {
269 	lockdep_assert_held(&ce->guc_state.lock);
270 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
271 }
272 
273 static inline bool context_enabled(struct intel_context *ce)
274 {
275 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
276 }
277 
278 static inline void set_context_enabled(struct intel_context *ce)
279 {
280 	lockdep_assert_held(&ce->guc_state.lock);
281 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
282 }
283 
284 static inline void clr_context_enabled(struct intel_context *ce)
285 {
286 	lockdep_assert_held(&ce->guc_state.lock);
287 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
288 }
289 
290 static inline bool context_pending_enable(struct intel_context *ce)
291 {
292 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
293 }
294 
295 static inline void set_context_pending_enable(struct intel_context *ce)
296 {
297 	lockdep_assert_held(&ce->guc_state.lock);
298 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
299 }
300 
301 static inline void clr_context_pending_enable(struct intel_context *ce)
302 {
303 	lockdep_assert_held(&ce->guc_state.lock);
304 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
305 }
306 
307 static inline bool context_registered(struct intel_context *ce)
308 {
309 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
310 }
311 
312 static inline void set_context_registered(struct intel_context *ce)
313 {
314 	lockdep_assert_held(&ce->guc_state.lock);
315 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
316 }
317 
318 static inline void clr_context_registered(struct intel_context *ce)
319 {
320 	lockdep_assert_held(&ce->guc_state.lock);
321 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
322 }
323 
324 static inline bool context_policy_required(struct intel_context *ce)
325 {
326 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
327 }
328 
329 static inline void set_context_policy_required(struct intel_context *ce)
330 {
331 	lockdep_assert_held(&ce->guc_state.lock);
332 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
333 }
334 
335 static inline void clr_context_policy_required(struct intel_context *ce)
336 {
337 	lockdep_assert_held(&ce->guc_state.lock);
338 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
339 }
340 
341 static inline bool context_close_done(struct intel_context *ce)
342 {
343 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
344 }
345 
346 static inline void set_context_close_done(struct intel_context *ce)
347 {
348 	lockdep_assert_held(&ce->guc_state.lock);
349 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
350 }
351 
352 static inline u32 context_blocked(struct intel_context *ce)
353 {
354 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
355 		SCHED_STATE_BLOCKED_SHIFT;
356 }
357 
358 static inline void incr_context_blocked(struct intel_context *ce)
359 {
360 	lockdep_assert_held(&ce->guc_state.lock);
361 
362 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
363 
364 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
365 }
366 
367 static inline void decr_context_blocked(struct intel_context *ce)
368 {
369 	lockdep_assert_held(&ce->guc_state.lock);
370 
371 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
372 
373 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
374 }
375 
376 static struct intel_context *
377 request_to_scheduling_context(struct i915_request *rq)
378 {
379 	return intel_context_to_parent(rq->context);
380 }
381 
382 static inline bool context_guc_id_invalid(struct intel_context *ce)
383 {
384 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
385 }
386 
387 static inline void set_context_guc_id_invalid(struct intel_context *ce)
388 {
389 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
390 }
391 
392 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
393 {
394 	return &ce->engine->gt->uc.guc;
395 }
396 
397 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
398 {
399 	return rb_entry(rb, struct i915_priolist, node);
400 }
401 
402 /*
403  * When using multi-lrc submission a scratch memory area is reserved in the
404  * parent's context state for the process descriptor, work queue, and handshake
405  * between the parent + children contexts to insert safe preemption points
406  * between each of the BBs. Currently the scratch area is sized to a page.
407  *
408  * The layout of this scratch area is below:
409  * 0						guc_process_desc
410  * + sizeof(struct guc_process_desc)		child go
411  * + CACHELINE_BYTES				child join[0]
412  * ...
413  * + CACHELINE_BYTES				child join[n - 1]
414  * ...						unused
415  * PARENT_SCRATCH_SIZE / 2			work queue start
416  * ...						work queue
417  * PARENT_SCRATCH_SIZE - 1			work queue end
418  */
419 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
420 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
421 
422 struct sync_semaphore {
423 	u32 semaphore;
424 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
425 };
426 
427 struct parent_scratch {
428 	union guc_descs {
429 		struct guc_sched_wq_desc wq_desc;
430 		struct guc_process_desc_v69 pdesc;
431 	} descs;
432 
433 	struct sync_semaphore go;
434 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
435 
436 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
437 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
438 
439 	u32 wq[WQ_SIZE / sizeof(u32)];
440 };
441 
442 static u32 __get_parent_scratch_offset(struct intel_context *ce)
443 {
444 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
445 
446 	return ce->parallel.guc.parent_page * PAGE_SIZE;
447 }
448 
449 static u32 __get_wq_offset(struct intel_context *ce)
450 {
451 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
452 
453 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
454 }
455 
456 static struct parent_scratch *
457 __get_parent_scratch(struct intel_context *ce)
458 {
459 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
460 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
461 
462 	/*
463 	 * Need to subtract LRC_STATE_OFFSET here as the
464 	 * parallel.guc.parent_page is the offset into ce->state while
465 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
466 	 */
467 	return (struct parent_scratch *)
468 		(ce->lrc_reg_state +
469 		 ((__get_parent_scratch_offset(ce) -
470 		   LRC_STATE_OFFSET) / sizeof(u32)));
471 }
472 
473 static struct guc_process_desc_v69 *
474 __get_process_desc_v69(struct intel_context *ce)
475 {
476 	struct parent_scratch *ps = __get_parent_scratch(ce);
477 
478 	return &ps->descs.pdesc;
479 }
480 
481 static struct guc_sched_wq_desc *
482 __get_wq_desc_v70(struct intel_context *ce)
483 {
484 	struct parent_scratch *ps = __get_parent_scratch(ce);
485 
486 	return &ps->descs.wq_desc;
487 }
488 
489 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
490 {
491 	/*
492 	 * Check for space in work queue. Caching a value of head pointer in
493 	 * intel_context structure in order reduce the number accesses to shared
494 	 * GPU memory which may be across a PCIe bus.
495 	 */
496 #define AVAILABLE_SPACE	\
497 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
498 	if (wqi_size > AVAILABLE_SPACE) {
499 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
500 
501 		if (wqi_size > AVAILABLE_SPACE)
502 			return NULL;
503 	}
504 #undef AVAILABLE_SPACE
505 
506 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
507 }
508 
509 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
510 {
511 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
512 
513 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
514 
515 	return ce;
516 }
517 
518 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
519 {
520 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
521 
522 	if (!base)
523 		return NULL;
524 
525 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
526 
527 	return &base[index];
528 }
529 
530 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
531 {
532 	u32 size;
533 	int ret;
534 
535 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
536 			  GUC_MAX_CONTEXT_ID);
537 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
538 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
539 	if (ret)
540 		return ret;
541 
542 	return 0;
543 }
544 
545 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
546 {
547 	if (!guc->lrc_desc_pool_vaddr_v69)
548 		return;
549 
550 	guc->lrc_desc_pool_vaddr_v69 = NULL;
551 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
552 }
553 
554 static inline bool guc_submission_initialized(struct intel_guc *guc)
555 {
556 	return guc->submission_initialized;
557 }
558 
559 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
560 {
561 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
562 
563 	if (desc)
564 		memset(desc, 0, sizeof(*desc));
565 }
566 
567 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
568 {
569 	return __get_context(guc, id);
570 }
571 
572 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
573 				      struct intel_context *ce)
574 {
575 	unsigned long flags;
576 
577 	/*
578 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
579 	 * lower level functions directly.
580 	 */
581 	xa_lock_irqsave(&guc->context_lookup, flags);
582 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
583 	xa_unlock_irqrestore(&guc->context_lookup, flags);
584 }
585 
586 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
587 {
588 	unsigned long flags;
589 
590 	if (unlikely(!guc_submission_initialized(guc)))
591 		return;
592 
593 	_reset_lrc_desc_v69(guc, id);
594 
595 	/*
596 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
597 	 * the lower level functions directly.
598 	 */
599 	xa_lock_irqsave(&guc->context_lookup, flags);
600 	__xa_erase(&guc->context_lookup, id);
601 	xa_unlock_irqrestore(&guc->context_lookup, flags);
602 }
603 
604 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
605 {
606 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
607 		wake_up_all(&guc->ct.wq);
608 }
609 
610 static int guc_submission_send_busy_loop(struct intel_guc *guc,
611 					 const u32 *action,
612 					 u32 len,
613 					 u32 g2h_len_dw,
614 					 bool loop)
615 {
616 	/*
617 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
618 	 * so we don't handle the case where we don't get a reply because we
619 	 * aborted the send due to the channel being busy.
620 	 */
621 	GEM_BUG_ON(g2h_len_dw && !loop);
622 
623 	if (g2h_len_dw)
624 		atomic_inc(&guc->outstanding_submission_g2h);
625 
626 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
627 }
628 
629 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
630 				   atomic_t *wait_var,
631 				   bool interruptible,
632 				   long timeout)
633 {
634 	const int state = interruptible ?
635 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
636 	DEFINE_WAIT(wait);
637 
638 	might_sleep();
639 	GEM_BUG_ON(timeout < 0);
640 
641 	if (!atomic_read(wait_var))
642 		return 0;
643 
644 	if (!timeout)
645 		return -ETIME;
646 
647 	for (;;) {
648 		prepare_to_wait(&guc->ct.wq, &wait, state);
649 
650 		if (!atomic_read(wait_var))
651 			break;
652 
653 		if (signal_pending_state(state, current)) {
654 			timeout = -EINTR;
655 			break;
656 		}
657 
658 		if (!timeout) {
659 			timeout = -ETIME;
660 			break;
661 		}
662 
663 		timeout = io_schedule_timeout(timeout);
664 	}
665 	finish_wait(&guc->ct.wq, &wait);
666 
667 	return (timeout < 0) ? timeout : 0;
668 }
669 
670 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
671 {
672 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
673 		return 0;
674 
675 	return intel_guc_wait_for_pending_msg(guc,
676 					      &guc->outstanding_submission_g2h,
677 					      true, timeout);
678 }
679 
680 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
681 static int try_context_registration(struct intel_context *ce, bool loop);
682 
683 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
684 {
685 	int err = 0;
686 	struct intel_context *ce = request_to_scheduling_context(rq);
687 	u32 action[3];
688 	int len = 0;
689 	u32 g2h_len_dw = 0;
690 	bool enabled;
691 
692 	lockdep_assert_held(&rq->engine->sched_engine->lock);
693 
694 	/*
695 	 * Corner case where requests were sitting in the priority list or a
696 	 * request resubmitted after the context was banned.
697 	 */
698 	if (unlikely(!intel_context_is_schedulable(ce))) {
699 		i915_request_put(i915_request_mark_eio(rq));
700 		intel_engine_signal_breadcrumbs(ce->engine);
701 		return 0;
702 	}
703 
704 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
705 	GEM_BUG_ON(context_guc_id_invalid(ce));
706 
707 	if (context_policy_required(ce)) {
708 		err = guc_context_policy_init_v70(ce, false);
709 		if (err)
710 			return err;
711 	}
712 
713 	spin_lock(&ce->guc_state.lock);
714 
715 	/*
716 	 * The request / context will be run on the hardware when scheduling
717 	 * gets enabled in the unblock. For multi-lrc we still submit the
718 	 * context to move the LRC tails.
719 	 */
720 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
721 		goto out;
722 
723 	enabled = context_enabled(ce) || context_blocked(ce);
724 
725 	if (!enabled) {
726 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
727 		action[len++] = ce->guc_id.id;
728 		action[len++] = GUC_CONTEXT_ENABLE;
729 		set_context_pending_enable(ce);
730 		intel_context_get(ce);
731 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
732 	} else {
733 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
734 		action[len++] = ce->guc_id.id;
735 	}
736 
737 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
738 	if (!enabled && !err) {
739 		trace_intel_context_sched_enable(ce);
740 		atomic_inc(&guc->outstanding_submission_g2h);
741 		set_context_enabled(ce);
742 
743 		/*
744 		 * Without multi-lrc KMD does the submission step (moving the
745 		 * lrc tail) so enabling scheduling is sufficient to submit the
746 		 * context. This isn't the case in multi-lrc submission as the
747 		 * GuC needs to move the tails, hence the need for another H2G
748 		 * to submit a multi-lrc context after enabling scheduling.
749 		 */
750 		if (intel_context_is_parent(ce)) {
751 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
752 			err = intel_guc_send_nb(guc, action, len - 1, 0);
753 		}
754 	} else if (!enabled) {
755 		clr_context_pending_enable(ce);
756 		intel_context_put(ce);
757 	}
758 	if (likely(!err))
759 		trace_i915_request_guc_submit(rq);
760 
761 out:
762 	spin_unlock(&ce->guc_state.lock);
763 	return err;
764 }
765 
766 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
767 {
768 	int ret = __guc_add_request(guc, rq);
769 
770 	if (unlikely(ret == -EBUSY)) {
771 		guc->stalled_request = rq;
772 		guc->submission_stall_reason = STALL_ADD_REQUEST;
773 	}
774 
775 	return ret;
776 }
777 
778 static inline void guc_set_lrc_tail(struct i915_request *rq)
779 {
780 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
781 		intel_ring_set_tail(rq->ring, rq->tail);
782 }
783 
784 static inline int rq_prio(const struct i915_request *rq)
785 {
786 	return rq->sched.attr.priority;
787 }
788 
789 static bool is_multi_lrc_rq(struct i915_request *rq)
790 {
791 	return intel_context_is_parallel(rq->context);
792 }
793 
794 static bool can_merge_rq(struct i915_request *rq,
795 			 struct i915_request *last)
796 {
797 	return request_to_scheduling_context(rq) ==
798 		request_to_scheduling_context(last);
799 }
800 
801 static u32 wq_space_until_wrap(struct intel_context *ce)
802 {
803 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
804 }
805 
806 static void write_wqi(struct intel_context *ce, u32 wqi_size)
807 {
808 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
809 
810 	/*
811 	 * Ensure WQI are visible before updating tail
812 	 */
813 	intel_guc_write_barrier(ce_to_guc(ce));
814 
815 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
816 		(WQ_SIZE - 1);
817 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
818 }
819 
820 static int guc_wq_noop_append(struct intel_context *ce)
821 {
822 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
823 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
824 
825 	if (!wqi)
826 		return -EBUSY;
827 
828 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
829 
830 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
831 		FIELD_PREP(WQ_LEN_MASK, len_dw);
832 	ce->parallel.guc.wqi_tail = 0;
833 
834 	return 0;
835 }
836 
837 static int __guc_wq_item_append(struct i915_request *rq)
838 {
839 	struct intel_context *ce = request_to_scheduling_context(rq);
840 	struct intel_context *child;
841 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
842 		sizeof(u32);
843 	u32 *wqi;
844 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
845 	int ret;
846 
847 	/* Ensure context is in correct state updating work queue */
848 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
849 	GEM_BUG_ON(context_guc_id_invalid(ce));
850 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
851 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
852 
853 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
854 	if (wqi_size > wq_space_until_wrap(ce)) {
855 		ret = guc_wq_noop_append(ce);
856 		if (ret)
857 			return ret;
858 	}
859 
860 	wqi = get_wq_pointer(ce, wqi_size);
861 	if (!wqi)
862 		return -EBUSY;
863 
864 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
865 
866 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
867 		FIELD_PREP(WQ_LEN_MASK, len_dw);
868 	*wqi++ = ce->lrc.lrca;
869 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
870 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
871 	*wqi++ = 0;	/* fence_id */
872 	for_each_child(ce, child)
873 		*wqi++ = child->ring->tail / sizeof(u64);
874 
875 	write_wqi(ce, wqi_size);
876 
877 	return 0;
878 }
879 
880 static int guc_wq_item_append(struct intel_guc *guc,
881 			      struct i915_request *rq)
882 {
883 	struct intel_context *ce = request_to_scheduling_context(rq);
884 	int ret;
885 
886 	if (unlikely(!intel_context_is_schedulable(ce)))
887 		return 0;
888 
889 	ret = __guc_wq_item_append(rq);
890 	if (unlikely(ret == -EBUSY)) {
891 		guc->stalled_request = rq;
892 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
893 	}
894 
895 	return ret;
896 }
897 
898 static bool multi_lrc_submit(struct i915_request *rq)
899 {
900 	struct intel_context *ce = request_to_scheduling_context(rq);
901 
902 	intel_ring_set_tail(rq->ring, rq->tail);
903 
904 	/*
905 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
906 	 * request generated from a multi-BB submission. This indicates to the
907 	 * backend (GuC interface) that we should submit this context thus
908 	 * submitting all the requests generated in parallel.
909 	 */
910 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
911 	       !intel_context_is_schedulable(ce);
912 }
913 
914 static int guc_dequeue_one_context(struct intel_guc *guc)
915 {
916 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
917 	struct i915_request *last = NULL;
918 	bool submit = false;
919 	struct rb_node *rb;
920 	int ret;
921 
922 	lockdep_assert_held(&sched_engine->lock);
923 
924 	if (guc->stalled_request) {
925 		submit = true;
926 		last = guc->stalled_request;
927 
928 		switch (guc->submission_stall_reason) {
929 		case STALL_REGISTER_CONTEXT:
930 			goto register_context;
931 		case STALL_MOVE_LRC_TAIL:
932 			goto move_lrc_tail;
933 		case STALL_ADD_REQUEST:
934 			goto add_request;
935 		default:
936 			MISSING_CASE(guc->submission_stall_reason);
937 		}
938 	}
939 
940 	while ((rb = rb_first_cached(&sched_engine->queue))) {
941 		struct i915_priolist *p = to_priolist(rb);
942 		struct i915_request *rq, *rn;
943 
944 		priolist_for_each_request_consume(rq, rn, p) {
945 			if (last && !can_merge_rq(rq, last))
946 				goto register_context;
947 
948 			list_del_init(&rq->sched.link);
949 
950 			__i915_request_submit(rq);
951 
952 			trace_i915_request_in(rq, 0);
953 			last = rq;
954 
955 			if (is_multi_lrc_rq(rq)) {
956 				/*
957 				 * We need to coalesce all multi-lrc requests in
958 				 * a relationship into a single H2G. We are
959 				 * guaranteed that all of these requests will be
960 				 * submitted sequentially.
961 				 */
962 				if (multi_lrc_submit(rq)) {
963 					submit = true;
964 					goto register_context;
965 				}
966 			} else {
967 				submit = true;
968 			}
969 		}
970 
971 		rb_erase_cached(&p->node, &sched_engine->queue);
972 		i915_priolist_free(p);
973 	}
974 
975 register_context:
976 	if (submit) {
977 		struct intel_context *ce = request_to_scheduling_context(last);
978 
979 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
980 			     intel_context_is_schedulable(ce))) {
981 			ret = try_context_registration(ce, false);
982 			if (unlikely(ret == -EPIPE)) {
983 				goto deadlk;
984 			} else if (ret == -EBUSY) {
985 				guc->stalled_request = last;
986 				guc->submission_stall_reason =
987 					STALL_REGISTER_CONTEXT;
988 				goto schedule_tasklet;
989 			} else if (ret != 0) {
990 				GEM_WARN_ON(ret);	/* Unexpected */
991 				goto deadlk;
992 			}
993 		}
994 
995 move_lrc_tail:
996 		if (is_multi_lrc_rq(last)) {
997 			ret = guc_wq_item_append(guc, last);
998 			if (ret == -EBUSY) {
999 				goto schedule_tasklet;
1000 			} else if (ret != 0) {
1001 				GEM_WARN_ON(ret);	/* Unexpected */
1002 				goto deadlk;
1003 			}
1004 		} else {
1005 			guc_set_lrc_tail(last);
1006 		}
1007 
1008 add_request:
1009 		ret = guc_add_request(guc, last);
1010 		if (unlikely(ret == -EPIPE)) {
1011 			goto deadlk;
1012 		} else if (ret == -EBUSY) {
1013 			goto schedule_tasklet;
1014 		} else if (ret != 0) {
1015 			GEM_WARN_ON(ret);	/* Unexpected */
1016 			goto deadlk;
1017 		}
1018 	}
1019 
1020 	guc->stalled_request = NULL;
1021 	guc->submission_stall_reason = STALL_NONE;
1022 	return submit;
1023 
1024 deadlk:
1025 	sched_engine->tasklet.callback = NULL;
1026 	tasklet_disable_nosync(&sched_engine->tasklet);
1027 	return false;
1028 
1029 schedule_tasklet:
1030 	tasklet_schedule(&sched_engine->tasklet);
1031 	return false;
1032 }
1033 
1034 static void guc_submission_tasklet(struct tasklet_struct *t)
1035 {
1036 	struct i915_sched_engine *sched_engine =
1037 		from_tasklet(sched_engine, t, tasklet);
1038 	unsigned long flags;
1039 	bool loop;
1040 
1041 	spin_lock_irqsave(&sched_engine->lock, flags);
1042 
1043 	do {
1044 		loop = guc_dequeue_one_context(sched_engine->private_data);
1045 	} while (loop);
1046 
1047 	i915_sched_engine_reset_on_empty(sched_engine);
1048 
1049 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1050 }
1051 
1052 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1053 {
1054 	if (iir & GT_RENDER_USER_INTERRUPT)
1055 		intel_engine_signal_breadcrumbs(engine);
1056 }
1057 
1058 static void __guc_context_destroy(struct intel_context *ce);
1059 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1060 static void guc_signal_context_fence(struct intel_context *ce);
1061 static void guc_cancel_context_requests(struct intel_context *ce);
1062 static void guc_blocked_fence_complete(struct intel_context *ce);
1063 
1064 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1065 {
1066 	struct intel_context *ce;
1067 	unsigned long index, flags;
1068 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1069 
1070 	xa_lock_irqsave(&guc->context_lookup, flags);
1071 	xa_for_each(&guc->context_lookup, index, ce) {
1072 		/*
1073 		 * Corner case where the ref count on the object is zero but and
1074 		 * deregister G2H was lost. In this case we don't touch the ref
1075 		 * count and finish the destroy of the context.
1076 		 */
1077 		bool do_put = kref_get_unless_zero(&ce->ref);
1078 
1079 		xa_unlock(&guc->context_lookup);
1080 
1081 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1082 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1083 			/* successful cancel so jump straight to close it */
1084 			intel_context_sched_disable_unpin(ce);
1085 		}
1086 
1087 		spin_lock(&ce->guc_state.lock);
1088 
1089 		/*
1090 		 * Once we are at this point submission_disabled() is guaranteed
1091 		 * to be visible to all callers who set the below flags (see above
1092 		 * flush and flushes in reset_prepare). If submission_disabled()
1093 		 * is set, the caller shouldn't set these flags.
1094 		 */
1095 
1096 		destroyed = context_destroyed(ce);
1097 		pending_enable = context_pending_enable(ce);
1098 		pending_disable = context_pending_disable(ce);
1099 		deregister = context_wait_for_deregister_to_register(ce);
1100 		banned = context_banned(ce);
1101 		init_sched_state(ce);
1102 
1103 		spin_unlock(&ce->guc_state.lock);
1104 
1105 		if (pending_enable || destroyed || deregister) {
1106 			decr_outstanding_submission_g2h(guc);
1107 			if (deregister)
1108 				guc_signal_context_fence(ce);
1109 			if (destroyed) {
1110 				intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1111 				release_guc_id(guc, ce);
1112 				__guc_context_destroy(ce);
1113 			}
1114 			if (pending_enable || deregister)
1115 				intel_context_put(ce);
1116 		}
1117 
1118 		/* Not mutualy exclusive with above if statement. */
1119 		if (pending_disable) {
1120 			guc_signal_context_fence(ce);
1121 			if (banned) {
1122 				guc_cancel_context_requests(ce);
1123 				intel_engine_signal_breadcrumbs(ce->engine);
1124 			}
1125 			intel_context_sched_disable_unpin(ce);
1126 			decr_outstanding_submission_g2h(guc);
1127 
1128 			spin_lock(&ce->guc_state.lock);
1129 			guc_blocked_fence_complete(ce);
1130 			spin_unlock(&ce->guc_state.lock);
1131 
1132 			intel_context_put(ce);
1133 		}
1134 
1135 		if (do_put)
1136 			intel_context_put(ce);
1137 		xa_lock(&guc->context_lookup);
1138 	}
1139 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1140 }
1141 
1142 /*
1143  * GuC stores busyness stats for each engine at context in/out boundaries. A
1144  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1145  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1146  * GuC.
1147  *
1148  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1149  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1150  * active. For an active engine total busyness = total + (now - start), where
1151  * 'now' is the time at which the busyness is sampled. For inactive engine,
1152  * total busyness = total.
1153  *
1154  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1155  *
1156  * The start and total values provided by GuC are 32 bits and wrap around in a
1157  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1158  * increasing ns values, there is a need for this implementation to account for
1159  * overflows and extend the GuC provided values to 64 bits before returning
1160  * busyness to the user. In order to do that, a worker runs periodically at
1161  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1162  * 27 seconds for a gt clock frequency of 19.2 MHz).
1163  */
1164 
1165 #define WRAP_TIME_CLKS U32_MAX
1166 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1167 
1168 static void
1169 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1170 {
1171 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1172 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1173 
1174 	if (new_start == lower_32_bits(*prev_start))
1175 		return;
1176 
1177 	/*
1178 	 * When gt is unparked, we update the gt timestamp and start the ping
1179 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1180 	 * is unparked, all switched in contexts will have a start time that is
1181 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1182 	 *
1183 	 * If neither gt_stamp nor new_start has rolled over, then the
1184 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1185 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1186 	 *
1187 	 * The below conditions address the cases of new_start rollover and
1188 	 * gt_stamp_last rollover respectively.
1189 	 */
1190 	if (new_start < gt_stamp_last &&
1191 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1192 		gt_stamp_hi++;
1193 
1194 	if (new_start > gt_stamp_last &&
1195 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1196 		gt_stamp_hi--;
1197 
1198 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1199 }
1200 
1201 #define record_read(map_, field_) \
1202 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1203 
1204 /*
1205  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1206  * we run into a race where the value read is inconsistent. Sometimes the
1207  * inconsistency is in reading the upper MSB bytes of the last_in value when
1208  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1209  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1210  * determine validity of these values. Instead we read the values multiple times
1211  * until they are consistent. In test runs, 3 attempts results in consistent
1212  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1213  * any new occurences.
1214  */
1215 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1216 				      u32 *last_in, u32 *id, u32 *total)
1217 {
1218 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1219 	int i = 0;
1220 
1221 	do {
1222 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1223 		*id = record_read(&rec_map, current_context_index);
1224 		*total = record_read(&rec_map, total_runtime);
1225 
1226 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1227 		    record_read(&rec_map, current_context_index) == *id &&
1228 		    record_read(&rec_map, total_runtime) == *total)
1229 			break;
1230 	} while (++i < 6);
1231 }
1232 
1233 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1234 {
1235 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1236 	struct intel_guc *guc = &engine->gt->uc.guc;
1237 	u32 last_switch, ctx_id, total;
1238 
1239 	lockdep_assert_held(&guc->timestamp.lock);
1240 
1241 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1242 
1243 	stats->running = ctx_id != ~0U && last_switch;
1244 	if (stats->running)
1245 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1246 
1247 	/*
1248 	 * Instead of adjusting the total for overflow, just add the
1249 	 * difference from previous sample stats->total_gt_clks
1250 	 */
1251 	if (total && total != ~0U) {
1252 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1253 		stats->prev_total = total;
1254 	}
1255 }
1256 
1257 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1258 {
1259 	intel_wakeref_t wakeref;
1260 	u32 reg, shift;
1261 
1262 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1263 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1264 
1265 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1266 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1267 
1268 	return 3 - shift;
1269 }
1270 
1271 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1272 {
1273 	struct intel_gt *gt = guc_to_gt(guc);
1274 	u32 gt_stamp_lo, gt_stamp_hi;
1275 	u64 gpm_ts;
1276 
1277 	lockdep_assert_held(&guc->timestamp.lock);
1278 
1279 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1280 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1281 					  MISC_STATUS1) >> guc->timestamp.shift;
1282 	gt_stamp_lo = lower_32_bits(gpm_ts);
1283 	*now = ktime_get();
1284 
1285 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1286 		gt_stamp_hi++;
1287 
1288 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1289 }
1290 
1291 /*
1292  * Unlike the execlist mode of submission total and active times are in terms of
1293  * gt clocks. The *now parameter is retained to return the cpu time at which the
1294  * busyness was sampled.
1295  */
1296 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1297 {
1298 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1299 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1300 	struct intel_gt *gt = engine->gt;
1301 	struct intel_guc *guc = &gt->uc.guc;
1302 	u64 total, gt_stamp_saved;
1303 	unsigned long flags;
1304 	u32 reset_count;
1305 	bool in_reset;
1306 	intel_wakeref_t wakeref;
1307 
1308 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1309 
1310 	/*
1311 	 * If a reset happened, we risk reading partially updated engine
1312 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1313 	 * Synchronize with gt reset using reset_count and the
1314 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1315 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1316 	 * usable by checking the flag afterwards.
1317 	 */
1318 	reset_count = i915_reset_count(gpu_error);
1319 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1320 
1321 	*now = ktime_get();
1322 
1323 	/*
1324 	 * The active busyness depends on start_gt_clk and gt_stamp.
1325 	 * gt_stamp is updated by i915 only when gt is awake and the
1326 	 * start_gt_clk is derived from GuC state. To get a consistent
1327 	 * view of activity, we query the GuC state only if gt is awake.
1328 	 */
1329 	wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt);
1330 	if (wakeref) {
1331 		stats_saved = *stats;
1332 		gt_stamp_saved = guc->timestamp.gt_stamp;
1333 		/*
1334 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1335 		 * start_gt_clk' calculation below for active engines.
1336 		 */
1337 		guc_update_engine_gt_clks(engine);
1338 		guc_update_pm_timestamp(guc, now);
1339 		intel_gt_pm_put_async(gt, wakeref);
1340 		if (i915_reset_count(gpu_error) != reset_count) {
1341 			*stats = stats_saved;
1342 			guc->timestamp.gt_stamp = gt_stamp_saved;
1343 		}
1344 	}
1345 
1346 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1347 	if (stats->running) {
1348 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1349 
1350 		total += intel_gt_clock_interval_to_ns(gt, clk);
1351 	}
1352 
1353 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1354 
1355 	return ns_to_ktime(total);
1356 }
1357 
1358 static void guc_enable_busyness_worker(struct intel_guc *guc)
1359 {
1360 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1361 }
1362 
1363 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1364 {
1365 	cancel_delayed_work_sync(&guc->timestamp.work);
1366 }
1367 
1368 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1369 {
1370 	struct intel_gt *gt = guc_to_gt(guc);
1371 	struct intel_engine_cs *engine;
1372 	enum intel_engine_id id;
1373 	unsigned long flags;
1374 	ktime_t unused;
1375 
1376 	guc_cancel_busyness_worker(guc);
1377 
1378 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1379 
1380 	guc_update_pm_timestamp(guc, &unused);
1381 	for_each_engine(engine, gt, id) {
1382 		guc_update_engine_gt_clks(engine);
1383 		engine->stats.guc.prev_total = 0;
1384 	}
1385 
1386 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1387 }
1388 
1389 static void __update_guc_busyness_stats(struct intel_guc *guc)
1390 {
1391 	struct intel_gt *gt = guc_to_gt(guc);
1392 	struct intel_engine_cs *engine;
1393 	enum intel_engine_id id;
1394 	unsigned long flags;
1395 	ktime_t unused;
1396 
1397 	guc->timestamp.last_stat_jiffies = jiffies;
1398 
1399 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1400 
1401 	guc_update_pm_timestamp(guc, &unused);
1402 	for_each_engine(engine, gt, id)
1403 		guc_update_engine_gt_clks(engine);
1404 
1405 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1406 }
1407 
1408 static void __guc_context_update_stats(struct intel_context *ce)
1409 {
1410 	struct intel_guc *guc = ce_to_guc(ce);
1411 	unsigned long flags;
1412 
1413 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1414 	lrc_update_runtime(ce);
1415 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1416 }
1417 
1418 static void guc_context_update_stats(struct intel_context *ce)
1419 {
1420 	if (!intel_context_pin_if_active(ce))
1421 		return;
1422 
1423 	__guc_context_update_stats(ce);
1424 	intel_context_unpin(ce);
1425 }
1426 
1427 static void guc_timestamp_ping(struct work_struct *wrk)
1428 {
1429 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1430 					     timestamp.work.work);
1431 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1432 	struct intel_gt *gt = guc_to_gt(guc);
1433 	struct intel_context *ce;
1434 	intel_wakeref_t wakeref;
1435 	unsigned long index;
1436 	int srcu, ret;
1437 
1438 	/*
1439 	 * Ideally the busyness worker should take a gt pm wakeref because the
1440 	 * worker only needs to be active while gt is awake. However, the
1441 	 * gt_park path cancels the worker synchronously and this complicates
1442 	 * the flow if the worker is also running at the same time. The cancel
1443 	 * waits for the worker and when the worker releases the wakeref, that
1444 	 * would call gt_park and would lead to a deadlock.
1445 	 *
1446 	 * The resolution is to take the global pm wakeref if runtime pm is
1447 	 * already active. If not, we don't need to update the busyness stats as
1448 	 * the stats would already be updated when the gt was parked.
1449 	 *
1450 	 * Note:
1451 	 * - We do not requeue the worker if we cannot take a reference to runtime
1452 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1453 	 *   resume path.
1454 	 *
1455 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1456 	 *   over, we ignore those rollovers since we don't care about tracking
1457 	 *   the exact GT time. We only care about roll overs when the gt is
1458 	 *   active and running workloads.
1459 	 *
1460 	 * - There is a window of time between gt_park and runtime suspend,
1461 	 *   where the worker may run. This is acceptable since the worker will
1462 	 *   not find any new data to update busyness.
1463 	 */
1464 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1465 	if (!wakeref)
1466 		return;
1467 
1468 	/*
1469 	 * Synchronize with gt reset to make sure the worker does not
1470 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1471 	 * for a reset to complete as the reset requires flushing out
1472 	 * this worker thread if started. So waiting would deadlock.
1473 	 */
1474 	ret = intel_gt_reset_trylock(gt, &srcu);
1475 	if (ret)
1476 		goto err_trylock;
1477 
1478 	__update_guc_busyness_stats(guc);
1479 
1480 	/* adjust context stats for overflow */
1481 	xa_for_each(&guc->context_lookup, index, ce)
1482 		guc_context_update_stats(ce);
1483 
1484 	intel_gt_reset_unlock(gt, srcu);
1485 
1486 	guc_enable_busyness_worker(guc);
1487 
1488 err_trylock:
1489 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1490 }
1491 
1492 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1493 {
1494 	u32 offset = intel_guc_engine_usage_offset(guc);
1495 	u32 action[] = {
1496 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1497 		offset,
1498 		0,
1499 	};
1500 
1501 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1502 }
1503 
1504 static int guc_init_engine_stats(struct intel_guc *guc)
1505 {
1506 	struct intel_gt *gt = guc_to_gt(guc);
1507 	intel_wakeref_t wakeref;
1508 	int ret;
1509 
1510 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1511 		ret = guc_action_enable_usage_stats(guc);
1512 
1513 	if (ret)
1514 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1515 	else
1516 		guc_enable_busyness_worker(guc);
1517 
1518 	return ret;
1519 }
1520 
1521 static void guc_fini_engine_stats(struct intel_guc *guc)
1522 {
1523 	guc_cancel_busyness_worker(guc);
1524 }
1525 
1526 void intel_guc_busyness_park(struct intel_gt *gt)
1527 {
1528 	struct intel_guc *guc = &gt->uc.guc;
1529 
1530 	if (!guc_submission_initialized(guc))
1531 		return;
1532 
1533 	/*
1534 	 * There is a race with suspend flow where the worker runs after suspend
1535 	 * and causes an unclaimed register access warning. Cancel the worker
1536 	 * synchronously here.
1537 	 */
1538 	guc_cancel_busyness_worker(guc);
1539 
1540 	/*
1541 	 * Before parking, we should sample engine busyness stats if we need to.
1542 	 * We can skip it if we are less than half a ping from the last time we
1543 	 * sampled the busyness stats.
1544 	 */
1545 	if (guc->timestamp.last_stat_jiffies &&
1546 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1547 			(guc->timestamp.ping_delay / 2)))
1548 		return;
1549 
1550 	__update_guc_busyness_stats(guc);
1551 }
1552 
1553 void intel_guc_busyness_unpark(struct intel_gt *gt)
1554 {
1555 	struct intel_guc *guc = &gt->uc.guc;
1556 	unsigned long flags;
1557 	ktime_t unused;
1558 
1559 	if (!guc_submission_initialized(guc))
1560 		return;
1561 
1562 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1563 	guc_update_pm_timestamp(guc, &unused);
1564 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1565 	guc_enable_busyness_worker(guc);
1566 }
1567 
1568 static inline bool
1569 submission_disabled(struct intel_guc *guc)
1570 {
1571 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1572 
1573 	return unlikely(!sched_engine ||
1574 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1575 			intel_gt_is_wedged(guc_to_gt(guc)));
1576 }
1577 
1578 static void disable_submission(struct intel_guc *guc)
1579 {
1580 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1581 
1582 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1583 		GEM_BUG_ON(!guc->ct.enabled);
1584 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1585 		sched_engine->tasklet.callback = NULL;
1586 	}
1587 }
1588 
1589 static void enable_submission(struct intel_guc *guc)
1590 {
1591 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1592 	unsigned long flags;
1593 
1594 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1595 	sched_engine->tasklet.callback = guc_submission_tasklet;
1596 	wmb();	/* Make sure callback visible */
1597 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1598 	    __tasklet_enable(&sched_engine->tasklet)) {
1599 		GEM_BUG_ON(!guc->ct.enabled);
1600 
1601 		/* And kick in case we missed a new request submission. */
1602 		tasklet_hi_schedule(&sched_engine->tasklet);
1603 	}
1604 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1605 }
1606 
1607 static void guc_flush_submissions(struct intel_guc *guc)
1608 {
1609 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1610 	unsigned long flags;
1611 
1612 	spin_lock_irqsave(&sched_engine->lock, flags);
1613 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1614 }
1615 
1616 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1617 
1618 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1619 {
1620 	if (unlikely(!guc_submission_initialized(guc))) {
1621 		/* Reset called during driver load? GuC not yet initialised! */
1622 		return;
1623 	}
1624 
1625 	intel_gt_park_heartbeats(guc_to_gt(guc));
1626 	disable_submission(guc);
1627 	guc->interrupts.disable(guc);
1628 	__reset_guc_busyness_stats(guc);
1629 
1630 	/* Flush IRQ handler */
1631 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1632 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1633 
1634 	guc_flush_submissions(guc);
1635 	guc_flush_destroyed_contexts(guc);
1636 	flush_work(&guc->ct.requests.worker);
1637 
1638 	scrub_guc_desc_for_outstanding_g2h(guc);
1639 }
1640 
1641 static struct intel_engine_cs *
1642 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1643 {
1644 	struct intel_engine_cs *engine;
1645 	intel_engine_mask_t tmp, mask = ve->mask;
1646 	unsigned int num_siblings = 0;
1647 
1648 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1649 		if (num_siblings++ == sibling)
1650 			return engine;
1651 
1652 	return NULL;
1653 }
1654 
1655 static inline struct intel_engine_cs *
1656 __context_to_physical_engine(struct intel_context *ce)
1657 {
1658 	struct intel_engine_cs *engine = ce->engine;
1659 
1660 	if (intel_engine_is_virtual(engine))
1661 		engine = guc_virtual_get_sibling(engine, 0);
1662 
1663 	return engine;
1664 }
1665 
1666 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1667 {
1668 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1669 
1670 	if (!intel_context_is_schedulable(ce))
1671 		return;
1672 
1673 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1674 
1675 	/*
1676 	 * We want a simple context + ring to execute the breadcrumb update.
1677 	 * We cannot rely on the context being intact across the GPU hang,
1678 	 * so clear it and rebuild just what we need for the breadcrumb.
1679 	 * All pending requests for this context will be zapped, and any
1680 	 * future request will be after userspace has had the opportunity
1681 	 * to recreate its own state.
1682 	 */
1683 	if (scrub)
1684 		lrc_init_regs(ce, engine, true);
1685 
1686 	/* Rerun the request; its payload has been neutered (if guilty). */
1687 	lrc_update_regs(ce, engine, head);
1688 }
1689 
1690 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1691 {
1692 	/*
1693 	 * Wa_22011802037: In addition to stopping the cs, we need
1694 	 * to wait for any pending mi force wakeups
1695 	 */
1696 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1697 		intel_engine_stop_cs(engine);
1698 		intel_engine_wait_for_pending_mi_fw(engine);
1699 	}
1700 }
1701 
1702 static void guc_reset_nop(struct intel_engine_cs *engine)
1703 {
1704 }
1705 
1706 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1707 {
1708 }
1709 
1710 static void
1711 __unwind_incomplete_requests(struct intel_context *ce)
1712 {
1713 	struct i915_request *rq, *rn;
1714 	struct list_head *pl;
1715 	int prio = I915_PRIORITY_INVALID;
1716 	struct i915_sched_engine * const sched_engine =
1717 		ce->engine->sched_engine;
1718 	unsigned long flags;
1719 
1720 	spin_lock_irqsave(&sched_engine->lock, flags);
1721 	spin_lock(&ce->guc_state.lock);
1722 	list_for_each_entry_safe_reverse(rq, rn,
1723 					 &ce->guc_state.requests,
1724 					 sched.link) {
1725 		if (i915_request_completed(rq))
1726 			continue;
1727 
1728 		list_del_init(&rq->sched.link);
1729 		__i915_request_unsubmit(rq);
1730 
1731 		/* Push the request back into the queue for later resubmission. */
1732 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1733 		if (rq_prio(rq) != prio) {
1734 			prio = rq_prio(rq);
1735 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1736 		}
1737 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1738 
1739 		list_add(&rq->sched.link, pl);
1740 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1741 	}
1742 	spin_unlock(&ce->guc_state.lock);
1743 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1744 }
1745 
1746 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1747 {
1748 	bool guilty;
1749 	struct i915_request *rq;
1750 	unsigned long flags;
1751 	u32 head;
1752 	int i, number_children = ce->parallel.number_children;
1753 	struct intel_context *parent = ce;
1754 
1755 	GEM_BUG_ON(intel_context_is_child(ce));
1756 
1757 	intel_context_get(ce);
1758 
1759 	/*
1760 	 * GuC will implicitly mark the context as non-schedulable when it sends
1761 	 * the reset notification. Make sure our state reflects this change. The
1762 	 * context will be marked enabled on resubmission.
1763 	 */
1764 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1765 	clr_context_enabled(ce);
1766 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1767 
1768 	/*
1769 	 * For each context in the relationship find the hanging request
1770 	 * resetting each context / request as needed
1771 	 */
1772 	for (i = 0; i < number_children + 1; ++i) {
1773 		if (!intel_context_is_pinned(ce))
1774 			goto next_context;
1775 
1776 		guilty = false;
1777 		rq = intel_context_get_active_request(ce);
1778 		if (!rq) {
1779 			head = ce->ring->tail;
1780 			goto out_replay;
1781 		}
1782 
1783 		if (i915_request_started(rq))
1784 			guilty = stalled & ce->engine->mask;
1785 
1786 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1787 		head = intel_ring_wrap(ce->ring, rq->head);
1788 
1789 		__i915_request_reset(rq, guilty);
1790 		i915_request_put(rq);
1791 out_replay:
1792 		guc_reset_state(ce, head, guilty);
1793 next_context:
1794 		if (i != number_children)
1795 			ce = list_next_entry(ce, parallel.child_link);
1796 	}
1797 
1798 	__unwind_incomplete_requests(parent);
1799 	intel_context_put(parent);
1800 }
1801 
1802 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1803 {
1804 	struct intel_guc_tlb_wait *wait;
1805 	unsigned long i;
1806 
1807 	if (!intel_guc_tlb_invalidation_is_available(guc))
1808 		return;
1809 
1810 	xa_lock_irq(&guc->tlb_lookup);
1811 	xa_for_each(&guc->tlb_lookup, i, wait)
1812 		wake_up(&wait->wq);
1813 	xa_unlock_irq(&guc->tlb_lookup);
1814 }
1815 
1816 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1817 {
1818 	struct intel_context *ce;
1819 	unsigned long index;
1820 	unsigned long flags;
1821 
1822 	if (unlikely(!guc_submission_initialized(guc))) {
1823 		/* Reset called during driver load? GuC not yet initialised! */
1824 		return;
1825 	}
1826 
1827 	xa_lock_irqsave(&guc->context_lookup, flags);
1828 	xa_for_each(&guc->context_lookup, index, ce) {
1829 		if (!kref_get_unless_zero(&ce->ref))
1830 			continue;
1831 
1832 		xa_unlock(&guc->context_lookup);
1833 
1834 		if (intel_context_is_pinned(ce) &&
1835 		    !intel_context_is_child(ce))
1836 			__guc_reset_context(ce, stalled);
1837 
1838 		intel_context_put(ce);
1839 
1840 		xa_lock(&guc->context_lookup);
1841 	}
1842 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1843 
1844 	/* GuC is blown away, drop all references to contexts */
1845 	xa_destroy(&guc->context_lookup);
1846 }
1847 
1848 static void guc_cancel_context_requests(struct intel_context *ce)
1849 {
1850 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1851 	struct i915_request *rq;
1852 	unsigned long flags;
1853 
1854 	/* Mark all executing requests as skipped. */
1855 	spin_lock_irqsave(&sched_engine->lock, flags);
1856 	spin_lock(&ce->guc_state.lock);
1857 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1858 		i915_request_put(i915_request_mark_eio(rq));
1859 	spin_unlock(&ce->guc_state.lock);
1860 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1861 }
1862 
1863 static void
1864 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1865 {
1866 	struct i915_request *rq, *rn;
1867 	struct rb_node *rb;
1868 	unsigned long flags;
1869 
1870 	/* Can be called during boot if GuC fails to load */
1871 	if (!sched_engine)
1872 		return;
1873 
1874 	/*
1875 	 * Before we call engine->cancel_requests(), we should have exclusive
1876 	 * access to the submission state. This is arranged for us by the
1877 	 * caller disabling the interrupt generation, the tasklet and other
1878 	 * threads that may then access the same state, giving us a free hand
1879 	 * to reset state. However, we still need to let lockdep be aware that
1880 	 * we know this state may be accessed in hardirq context, so we
1881 	 * disable the irq around this manipulation and we want to keep
1882 	 * the spinlock focused on its duties and not accidentally conflate
1883 	 * coverage to the submission's irq state. (Similarly, although we
1884 	 * shouldn't need to disable irq around the manipulation of the
1885 	 * submission's irq state, we also wish to remind ourselves that
1886 	 * it is irq state.)
1887 	 */
1888 	spin_lock_irqsave(&sched_engine->lock, flags);
1889 
1890 	/* Flush the queued requests to the timeline list (for retiring). */
1891 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1892 		struct i915_priolist *p = to_priolist(rb);
1893 
1894 		priolist_for_each_request_consume(rq, rn, p) {
1895 			list_del_init(&rq->sched.link);
1896 
1897 			__i915_request_submit(rq);
1898 
1899 			i915_request_put(i915_request_mark_eio(rq));
1900 		}
1901 
1902 		rb_erase_cached(&p->node, &sched_engine->queue);
1903 		i915_priolist_free(p);
1904 	}
1905 
1906 	/* Remaining _unready_ requests will be nop'ed when submitted */
1907 
1908 	sched_engine->queue_priority_hint = INT_MIN;
1909 	sched_engine->queue = RB_ROOT_CACHED;
1910 
1911 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1912 }
1913 
1914 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1915 {
1916 	struct intel_context *ce;
1917 	unsigned long index;
1918 	unsigned long flags;
1919 
1920 	xa_lock_irqsave(&guc->context_lookup, flags);
1921 	xa_for_each(&guc->context_lookup, index, ce) {
1922 		if (!kref_get_unless_zero(&ce->ref))
1923 			continue;
1924 
1925 		xa_unlock(&guc->context_lookup);
1926 
1927 		if (intel_context_is_pinned(ce) &&
1928 		    !intel_context_is_child(ce))
1929 			guc_cancel_context_requests(ce);
1930 
1931 		intel_context_put(ce);
1932 
1933 		xa_lock(&guc->context_lookup);
1934 	}
1935 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1936 
1937 	guc_cancel_sched_engine_requests(guc->sched_engine);
1938 
1939 	/* GuC is blown away, drop all references to contexts */
1940 	xa_destroy(&guc->context_lookup);
1941 
1942 	/*
1943 	 * Wedged GT won't respond to any TLB invalidation request. Simply
1944 	 * release all the blocked waiters.
1945 	 */
1946 	wake_up_all_tlb_invalidate(guc);
1947 }
1948 
1949 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1950 {
1951 	/* Reset called during driver load or during wedge? */
1952 	if (unlikely(!guc_submission_initialized(guc) ||
1953 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1954 		return;
1955 	}
1956 
1957 	/*
1958 	 * Technically possible for either of these values to be non-zero here,
1959 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1960 	 * see in CI if this happens frequently / a precursor to taking down the
1961 	 * machine.
1962 	 */
1963 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1964 	atomic_set(&guc->outstanding_submission_g2h, 0);
1965 
1966 	intel_guc_global_policies_update(guc);
1967 	enable_submission(guc);
1968 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1969 
1970 	/*
1971 	 * The full GT reset will have cleared the TLB caches and flushed the
1972 	 * G2H message queue; we can release all the blocked waiters.
1973 	 */
1974 	wake_up_all_tlb_invalidate(guc);
1975 }
1976 
1977 static void destroyed_worker_func(struct work_struct *w);
1978 static void reset_fail_worker_func(struct work_struct *w);
1979 
1980 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
1981 {
1982 	return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
1983 		intel_guc_is_ready(guc);
1984 }
1985 
1986 static int init_tlb_lookup(struct intel_guc *guc)
1987 {
1988 	struct intel_guc_tlb_wait *wait;
1989 	int err;
1990 
1991 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
1992 		return 0;
1993 
1994 	xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
1995 
1996 	wait = kzalloc(sizeof(*wait), GFP_KERNEL);
1997 	if (!wait)
1998 		return -ENOMEM;
1999 
2000 	init_waitqueue_head(&wait->wq);
2001 
2002 	/* Preallocate a shared id for use under memory pressure. */
2003 	err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2004 				  xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2005 	if (err < 0) {
2006 		kfree(wait);
2007 		return err;
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static void fini_tlb_lookup(struct intel_guc *guc)
2014 {
2015 	struct intel_guc_tlb_wait *wait;
2016 
2017 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2018 		return;
2019 
2020 	wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2021 	if (wait && wait->busy)
2022 		guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2023 	kfree(wait);
2024 
2025 	xa_destroy(&guc->tlb_lookup);
2026 }
2027 
2028 /*
2029  * Set up the memory resources to be shared with the GuC (via the GGTT)
2030  * at firmware loading time.
2031  */
2032 int intel_guc_submission_init(struct intel_guc *guc)
2033 {
2034 	struct intel_gt *gt = guc_to_gt(guc);
2035 	int ret;
2036 
2037 	if (guc->submission_initialized)
2038 		return 0;
2039 
2040 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2041 		ret = guc_lrc_desc_pool_create_v69(guc);
2042 		if (ret)
2043 			return ret;
2044 	}
2045 
2046 	ret = init_tlb_lookup(guc);
2047 	if (ret)
2048 		goto destroy_pool;
2049 
2050 	guc->submission_state.guc_ids_bitmap =
2051 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2052 	if (!guc->submission_state.guc_ids_bitmap) {
2053 		ret = -ENOMEM;
2054 		goto destroy_tlb;
2055 	}
2056 
2057 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2058 	guc->timestamp.shift = gpm_timestamp_shift(gt);
2059 	guc->submission_initialized = true;
2060 
2061 	return 0;
2062 
2063 destroy_tlb:
2064 	fini_tlb_lookup(guc);
2065 destroy_pool:
2066 	guc_lrc_desc_pool_destroy_v69(guc);
2067 	return ret;
2068 }
2069 
2070 void intel_guc_submission_fini(struct intel_guc *guc)
2071 {
2072 	if (!guc->submission_initialized)
2073 		return;
2074 
2075 	guc_flush_destroyed_contexts(guc);
2076 	guc_lrc_desc_pool_destroy_v69(guc);
2077 	i915_sched_engine_put(guc->sched_engine);
2078 	bitmap_free(guc->submission_state.guc_ids_bitmap);
2079 	fini_tlb_lookup(guc);
2080 	guc->submission_initialized = false;
2081 }
2082 
2083 static inline void queue_request(struct i915_sched_engine *sched_engine,
2084 				 struct i915_request *rq,
2085 				 int prio)
2086 {
2087 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2088 	list_add_tail(&rq->sched.link,
2089 		      i915_sched_lookup_priolist(sched_engine, prio));
2090 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2091 	tasklet_hi_schedule(&sched_engine->tasklet);
2092 }
2093 
2094 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2095 				     struct i915_request *rq)
2096 {
2097 	int ret = 0;
2098 
2099 	__i915_request_submit(rq);
2100 
2101 	trace_i915_request_in(rq, 0);
2102 
2103 	if (is_multi_lrc_rq(rq)) {
2104 		if (multi_lrc_submit(rq)) {
2105 			ret = guc_wq_item_append(guc, rq);
2106 			if (!ret)
2107 				ret = guc_add_request(guc, rq);
2108 		}
2109 	} else {
2110 		guc_set_lrc_tail(rq);
2111 		ret = guc_add_request(guc, rq);
2112 	}
2113 
2114 	if (unlikely(ret == -EPIPE))
2115 		disable_submission(guc);
2116 
2117 	return ret;
2118 }
2119 
2120 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2121 {
2122 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2123 	struct intel_context *ce = request_to_scheduling_context(rq);
2124 
2125 	return submission_disabled(guc) || guc->stalled_request ||
2126 		!i915_sched_engine_is_empty(sched_engine) ||
2127 		!ctx_id_mapped(guc, ce->guc_id.id);
2128 }
2129 
2130 static void guc_submit_request(struct i915_request *rq)
2131 {
2132 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2133 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
2134 	unsigned long flags;
2135 
2136 	/* Will be called from irq-context when using foreign fences. */
2137 	spin_lock_irqsave(&sched_engine->lock, flags);
2138 
2139 	if (need_tasklet(guc, rq))
2140 		queue_request(sched_engine, rq, rq_prio(rq));
2141 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2142 		tasklet_hi_schedule(&sched_engine->tasklet);
2143 
2144 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2145 }
2146 
2147 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2148 {
2149 	int ret;
2150 
2151 	GEM_BUG_ON(intel_context_is_child(ce));
2152 
2153 	if (intel_context_is_parent(ce))
2154 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2155 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2156 					      order_base_2(ce->parallel.number_children
2157 							   + 1));
2158 	else
2159 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2160 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2161 				     guc->submission_state.num_guc_ids,
2162 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2163 				     __GFP_NOWARN);
2164 	if (unlikely(ret < 0))
2165 		return ret;
2166 
2167 	if (!intel_context_is_parent(ce))
2168 		++guc->submission_state.guc_ids_in_use;
2169 
2170 	ce->guc_id.id = ret;
2171 	return 0;
2172 }
2173 
2174 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2175 {
2176 	GEM_BUG_ON(intel_context_is_child(ce));
2177 
2178 	if (!context_guc_id_invalid(ce)) {
2179 		if (intel_context_is_parent(ce)) {
2180 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2181 					      ce->guc_id.id,
2182 					      order_base_2(ce->parallel.number_children
2183 							   + 1));
2184 		} else {
2185 			--guc->submission_state.guc_ids_in_use;
2186 			ida_simple_remove(&guc->submission_state.guc_ids,
2187 					  ce->guc_id.id);
2188 		}
2189 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2190 		set_context_guc_id_invalid(ce);
2191 	}
2192 	if (!list_empty(&ce->guc_id.link))
2193 		list_del_init(&ce->guc_id.link);
2194 }
2195 
2196 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2197 {
2198 	unsigned long flags;
2199 
2200 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2201 	__release_guc_id(guc, ce);
2202 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2203 }
2204 
2205 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2206 {
2207 	struct intel_context *cn;
2208 
2209 	lockdep_assert_held(&guc->submission_state.lock);
2210 	GEM_BUG_ON(intel_context_is_child(ce));
2211 	GEM_BUG_ON(intel_context_is_parent(ce));
2212 
2213 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2214 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2215 				      struct intel_context,
2216 				      guc_id.link);
2217 
2218 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2219 		GEM_BUG_ON(context_guc_id_invalid(cn));
2220 		GEM_BUG_ON(intel_context_is_child(cn));
2221 		GEM_BUG_ON(intel_context_is_parent(cn));
2222 
2223 		list_del_init(&cn->guc_id.link);
2224 		ce->guc_id.id = cn->guc_id.id;
2225 
2226 		spin_lock(&cn->guc_state.lock);
2227 		clr_context_registered(cn);
2228 		spin_unlock(&cn->guc_state.lock);
2229 
2230 		set_context_guc_id_invalid(cn);
2231 
2232 #ifdef CONFIG_DRM_I915_SELFTEST
2233 		guc->number_guc_id_stolen++;
2234 #endif
2235 
2236 		return 0;
2237 	} else {
2238 		return -EAGAIN;
2239 	}
2240 }
2241 
2242 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2243 {
2244 	int ret;
2245 
2246 	lockdep_assert_held(&guc->submission_state.lock);
2247 	GEM_BUG_ON(intel_context_is_child(ce));
2248 
2249 	ret = new_guc_id(guc, ce);
2250 	if (unlikely(ret < 0)) {
2251 		if (intel_context_is_parent(ce))
2252 			return -ENOSPC;
2253 
2254 		ret = steal_guc_id(guc, ce);
2255 		if (ret < 0)
2256 			return ret;
2257 	}
2258 
2259 	if (intel_context_is_parent(ce)) {
2260 		struct intel_context *child;
2261 		int i = 1;
2262 
2263 		for_each_child(ce, child)
2264 			child->guc_id.id = ce->guc_id.id + i++;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 #define PIN_GUC_ID_TRIES	4
2271 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2272 {
2273 	int ret = 0;
2274 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2275 
2276 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2277 
2278 try_again:
2279 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2280 
2281 	might_lock(&ce->guc_state.lock);
2282 
2283 	if (context_guc_id_invalid(ce)) {
2284 		ret = assign_guc_id(guc, ce);
2285 		if (ret)
2286 			goto out_unlock;
2287 		ret = 1;	/* Indidcates newly assigned guc_id */
2288 	}
2289 	if (!list_empty(&ce->guc_id.link))
2290 		list_del_init(&ce->guc_id.link);
2291 	atomic_inc(&ce->guc_id.ref);
2292 
2293 out_unlock:
2294 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2295 
2296 	/*
2297 	 * -EAGAIN indicates no guc_id are available, let's retire any
2298 	 * outstanding requests to see if that frees up a guc_id. If the first
2299 	 * retire didn't help, insert a sleep with the timeslice duration before
2300 	 * attempting to retire more requests. Double the sleep period each
2301 	 * subsequent pass before finally giving up. The sleep period has max of
2302 	 * 100ms and minimum of 1ms.
2303 	 */
2304 	if (ret == -EAGAIN && --tries) {
2305 		if (PIN_GUC_ID_TRIES - tries > 1) {
2306 			unsigned int timeslice_shifted =
2307 				ce->engine->props.timeslice_duration_ms <<
2308 				(PIN_GUC_ID_TRIES - tries - 2);
2309 			unsigned int max = min_t(unsigned int, 100,
2310 						 timeslice_shifted);
2311 
2312 			msleep(max_t(unsigned int, max, 1));
2313 		}
2314 		intel_gt_retire_requests(guc_to_gt(guc));
2315 		goto try_again;
2316 	}
2317 
2318 	return ret;
2319 }
2320 
2321 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2322 {
2323 	unsigned long flags;
2324 
2325 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2326 	GEM_BUG_ON(intel_context_is_child(ce));
2327 
2328 	if (unlikely(context_guc_id_invalid(ce) ||
2329 		     intel_context_is_parent(ce)))
2330 		return;
2331 
2332 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2333 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2334 	    !atomic_read(&ce->guc_id.ref))
2335 		list_add_tail(&ce->guc_id.link,
2336 			      &guc->submission_state.guc_id_list);
2337 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2338 }
2339 
2340 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2341 					       struct intel_context *ce,
2342 					       u32 guc_id,
2343 					       u32 offset,
2344 					       bool loop)
2345 {
2346 	struct intel_context *child;
2347 	u32 action[4 + MAX_ENGINE_INSTANCE];
2348 	int len = 0;
2349 
2350 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2351 
2352 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2353 	action[len++] = guc_id;
2354 	action[len++] = ce->parallel.number_children + 1;
2355 	action[len++] = offset;
2356 	for_each_child(ce, child) {
2357 		offset += sizeof(struct guc_lrc_desc_v69);
2358 		action[len++] = offset;
2359 	}
2360 
2361 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2362 }
2363 
2364 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2365 					       struct intel_context *ce,
2366 					       struct guc_ctxt_registration_info *info,
2367 					       bool loop)
2368 {
2369 	struct intel_context *child;
2370 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2371 	int len = 0;
2372 	u32 next_id;
2373 
2374 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2375 
2376 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2377 	action[len++] = info->flags;
2378 	action[len++] = info->context_idx;
2379 	action[len++] = info->engine_class;
2380 	action[len++] = info->engine_submit_mask;
2381 	action[len++] = info->wq_desc_lo;
2382 	action[len++] = info->wq_desc_hi;
2383 	action[len++] = info->wq_base_lo;
2384 	action[len++] = info->wq_base_hi;
2385 	action[len++] = info->wq_size;
2386 	action[len++] = ce->parallel.number_children + 1;
2387 	action[len++] = info->hwlrca_lo;
2388 	action[len++] = info->hwlrca_hi;
2389 
2390 	next_id = info->context_idx + 1;
2391 	for_each_child(ce, child) {
2392 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2393 
2394 		/*
2395 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2396 		 * only supports 32 bit currently.
2397 		 */
2398 		action[len++] = lower_32_bits(child->lrc.lrca);
2399 		action[len++] = upper_32_bits(child->lrc.lrca);
2400 	}
2401 
2402 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2403 
2404 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2405 }
2406 
2407 static int __guc_action_register_context_v69(struct intel_guc *guc,
2408 					     u32 guc_id,
2409 					     u32 offset,
2410 					     bool loop)
2411 {
2412 	u32 action[] = {
2413 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2414 		guc_id,
2415 		offset,
2416 	};
2417 
2418 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2419 					     0, loop);
2420 }
2421 
2422 static int __guc_action_register_context_v70(struct intel_guc *guc,
2423 					     struct guc_ctxt_registration_info *info,
2424 					     bool loop)
2425 {
2426 	u32 action[] = {
2427 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2428 		info->flags,
2429 		info->context_idx,
2430 		info->engine_class,
2431 		info->engine_submit_mask,
2432 		info->wq_desc_lo,
2433 		info->wq_desc_hi,
2434 		info->wq_base_lo,
2435 		info->wq_base_hi,
2436 		info->wq_size,
2437 		info->hwlrca_lo,
2438 		info->hwlrca_hi,
2439 	};
2440 
2441 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2442 					     0, loop);
2443 }
2444 
2445 static void prepare_context_registration_info_v69(struct intel_context *ce);
2446 static void prepare_context_registration_info_v70(struct intel_context *ce,
2447 						  struct guc_ctxt_registration_info *info);
2448 
2449 static int
2450 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2451 {
2452 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2453 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2454 
2455 	prepare_context_registration_info_v69(ce);
2456 
2457 	if (intel_context_is_parent(ce))
2458 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2459 							   offset, loop);
2460 	else
2461 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2462 							 offset, loop);
2463 }
2464 
2465 static int
2466 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2467 {
2468 	struct guc_ctxt_registration_info info;
2469 
2470 	prepare_context_registration_info_v70(ce, &info);
2471 
2472 	if (intel_context_is_parent(ce))
2473 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2474 	else
2475 		return __guc_action_register_context_v70(guc, &info, loop);
2476 }
2477 
2478 static int register_context(struct intel_context *ce, bool loop)
2479 {
2480 	struct intel_guc *guc = ce_to_guc(ce);
2481 	int ret;
2482 
2483 	GEM_BUG_ON(intel_context_is_child(ce));
2484 	trace_intel_context_register(ce);
2485 
2486 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2487 		ret = register_context_v70(guc, ce, loop);
2488 	else
2489 		ret = register_context_v69(guc, ce, loop);
2490 
2491 	if (likely(!ret)) {
2492 		unsigned long flags;
2493 
2494 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2495 		set_context_registered(ce);
2496 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2497 
2498 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2499 			guc_context_policy_init_v70(ce, loop);
2500 	}
2501 
2502 	return ret;
2503 }
2504 
2505 static int __guc_action_deregister_context(struct intel_guc *guc,
2506 					   u32 guc_id)
2507 {
2508 	u32 action[] = {
2509 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2510 		guc_id,
2511 	};
2512 
2513 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2514 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2515 					     true);
2516 }
2517 
2518 static int deregister_context(struct intel_context *ce, u32 guc_id)
2519 {
2520 	struct intel_guc *guc = ce_to_guc(ce);
2521 
2522 	GEM_BUG_ON(intel_context_is_child(ce));
2523 	trace_intel_context_deregister(ce);
2524 
2525 	return __guc_action_deregister_context(guc, guc_id);
2526 }
2527 
2528 static inline void clear_children_join_go_memory(struct intel_context *ce)
2529 {
2530 	struct parent_scratch *ps = __get_parent_scratch(ce);
2531 	int i;
2532 
2533 	ps->go.semaphore = 0;
2534 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2535 		ps->join[i].semaphore = 0;
2536 }
2537 
2538 static inline u32 get_children_go_value(struct intel_context *ce)
2539 {
2540 	return __get_parent_scratch(ce)->go.semaphore;
2541 }
2542 
2543 static inline u32 get_children_join_value(struct intel_context *ce,
2544 					  u8 child_index)
2545 {
2546 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2547 }
2548 
2549 struct context_policy {
2550 	u32 count;
2551 	struct guc_update_context_policy h2g;
2552 };
2553 
2554 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2555 {
2556 	size_t bytes = sizeof(policy->h2g.header) +
2557 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2558 
2559 	return bytes / sizeof(u32);
2560 }
2561 
2562 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2563 {
2564 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2565 	policy->h2g.header.ctx_id = guc_id;
2566 	policy->count = 0;
2567 }
2568 
2569 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2570 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2571 { \
2572 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2573 	policy->h2g.klv[policy->count].kl = \
2574 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2575 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2576 	policy->h2g.klv[policy->count].value = data; \
2577 	policy->count++; \
2578 }
2579 
2580 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2581 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2582 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2583 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2584 
2585 #undef MAKE_CONTEXT_POLICY_ADD
2586 
2587 static int __guc_context_set_context_policies(struct intel_guc *guc,
2588 					      struct context_policy *policy,
2589 					      bool loop)
2590 {
2591 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2592 					__guc_context_policy_action_size(policy),
2593 					0, loop);
2594 }
2595 
2596 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2597 {
2598 	struct intel_engine_cs *engine = ce->engine;
2599 	struct intel_guc *guc = &engine->gt->uc.guc;
2600 	struct context_policy policy;
2601 	u32 execution_quantum;
2602 	u32 preemption_timeout;
2603 	unsigned long flags;
2604 	int ret;
2605 
2606 	/* NB: For both of these, zero means disabled. */
2607 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2608 				  execution_quantum));
2609 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2610 				  preemption_timeout));
2611 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2612 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2613 
2614 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2615 
2616 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2617 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2618 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2619 
2620 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2621 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2622 
2623 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2624 
2625 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2626 	if (ret != 0)
2627 		set_context_policy_required(ce);
2628 	else
2629 		clr_context_policy_required(ce);
2630 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2631 
2632 	return ret;
2633 }
2634 
2635 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2636 					struct guc_lrc_desc_v69 *desc)
2637 {
2638 	desc->policy_flags = 0;
2639 
2640 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2641 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2642 
2643 	/* NB: For both of these, zero means disabled. */
2644 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2645 				  desc->execution_quantum));
2646 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2647 				  desc->preemption_timeout));
2648 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2649 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2650 }
2651 
2652 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2653 {
2654 	/*
2655 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2656 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2657 	 */
2658 	switch (prio) {
2659 	default:
2660 		MISSING_CASE(prio);
2661 		fallthrough;
2662 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2663 		return GEN12_CTX_PRIORITY_NORMAL;
2664 	case GUC_CLIENT_PRIORITY_NORMAL:
2665 		return GEN12_CTX_PRIORITY_LOW;
2666 	case GUC_CLIENT_PRIORITY_HIGH:
2667 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2668 		return GEN12_CTX_PRIORITY_HIGH;
2669 	}
2670 }
2671 
2672 static void prepare_context_registration_info_v69(struct intel_context *ce)
2673 {
2674 	struct intel_engine_cs *engine = ce->engine;
2675 	struct intel_guc *guc = &engine->gt->uc.guc;
2676 	u32 ctx_id = ce->guc_id.id;
2677 	struct guc_lrc_desc_v69 *desc;
2678 	struct intel_context *child;
2679 
2680 	GEM_BUG_ON(!engine->mask);
2681 
2682 	/*
2683 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2684 	 * based on CT vma region.
2685 	 */
2686 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2687 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2688 
2689 	desc = __get_lrc_desc_v69(guc, ctx_id);
2690 	GEM_BUG_ON(!desc);
2691 	desc->engine_class = engine_class_to_guc_class(engine->class);
2692 	desc->engine_submit_mask = engine->logical_mask;
2693 	desc->hw_context_desc = ce->lrc.lrca;
2694 	desc->priority = ce->guc_state.prio;
2695 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2696 	guc_context_policy_init_v69(engine, desc);
2697 
2698 	/*
2699 	 * If context is a parent, we need to register a process descriptor
2700 	 * describing a work queue and register all child contexts.
2701 	 */
2702 	if (intel_context_is_parent(ce)) {
2703 		struct guc_process_desc_v69 *pdesc;
2704 
2705 		ce->parallel.guc.wqi_tail = 0;
2706 		ce->parallel.guc.wqi_head = 0;
2707 
2708 		desc->process_desc = i915_ggtt_offset(ce->state) +
2709 			__get_parent_scratch_offset(ce);
2710 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2711 			__get_wq_offset(ce);
2712 		desc->wq_size = WQ_SIZE;
2713 
2714 		pdesc = __get_process_desc_v69(ce);
2715 		memset(pdesc, 0, sizeof(*(pdesc)));
2716 		pdesc->stage_id = ce->guc_id.id;
2717 		pdesc->wq_base_addr = desc->wq_addr;
2718 		pdesc->wq_size_bytes = desc->wq_size;
2719 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2720 
2721 		ce->parallel.guc.wq_head = &pdesc->head;
2722 		ce->parallel.guc.wq_tail = &pdesc->tail;
2723 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2724 
2725 		for_each_child(ce, child) {
2726 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2727 
2728 			desc->engine_class =
2729 				engine_class_to_guc_class(engine->class);
2730 			desc->hw_context_desc = child->lrc.lrca;
2731 			desc->priority = ce->guc_state.prio;
2732 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2733 			guc_context_policy_init_v69(engine, desc);
2734 		}
2735 
2736 		clear_children_join_go_memory(ce);
2737 	}
2738 }
2739 
2740 static void prepare_context_registration_info_v70(struct intel_context *ce,
2741 						  struct guc_ctxt_registration_info *info)
2742 {
2743 	struct intel_engine_cs *engine = ce->engine;
2744 	struct intel_guc *guc = &engine->gt->uc.guc;
2745 	u32 ctx_id = ce->guc_id.id;
2746 
2747 	GEM_BUG_ON(!engine->mask);
2748 
2749 	/*
2750 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2751 	 * based on CT vma region.
2752 	 */
2753 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2754 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2755 
2756 	memset(info, 0, sizeof(*info));
2757 	info->context_idx = ctx_id;
2758 	info->engine_class = engine_class_to_guc_class(engine->class);
2759 	info->engine_submit_mask = engine->logical_mask;
2760 	/*
2761 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2762 	 * only supports 32 bit currently.
2763 	 */
2764 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2765 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2766 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2767 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2768 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2769 
2770 	/*
2771 	 * If context is a parent, we need to register a process descriptor
2772 	 * describing a work queue and register all child contexts.
2773 	 */
2774 	if (intel_context_is_parent(ce)) {
2775 		struct guc_sched_wq_desc *wq_desc;
2776 		u64 wq_desc_offset, wq_base_offset;
2777 
2778 		ce->parallel.guc.wqi_tail = 0;
2779 		ce->parallel.guc.wqi_head = 0;
2780 
2781 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2782 				 __get_parent_scratch_offset(ce);
2783 		wq_base_offset = i915_ggtt_offset(ce->state) +
2784 				 __get_wq_offset(ce);
2785 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2786 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2787 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2788 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2789 		info->wq_size = WQ_SIZE;
2790 
2791 		wq_desc = __get_wq_desc_v70(ce);
2792 		memset(wq_desc, 0, sizeof(*wq_desc));
2793 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2794 
2795 		ce->parallel.guc.wq_head = &wq_desc->head;
2796 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2797 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2798 
2799 		clear_children_join_go_memory(ce);
2800 	}
2801 }
2802 
2803 static int try_context_registration(struct intel_context *ce, bool loop)
2804 {
2805 	struct intel_engine_cs *engine = ce->engine;
2806 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2807 	struct intel_guc *guc = &engine->gt->uc.guc;
2808 	intel_wakeref_t wakeref;
2809 	u32 ctx_id = ce->guc_id.id;
2810 	bool context_registered;
2811 	int ret = 0;
2812 
2813 	GEM_BUG_ON(!sched_state_is_init(ce));
2814 
2815 	context_registered = ctx_id_mapped(guc, ctx_id);
2816 
2817 	clr_ctx_id_mapping(guc, ctx_id);
2818 	set_ctx_id_mapping(guc, ctx_id, ce);
2819 
2820 	/*
2821 	 * The context_lookup xarray is used to determine if the hardware
2822 	 * context is currently registered. There are two cases in which it
2823 	 * could be registered either the guc_id has been stolen from another
2824 	 * context or the lrc descriptor address of this context has changed. In
2825 	 * either case the context needs to be deregistered with the GuC before
2826 	 * registering this context.
2827 	 */
2828 	if (context_registered) {
2829 		bool disabled;
2830 		unsigned long flags;
2831 
2832 		trace_intel_context_steal_guc_id(ce);
2833 		GEM_BUG_ON(!loop);
2834 
2835 		/* Seal race with Reset */
2836 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2837 		disabled = submission_disabled(guc);
2838 		if (likely(!disabled)) {
2839 			set_context_wait_for_deregister_to_register(ce);
2840 			intel_context_get(ce);
2841 		}
2842 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2843 		if (unlikely(disabled)) {
2844 			clr_ctx_id_mapping(guc, ctx_id);
2845 			return 0;	/* Will get registered later */
2846 		}
2847 
2848 		/*
2849 		 * If stealing the guc_id, this ce has the same guc_id as the
2850 		 * context whose guc_id was stolen.
2851 		 */
2852 		with_intel_runtime_pm(runtime_pm, wakeref)
2853 			ret = deregister_context(ce, ce->guc_id.id);
2854 		if (unlikely(ret == -ENODEV))
2855 			ret = 0;	/* Will get registered later */
2856 	} else {
2857 		with_intel_runtime_pm(runtime_pm, wakeref)
2858 			ret = register_context(ce, loop);
2859 		if (unlikely(ret == -EBUSY)) {
2860 			clr_ctx_id_mapping(guc, ctx_id);
2861 		} else if (unlikely(ret == -ENODEV)) {
2862 			clr_ctx_id_mapping(guc, ctx_id);
2863 			ret = 0;	/* Will get registered later */
2864 		}
2865 	}
2866 
2867 	return ret;
2868 }
2869 
2870 static int __guc_context_pre_pin(struct intel_context *ce,
2871 				 struct intel_engine_cs *engine,
2872 				 struct i915_gem_ww_ctx *ww,
2873 				 void **vaddr)
2874 {
2875 	return lrc_pre_pin(ce, engine, ww, vaddr);
2876 }
2877 
2878 static int __guc_context_pin(struct intel_context *ce,
2879 			     struct intel_engine_cs *engine,
2880 			     void *vaddr)
2881 {
2882 	if (i915_ggtt_offset(ce->state) !=
2883 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2884 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2885 
2886 	/*
2887 	 * GuC context gets pinned in guc_request_alloc. See that function for
2888 	 * explaination of why.
2889 	 */
2890 
2891 	return lrc_pin(ce, engine, vaddr);
2892 }
2893 
2894 static int guc_context_pre_pin(struct intel_context *ce,
2895 			       struct i915_gem_ww_ctx *ww,
2896 			       void **vaddr)
2897 {
2898 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2899 }
2900 
2901 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2902 {
2903 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2904 
2905 	if (likely(!ret && !intel_context_is_barrier(ce)))
2906 		intel_engine_pm_get(ce->engine);
2907 
2908 	return ret;
2909 }
2910 
2911 static void guc_context_unpin(struct intel_context *ce)
2912 {
2913 	struct intel_guc *guc = ce_to_guc(ce);
2914 
2915 	__guc_context_update_stats(ce);
2916 	unpin_guc_id(guc, ce);
2917 	lrc_unpin(ce);
2918 
2919 	if (likely(!intel_context_is_barrier(ce)))
2920 		intel_engine_pm_put_async(ce->engine);
2921 }
2922 
2923 static void guc_context_post_unpin(struct intel_context *ce)
2924 {
2925 	lrc_post_unpin(ce);
2926 }
2927 
2928 static void __guc_context_sched_enable(struct intel_guc *guc,
2929 				       struct intel_context *ce)
2930 {
2931 	u32 action[] = {
2932 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2933 		ce->guc_id.id,
2934 		GUC_CONTEXT_ENABLE
2935 	};
2936 
2937 	trace_intel_context_sched_enable(ce);
2938 
2939 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2940 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2941 }
2942 
2943 static void __guc_context_sched_disable(struct intel_guc *guc,
2944 					struct intel_context *ce,
2945 					u16 guc_id)
2946 {
2947 	u32 action[] = {
2948 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2949 		guc_id,	/* ce->guc_id.id not stable */
2950 		GUC_CONTEXT_DISABLE
2951 	};
2952 
2953 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2954 
2955 	GEM_BUG_ON(intel_context_is_child(ce));
2956 	trace_intel_context_sched_disable(ce);
2957 
2958 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2959 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2960 }
2961 
2962 static void guc_blocked_fence_complete(struct intel_context *ce)
2963 {
2964 	lockdep_assert_held(&ce->guc_state.lock);
2965 
2966 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2967 		i915_sw_fence_complete(&ce->guc_state.blocked);
2968 }
2969 
2970 static void guc_blocked_fence_reinit(struct intel_context *ce)
2971 {
2972 	lockdep_assert_held(&ce->guc_state.lock);
2973 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2974 
2975 	/*
2976 	 * This fence is always complete unless a pending schedule disable is
2977 	 * outstanding. We arm the fence here and complete it when we receive
2978 	 * the pending schedule disable complete message.
2979 	 */
2980 	i915_sw_fence_fini(&ce->guc_state.blocked);
2981 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2982 	i915_sw_fence_await(&ce->guc_state.blocked);
2983 	i915_sw_fence_commit(&ce->guc_state.blocked);
2984 }
2985 
2986 static u16 prep_context_pending_disable(struct intel_context *ce)
2987 {
2988 	lockdep_assert_held(&ce->guc_state.lock);
2989 
2990 	set_context_pending_disable(ce);
2991 	clr_context_enabled(ce);
2992 	guc_blocked_fence_reinit(ce);
2993 	intel_context_get(ce);
2994 
2995 	return ce->guc_id.id;
2996 }
2997 
2998 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2999 {
3000 	struct intel_guc *guc = ce_to_guc(ce);
3001 	unsigned long flags;
3002 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3003 	intel_wakeref_t wakeref;
3004 	u16 guc_id;
3005 	bool enabled;
3006 
3007 	GEM_BUG_ON(intel_context_is_child(ce));
3008 
3009 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3010 
3011 	incr_context_blocked(ce);
3012 
3013 	enabled = context_enabled(ce);
3014 	if (unlikely(!enabled || submission_disabled(guc))) {
3015 		if (enabled)
3016 			clr_context_enabled(ce);
3017 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3018 		return &ce->guc_state.blocked;
3019 	}
3020 
3021 	/*
3022 	 * We add +2 here as the schedule disable complete CTB handler calls
3023 	 * intel_context_sched_disable_unpin (-2 to pin_count).
3024 	 */
3025 	atomic_add(2, &ce->pin_count);
3026 
3027 	guc_id = prep_context_pending_disable(ce);
3028 
3029 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3030 
3031 	with_intel_runtime_pm(runtime_pm, wakeref)
3032 		__guc_context_sched_disable(guc, ce, guc_id);
3033 
3034 	return &ce->guc_state.blocked;
3035 }
3036 
3037 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3038 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3039 #define SCHED_STATE_NO_UNBLOCK \
3040 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
3041 	 SCHED_STATE_PENDING_DISABLE | \
3042 	 SCHED_STATE_BANNED)
3043 
3044 static bool context_cant_unblock(struct intel_context *ce)
3045 {
3046 	lockdep_assert_held(&ce->guc_state.lock);
3047 
3048 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3049 		context_guc_id_invalid(ce) ||
3050 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3051 		!intel_context_is_pinned(ce);
3052 }
3053 
3054 static void guc_context_unblock(struct intel_context *ce)
3055 {
3056 	struct intel_guc *guc = ce_to_guc(ce);
3057 	unsigned long flags;
3058 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3059 	intel_wakeref_t wakeref;
3060 	bool enable;
3061 
3062 	GEM_BUG_ON(context_enabled(ce));
3063 	GEM_BUG_ON(intel_context_is_child(ce));
3064 
3065 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3066 
3067 	if (unlikely(submission_disabled(guc) ||
3068 		     context_cant_unblock(ce))) {
3069 		enable = false;
3070 	} else {
3071 		enable = true;
3072 		set_context_pending_enable(ce);
3073 		set_context_enabled(ce);
3074 		intel_context_get(ce);
3075 	}
3076 
3077 	decr_context_blocked(ce);
3078 
3079 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3080 
3081 	if (enable) {
3082 		with_intel_runtime_pm(runtime_pm, wakeref)
3083 			__guc_context_sched_enable(guc, ce);
3084 	}
3085 }
3086 
3087 static void guc_context_cancel_request(struct intel_context *ce,
3088 				       struct i915_request *rq)
3089 {
3090 	struct intel_context *block_context =
3091 		request_to_scheduling_context(rq);
3092 
3093 	if (i915_sw_fence_signaled(&rq->submit)) {
3094 		struct i915_sw_fence *fence;
3095 
3096 		intel_context_get(ce);
3097 		fence = guc_context_block(block_context);
3098 		i915_sw_fence_wait(fence);
3099 		if (!i915_request_completed(rq)) {
3100 			__i915_request_skip(rq);
3101 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3102 					true);
3103 		}
3104 
3105 		guc_context_unblock(block_context);
3106 		intel_context_put(ce);
3107 	}
3108 }
3109 
3110 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3111 						 u16 guc_id,
3112 						 u32 preemption_timeout)
3113 {
3114 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3115 		struct context_policy policy;
3116 
3117 		__guc_context_policy_start_klv(&policy, guc_id);
3118 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3119 		__guc_context_set_context_policies(guc, &policy, true);
3120 	} else {
3121 		u32 action[] = {
3122 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3123 			guc_id,
3124 			preemption_timeout
3125 		};
3126 
3127 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3128 	}
3129 }
3130 
3131 static void
3132 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3133 		   unsigned int preempt_timeout_ms)
3134 {
3135 	struct intel_guc *guc = ce_to_guc(ce);
3136 	struct intel_runtime_pm *runtime_pm =
3137 		&ce->engine->gt->i915->runtime_pm;
3138 	intel_wakeref_t wakeref;
3139 	unsigned long flags;
3140 
3141 	GEM_BUG_ON(intel_context_is_child(ce));
3142 
3143 	guc_flush_submissions(guc);
3144 
3145 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3146 	set_context_banned(ce);
3147 
3148 	if (submission_disabled(guc) ||
3149 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3150 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3151 
3152 		guc_cancel_context_requests(ce);
3153 		intel_engine_signal_breadcrumbs(ce->engine);
3154 	} else if (!context_pending_disable(ce)) {
3155 		u16 guc_id;
3156 
3157 		/*
3158 		 * We add +2 here as the schedule disable complete CTB handler
3159 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3160 		 */
3161 		atomic_add(2, &ce->pin_count);
3162 
3163 		guc_id = prep_context_pending_disable(ce);
3164 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3165 
3166 		/*
3167 		 * In addition to disabling scheduling, set the preemption
3168 		 * timeout to the minimum value (1 us) so the banned context
3169 		 * gets kicked off the HW ASAP.
3170 		 */
3171 		with_intel_runtime_pm(runtime_pm, wakeref) {
3172 			__guc_context_set_preemption_timeout(guc, guc_id,
3173 							     preempt_timeout_ms);
3174 			__guc_context_sched_disable(guc, ce, guc_id);
3175 		}
3176 	} else {
3177 		if (!context_guc_id_invalid(ce))
3178 			with_intel_runtime_pm(runtime_pm, wakeref)
3179 				__guc_context_set_preemption_timeout(guc,
3180 								     ce->guc_id.id,
3181 								     preempt_timeout_ms);
3182 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3183 	}
3184 }
3185 
3186 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3187 			     unsigned long flags)
3188 	__releases(ce->guc_state.lock)
3189 {
3190 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3191 	intel_wakeref_t wakeref;
3192 	u16 guc_id;
3193 
3194 	lockdep_assert_held(&ce->guc_state.lock);
3195 	guc_id = prep_context_pending_disable(ce);
3196 
3197 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3198 
3199 	with_intel_runtime_pm(runtime_pm, wakeref)
3200 		__guc_context_sched_disable(guc, ce, guc_id);
3201 }
3202 
3203 static bool bypass_sched_disable(struct intel_guc *guc,
3204 				 struct intel_context *ce)
3205 {
3206 	lockdep_assert_held(&ce->guc_state.lock);
3207 	GEM_BUG_ON(intel_context_is_child(ce));
3208 
3209 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3210 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3211 		clr_context_enabled(ce);
3212 		return true;
3213 	}
3214 
3215 	return !context_enabled(ce);
3216 }
3217 
3218 static void __delay_sched_disable(struct work_struct *wrk)
3219 {
3220 	struct intel_context *ce =
3221 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3222 	struct intel_guc *guc = ce_to_guc(ce);
3223 	unsigned long flags;
3224 
3225 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3226 
3227 	if (bypass_sched_disable(guc, ce)) {
3228 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3229 		intel_context_sched_disable_unpin(ce);
3230 	} else {
3231 		do_sched_disable(guc, ce, flags);
3232 	}
3233 }
3234 
3235 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3236 {
3237 	/*
3238 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3239 	 * disable immediately.
3240 	 */
3241 	if (intel_context_is_parent(ce))
3242 		return true;
3243 
3244 	/*
3245 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3246 	 */
3247 	return guc->submission_state.guc_ids_in_use >
3248 		guc->submission_state.sched_disable_gucid_threshold;
3249 }
3250 
3251 static void guc_context_sched_disable(struct intel_context *ce)
3252 {
3253 	struct intel_guc *guc = ce_to_guc(ce);
3254 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3255 	unsigned long flags;
3256 
3257 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3258 
3259 	if (bypass_sched_disable(guc, ce)) {
3260 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3261 		intel_context_sched_disable_unpin(ce);
3262 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3263 		   delay) {
3264 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3265 		mod_delayed_work(system_unbound_wq,
3266 				 &ce->guc_state.sched_disable_delay_work,
3267 				 msecs_to_jiffies(delay));
3268 	} else {
3269 		do_sched_disable(guc, ce, flags);
3270 	}
3271 }
3272 
3273 static void guc_context_close(struct intel_context *ce)
3274 {
3275 	unsigned long flags;
3276 
3277 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3278 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3279 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3280 
3281 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3282 	set_context_close_done(ce);
3283 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3284 }
3285 
3286 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3287 {
3288 	struct intel_guc *guc = ce_to_guc(ce);
3289 	struct intel_gt *gt = guc_to_gt(guc);
3290 	unsigned long flags;
3291 	bool disabled;
3292 
3293 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3294 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3295 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3296 	GEM_BUG_ON(context_enabled(ce));
3297 
3298 	/* Seal race with Reset */
3299 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3300 	disabled = submission_disabled(guc);
3301 	if (likely(!disabled)) {
3302 		__intel_gt_pm_get(gt);
3303 		set_context_destroyed(ce);
3304 		clr_context_registered(ce);
3305 	}
3306 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3307 	if (unlikely(disabled)) {
3308 		release_guc_id(guc, ce);
3309 		__guc_context_destroy(ce);
3310 		return;
3311 	}
3312 
3313 	deregister_context(ce, ce->guc_id.id);
3314 }
3315 
3316 static void __guc_context_destroy(struct intel_context *ce)
3317 {
3318 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3319 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3320 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3321 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3322 
3323 	lrc_fini(ce);
3324 	intel_context_fini(ce);
3325 
3326 	if (intel_engine_is_virtual(ce->engine)) {
3327 		struct guc_virtual_engine *ve =
3328 			container_of(ce, typeof(*ve), context);
3329 
3330 		if (ve->base.breadcrumbs)
3331 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3332 
3333 		kfree(ve);
3334 	} else {
3335 		intel_context_free(ce);
3336 	}
3337 }
3338 
3339 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3340 {
3341 	struct intel_context *ce;
3342 	unsigned long flags;
3343 
3344 	GEM_BUG_ON(!submission_disabled(guc) &&
3345 		   guc_submission_initialized(guc));
3346 
3347 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3348 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3349 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3350 					      struct intel_context,
3351 					      destroyed_link);
3352 		if (ce)
3353 			list_del_init(&ce->destroyed_link);
3354 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3355 
3356 		if (!ce)
3357 			break;
3358 
3359 		release_guc_id(guc, ce);
3360 		__guc_context_destroy(ce);
3361 	}
3362 }
3363 
3364 static void deregister_destroyed_contexts(struct intel_guc *guc)
3365 {
3366 	struct intel_context *ce;
3367 	unsigned long flags;
3368 
3369 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3370 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3371 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3372 					      struct intel_context,
3373 					      destroyed_link);
3374 		if (ce)
3375 			list_del_init(&ce->destroyed_link);
3376 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3377 
3378 		if (!ce)
3379 			break;
3380 
3381 		guc_lrc_desc_unpin(ce);
3382 	}
3383 }
3384 
3385 static void destroyed_worker_func(struct work_struct *w)
3386 {
3387 	struct intel_guc *guc = container_of(w, struct intel_guc,
3388 					     submission_state.destroyed_worker);
3389 	struct intel_gt *gt = guc_to_gt(guc);
3390 	intel_wakeref_t wakeref;
3391 
3392 	with_intel_gt_pm(gt, wakeref)
3393 		deregister_destroyed_contexts(guc);
3394 }
3395 
3396 static void guc_context_destroy(struct kref *kref)
3397 {
3398 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3399 	struct intel_guc *guc = ce_to_guc(ce);
3400 	unsigned long flags;
3401 	bool destroy;
3402 
3403 	/*
3404 	 * If the guc_id is invalid this context has been stolen and we can free
3405 	 * it immediately. Also can be freed immediately if the context is not
3406 	 * registered with the GuC or the GuC is in the middle of a reset.
3407 	 */
3408 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3409 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3410 		!ctx_id_mapped(guc, ce->guc_id.id);
3411 	if (likely(!destroy)) {
3412 		if (!list_empty(&ce->guc_id.link))
3413 			list_del_init(&ce->guc_id.link);
3414 		list_add_tail(&ce->destroyed_link,
3415 			      &guc->submission_state.destroyed_contexts);
3416 	} else {
3417 		__release_guc_id(guc, ce);
3418 	}
3419 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3420 	if (unlikely(destroy)) {
3421 		__guc_context_destroy(ce);
3422 		return;
3423 	}
3424 
3425 	/*
3426 	 * We use a worker to issue the H2G to deregister the context as we can
3427 	 * take the GT PM for the first time which isn't allowed from an atomic
3428 	 * context.
3429 	 */
3430 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3431 }
3432 
3433 static int guc_context_alloc(struct intel_context *ce)
3434 {
3435 	return lrc_alloc(ce, ce->engine);
3436 }
3437 
3438 static void __guc_context_set_prio(struct intel_guc *guc,
3439 				   struct intel_context *ce)
3440 {
3441 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3442 		struct context_policy policy;
3443 
3444 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3445 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3446 		__guc_context_set_context_policies(guc, &policy, true);
3447 	} else {
3448 		u32 action[] = {
3449 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3450 			ce->guc_id.id,
3451 			ce->guc_state.prio,
3452 		};
3453 
3454 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3455 	}
3456 }
3457 
3458 static void guc_context_set_prio(struct intel_guc *guc,
3459 				 struct intel_context *ce,
3460 				 u8 prio)
3461 {
3462 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3463 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3464 	lockdep_assert_held(&ce->guc_state.lock);
3465 
3466 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3467 	    !context_registered(ce)) {
3468 		ce->guc_state.prio = prio;
3469 		return;
3470 	}
3471 
3472 	ce->guc_state.prio = prio;
3473 	__guc_context_set_prio(guc, ce);
3474 
3475 	trace_intel_context_set_prio(ce);
3476 }
3477 
3478 static inline u8 map_i915_prio_to_guc_prio(int prio)
3479 {
3480 	if (prio == I915_PRIORITY_NORMAL)
3481 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3482 	else if (prio < I915_PRIORITY_NORMAL)
3483 		return GUC_CLIENT_PRIORITY_NORMAL;
3484 	else if (prio < I915_PRIORITY_DISPLAY)
3485 		return GUC_CLIENT_PRIORITY_HIGH;
3486 	else
3487 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3488 }
3489 
3490 static inline void add_context_inflight_prio(struct intel_context *ce,
3491 					     u8 guc_prio)
3492 {
3493 	lockdep_assert_held(&ce->guc_state.lock);
3494 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3495 
3496 	++ce->guc_state.prio_count[guc_prio];
3497 
3498 	/* Overflow protection */
3499 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3500 }
3501 
3502 static inline void sub_context_inflight_prio(struct intel_context *ce,
3503 					     u8 guc_prio)
3504 {
3505 	lockdep_assert_held(&ce->guc_state.lock);
3506 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3507 
3508 	/* Underflow protection */
3509 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3510 
3511 	--ce->guc_state.prio_count[guc_prio];
3512 }
3513 
3514 static inline void update_context_prio(struct intel_context *ce)
3515 {
3516 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3517 	int i;
3518 
3519 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3520 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3521 
3522 	lockdep_assert_held(&ce->guc_state.lock);
3523 
3524 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3525 		if (ce->guc_state.prio_count[i]) {
3526 			guc_context_set_prio(guc, ce, i);
3527 			break;
3528 		}
3529 	}
3530 }
3531 
3532 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3533 {
3534 	/* Lower value is higher priority */
3535 	return new_guc_prio < old_guc_prio;
3536 }
3537 
3538 static void add_to_context(struct i915_request *rq)
3539 {
3540 	struct intel_context *ce = request_to_scheduling_context(rq);
3541 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3542 
3543 	GEM_BUG_ON(intel_context_is_child(ce));
3544 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3545 
3546 	spin_lock(&ce->guc_state.lock);
3547 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3548 
3549 	if (rq->guc_prio == GUC_PRIO_INIT) {
3550 		rq->guc_prio = new_guc_prio;
3551 		add_context_inflight_prio(ce, rq->guc_prio);
3552 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3553 		sub_context_inflight_prio(ce, rq->guc_prio);
3554 		rq->guc_prio = new_guc_prio;
3555 		add_context_inflight_prio(ce, rq->guc_prio);
3556 	}
3557 	update_context_prio(ce);
3558 
3559 	spin_unlock(&ce->guc_state.lock);
3560 }
3561 
3562 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3563 {
3564 	lockdep_assert_held(&ce->guc_state.lock);
3565 
3566 	if (rq->guc_prio != GUC_PRIO_INIT &&
3567 	    rq->guc_prio != GUC_PRIO_FINI) {
3568 		sub_context_inflight_prio(ce, rq->guc_prio);
3569 		update_context_prio(ce);
3570 	}
3571 	rq->guc_prio = GUC_PRIO_FINI;
3572 }
3573 
3574 static void remove_from_context(struct i915_request *rq)
3575 {
3576 	struct intel_context *ce = request_to_scheduling_context(rq);
3577 
3578 	GEM_BUG_ON(intel_context_is_child(ce));
3579 
3580 	spin_lock_irq(&ce->guc_state.lock);
3581 
3582 	list_del_init(&rq->sched.link);
3583 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3584 
3585 	/* Prevent further __await_execution() registering a cb, then flush */
3586 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3587 
3588 	guc_prio_fini(rq, ce);
3589 
3590 	spin_unlock_irq(&ce->guc_state.lock);
3591 
3592 	atomic_dec(&ce->guc_id.ref);
3593 	i915_request_notify_execute_cb_imm(rq);
3594 }
3595 
3596 static const struct intel_context_ops guc_context_ops = {
3597 	.flags = COPS_RUNTIME_CYCLES,
3598 	.alloc = guc_context_alloc,
3599 
3600 	.close = guc_context_close,
3601 
3602 	.pre_pin = guc_context_pre_pin,
3603 	.pin = guc_context_pin,
3604 	.unpin = guc_context_unpin,
3605 	.post_unpin = guc_context_post_unpin,
3606 
3607 	.revoke = guc_context_revoke,
3608 
3609 	.cancel_request = guc_context_cancel_request,
3610 
3611 	.enter = intel_context_enter_engine,
3612 	.exit = intel_context_exit_engine,
3613 
3614 	.sched_disable = guc_context_sched_disable,
3615 
3616 	.update_stats = guc_context_update_stats,
3617 
3618 	.reset = lrc_reset,
3619 	.destroy = guc_context_destroy,
3620 
3621 	.create_virtual = guc_create_virtual,
3622 	.create_parallel = guc_create_parallel,
3623 };
3624 
3625 static void submit_work_cb(struct irq_work *wrk)
3626 {
3627 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3628 
3629 	might_lock(&rq->engine->sched_engine->lock);
3630 	i915_sw_fence_complete(&rq->submit);
3631 }
3632 
3633 static void __guc_signal_context_fence(struct intel_context *ce)
3634 {
3635 	struct i915_request *rq, *rn;
3636 
3637 	lockdep_assert_held(&ce->guc_state.lock);
3638 
3639 	if (!list_empty(&ce->guc_state.fences))
3640 		trace_intel_context_fence_release(ce);
3641 
3642 	/*
3643 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3644 	 * ce->guc_state.lock is preserved.
3645 	 */
3646 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3647 				 guc_fence_link) {
3648 		list_del(&rq->guc_fence_link);
3649 		irq_work_queue(&rq->submit_work);
3650 	}
3651 
3652 	INIT_LIST_HEAD(&ce->guc_state.fences);
3653 }
3654 
3655 static void guc_signal_context_fence(struct intel_context *ce)
3656 {
3657 	unsigned long flags;
3658 
3659 	GEM_BUG_ON(intel_context_is_child(ce));
3660 
3661 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3662 	clr_context_wait_for_deregister_to_register(ce);
3663 	__guc_signal_context_fence(ce);
3664 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3665 }
3666 
3667 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3668 {
3669 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3670 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3671 		!submission_disabled(ce_to_guc(ce));
3672 }
3673 
3674 static void guc_context_init(struct intel_context *ce)
3675 {
3676 	const struct i915_gem_context *ctx;
3677 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3678 
3679 	rcu_read_lock();
3680 	ctx = rcu_dereference(ce->gem_context);
3681 	if (ctx)
3682 		prio = ctx->sched.priority;
3683 	rcu_read_unlock();
3684 
3685 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3686 
3687 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3688 			  __delay_sched_disable);
3689 
3690 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3691 }
3692 
3693 static int guc_request_alloc(struct i915_request *rq)
3694 {
3695 	struct intel_context *ce = request_to_scheduling_context(rq);
3696 	struct intel_guc *guc = ce_to_guc(ce);
3697 	unsigned long flags;
3698 	int ret;
3699 
3700 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3701 
3702 	/*
3703 	 * Flush enough space to reduce the likelihood of waiting after
3704 	 * we start building the request - in which case we will just
3705 	 * have to repeat work.
3706 	 */
3707 	rq->reserved_space += GUC_REQUEST_SIZE;
3708 
3709 	/*
3710 	 * Note that after this point, we have committed to using
3711 	 * this request as it is being used to both track the
3712 	 * state of engine initialisation and liveness of the
3713 	 * golden renderstate above. Think twice before you try
3714 	 * to cancel/unwind this request now.
3715 	 */
3716 
3717 	/* Unconditionally invalidate GPU caches and TLBs. */
3718 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3719 	if (ret)
3720 		return ret;
3721 
3722 	rq->reserved_space -= GUC_REQUEST_SIZE;
3723 
3724 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3725 		guc_context_init(ce);
3726 
3727 	/*
3728 	 * If the context gets closed while the execbuf is ongoing, the context
3729 	 * close code will race with the below code to cancel the delayed work.
3730 	 * If the context close wins the race and cancels the work, it will
3731 	 * immediately call the sched disable (see guc_context_close), so there
3732 	 * is a chance we can get past this check while the sched_disable code
3733 	 * is being executed. To make sure that code completes before we check
3734 	 * the status further down, we wait for the close process to complete.
3735 	 * Else, this code path could send a request down thinking that the
3736 	 * context is still in a schedule-enable mode while the GuC ends up
3737 	 * dropping the request completely because the disable did go from the
3738 	 * context_close path right to GuC just prior. In the event the CT is
3739 	 * full, we could potentially need to wait up to 1.5 seconds.
3740 	 */
3741 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3742 		intel_context_sched_disable_unpin(ce);
3743 	else if (intel_context_is_closed(ce))
3744 		if (wait_for(context_close_done(ce), 1500))
3745 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3746 	/*
3747 	 * Call pin_guc_id here rather than in the pinning step as with
3748 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3749 	 * guc_id and creating horrible race conditions. This is especially bad
3750 	 * when guc_id are being stolen due to over subscription. By the time
3751 	 * this function is reached, it is guaranteed that the guc_id will be
3752 	 * persistent until the generated request is retired. Thus, sealing these
3753 	 * race conditions. It is still safe to fail here if guc_id are
3754 	 * exhausted and return -EAGAIN to the user indicating that they can try
3755 	 * again in the future.
3756 	 *
3757 	 * There is no need for a lock here as the timeline mutex ensures at
3758 	 * most one context can be executing this code path at once. The
3759 	 * guc_id_ref is incremented once for every request in flight and
3760 	 * decremented on each retire. When it is zero, a lock around the
3761 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3762 	 */
3763 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3764 		goto out;
3765 
3766 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3767 	if (unlikely(ret < 0))
3768 		return ret;
3769 	if (context_needs_register(ce, !!ret)) {
3770 		ret = try_context_registration(ce, true);
3771 		if (unlikely(ret)) {	/* unwind */
3772 			if (ret == -EPIPE) {
3773 				disable_submission(guc);
3774 				goto out;	/* GPU will be reset */
3775 			}
3776 			atomic_dec(&ce->guc_id.ref);
3777 			unpin_guc_id(guc, ce);
3778 			return ret;
3779 		}
3780 	}
3781 
3782 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3783 
3784 out:
3785 	/*
3786 	 * We block all requests on this context if a G2H is pending for a
3787 	 * schedule disable or context deregistration as the GuC will fail a
3788 	 * schedule enable or context registration if either G2H is pending
3789 	 * respectfully. Once a G2H returns, the fence is released that is
3790 	 * blocking these requests (see guc_signal_context_fence).
3791 	 */
3792 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3793 	if (context_wait_for_deregister_to_register(ce) ||
3794 	    context_pending_disable(ce)) {
3795 		init_irq_work(&rq->submit_work, submit_work_cb);
3796 		i915_sw_fence_await(&rq->submit);
3797 
3798 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3799 	}
3800 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3801 
3802 	return 0;
3803 }
3804 
3805 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3806 				       struct i915_gem_ww_ctx *ww,
3807 				       void **vaddr)
3808 {
3809 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3810 
3811 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3812 }
3813 
3814 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3815 {
3816 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3817 	int ret = __guc_context_pin(ce, engine, vaddr);
3818 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3819 
3820 	if (likely(!ret))
3821 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3822 			intel_engine_pm_get(engine);
3823 
3824 	return ret;
3825 }
3826 
3827 static void guc_virtual_context_unpin(struct intel_context *ce)
3828 {
3829 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3830 	struct intel_engine_cs *engine;
3831 	struct intel_guc *guc = ce_to_guc(ce);
3832 
3833 	GEM_BUG_ON(context_enabled(ce));
3834 	GEM_BUG_ON(intel_context_is_barrier(ce));
3835 
3836 	unpin_guc_id(guc, ce);
3837 	lrc_unpin(ce);
3838 
3839 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3840 		intel_engine_pm_put_async(engine);
3841 }
3842 
3843 static void guc_virtual_context_enter(struct intel_context *ce)
3844 {
3845 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3846 	struct intel_engine_cs *engine;
3847 
3848 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3849 		intel_engine_pm_get(engine);
3850 
3851 	intel_timeline_enter(ce->timeline);
3852 }
3853 
3854 static void guc_virtual_context_exit(struct intel_context *ce)
3855 {
3856 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3857 	struct intel_engine_cs *engine;
3858 
3859 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3860 		intel_engine_pm_put(engine);
3861 
3862 	intel_timeline_exit(ce->timeline);
3863 }
3864 
3865 static int guc_virtual_context_alloc(struct intel_context *ce)
3866 {
3867 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3868 
3869 	return lrc_alloc(ce, engine);
3870 }
3871 
3872 static const struct intel_context_ops virtual_guc_context_ops = {
3873 	.flags = COPS_RUNTIME_CYCLES,
3874 	.alloc = guc_virtual_context_alloc,
3875 
3876 	.close = guc_context_close,
3877 
3878 	.pre_pin = guc_virtual_context_pre_pin,
3879 	.pin = guc_virtual_context_pin,
3880 	.unpin = guc_virtual_context_unpin,
3881 	.post_unpin = guc_context_post_unpin,
3882 
3883 	.revoke = guc_context_revoke,
3884 
3885 	.cancel_request = guc_context_cancel_request,
3886 
3887 	.enter = guc_virtual_context_enter,
3888 	.exit = guc_virtual_context_exit,
3889 
3890 	.sched_disable = guc_context_sched_disable,
3891 	.update_stats = guc_context_update_stats,
3892 
3893 	.destroy = guc_context_destroy,
3894 
3895 	.get_sibling = guc_virtual_get_sibling,
3896 };
3897 
3898 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3899 {
3900 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3901 	struct intel_guc *guc = ce_to_guc(ce);
3902 	int ret;
3903 
3904 	GEM_BUG_ON(!intel_context_is_parent(ce));
3905 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3906 
3907 	ret = pin_guc_id(guc, ce);
3908 	if (unlikely(ret < 0))
3909 		return ret;
3910 
3911 	return __guc_context_pin(ce, engine, vaddr);
3912 }
3913 
3914 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3915 {
3916 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3917 
3918 	GEM_BUG_ON(!intel_context_is_child(ce));
3919 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3920 
3921 	__intel_context_pin(ce->parallel.parent);
3922 	return __guc_context_pin(ce, engine, vaddr);
3923 }
3924 
3925 static void guc_parent_context_unpin(struct intel_context *ce)
3926 {
3927 	struct intel_guc *guc = ce_to_guc(ce);
3928 
3929 	GEM_BUG_ON(context_enabled(ce));
3930 	GEM_BUG_ON(intel_context_is_barrier(ce));
3931 	GEM_BUG_ON(!intel_context_is_parent(ce));
3932 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3933 
3934 	unpin_guc_id(guc, ce);
3935 	lrc_unpin(ce);
3936 }
3937 
3938 static void guc_child_context_unpin(struct intel_context *ce)
3939 {
3940 	GEM_BUG_ON(context_enabled(ce));
3941 	GEM_BUG_ON(intel_context_is_barrier(ce));
3942 	GEM_BUG_ON(!intel_context_is_child(ce));
3943 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3944 
3945 	lrc_unpin(ce);
3946 }
3947 
3948 static void guc_child_context_post_unpin(struct intel_context *ce)
3949 {
3950 	GEM_BUG_ON(!intel_context_is_child(ce));
3951 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3952 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3953 
3954 	lrc_post_unpin(ce);
3955 	intel_context_unpin(ce->parallel.parent);
3956 }
3957 
3958 static void guc_child_context_destroy(struct kref *kref)
3959 {
3960 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3961 
3962 	__guc_context_destroy(ce);
3963 }
3964 
3965 static const struct intel_context_ops virtual_parent_context_ops = {
3966 	.alloc = guc_virtual_context_alloc,
3967 
3968 	.close = guc_context_close,
3969 
3970 	.pre_pin = guc_context_pre_pin,
3971 	.pin = guc_parent_context_pin,
3972 	.unpin = guc_parent_context_unpin,
3973 	.post_unpin = guc_context_post_unpin,
3974 
3975 	.revoke = guc_context_revoke,
3976 
3977 	.cancel_request = guc_context_cancel_request,
3978 
3979 	.enter = guc_virtual_context_enter,
3980 	.exit = guc_virtual_context_exit,
3981 
3982 	.sched_disable = guc_context_sched_disable,
3983 
3984 	.destroy = guc_context_destroy,
3985 
3986 	.get_sibling = guc_virtual_get_sibling,
3987 };
3988 
3989 static const struct intel_context_ops virtual_child_context_ops = {
3990 	.alloc = guc_virtual_context_alloc,
3991 
3992 	.pre_pin = guc_context_pre_pin,
3993 	.pin = guc_child_context_pin,
3994 	.unpin = guc_child_context_unpin,
3995 	.post_unpin = guc_child_context_post_unpin,
3996 
3997 	.cancel_request = guc_context_cancel_request,
3998 
3999 	.enter = guc_virtual_context_enter,
4000 	.exit = guc_virtual_context_exit,
4001 
4002 	.destroy = guc_child_context_destroy,
4003 
4004 	.get_sibling = guc_virtual_get_sibling,
4005 };
4006 
4007 /*
4008  * The below override of the breadcrumbs is enabled when the user configures a
4009  * context for parallel submission (multi-lrc, parent-child).
4010  *
4011  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4012  * safely preempt all the hw contexts configured for parallel submission
4013  * between each BB. The contract between the i915 and GuC is if the parent
4014  * context can be preempted, all the children can be preempted, and the GuC will
4015  * always try to preempt the parent before the children. A handshake between the
4016  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4017  * creating a window to preempt between each set of BBs.
4018  */
4019 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4020 						     u64 offset, u32 len,
4021 						     const unsigned int flags);
4022 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4023 						    u64 offset, u32 len,
4024 						    const unsigned int flags);
4025 static u32 *
4026 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4027 						 u32 *cs);
4028 static u32 *
4029 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4030 						u32 *cs);
4031 
4032 static struct intel_context *
4033 guc_create_parallel(struct intel_engine_cs **engines,
4034 		    unsigned int num_siblings,
4035 		    unsigned int width)
4036 {
4037 	struct intel_engine_cs **siblings = NULL;
4038 	struct intel_context *parent = NULL, *ce, *err;
4039 	int i, j;
4040 
4041 	siblings = kmalloc_array(num_siblings,
4042 				 sizeof(*siblings),
4043 				 GFP_KERNEL);
4044 	if (!siblings)
4045 		return ERR_PTR(-ENOMEM);
4046 
4047 	for (i = 0; i < width; ++i) {
4048 		for (j = 0; j < num_siblings; ++j)
4049 			siblings[j] = engines[i * num_siblings + j];
4050 
4051 		ce = intel_engine_create_virtual(siblings, num_siblings,
4052 						 FORCE_VIRTUAL);
4053 		if (IS_ERR(ce)) {
4054 			err = ERR_CAST(ce);
4055 			goto unwind;
4056 		}
4057 
4058 		if (i == 0) {
4059 			parent = ce;
4060 			parent->ops = &virtual_parent_context_ops;
4061 		} else {
4062 			ce->ops = &virtual_child_context_ops;
4063 			intel_context_bind_parent_child(parent, ce);
4064 		}
4065 	}
4066 
4067 	parent->parallel.fence_context = dma_fence_context_alloc(1);
4068 
4069 	parent->engine->emit_bb_start =
4070 		emit_bb_start_parent_no_preempt_mid_batch;
4071 	parent->engine->emit_fini_breadcrumb =
4072 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4073 	parent->engine->emit_fini_breadcrumb_dw =
4074 		12 + 4 * parent->parallel.number_children;
4075 	for_each_child(parent, ce) {
4076 		ce->engine->emit_bb_start =
4077 			emit_bb_start_child_no_preempt_mid_batch;
4078 		ce->engine->emit_fini_breadcrumb =
4079 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
4080 		ce->engine->emit_fini_breadcrumb_dw = 16;
4081 	}
4082 
4083 	kfree(siblings);
4084 	return parent;
4085 
4086 unwind:
4087 	if (parent)
4088 		intel_context_put(parent);
4089 	kfree(siblings);
4090 	return err;
4091 }
4092 
4093 static bool
4094 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4095 {
4096 	struct intel_engine_cs *sibling;
4097 	intel_engine_mask_t tmp, mask = b->engine_mask;
4098 	bool result = false;
4099 
4100 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4101 		result |= intel_engine_irq_enable(sibling);
4102 
4103 	return result;
4104 }
4105 
4106 static void
4107 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4108 {
4109 	struct intel_engine_cs *sibling;
4110 	intel_engine_mask_t tmp, mask = b->engine_mask;
4111 
4112 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4113 		intel_engine_irq_disable(sibling);
4114 }
4115 
4116 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4117 {
4118 	int i;
4119 
4120 	/*
4121 	 * In GuC submission mode we do not know which physical engine a request
4122 	 * will be scheduled on, this creates a problem because the breadcrumb
4123 	 * interrupt is per physical engine. To work around this we attach
4124 	 * requests and direct all breadcrumb interrupts to the first instance
4125 	 * of an engine per class. In addition all breadcrumb interrupts are
4126 	 * enabled / disabled across an engine class in unison.
4127 	 */
4128 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4129 		struct intel_engine_cs *sibling =
4130 			engine->gt->engine_class[engine->class][i];
4131 
4132 		if (sibling) {
4133 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4134 				intel_breadcrumbs_put(engine->breadcrumbs);
4135 				engine->breadcrumbs =
4136 					intel_breadcrumbs_get(sibling->breadcrumbs);
4137 			}
4138 			break;
4139 		}
4140 	}
4141 
4142 	if (engine->breadcrumbs) {
4143 		engine->breadcrumbs->engine_mask |= engine->mask;
4144 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4145 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4146 	}
4147 }
4148 
4149 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4150 					   int prio)
4151 {
4152 	struct intel_context *ce = request_to_scheduling_context(rq);
4153 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4154 
4155 	/* Short circuit function */
4156 	if (prio < I915_PRIORITY_NORMAL ||
4157 	    rq->guc_prio == GUC_PRIO_FINI ||
4158 	    (rq->guc_prio != GUC_PRIO_INIT &&
4159 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4160 		return;
4161 
4162 	spin_lock(&ce->guc_state.lock);
4163 	if (rq->guc_prio != GUC_PRIO_FINI) {
4164 		if (rq->guc_prio != GUC_PRIO_INIT)
4165 			sub_context_inflight_prio(ce, rq->guc_prio);
4166 		rq->guc_prio = new_guc_prio;
4167 		add_context_inflight_prio(ce, rq->guc_prio);
4168 		update_context_prio(ce);
4169 	}
4170 	spin_unlock(&ce->guc_state.lock);
4171 }
4172 
4173 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4174 {
4175 	struct intel_context *ce = request_to_scheduling_context(rq);
4176 
4177 	spin_lock(&ce->guc_state.lock);
4178 	guc_prio_fini(rq, ce);
4179 	spin_unlock(&ce->guc_state.lock);
4180 }
4181 
4182 static void sanitize_hwsp(struct intel_engine_cs *engine)
4183 {
4184 	struct intel_timeline *tl;
4185 
4186 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4187 		intel_timeline_reset_seqno(tl);
4188 }
4189 
4190 static void guc_sanitize(struct intel_engine_cs *engine)
4191 {
4192 	/*
4193 	 * Poison residual state on resume, in case the suspend didn't!
4194 	 *
4195 	 * We have to assume that across suspend/resume (or other loss
4196 	 * of control) that the contents of our pinned buffers has been
4197 	 * lost, replaced by garbage. Since this doesn't always happen,
4198 	 * let's poison such state so that we more quickly spot when
4199 	 * we falsely assume it has been preserved.
4200 	 */
4201 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4202 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4203 
4204 	/*
4205 	 * The kernel_context HWSP is stored in the status_page. As above,
4206 	 * that may be lost on resume/initialisation, and so we need to
4207 	 * reset the value in the HWSP.
4208 	 */
4209 	sanitize_hwsp(engine);
4210 
4211 	/* And scrub the dirty cachelines for the HWSP */
4212 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4213 
4214 	intel_engine_reset_pinned_contexts(engine);
4215 }
4216 
4217 static void setup_hwsp(struct intel_engine_cs *engine)
4218 {
4219 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4220 
4221 	ENGINE_WRITE_FW(engine,
4222 			RING_HWS_PGA,
4223 			i915_ggtt_offset(engine->status_page.vma));
4224 }
4225 
4226 static void start_engine(struct intel_engine_cs *engine)
4227 {
4228 	ENGINE_WRITE_FW(engine,
4229 			RING_MODE_GEN7,
4230 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4231 
4232 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4233 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4234 }
4235 
4236 static int guc_resume(struct intel_engine_cs *engine)
4237 {
4238 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4239 
4240 	intel_mocs_init_engine(engine);
4241 
4242 	intel_breadcrumbs_reset(engine->breadcrumbs);
4243 
4244 	setup_hwsp(engine);
4245 	start_engine(engine);
4246 
4247 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4248 		xehp_enable_ccs_engines(engine);
4249 
4250 	return 0;
4251 }
4252 
4253 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4254 {
4255 	return !sched_engine->tasklet.callback;
4256 }
4257 
4258 static void guc_set_default_submission(struct intel_engine_cs *engine)
4259 {
4260 	engine->submit_request = guc_submit_request;
4261 }
4262 
4263 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4264 					 struct intel_context *ce)
4265 {
4266 	int ret;
4267 
4268 	/*
4269 	 * Note: we purposefully do not check the returns below because
4270 	 * the registration can only fail if a reset is just starting.
4271 	 * This is called at the end of reset so presumably another reset
4272 	 * isn't happening and even it did this code would be run again.
4273 	 */
4274 
4275 	if (context_guc_id_invalid(ce)) {
4276 		ret = pin_guc_id(guc, ce);
4277 
4278 		if (ret < 0)
4279 			return ret;
4280 	}
4281 
4282 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4283 		guc_context_init(ce);
4284 
4285 	ret = try_context_registration(ce, true);
4286 	if (ret)
4287 		unpin_guc_id(guc, ce);
4288 
4289 	return ret;
4290 }
4291 
4292 static inline int guc_init_submission(struct intel_guc *guc)
4293 {
4294 	struct intel_gt *gt = guc_to_gt(guc);
4295 	struct intel_engine_cs *engine;
4296 	enum intel_engine_id id;
4297 
4298 	/* make sure all descriptors are clean... */
4299 	xa_destroy(&guc->context_lookup);
4300 
4301 	/*
4302 	 * A reset might have occurred while we had a pending stalled request,
4303 	 * so make sure we clean that up.
4304 	 */
4305 	guc->stalled_request = NULL;
4306 	guc->submission_stall_reason = STALL_NONE;
4307 
4308 	/*
4309 	 * Some contexts might have been pinned before we enabled GuC
4310 	 * submission, so we need to add them to the GuC bookeeping.
4311 	 * Also, after a reset the of the GuC we want to make sure that the
4312 	 * information shared with GuC is properly reset. The kernel LRCs are
4313 	 * not attached to the gem_context, so they need to be added separately.
4314 	 */
4315 	for_each_engine(engine, gt, id) {
4316 		struct intel_context *ce;
4317 
4318 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4319 				    pinned_contexts_link) {
4320 			int ret = guc_kernel_context_pin(guc, ce);
4321 
4322 			if (ret) {
4323 				/* No point in trying to clean up as i915 will wedge on failure */
4324 				return ret;
4325 			}
4326 		}
4327 	}
4328 
4329 	return 0;
4330 }
4331 
4332 static void guc_release(struct intel_engine_cs *engine)
4333 {
4334 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4335 
4336 	intel_engine_cleanup_common(engine);
4337 	lrc_fini_wa_ctx(engine);
4338 }
4339 
4340 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4341 {
4342 	struct intel_engine_cs *e;
4343 	intel_engine_mask_t tmp, mask = engine->mask;
4344 
4345 	for_each_engine_masked(e, engine->gt, mask, tmp)
4346 		e->serial++;
4347 }
4348 
4349 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4350 {
4351 	/* Default vfuncs which can be overridden by each engine. */
4352 
4353 	engine->resume = guc_resume;
4354 
4355 	engine->cops = &guc_context_ops;
4356 	engine->request_alloc = guc_request_alloc;
4357 	engine->add_active_request = add_to_context;
4358 	engine->remove_active_request = remove_from_context;
4359 
4360 	engine->sched_engine->schedule = i915_schedule;
4361 
4362 	engine->reset.prepare = guc_engine_reset_prepare;
4363 	engine->reset.rewind = guc_rewind_nop;
4364 	engine->reset.cancel = guc_reset_nop;
4365 	engine->reset.finish = guc_reset_nop;
4366 
4367 	engine->emit_flush = gen8_emit_flush_xcs;
4368 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4369 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4370 	if (GRAPHICS_VER(engine->i915) >= 12) {
4371 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4372 		engine->emit_flush = gen12_emit_flush_xcs;
4373 	}
4374 	engine->set_default_submission = guc_set_default_submission;
4375 	engine->busyness = guc_engine_busyness;
4376 
4377 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4378 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4379 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4380 
4381 	/* Wa_14014475959:dg2 */
4382 	if (engine->class == COMPUTE_CLASS)
4383 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4384 		    IS_DG2(engine->i915))
4385 			engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4386 
4387 	/*
4388 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4389 	 * handled by the firmware so some minor tweaks are required before
4390 	 * enabling.
4391 	 *
4392 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4393 	 */
4394 
4395 	engine->emit_bb_start = gen8_emit_bb_start;
4396 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4397 		engine->emit_bb_start = xehp_emit_bb_start;
4398 }
4399 
4400 static void rcs_submission_override(struct intel_engine_cs *engine)
4401 {
4402 	switch (GRAPHICS_VER(engine->i915)) {
4403 	case 12:
4404 		engine->emit_flush = gen12_emit_flush_rcs;
4405 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4406 		break;
4407 	case 11:
4408 		engine->emit_flush = gen11_emit_flush_rcs;
4409 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4410 		break;
4411 	default:
4412 		engine->emit_flush = gen8_emit_flush_rcs;
4413 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4414 		break;
4415 	}
4416 }
4417 
4418 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4419 {
4420 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4421 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4422 }
4423 
4424 static void guc_sched_engine_destroy(struct kref *kref)
4425 {
4426 	struct i915_sched_engine *sched_engine =
4427 		container_of(kref, typeof(*sched_engine), ref);
4428 	struct intel_guc *guc = sched_engine->private_data;
4429 
4430 	guc->sched_engine = NULL;
4431 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4432 	kfree(sched_engine);
4433 }
4434 
4435 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4436 {
4437 	struct drm_i915_private *i915 = engine->i915;
4438 	struct intel_guc *guc = &engine->gt->uc.guc;
4439 
4440 	/*
4441 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4442 	 * that are only valid on gen11+
4443 	 */
4444 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4445 
4446 	if (!guc->sched_engine) {
4447 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4448 		if (!guc->sched_engine)
4449 			return -ENOMEM;
4450 
4451 		guc->sched_engine->schedule = i915_schedule;
4452 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4453 		guc->sched_engine->private_data = guc;
4454 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4455 		guc->sched_engine->bump_inflight_request_prio =
4456 			guc_bump_inflight_request_prio;
4457 		guc->sched_engine->retire_inflight_request_prio =
4458 			guc_retire_inflight_request_prio;
4459 		tasklet_setup(&guc->sched_engine->tasklet,
4460 			      guc_submission_tasklet);
4461 	}
4462 	i915_sched_engine_put(engine->sched_engine);
4463 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4464 
4465 	guc_default_vfuncs(engine);
4466 	guc_default_irqs(engine);
4467 	guc_init_breadcrumbs(engine);
4468 
4469 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4470 		rcs_submission_override(engine);
4471 
4472 	lrc_init_wa_ctx(engine);
4473 
4474 	/* Finally, take ownership and responsibility for cleanup! */
4475 	engine->sanitize = guc_sanitize;
4476 	engine->release = guc_release;
4477 
4478 	return 0;
4479 }
4480 
4481 struct scheduling_policy {
4482 	/* internal data */
4483 	u32 max_words, num_words;
4484 	u32 count;
4485 	/* API data */
4486 	struct guc_update_scheduling_policy h2g;
4487 };
4488 
4489 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4490 {
4491 	u32 *start = (void *)&policy->h2g;
4492 	u32 *end = policy->h2g.data + policy->num_words;
4493 	size_t delta = end - start;
4494 
4495 	return delta;
4496 }
4497 
4498 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4499 {
4500 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4501 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4502 	policy->num_words = 0;
4503 	policy->count = 0;
4504 
4505 	return policy;
4506 }
4507 
4508 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4509 					    u32 action, u32 *data, u32 len)
4510 {
4511 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4512 
4513 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4514 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4515 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4516 	memcpy(klv_ptr, data, sizeof(u32) * len);
4517 	policy->num_words += 1 + len;
4518 	policy->count++;
4519 }
4520 
4521 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4522 						struct scheduling_policy *policy)
4523 {
4524 	int ret;
4525 
4526 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4527 			     __guc_scheduling_policy_action_size(policy));
4528 	if (ret < 0) {
4529 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4530 				ERR_PTR(ret));
4531 		return ret;
4532 	}
4533 
4534 	if (ret != policy->count) {
4535 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4536 			 ret, policy->count);
4537 		if (ret > policy->count)
4538 			return -EPROTO;
4539 	}
4540 
4541 	return 0;
4542 }
4543 
4544 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4545 {
4546 	struct scheduling_policy policy;
4547 	struct intel_gt *gt = guc_to_gt(guc);
4548 	intel_wakeref_t wakeref;
4549 	int ret;
4550 
4551 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4552 		return 0;
4553 
4554 	__guc_scheduling_policy_start_klv(&policy);
4555 
4556 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4557 		u32 yield[] = {
4558 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4559 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4560 		};
4561 
4562 		__guc_scheduling_policy_add_klv(&policy,
4563 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4564 						yield, ARRAY_SIZE(yield));
4565 
4566 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4567 	}
4568 
4569 	return ret;
4570 }
4571 
4572 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4573 {
4574 	struct intel_gt *gt = guc_to_gt(guc);
4575 	u32 val;
4576 
4577 	if (GRAPHICS_VER(gt->i915) < 12)
4578 		return;
4579 
4580 	if (to_guc)
4581 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4582 	else
4583 		val = 0;
4584 
4585 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4586 }
4587 
4588 int intel_guc_submission_enable(struct intel_guc *guc)
4589 {
4590 	int ret;
4591 
4592 	/* Semaphore interrupt enable and route to GuC */
4593 	guc_route_semaphores(guc, true);
4594 
4595 	ret = guc_init_submission(guc);
4596 	if (ret)
4597 		goto fail_sem;
4598 
4599 	ret = guc_init_engine_stats(guc);
4600 	if (ret)
4601 		goto fail_sem;
4602 
4603 	ret = guc_init_global_schedule_policy(guc);
4604 	if (ret)
4605 		goto fail_stats;
4606 
4607 	return 0;
4608 
4609 fail_stats:
4610 	guc_fini_engine_stats(guc);
4611 fail_sem:
4612 	guc_route_semaphores(guc, false);
4613 	return ret;
4614 }
4615 
4616 /* Note: By the time we're here, GuC may have already been reset */
4617 void intel_guc_submission_disable(struct intel_guc *guc)
4618 {
4619 	guc_cancel_busyness_worker(guc);
4620 
4621 	/* Semaphore interrupt disable and route to host */
4622 	guc_route_semaphores(guc, false);
4623 }
4624 
4625 static bool __guc_submission_supported(struct intel_guc *guc)
4626 {
4627 	/* GuC submission is unavailable for pre-Gen11 */
4628 	return intel_guc_is_supported(guc) &&
4629 	       GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4630 }
4631 
4632 static bool __guc_submission_selected(struct intel_guc *guc)
4633 {
4634 	struct drm_i915_private *i915 = guc_to_i915(guc);
4635 
4636 	if (!intel_guc_submission_is_supported(guc))
4637 		return false;
4638 
4639 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4640 }
4641 
4642 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4643 {
4644 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4645 }
4646 
4647 /*
4648  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4649  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4650  * operation. This matches the 30fps game-render + encode (real world) workload this
4651  * knob was tested against.
4652  */
4653 #define SCHED_DISABLE_DELAY_MS	34
4654 
4655 /*
4656  * A threshold of 75% is a reasonable starting point considering that real world apps
4657  * generally don't get anywhere near this.
4658  */
4659 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4660 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4661 
4662 void intel_guc_submission_init_early(struct intel_guc *guc)
4663 {
4664 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4665 
4666 	spin_lock_init(&guc->submission_state.lock);
4667 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4668 	ida_init(&guc->submission_state.guc_ids);
4669 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4670 	INIT_WORK(&guc->submission_state.destroyed_worker,
4671 		  destroyed_worker_func);
4672 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4673 		  reset_fail_worker_func);
4674 
4675 	spin_lock_init(&guc->timestamp.lock);
4676 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4677 
4678 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4679 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4680 	guc->submission_state.sched_disable_gucid_threshold =
4681 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4682 	guc->submission_supported = __guc_submission_supported(guc);
4683 	guc->submission_selected = __guc_submission_selected(guc);
4684 }
4685 
4686 static inline struct intel_context *
4687 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4688 {
4689 	struct intel_context *ce;
4690 
4691 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4692 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4693 		return NULL;
4694 	}
4695 
4696 	ce = __get_context(guc, ctx_id);
4697 	if (unlikely(!ce)) {
4698 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4699 		return NULL;
4700 	}
4701 
4702 	if (unlikely(intel_context_is_child(ce))) {
4703 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4704 		return NULL;
4705 	}
4706 
4707 	return ce;
4708 }
4709 
4710 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4711 {
4712 	struct intel_guc_tlb_wait *wait;
4713 	unsigned long flags;
4714 
4715 	xa_lock_irqsave(&guc->tlb_lookup, flags);
4716 	wait = xa_load(&guc->tlb_lookup, seqno);
4717 
4718 	if (wait)
4719 		wake_up(&wait->wq);
4720 	else
4721 		guc_dbg(guc,
4722 			"Stale TLB invalidation response with seqno %d\n", seqno);
4723 
4724 	xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4725 }
4726 
4727 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4728 				    const u32 *payload, u32 len)
4729 {
4730 	if (len < 1)
4731 		return -EPROTO;
4732 
4733 	wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4734 	return 0;
4735 }
4736 
4737 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4738 {
4739 	/*
4740 	 * This is equivalent to wait_woken() with the exception that
4741 	 * we do not wake up early if the kthread task has been completed.
4742 	 * As we are called from page reclaim in any task context,
4743 	 * we may be invoked from stopped kthreads, but we *must*
4744 	 * complete the wait from the HW.
4745 	 */
4746 	do {
4747 		set_current_state(TASK_UNINTERRUPTIBLE);
4748 		if (wq_entry->flags & WQ_FLAG_WOKEN)
4749 			break;
4750 
4751 		timeout = schedule_timeout(timeout);
4752 	} while (timeout);
4753 
4754 	/* See wait_woken() and woken_wake_function() */
4755 	__set_current_state(TASK_RUNNING);
4756 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4757 
4758 	return timeout;
4759 }
4760 
4761 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4762 {
4763 	/* Check if GT is wedged or suspended */
4764 	if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4765 		return false;
4766 	return true;
4767 }
4768 
4769 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4770 				   enum intel_guc_tlb_invalidation_type type)
4771 {
4772 	struct intel_guc_tlb_wait _wq, *wq = &_wq;
4773 	struct intel_gt *gt = guc_to_gt(guc);
4774 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
4775 	int err;
4776 	u32 seqno;
4777 	u32 action[] = {
4778 		INTEL_GUC_ACTION_TLB_INVALIDATION,
4779 		0,
4780 		REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4781 			REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4782 				       INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4783 			INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4784 	};
4785 	u32 size = ARRAY_SIZE(action);
4786 
4787 	/*
4788 	 * Early guard against GT enablement.  TLB invalidation should not be
4789 	 * attempted if the GT is disabled due to suspend/wedge.
4790 	 */
4791 	if (!intel_gt_is_enabled(gt))
4792 		return -EINVAL;
4793 
4794 	init_waitqueue_head(&_wq.wq);
4795 
4796 	if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4797 				xa_limit_32b, &guc->next_seqno,
4798 				GFP_ATOMIC | __GFP_NOWARN) < 0) {
4799 		/* Under severe memory pressure? Serialise TLB allocations */
4800 		xa_lock_irq(&guc->tlb_lookup);
4801 		wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4802 		wait_event_lock_irq(wq->wq,
4803 				    !READ_ONCE(wq->busy),
4804 				    guc->tlb_lookup.xa_lock);
4805 		/*
4806 		 * Update wq->busy under lock to ensure only one waiter can
4807 		 * issue the TLB invalidation command using the serial slot at a
4808 		 * time. The condition is set to true before releasing the lock
4809 		 * so that other caller continue to wait until woken up again.
4810 		 */
4811 		wq->busy = true;
4812 		xa_unlock_irq(&guc->tlb_lookup);
4813 
4814 		seqno = guc->serial_slot;
4815 	}
4816 
4817 	action[1] = seqno;
4818 
4819 	add_wait_queue(&wq->wq, &wait);
4820 
4821 	/* This is a critical reclaim path and thus we must loop here. */
4822 	err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4823 	if (err)
4824 		goto out;
4825 
4826 	/*
4827 	 * Late guard against GT enablement.  It is not an error for the TLB
4828 	 * invalidation to time out if the GT is disabled during the process
4829 	 * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
4830 	 * in this case.
4831 	 */
4832 	if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4833 	    intel_gt_is_enabled(gt)) {
4834 		guc_err(guc,
4835 			"TLB invalidation response timed out for seqno %u\n", seqno);
4836 		err = -ETIME;
4837 	}
4838 out:
4839 	remove_wait_queue(&wq->wq, &wait);
4840 	if (seqno != guc->serial_slot)
4841 		xa_erase_irq(&guc->tlb_lookup, seqno);
4842 
4843 	return err;
4844 }
4845 
4846 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
4847 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
4848 {
4849 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
4850 }
4851 
4852 /* Send a H2G command to invalidate the GuC's internal TLB. */
4853 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
4854 {
4855 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
4856 }
4857 
4858 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4859 					  const u32 *msg,
4860 					  u32 len)
4861 {
4862 	struct intel_context *ce;
4863 	u32 ctx_id;
4864 
4865 	if (unlikely(len < 1)) {
4866 		guc_err(guc, "Invalid length %u\n", len);
4867 		return -EPROTO;
4868 	}
4869 	ctx_id = msg[0];
4870 
4871 	ce = g2h_context_lookup(guc, ctx_id);
4872 	if (unlikely(!ce))
4873 		return -EPROTO;
4874 
4875 	trace_intel_context_deregister_done(ce);
4876 
4877 #ifdef CONFIG_DRM_I915_SELFTEST
4878 	if (unlikely(ce->drop_deregister)) {
4879 		ce->drop_deregister = false;
4880 		return 0;
4881 	}
4882 #endif
4883 
4884 	if (context_wait_for_deregister_to_register(ce)) {
4885 		struct intel_runtime_pm *runtime_pm =
4886 			&ce->engine->gt->i915->runtime_pm;
4887 		intel_wakeref_t wakeref;
4888 
4889 		/*
4890 		 * Previous owner of this guc_id has been deregistered, now safe
4891 		 * register this context.
4892 		 */
4893 		with_intel_runtime_pm(runtime_pm, wakeref)
4894 			register_context(ce, true);
4895 		guc_signal_context_fence(ce);
4896 		intel_context_put(ce);
4897 	} else if (context_destroyed(ce)) {
4898 		/* Context has been destroyed */
4899 		intel_gt_pm_put_async_untracked(guc_to_gt(guc));
4900 		release_guc_id(guc, ce);
4901 		__guc_context_destroy(ce);
4902 	}
4903 
4904 	decr_outstanding_submission_g2h(guc);
4905 
4906 	return 0;
4907 }
4908 
4909 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4910 				     const u32 *msg,
4911 				     u32 len)
4912 {
4913 	struct intel_context *ce;
4914 	unsigned long flags;
4915 	u32 ctx_id;
4916 
4917 	if (unlikely(len < 2)) {
4918 		guc_err(guc, "Invalid length %u\n", len);
4919 		return -EPROTO;
4920 	}
4921 	ctx_id = msg[0];
4922 
4923 	ce = g2h_context_lookup(guc, ctx_id);
4924 	if (unlikely(!ce))
4925 		return -EPROTO;
4926 
4927 	if (unlikely(context_destroyed(ce) ||
4928 		     (!context_pending_enable(ce) &&
4929 		     !context_pending_disable(ce)))) {
4930 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4931 			ce->guc_state.sched_state, ctx_id);
4932 		return -EPROTO;
4933 	}
4934 
4935 	trace_intel_context_sched_done(ce);
4936 
4937 	if (context_pending_enable(ce)) {
4938 #ifdef CONFIG_DRM_I915_SELFTEST
4939 		if (unlikely(ce->drop_schedule_enable)) {
4940 			ce->drop_schedule_enable = false;
4941 			return 0;
4942 		}
4943 #endif
4944 
4945 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4946 		clr_context_pending_enable(ce);
4947 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4948 	} else if (context_pending_disable(ce)) {
4949 		bool banned;
4950 
4951 #ifdef CONFIG_DRM_I915_SELFTEST
4952 		if (unlikely(ce->drop_schedule_disable)) {
4953 			ce->drop_schedule_disable = false;
4954 			return 0;
4955 		}
4956 #endif
4957 
4958 		/*
4959 		 * Unpin must be done before __guc_signal_context_fence,
4960 		 * otherwise a race exists between the requests getting
4961 		 * submitted + retired before this unpin completes resulting in
4962 		 * the pin_count going to zero and the context still being
4963 		 * enabled.
4964 		 */
4965 		intel_context_sched_disable_unpin(ce);
4966 
4967 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4968 		banned = context_banned(ce);
4969 		clr_context_banned(ce);
4970 		clr_context_pending_disable(ce);
4971 		__guc_signal_context_fence(ce);
4972 		guc_blocked_fence_complete(ce);
4973 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4974 
4975 		if (banned) {
4976 			guc_cancel_context_requests(ce);
4977 			intel_engine_signal_breadcrumbs(ce->engine);
4978 		}
4979 	}
4980 
4981 	decr_outstanding_submission_g2h(guc);
4982 	intel_context_put(ce);
4983 
4984 	return 0;
4985 }
4986 
4987 static void capture_error_state(struct intel_guc *guc,
4988 				struct intel_context *ce)
4989 {
4990 	struct intel_gt *gt = guc_to_gt(guc);
4991 	struct drm_i915_private *i915 = gt->i915;
4992 	intel_wakeref_t wakeref;
4993 	intel_engine_mask_t engine_mask;
4994 
4995 	if (intel_engine_is_virtual(ce->engine)) {
4996 		struct intel_engine_cs *e;
4997 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
4998 
4999 		engine_mask = 0;
5000 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5001 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5002 
5003 			if (match) {
5004 				intel_engine_set_hung_context(e, ce);
5005 				engine_mask |= e->mask;
5006 				i915_increase_reset_engine_count(&i915->gpu_error,
5007 								 e);
5008 			}
5009 		}
5010 
5011 		if (!engine_mask) {
5012 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5013 				 ce->guc_id.id, ce->engine->name);
5014 			engine_mask = ~0U;
5015 		}
5016 	} else {
5017 		intel_engine_set_hung_context(ce->engine, ce);
5018 		engine_mask = ce->engine->mask;
5019 		i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5020 	}
5021 
5022 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5023 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5024 }
5025 
5026 static void guc_context_replay(struct intel_context *ce)
5027 {
5028 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5029 
5030 	__guc_reset_context(ce, ce->engine->mask);
5031 	tasklet_hi_schedule(&sched_engine->tasklet);
5032 }
5033 
5034 static void guc_handle_context_reset(struct intel_guc *guc,
5035 				     struct intel_context *ce)
5036 {
5037 	bool capture = intel_context_is_schedulable(ce);
5038 
5039 	trace_intel_context_reset(ce);
5040 
5041 	guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5042 		capture ? "Got" : "Ignoring",
5043 		ce->guc_id.id, ce->engine->name,
5044 		str_yes_no(intel_context_is_exiting(ce)),
5045 		str_yes_no(intel_context_is_banned(ce)));
5046 
5047 	if (capture) {
5048 		capture_error_state(guc, ce);
5049 		guc_context_replay(ce);
5050 	}
5051 }
5052 
5053 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5054 					const u32 *msg, u32 len)
5055 {
5056 	struct intel_context *ce;
5057 	unsigned long flags;
5058 	int ctx_id;
5059 
5060 	if (unlikely(len != 1)) {
5061 		guc_err(guc, "Invalid length %u", len);
5062 		return -EPROTO;
5063 	}
5064 
5065 	ctx_id = msg[0];
5066 
5067 	/*
5068 	 * The context lookup uses the xarray but lookups only require an RCU lock
5069 	 * not the full spinlock. So take the lock explicitly and keep it until the
5070 	 * context has been reference count locked to ensure it can't be destroyed
5071 	 * asynchronously until the reset is done.
5072 	 */
5073 	xa_lock_irqsave(&guc->context_lookup, flags);
5074 	ce = g2h_context_lookup(guc, ctx_id);
5075 	if (ce)
5076 		intel_context_get(ce);
5077 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5078 
5079 	if (unlikely(!ce))
5080 		return -EPROTO;
5081 
5082 	guc_handle_context_reset(guc, ce);
5083 	intel_context_put(ce);
5084 
5085 	return 0;
5086 }
5087 
5088 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5089 					const u32 *msg, u32 len)
5090 {
5091 	u32 status;
5092 
5093 	if (unlikely(len != 1)) {
5094 		guc_dbg(guc, "Invalid length %u", len);
5095 		return -EPROTO;
5096 	}
5097 
5098 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5099 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5100 		guc_warn(guc, "No space for error capture");
5101 
5102 	intel_guc_capture_process(guc);
5103 
5104 	return 0;
5105 }
5106 
5107 struct intel_engine_cs *
5108 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5109 {
5110 	struct intel_gt *gt = guc_to_gt(guc);
5111 	u8 engine_class = guc_class_to_engine_class(guc_class);
5112 
5113 	/* Class index is checked in class converter */
5114 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5115 
5116 	return gt->engine_class[engine_class][instance];
5117 }
5118 
5119 static void reset_fail_worker_func(struct work_struct *w)
5120 {
5121 	struct intel_guc *guc = container_of(w, struct intel_guc,
5122 					     submission_state.reset_fail_worker);
5123 	struct intel_gt *gt = guc_to_gt(guc);
5124 	intel_engine_mask_t reset_fail_mask;
5125 	unsigned long flags;
5126 
5127 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5128 	reset_fail_mask = guc->submission_state.reset_fail_mask;
5129 	guc->submission_state.reset_fail_mask = 0;
5130 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5131 
5132 	if (likely(reset_fail_mask)) {
5133 		struct intel_engine_cs *engine;
5134 		enum intel_engine_id id;
5135 
5136 		/*
5137 		 * GuC is toast at this point - it dead loops after sending the failed
5138 		 * reset notification. So need to manually determine the guilty context.
5139 		 * Note that it should be reliable to do this here because the GuC is
5140 		 * toast and will not be scheduling behind the KMD's back.
5141 		 */
5142 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
5143 			intel_guc_find_hung_context(engine);
5144 
5145 		intel_gt_handle_error(gt, reset_fail_mask,
5146 				      I915_ERROR_CAPTURE,
5147 				      "GuC failed to reset engine mask=0x%x",
5148 				      reset_fail_mask);
5149 	}
5150 }
5151 
5152 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5153 					 const u32 *msg, u32 len)
5154 {
5155 	struct intel_engine_cs *engine;
5156 	u8 guc_class, instance;
5157 	u32 reason;
5158 	unsigned long flags;
5159 
5160 	if (unlikely(len != 3)) {
5161 		guc_err(guc, "Invalid length %u", len);
5162 		return -EPROTO;
5163 	}
5164 
5165 	guc_class = msg[0];
5166 	instance = msg[1];
5167 	reason = msg[2];
5168 
5169 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
5170 	if (unlikely(!engine)) {
5171 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5172 		return -EPROTO;
5173 	}
5174 
5175 	/*
5176 	 * This is an unexpected failure of a hardware feature. So, log a real
5177 	 * error message not just the informational that comes with the reset.
5178 	 */
5179 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5180 		guc_class, instance, engine->name, reason);
5181 
5182 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5183 	guc->submission_state.reset_fail_mask |= engine->mask;
5184 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5185 
5186 	/*
5187 	 * A GT reset flushes this worker queue (G2H handler) so we must use
5188 	 * another worker to trigger a GT reset.
5189 	 */
5190 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5191 
5192 	return 0;
5193 }
5194 
5195 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5196 {
5197 	struct intel_guc *guc = &engine->gt->uc.guc;
5198 	struct intel_context *ce;
5199 	struct i915_request *rq;
5200 	unsigned long index;
5201 	unsigned long flags;
5202 
5203 	/* Reset called during driver load? GuC not yet initialised! */
5204 	if (unlikely(!guc_submission_initialized(guc)))
5205 		return;
5206 
5207 	xa_lock_irqsave(&guc->context_lookup, flags);
5208 	xa_for_each(&guc->context_lookup, index, ce) {
5209 		bool found;
5210 
5211 		if (!kref_get_unless_zero(&ce->ref))
5212 			continue;
5213 
5214 		xa_unlock(&guc->context_lookup);
5215 
5216 		if (!intel_context_is_pinned(ce))
5217 			goto next;
5218 
5219 		if (intel_engine_is_virtual(ce->engine)) {
5220 			if (!(ce->engine->mask & engine->mask))
5221 				goto next;
5222 		} else {
5223 			if (ce->engine != engine)
5224 				goto next;
5225 		}
5226 
5227 		found = false;
5228 		spin_lock(&ce->guc_state.lock);
5229 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5230 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5231 				continue;
5232 
5233 			found = true;
5234 			break;
5235 		}
5236 		spin_unlock(&ce->guc_state.lock);
5237 
5238 		if (found) {
5239 			intel_engine_set_hung_context(engine, ce);
5240 
5241 			/* Can only cope with one hang at a time... */
5242 			intel_context_put(ce);
5243 			xa_lock(&guc->context_lookup);
5244 			goto done;
5245 		}
5246 
5247 next:
5248 		intel_context_put(ce);
5249 		xa_lock(&guc->context_lookup);
5250 	}
5251 done:
5252 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5253 }
5254 
5255 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5256 				    struct i915_request *hung_rq,
5257 				    struct drm_printer *m)
5258 {
5259 	struct intel_guc *guc = &engine->gt->uc.guc;
5260 	struct intel_context *ce;
5261 	unsigned long index;
5262 	unsigned long flags;
5263 
5264 	/* Reset called during driver load? GuC not yet initialised! */
5265 	if (unlikely(!guc_submission_initialized(guc)))
5266 		return;
5267 
5268 	xa_lock_irqsave(&guc->context_lookup, flags);
5269 	xa_for_each(&guc->context_lookup, index, ce) {
5270 		if (!kref_get_unless_zero(&ce->ref))
5271 			continue;
5272 
5273 		xa_unlock(&guc->context_lookup);
5274 
5275 		if (!intel_context_is_pinned(ce))
5276 			goto next;
5277 
5278 		if (intel_engine_is_virtual(ce->engine)) {
5279 			if (!(ce->engine->mask & engine->mask))
5280 				goto next;
5281 		} else {
5282 			if (ce->engine != engine)
5283 				goto next;
5284 		}
5285 
5286 		spin_lock(&ce->guc_state.lock);
5287 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5288 						  hung_rq, m);
5289 		spin_unlock(&ce->guc_state.lock);
5290 
5291 next:
5292 		intel_context_put(ce);
5293 		xa_lock(&guc->context_lookup);
5294 	}
5295 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5296 }
5297 
5298 void intel_guc_submission_print_info(struct intel_guc *guc,
5299 				     struct drm_printer *p)
5300 {
5301 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5302 	struct rb_node *rb;
5303 	unsigned long flags;
5304 
5305 	if (!sched_engine)
5306 		return;
5307 
5308 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5309 		   guc->submission_version.major, guc->submission_version.minor,
5310 		   guc->submission_version.patch);
5311 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5312 		   atomic_read(&guc->outstanding_submission_g2h));
5313 	drm_printf(p, "GuC tasklet count: %u\n",
5314 		   atomic_read(&sched_engine->tasklet.count));
5315 
5316 	spin_lock_irqsave(&sched_engine->lock, flags);
5317 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5318 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5319 		struct i915_priolist *pl = to_priolist(rb);
5320 		struct i915_request *rq;
5321 
5322 		priolist_for_each_request(rq, pl)
5323 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5324 				   rq->context->guc_id.id,
5325 				   rq->fence.seqno);
5326 	}
5327 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5328 	drm_printf(p, "\n");
5329 }
5330 
5331 static inline void guc_log_context_priority(struct drm_printer *p,
5332 					    struct intel_context *ce)
5333 {
5334 	int i;
5335 
5336 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5337 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5338 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5339 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5340 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5341 			   i, ce->guc_state.prio_count[i]);
5342 	}
5343 	drm_printf(p, "\n");
5344 }
5345 
5346 static inline void guc_log_context(struct drm_printer *p,
5347 				   struct intel_context *ce)
5348 {
5349 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5350 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5351 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5352 		   ce->ring->head,
5353 		   ce->lrc_reg_state[CTX_RING_HEAD]);
5354 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5355 		   ce->ring->tail,
5356 		   ce->lrc_reg_state[CTX_RING_TAIL]);
5357 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5358 		   atomic_read(&ce->pin_count));
5359 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5360 		   atomic_read(&ce->guc_id.ref));
5361 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5362 		   ce->guc_state.sched_state);
5363 }
5364 
5365 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5366 					     struct drm_printer *p)
5367 {
5368 	struct intel_context *ce;
5369 	unsigned long index;
5370 	unsigned long flags;
5371 
5372 	xa_lock_irqsave(&guc->context_lookup, flags);
5373 	xa_for_each(&guc->context_lookup, index, ce) {
5374 		GEM_BUG_ON(intel_context_is_child(ce));
5375 
5376 		guc_log_context(p, ce);
5377 		guc_log_context_priority(p, ce);
5378 
5379 		if (intel_context_is_parent(ce)) {
5380 			struct intel_context *child;
5381 
5382 			drm_printf(p, "\t\tNumber children: %u\n",
5383 				   ce->parallel.number_children);
5384 
5385 			if (ce->parallel.guc.wq_status) {
5386 				drm_printf(p, "\t\tWQI Head: %u\n",
5387 					   READ_ONCE(*ce->parallel.guc.wq_head));
5388 				drm_printf(p, "\t\tWQI Tail: %u\n",
5389 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5390 				drm_printf(p, "\t\tWQI Status: %u\n",
5391 					   READ_ONCE(*ce->parallel.guc.wq_status));
5392 			}
5393 
5394 			if (ce->engine->emit_bb_start ==
5395 			    emit_bb_start_parent_no_preempt_mid_batch) {
5396 				u8 i;
5397 
5398 				drm_printf(p, "\t\tChildren Go: %u\n",
5399 					   get_children_go_value(ce));
5400 				for (i = 0; i < ce->parallel.number_children; ++i)
5401 					drm_printf(p, "\t\tChildren Join: %u\n",
5402 						   get_children_join_value(ce, i));
5403 			}
5404 
5405 			for_each_child(ce, child)
5406 				guc_log_context(p, child);
5407 		}
5408 	}
5409 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5410 }
5411 
5412 static inline u32 get_children_go_addr(struct intel_context *ce)
5413 {
5414 	GEM_BUG_ON(!intel_context_is_parent(ce));
5415 
5416 	return i915_ggtt_offset(ce->state) +
5417 		__get_parent_scratch_offset(ce) +
5418 		offsetof(struct parent_scratch, go.semaphore);
5419 }
5420 
5421 static inline u32 get_children_join_addr(struct intel_context *ce,
5422 					 u8 child_index)
5423 {
5424 	GEM_BUG_ON(!intel_context_is_parent(ce));
5425 
5426 	return i915_ggtt_offset(ce->state) +
5427 		__get_parent_scratch_offset(ce) +
5428 		offsetof(struct parent_scratch, join[child_index].semaphore);
5429 }
5430 
5431 #define PARENT_GO_BB			1
5432 #define PARENT_GO_FINI_BREADCRUMB	0
5433 #define CHILD_GO_BB			1
5434 #define CHILD_GO_FINI_BREADCRUMB	0
5435 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5436 						     u64 offset, u32 len,
5437 						     const unsigned int flags)
5438 {
5439 	struct intel_context *ce = rq->context;
5440 	u32 *cs;
5441 	u8 i;
5442 
5443 	GEM_BUG_ON(!intel_context_is_parent(ce));
5444 
5445 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5446 	if (IS_ERR(cs))
5447 		return PTR_ERR(cs);
5448 
5449 	/* Wait on children */
5450 	for (i = 0; i < ce->parallel.number_children; ++i) {
5451 		*cs++ = (MI_SEMAPHORE_WAIT |
5452 			 MI_SEMAPHORE_GLOBAL_GTT |
5453 			 MI_SEMAPHORE_POLL |
5454 			 MI_SEMAPHORE_SAD_EQ_SDD);
5455 		*cs++ = PARENT_GO_BB;
5456 		*cs++ = get_children_join_addr(ce, i);
5457 		*cs++ = 0;
5458 	}
5459 
5460 	/* Turn off preemption */
5461 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5462 	*cs++ = MI_NOOP;
5463 
5464 	/* Tell children go */
5465 	cs = gen8_emit_ggtt_write(cs,
5466 				  CHILD_GO_BB,
5467 				  get_children_go_addr(ce),
5468 				  0);
5469 
5470 	/* Jump to batch */
5471 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5472 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5473 	*cs++ = lower_32_bits(offset);
5474 	*cs++ = upper_32_bits(offset);
5475 	*cs++ = MI_NOOP;
5476 
5477 	intel_ring_advance(rq, cs);
5478 
5479 	return 0;
5480 }
5481 
5482 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5483 						    u64 offset, u32 len,
5484 						    const unsigned int flags)
5485 {
5486 	struct intel_context *ce = rq->context;
5487 	struct intel_context *parent = intel_context_to_parent(ce);
5488 	u32 *cs;
5489 
5490 	GEM_BUG_ON(!intel_context_is_child(ce));
5491 
5492 	cs = intel_ring_begin(rq, 12);
5493 	if (IS_ERR(cs))
5494 		return PTR_ERR(cs);
5495 
5496 	/* Signal parent */
5497 	cs = gen8_emit_ggtt_write(cs,
5498 				  PARENT_GO_BB,
5499 				  get_children_join_addr(parent,
5500 							 ce->parallel.child_index),
5501 				  0);
5502 
5503 	/* Wait on parent for go */
5504 	*cs++ = (MI_SEMAPHORE_WAIT |
5505 		 MI_SEMAPHORE_GLOBAL_GTT |
5506 		 MI_SEMAPHORE_POLL |
5507 		 MI_SEMAPHORE_SAD_EQ_SDD);
5508 	*cs++ = CHILD_GO_BB;
5509 	*cs++ = get_children_go_addr(parent);
5510 	*cs++ = 0;
5511 
5512 	/* Turn off preemption */
5513 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5514 
5515 	/* Jump to batch */
5516 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5517 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5518 	*cs++ = lower_32_bits(offset);
5519 	*cs++ = upper_32_bits(offset);
5520 
5521 	intel_ring_advance(rq, cs);
5522 
5523 	return 0;
5524 }
5525 
5526 static u32 *
5527 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5528 						   u32 *cs)
5529 {
5530 	struct intel_context *ce = rq->context;
5531 	u8 i;
5532 
5533 	GEM_BUG_ON(!intel_context_is_parent(ce));
5534 
5535 	/* Wait on children */
5536 	for (i = 0; i < ce->parallel.number_children; ++i) {
5537 		*cs++ = (MI_SEMAPHORE_WAIT |
5538 			 MI_SEMAPHORE_GLOBAL_GTT |
5539 			 MI_SEMAPHORE_POLL |
5540 			 MI_SEMAPHORE_SAD_EQ_SDD);
5541 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5542 		*cs++ = get_children_join_addr(ce, i);
5543 		*cs++ = 0;
5544 	}
5545 
5546 	/* Turn on preemption */
5547 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5548 	*cs++ = MI_NOOP;
5549 
5550 	/* Tell children go */
5551 	cs = gen8_emit_ggtt_write(cs,
5552 				  CHILD_GO_FINI_BREADCRUMB,
5553 				  get_children_go_addr(ce),
5554 				  0);
5555 
5556 	return cs;
5557 }
5558 
5559 /*
5560  * If this true, a submission of multi-lrc requests had an error and the
5561  * requests need to be skipped. The front end (execuf IOCTL) should've called
5562  * i915_request_skip which squashes the BB but we still need to emit the fini
5563  * breadrcrumbs seqno write. At this point we don't know how many of the
5564  * requests in the multi-lrc submission were generated so we can't do the
5565  * handshake between the parent and children (e.g. if 4 requests should be
5566  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5567  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5568  * has occurred on any of the requests in submission / relationship.
5569  */
5570 static inline bool skip_handshake(struct i915_request *rq)
5571 {
5572 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5573 }
5574 
5575 #define NON_SKIP_LEN	6
5576 static u32 *
5577 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5578 						 u32 *cs)
5579 {
5580 	struct intel_context *ce = rq->context;
5581 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5582 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5583 
5584 	GEM_BUG_ON(!intel_context_is_parent(ce));
5585 
5586 	if (unlikely(skip_handshake(rq))) {
5587 		/*
5588 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5589 		 * the NON_SKIP_LEN comes from the length of the emits below.
5590 		 */
5591 		memset(cs, 0, sizeof(u32) *
5592 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5593 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5594 	} else {
5595 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5596 	}
5597 
5598 	/* Emit fini breadcrumb */
5599 	before_fini_breadcrumb_user_interrupt_cs = cs;
5600 	cs = gen8_emit_ggtt_write(cs,
5601 				  rq->fence.seqno,
5602 				  i915_request_active_timeline(rq)->hwsp_offset,
5603 				  0);
5604 
5605 	/* User interrupt */
5606 	*cs++ = MI_USER_INTERRUPT;
5607 	*cs++ = MI_NOOP;
5608 
5609 	/* Ensure our math for skip + emit is correct */
5610 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5611 		   cs);
5612 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5613 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5614 
5615 	rq->tail = intel_ring_offset(rq, cs);
5616 
5617 	return cs;
5618 }
5619 
5620 static u32 *
5621 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5622 						  u32 *cs)
5623 {
5624 	struct intel_context *ce = rq->context;
5625 	struct intel_context *parent = intel_context_to_parent(ce);
5626 
5627 	GEM_BUG_ON(!intel_context_is_child(ce));
5628 
5629 	/* Turn on preemption */
5630 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5631 	*cs++ = MI_NOOP;
5632 
5633 	/* Signal parent */
5634 	cs = gen8_emit_ggtt_write(cs,
5635 				  PARENT_GO_FINI_BREADCRUMB,
5636 				  get_children_join_addr(parent,
5637 							 ce->parallel.child_index),
5638 				  0);
5639 
5640 	/* Wait parent on for go */
5641 	*cs++ = (MI_SEMAPHORE_WAIT |
5642 		 MI_SEMAPHORE_GLOBAL_GTT |
5643 		 MI_SEMAPHORE_POLL |
5644 		 MI_SEMAPHORE_SAD_EQ_SDD);
5645 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5646 	*cs++ = get_children_go_addr(parent);
5647 	*cs++ = 0;
5648 
5649 	return cs;
5650 }
5651 
5652 static u32 *
5653 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5654 						u32 *cs)
5655 {
5656 	struct intel_context *ce = rq->context;
5657 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5658 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5659 
5660 	GEM_BUG_ON(!intel_context_is_child(ce));
5661 
5662 	if (unlikely(skip_handshake(rq))) {
5663 		/*
5664 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5665 		 * the NON_SKIP_LEN comes from the length of the emits below.
5666 		 */
5667 		memset(cs, 0, sizeof(u32) *
5668 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5669 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5670 	} else {
5671 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5672 	}
5673 
5674 	/* Emit fini breadcrumb */
5675 	before_fini_breadcrumb_user_interrupt_cs = cs;
5676 	cs = gen8_emit_ggtt_write(cs,
5677 				  rq->fence.seqno,
5678 				  i915_request_active_timeline(rq)->hwsp_offset,
5679 				  0);
5680 
5681 	/* User interrupt */
5682 	*cs++ = MI_USER_INTERRUPT;
5683 	*cs++ = MI_NOOP;
5684 
5685 	/* Ensure our math for skip + emit is correct */
5686 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5687 		   cs);
5688 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5689 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5690 
5691 	rq->tail = intel_ring_offset(rq, cs);
5692 
5693 	return cs;
5694 }
5695 
5696 #undef NON_SKIP_LEN
5697 
5698 static struct intel_context *
5699 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5700 		   unsigned long flags)
5701 {
5702 	struct guc_virtual_engine *ve;
5703 	struct intel_guc *guc;
5704 	unsigned int n;
5705 	int err;
5706 
5707 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5708 	if (!ve)
5709 		return ERR_PTR(-ENOMEM);
5710 
5711 	guc = &siblings[0]->gt->uc.guc;
5712 
5713 	ve->base.i915 = siblings[0]->i915;
5714 	ve->base.gt = siblings[0]->gt;
5715 	ve->base.uncore = siblings[0]->uncore;
5716 	ve->base.id = -1;
5717 
5718 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5719 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5720 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5721 	ve->base.saturated = ALL_ENGINES;
5722 
5723 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5724 
5725 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5726 
5727 	ve->base.cops = &virtual_guc_context_ops;
5728 	ve->base.request_alloc = guc_request_alloc;
5729 	ve->base.bump_serial = virtual_guc_bump_serial;
5730 
5731 	ve->base.submit_request = guc_submit_request;
5732 
5733 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5734 
5735 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5736 	ve->base.mask = VIRTUAL_ENGINES;
5737 
5738 	intel_context_init(&ve->context, &ve->base);
5739 
5740 	for (n = 0; n < count; n++) {
5741 		struct intel_engine_cs *sibling = siblings[n];
5742 
5743 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5744 		if (sibling->mask & ve->base.mask) {
5745 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5746 				sibling->name);
5747 			err = -EINVAL;
5748 			goto err_put;
5749 		}
5750 
5751 		ve->base.mask |= sibling->mask;
5752 		ve->base.logical_mask |= sibling->logical_mask;
5753 
5754 		if (n != 0 && ve->base.class != sibling->class) {
5755 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5756 				sibling->class, ve->base.class);
5757 			err = -EINVAL;
5758 			goto err_put;
5759 		} else if (n == 0) {
5760 			ve->base.class = sibling->class;
5761 			ve->base.uabi_class = sibling->uabi_class;
5762 			snprintf(ve->base.name, sizeof(ve->base.name),
5763 				 "v%dx%d", ve->base.class, count);
5764 			ve->base.context_size = sibling->context_size;
5765 
5766 			ve->base.add_active_request =
5767 				sibling->add_active_request;
5768 			ve->base.remove_active_request =
5769 				sibling->remove_active_request;
5770 			ve->base.emit_bb_start = sibling->emit_bb_start;
5771 			ve->base.emit_flush = sibling->emit_flush;
5772 			ve->base.emit_init_breadcrumb =
5773 				sibling->emit_init_breadcrumb;
5774 			ve->base.emit_fini_breadcrumb =
5775 				sibling->emit_fini_breadcrumb;
5776 			ve->base.emit_fini_breadcrumb_dw =
5777 				sibling->emit_fini_breadcrumb_dw;
5778 			ve->base.breadcrumbs =
5779 				intel_breadcrumbs_get(sibling->breadcrumbs);
5780 
5781 			ve->base.flags |= sibling->flags;
5782 
5783 			ve->base.props.timeslice_duration_ms =
5784 				sibling->props.timeslice_duration_ms;
5785 			ve->base.props.preempt_timeout_ms =
5786 				sibling->props.preempt_timeout_ms;
5787 		}
5788 	}
5789 
5790 	return &ve->context;
5791 
5792 err_put:
5793 	intel_context_put(&ve->context);
5794 	return ERR_PTR(err);
5795 }
5796 
5797 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5798 {
5799 	struct intel_engine_cs *engine;
5800 	intel_engine_mask_t tmp, mask = ve->mask;
5801 
5802 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5803 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5804 			return true;
5805 
5806 	return false;
5807 }
5808 
5809 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5810 #include "selftest_guc.c"
5811 #include "selftest_guc_multi_lrc.c"
5812 #include "selftest_guc_hangcheck.c"
5813 #endif
5814