1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gem/i915_gem_lmem.h" 10 #include "gt/gen8_engine_cs.h" 11 #include "gt/intel_breadcrumbs.h" 12 #include "gt/intel_context.h" 13 #include "gt/intel_engine_heartbeat.h" 14 #include "gt/intel_engine_pm.h" 15 #include "gt/intel_engine_regs.h" 16 #include "gt/intel_gpu_commands.h" 17 #include "gt/intel_gt.h" 18 #include "gt/intel_gt_clock_utils.h" 19 #include "gt/intel_gt_irq.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_gt_regs.h" 22 #include "gt/intel_gt_requests.h" 23 #include "gt/intel_lrc.h" 24 #include "gt/intel_lrc_reg.h" 25 #include "gt/intel_mocs.h" 26 #include "gt/intel_ring.h" 27 28 #include "intel_guc_ads.h" 29 #include "intel_guc_capture.h" 30 #include "intel_guc_print.h" 31 #include "intel_guc_submission.h" 32 33 #include "i915_drv.h" 34 #include "i915_reg.h" 35 #include "i915_irq.h" 36 #include "i915_trace.h" 37 38 /** 39 * DOC: GuC-based command submission 40 * 41 * The Scratch registers: 42 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 43 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 44 * triggers an interrupt on the GuC via another register write (0xC4C8). 45 * Firmware writes a success/fail code back to the action register after 46 * processes the request. The kernel driver polls waiting for this update and 47 * then proceeds. 48 * 49 * Command Transport buffers (CTBs): 50 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 51 * - G2H) are a message interface between the i915 and GuC. 52 * 53 * Context registration: 54 * Before a context can be submitted it must be registered with the GuC via a 55 * H2G. A unique guc_id is associated with each context. The context is either 56 * registered at request creation time (normal operation) or at submission time 57 * (abnormal operation, e.g. after a reset). 58 * 59 * Context submission: 60 * The i915 updates the LRC tail value in memory. The i915 must enable the 61 * scheduling of the context within the GuC for the GuC to actually consider it. 62 * Therefore, the first time a disabled context is submitted we use a schedule 63 * enable H2G, while follow up submissions are done via the context submit H2G, 64 * which informs the GuC that a previously enabled context has new work 65 * available. 66 * 67 * Context unpin: 68 * To unpin a context a H2G is used to disable scheduling. When the 69 * corresponding G2H returns indicating the scheduling disable operation has 70 * completed it is safe to unpin the context. While a disable is in flight it 71 * isn't safe to resubmit the context so a fence is used to stall all future 72 * requests of that context until the G2H is returned. Because this interaction 73 * with the GuC takes a non-zero amount of time we delay the disabling of 74 * scheduling after the pin count goes to zero by a configurable period of time 75 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of 76 * time to resubmit something on the context before doing this costly operation. 77 * This delay is only done if the context isn't closed and the guc_id usage is 78 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). 79 * 80 * Context deregistration: 81 * Before a context can be destroyed or if we steal its guc_id we must 82 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 83 * safe to submit anything to this guc_id until the deregister completes so a 84 * fence is used to stall all requests associated with this guc_id until the 85 * corresponding G2H returns indicating the guc_id has been deregistered. 86 * 87 * submission_state.guc_ids: 88 * Unique number associated with private GuC context data passed in during 89 * context registration / submission / deregistration. 64k available. Simple ida 90 * is used for allocation. 91 * 92 * Stealing guc_ids: 93 * If no guc_ids are available they can be stolen from another context at 94 * request creation time if that context is unpinned. If a guc_id can't be found 95 * we punt this problem to the user as we believe this is near impossible to hit 96 * during normal use cases. 97 * 98 * Locking: 99 * In the GuC submission code we have 3 basic spin locks which protect 100 * everything. Details about each below. 101 * 102 * sched_engine->lock 103 * This is the submission lock for all contexts that share an i915 schedule 104 * engine (sched_engine), thus only one of the contexts which share a 105 * sched_engine can be submitting at a time. Currently only one sched_engine is 106 * used for all of GuC submission but that could change in the future. 107 * 108 * guc->submission_state.lock 109 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 110 * list. 111 * 112 * ce->guc_state.lock 113 * Protects everything under ce->guc_state. Ensures that a context is in the 114 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 115 * on a disabled context (bad idea), we don't issue a schedule enable when a 116 * schedule disable is in flight, etc... Also protects list of inflight requests 117 * on the context and the priority management state. Lock is individual to each 118 * context. 119 * 120 * Lock ordering rules: 121 * sched_engine->lock -> ce->guc_state.lock 122 * guc->submission_state.lock -> ce->guc_state.lock 123 * 124 * Reset races: 125 * When a full GT reset is triggered it is assumed that some G2H responses to 126 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 127 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 128 * contexts, release guc_ids, etc...). When this occurs we can scrub the 129 * context state and cleanup appropriately, however this is quite racey. 130 * To avoid races, the reset code must disable submission before scrubbing for 131 * the missing G2H, while the submission code must check for submission being 132 * disabled and skip sending H2Gs and updating context states when it is. Both 133 * sides must also make sure to hold the relevant locks. 134 */ 135 136 /* GuC Virtual Engine */ 137 struct guc_virtual_engine { 138 struct intel_engine_cs base; 139 struct intel_context context; 140 }; 141 142 static struct intel_context * 143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 144 unsigned long flags); 145 146 static struct intel_context * 147 guc_create_parallel(struct intel_engine_cs **engines, 148 unsigned int num_siblings, 149 unsigned int width); 150 151 #define GUC_REQUEST_SIZE 64 /* bytes */ 152 153 /* 154 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 155 * per the GuC submission interface. A different allocation algorithm is used 156 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 157 * partition the guc_id space. We believe the number of multi-lrc contexts in 158 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 159 * multi-lrc. 160 */ 161 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 162 ((guc)->submission_state.num_guc_ids / 16) 163 164 /* 165 * Below is a set of functions which control the GuC scheduling state which 166 * require a lock. 167 */ 168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 169 #define SCHED_STATE_DESTROYED BIT(1) 170 #define SCHED_STATE_PENDING_DISABLE BIT(2) 171 #define SCHED_STATE_BANNED BIT(3) 172 #define SCHED_STATE_ENABLED BIT(4) 173 #define SCHED_STATE_PENDING_ENABLE BIT(5) 174 #define SCHED_STATE_REGISTERED BIT(6) 175 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 176 #define SCHED_STATE_CLOSED BIT(8) 177 #define SCHED_STATE_BLOCKED_SHIFT 9 178 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 179 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 180 181 static inline void init_sched_state(struct intel_context *ce) 182 { 183 lockdep_assert_held(&ce->guc_state.lock); 184 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 185 } 186 187 /* 188 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. 189 * A context close can race with the submission path, so SCHED_STATE_CLOSED 190 * can be set immediately before we try to register. 191 */ 192 #define SCHED_STATE_VALID_INIT \ 193 (SCHED_STATE_BLOCKED_MASK | \ 194 SCHED_STATE_CLOSED | \ 195 SCHED_STATE_REGISTERED) 196 197 __maybe_unused 198 static bool sched_state_is_init(struct intel_context *ce) 199 { 200 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); 201 } 202 203 static inline bool 204 context_wait_for_deregister_to_register(struct intel_context *ce) 205 { 206 return ce->guc_state.sched_state & 207 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 208 } 209 210 static inline void 211 set_context_wait_for_deregister_to_register(struct intel_context *ce) 212 { 213 lockdep_assert_held(&ce->guc_state.lock); 214 ce->guc_state.sched_state |= 215 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 216 } 217 218 static inline void 219 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 220 { 221 lockdep_assert_held(&ce->guc_state.lock); 222 ce->guc_state.sched_state &= 223 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 224 } 225 226 static inline bool 227 context_destroyed(struct intel_context *ce) 228 { 229 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 230 } 231 232 static inline void 233 set_context_destroyed(struct intel_context *ce) 234 { 235 lockdep_assert_held(&ce->guc_state.lock); 236 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 237 } 238 239 static inline void 240 clr_context_destroyed(struct intel_context *ce) 241 { 242 lockdep_assert_held(&ce->guc_state.lock); 243 ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED; 244 } 245 246 static inline bool context_pending_disable(struct intel_context *ce) 247 { 248 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 249 } 250 251 static inline void set_context_pending_disable(struct intel_context *ce) 252 { 253 lockdep_assert_held(&ce->guc_state.lock); 254 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 255 } 256 257 static inline void clr_context_pending_disable(struct intel_context *ce) 258 { 259 lockdep_assert_held(&ce->guc_state.lock); 260 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 261 } 262 263 static inline bool context_banned(struct intel_context *ce) 264 { 265 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 266 } 267 268 static inline void set_context_banned(struct intel_context *ce) 269 { 270 lockdep_assert_held(&ce->guc_state.lock); 271 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 272 } 273 274 static inline void clr_context_banned(struct intel_context *ce) 275 { 276 lockdep_assert_held(&ce->guc_state.lock); 277 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 278 } 279 280 static inline bool context_enabled(struct intel_context *ce) 281 { 282 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 283 } 284 285 static inline void set_context_enabled(struct intel_context *ce) 286 { 287 lockdep_assert_held(&ce->guc_state.lock); 288 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 289 } 290 291 static inline void clr_context_enabled(struct intel_context *ce) 292 { 293 lockdep_assert_held(&ce->guc_state.lock); 294 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 295 } 296 297 static inline bool context_pending_enable(struct intel_context *ce) 298 { 299 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 300 } 301 302 static inline void set_context_pending_enable(struct intel_context *ce) 303 { 304 lockdep_assert_held(&ce->guc_state.lock); 305 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 306 } 307 308 static inline void clr_context_pending_enable(struct intel_context *ce) 309 { 310 lockdep_assert_held(&ce->guc_state.lock); 311 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 312 } 313 314 static inline bool context_registered(struct intel_context *ce) 315 { 316 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 317 } 318 319 static inline void set_context_registered(struct intel_context *ce) 320 { 321 lockdep_assert_held(&ce->guc_state.lock); 322 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 323 } 324 325 static inline void clr_context_registered(struct intel_context *ce) 326 { 327 lockdep_assert_held(&ce->guc_state.lock); 328 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 329 } 330 331 static inline bool context_policy_required(struct intel_context *ce) 332 { 333 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 334 } 335 336 static inline void set_context_policy_required(struct intel_context *ce) 337 { 338 lockdep_assert_held(&ce->guc_state.lock); 339 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 340 } 341 342 static inline void clr_context_policy_required(struct intel_context *ce) 343 { 344 lockdep_assert_held(&ce->guc_state.lock); 345 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 346 } 347 348 static inline bool context_close_done(struct intel_context *ce) 349 { 350 return ce->guc_state.sched_state & SCHED_STATE_CLOSED; 351 } 352 353 static inline void set_context_close_done(struct intel_context *ce) 354 { 355 lockdep_assert_held(&ce->guc_state.lock); 356 ce->guc_state.sched_state |= SCHED_STATE_CLOSED; 357 } 358 359 static inline u32 context_blocked(struct intel_context *ce) 360 { 361 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 362 SCHED_STATE_BLOCKED_SHIFT; 363 } 364 365 static inline void incr_context_blocked(struct intel_context *ce) 366 { 367 lockdep_assert_held(&ce->guc_state.lock); 368 369 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 370 371 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 372 } 373 374 static inline void decr_context_blocked(struct intel_context *ce) 375 { 376 lockdep_assert_held(&ce->guc_state.lock); 377 378 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 379 380 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 381 } 382 383 static struct intel_context * 384 request_to_scheduling_context(struct i915_request *rq) 385 { 386 return intel_context_to_parent(rq->context); 387 } 388 389 static inline bool context_guc_id_invalid(struct intel_context *ce) 390 { 391 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 392 } 393 394 static inline void set_context_guc_id_invalid(struct intel_context *ce) 395 { 396 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 397 } 398 399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 400 { 401 return gt_to_guc(ce->engine->gt); 402 } 403 404 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 405 { 406 return rb_entry(rb, struct i915_priolist, node); 407 } 408 409 /* 410 * When using multi-lrc submission a scratch memory area is reserved in the 411 * parent's context state for the process descriptor, work queue, and handshake 412 * between the parent + children contexts to insert safe preemption points 413 * between each of the BBs. Currently the scratch area is sized to a page. 414 * 415 * The layout of this scratch area is below: 416 * 0 guc_process_desc 417 * + sizeof(struct guc_process_desc) child go 418 * + CACHELINE_BYTES child join[0] 419 * ... 420 * + CACHELINE_BYTES child join[n - 1] 421 * ... unused 422 * PARENT_SCRATCH_SIZE / 2 work queue start 423 * ... work queue 424 * PARENT_SCRATCH_SIZE - 1 work queue end 425 */ 426 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 427 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 428 429 struct sync_semaphore { 430 u32 semaphore; 431 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 432 }; 433 434 struct parent_scratch { 435 union guc_descs { 436 struct guc_sched_wq_desc wq_desc; 437 struct guc_process_desc_v69 pdesc; 438 } descs; 439 440 struct sync_semaphore go; 441 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 442 443 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 444 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 445 446 u32 wq[WQ_SIZE / sizeof(u32)]; 447 }; 448 449 static u32 __get_parent_scratch_offset(struct intel_context *ce) 450 { 451 GEM_BUG_ON(!ce->parallel.guc.parent_page); 452 453 return ce->parallel.guc.parent_page * PAGE_SIZE; 454 } 455 456 static u32 __get_wq_offset(struct intel_context *ce) 457 { 458 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 459 460 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 461 } 462 463 static struct parent_scratch * 464 __get_parent_scratch(struct intel_context *ce) 465 { 466 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 467 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 468 469 /* 470 * Need to subtract LRC_STATE_OFFSET here as the 471 * parallel.guc.parent_page is the offset into ce->state while 472 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 473 */ 474 return (struct parent_scratch *) 475 (ce->lrc_reg_state + 476 ((__get_parent_scratch_offset(ce) - 477 LRC_STATE_OFFSET) / sizeof(u32))); 478 } 479 480 static struct guc_process_desc_v69 * 481 __get_process_desc_v69(struct intel_context *ce) 482 { 483 struct parent_scratch *ps = __get_parent_scratch(ce); 484 485 return &ps->descs.pdesc; 486 } 487 488 static struct guc_sched_wq_desc * 489 __get_wq_desc_v70(struct intel_context *ce) 490 { 491 struct parent_scratch *ps = __get_parent_scratch(ce); 492 493 return &ps->descs.wq_desc; 494 } 495 496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 497 { 498 /* 499 * Check for space in work queue. Caching a value of head pointer in 500 * intel_context structure in order reduce the number accesses to shared 501 * GPU memory which may be across a PCIe bus. 502 */ 503 #define AVAILABLE_SPACE \ 504 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 505 if (wqi_size > AVAILABLE_SPACE) { 506 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 507 508 if (wqi_size > AVAILABLE_SPACE) 509 return NULL; 510 } 511 #undef AVAILABLE_SPACE 512 513 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 514 } 515 516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 517 { 518 struct intel_context *ce = xa_load(&guc->context_lookup, id); 519 520 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 521 522 return ce; 523 } 524 525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 526 { 527 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 528 529 if (!base) 530 return NULL; 531 532 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 533 534 return &base[index]; 535 } 536 537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 538 { 539 u32 size; 540 int ret; 541 542 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 543 GUC_MAX_CONTEXT_ID); 544 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 545 (void **)&guc->lrc_desc_pool_vaddr_v69); 546 if (ret) 547 return ret; 548 549 return 0; 550 } 551 552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 553 { 554 if (!guc->lrc_desc_pool_vaddr_v69) 555 return; 556 557 guc->lrc_desc_pool_vaddr_v69 = NULL; 558 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 559 } 560 561 static inline bool guc_submission_initialized(struct intel_guc *guc) 562 { 563 return guc->submission_initialized; 564 } 565 566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 567 { 568 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 569 570 if (desc) 571 memset(desc, 0, sizeof(*desc)); 572 } 573 574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 575 { 576 return __get_context(guc, id); 577 } 578 579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 580 struct intel_context *ce) 581 { 582 unsigned long flags; 583 584 /* 585 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 586 * lower level functions directly. 587 */ 588 xa_lock_irqsave(&guc->context_lookup, flags); 589 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 590 xa_unlock_irqrestore(&guc->context_lookup, flags); 591 } 592 593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 594 { 595 unsigned long flags; 596 597 if (unlikely(!guc_submission_initialized(guc))) 598 return; 599 600 _reset_lrc_desc_v69(guc, id); 601 602 /* 603 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 604 * the lower level functions directly. 605 */ 606 xa_lock_irqsave(&guc->context_lookup, flags); 607 __xa_erase(&guc->context_lookup, id); 608 xa_unlock_irqrestore(&guc->context_lookup, flags); 609 } 610 611 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 612 { 613 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 614 wake_up_all(&guc->ct.wq); 615 } 616 617 static int guc_submission_send_busy_loop(struct intel_guc *guc, 618 const u32 *action, 619 u32 len, 620 u32 g2h_len_dw, 621 bool loop) 622 { 623 int ret; 624 625 /* 626 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 627 * so we don't handle the case where we don't get a reply because we 628 * aborted the send due to the channel being busy. 629 */ 630 GEM_BUG_ON(g2h_len_dw && !loop); 631 632 if (g2h_len_dw) 633 atomic_inc(&guc->outstanding_submission_g2h); 634 635 ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 636 if (ret) 637 atomic_dec(&guc->outstanding_submission_g2h); 638 639 return ret; 640 } 641 642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 643 atomic_t *wait_var, 644 bool interruptible, 645 long timeout) 646 { 647 const int state = interruptible ? 648 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 649 DEFINE_WAIT(wait); 650 651 might_sleep(); 652 GEM_BUG_ON(timeout < 0); 653 654 if (!atomic_read(wait_var)) 655 return 0; 656 657 if (!timeout) 658 return -ETIME; 659 660 for (;;) { 661 prepare_to_wait(&guc->ct.wq, &wait, state); 662 663 if (!atomic_read(wait_var)) 664 break; 665 666 if (signal_pending_state(state, current)) { 667 timeout = -EINTR; 668 break; 669 } 670 671 if (!timeout) { 672 timeout = -ETIME; 673 break; 674 } 675 676 timeout = io_schedule_timeout(timeout); 677 } 678 finish_wait(&guc->ct.wq, &wait); 679 680 return (timeout < 0) ? timeout : 0; 681 } 682 683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 684 { 685 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 686 return 0; 687 688 return intel_guc_wait_for_pending_msg(guc, 689 &guc->outstanding_submission_g2h, 690 true, timeout); 691 } 692 693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 694 static int try_context_registration(struct intel_context *ce, bool loop); 695 696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 697 { 698 int err = 0; 699 struct intel_context *ce = request_to_scheduling_context(rq); 700 u32 action[3]; 701 int len = 0; 702 u32 g2h_len_dw = 0; 703 bool enabled; 704 705 lockdep_assert_held(&rq->engine->sched_engine->lock); 706 707 /* 708 * Corner case where requests were sitting in the priority list or a 709 * request resubmitted after the context was banned. 710 */ 711 if (unlikely(!intel_context_is_schedulable(ce))) { 712 i915_request_put(i915_request_mark_eio(rq)); 713 intel_engine_signal_breadcrumbs(ce->engine); 714 return 0; 715 } 716 717 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 718 GEM_BUG_ON(context_guc_id_invalid(ce)); 719 720 if (context_policy_required(ce)) { 721 err = guc_context_policy_init_v70(ce, false); 722 if (err) 723 return err; 724 } 725 726 spin_lock(&ce->guc_state.lock); 727 728 /* 729 * The request / context will be run on the hardware when scheduling 730 * gets enabled in the unblock. For multi-lrc we still submit the 731 * context to move the LRC tails. 732 */ 733 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 734 goto out; 735 736 enabled = context_enabled(ce) || context_blocked(ce); 737 738 if (!enabled) { 739 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 740 action[len++] = ce->guc_id.id; 741 action[len++] = GUC_CONTEXT_ENABLE; 742 set_context_pending_enable(ce); 743 intel_context_get(ce); 744 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 745 } else { 746 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 747 action[len++] = ce->guc_id.id; 748 } 749 750 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 751 if (!enabled && !err) { 752 trace_intel_context_sched_enable(ce); 753 atomic_inc(&guc->outstanding_submission_g2h); 754 set_context_enabled(ce); 755 756 /* 757 * Without multi-lrc KMD does the submission step (moving the 758 * lrc tail) so enabling scheduling is sufficient to submit the 759 * context. This isn't the case in multi-lrc submission as the 760 * GuC needs to move the tails, hence the need for another H2G 761 * to submit a multi-lrc context after enabling scheduling. 762 */ 763 if (intel_context_is_parent(ce)) { 764 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 765 err = intel_guc_send_nb(guc, action, len - 1, 0); 766 } 767 } else if (!enabled) { 768 clr_context_pending_enable(ce); 769 intel_context_put(ce); 770 } 771 if (likely(!err)) 772 trace_i915_request_guc_submit(rq); 773 774 out: 775 spin_unlock(&ce->guc_state.lock); 776 return err; 777 } 778 779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 780 { 781 int ret = __guc_add_request(guc, rq); 782 783 if (unlikely(ret == -EBUSY)) { 784 guc->stalled_request = rq; 785 guc->submission_stall_reason = STALL_ADD_REQUEST; 786 } 787 788 return ret; 789 } 790 791 static inline void guc_set_lrc_tail(struct i915_request *rq) 792 { 793 rq->context->lrc_reg_state[CTX_RING_TAIL] = 794 intel_ring_set_tail(rq->ring, rq->tail); 795 } 796 797 static inline int rq_prio(const struct i915_request *rq) 798 { 799 return rq->sched.attr.priority; 800 } 801 802 static bool is_multi_lrc_rq(struct i915_request *rq) 803 { 804 return intel_context_is_parallel(rq->context); 805 } 806 807 static bool can_merge_rq(struct i915_request *rq, 808 struct i915_request *last) 809 { 810 return request_to_scheduling_context(rq) == 811 request_to_scheduling_context(last); 812 } 813 814 static u32 wq_space_until_wrap(struct intel_context *ce) 815 { 816 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 817 } 818 819 static void write_wqi(struct intel_context *ce, u32 wqi_size) 820 { 821 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 822 823 /* 824 * Ensure WQI are visible before updating tail 825 */ 826 intel_guc_write_barrier(ce_to_guc(ce)); 827 828 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 829 (WQ_SIZE - 1); 830 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 831 } 832 833 static int guc_wq_noop_append(struct intel_context *ce) 834 { 835 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 836 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 837 838 if (!wqi) 839 return -EBUSY; 840 841 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 842 843 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 844 FIELD_PREP(WQ_LEN_MASK, len_dw); 845 ce->parallel.guc.wqi_tail = 0; 846 847 return 0; 848 } 849 850 static int __guc_wq_item_append(struct i915_request *rq) 851 { 852 struct intel_context *ce = request_to_scheduling_context(rq); 853 struct intel_context *child; 854 unsigned int wqi_size = (ce->parallel.number_children + 4) * 855 sizeof(u32); 856 u32 *wqi; 857 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 858 int ret; 859 860 /* Ensure context is in correct state updating work queue */ 861 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 862 GEM_BUG_ON(context_guc_id_invalid(ce)); 863 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 864 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 865 866 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 867 if (wqi_size > wq_space_until_wrap(ce)) { 868 ret = guc_wq_noop_append(ce); 869 if (ret) 870 return ret; 871 } 872 873 wqi = get_wq_pointer(ce, wqi_size); 874 if (!wqi) 875 return -EBUSY; 876 877 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 878 879 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 880 FIELD_PREP(WQ_LEN_MASK, len_dw); 881 *wqi++ = ce->lrc.lrca; 882 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 883 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 884 *wqi++ = 0; /* fence_id */ 885 for_each_child(ce, child) 886 *wqi++ = child->ring->tail / sizeof(u64); 887 888 write_wqi(ce, wqi_size); 889 890 return 0; 891 } 892 893 static int guc_wq_item_append(struct intel_guc *guc, 894 struct i915_request *rq) 895 { 896 struct intel_context *ce = request_to_scheduling_context(rq); 897 int ret; 898 899 if (unlikely(!intel_context_is_schedulable(ce))) 900 return 0; 901 902 ret = __guc_wq_item_append(rq); 903 if (unlikely(ret == -EBUSY)) { 904 guc->stalled_request = rq; 905 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 906 } 907 908 return ret; 909 } 910 911 static bool multi_lrc_submit(struct i915_request *rq) 912 { 913 struct intel_context *ce = request_to_scheduling_context(rq); 914 915 intel_ring_set_tail(rq->ring, rq->tail); 916 917 /* 918 * We expect the front end (execbuf IOCTL) to set this flag on the last 919 * request generated from a multi-BB submission. This indicates to the 920 * backend (GuC interface) that we should submit this context thus 921 * submitting all the requests generated in parallel. 922 */ 923 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 924 !intel_context_is_schedulable(ce); 925 } 926 927 static int guc_dequeue_one_context(struct intel_guc *guc) 928 { 929 struct i915_sched_engine * const sched_engine = guc->sched_engine; 930 struct i915_request *last = NULL; 931 bool submit = false; 932 struct rb_node *rb; 933 int ret; 934 935 lockdep_assert_held(&sched_engine->lock); 936 937 if (guc->stalled_request) { 938 submit = true; 939 last = guc->stalled_request; 940 941 switch (guc->submission_stall_reason) { 942 case STALL_REGISTER_CONTEXT: 943 goto register_context; 944 case STALL_MOVE_LRC_TAIL: 945 goto move_lrc_tail; 946 case STALL_ADD_REQUEST: 947 goto add_request; 948 default: 949 MISSING_CASE(guc->submission_stall_reason); 950 } 951 } 952 953 while ((rb = rb_first_cached(&sched_engine->queue))) { 954 struct i915_priolist *p = to_priolist(rb); 955 struct i915_request *rq, *rn; 956 957 priolist_for_each_request_consume(rq, rn, p) { 958 if (last && !can_merge_rq(rq, last)) 959 goto register_context; 960 961 list_del_init(&rq->sched.link); 962 963 __i915_request_submit(rq); 964 965 trace_i915_request_in(rq, 0); 966 last = rq; 967 968 if (is_multi_lrc_rq(rq)) { 969 /* 970 * We need to coalesce all multi-lrc requests in 971 * a relationship into a single H2G. We are 972 * guaranteed that all of these requests will be 973 * submitted sequentially. 974 */ 975 if (multi_lrc_submit(rq)) { 976 submit = true; 977 goto register_context; 978 } 979 } else { 980 submit = true; 981 } 982 } 983 984 rb_erase_cached(&p->node, &sched_engine->queue); 985 i915_priolist_free(p); 986 } 987 988 register_context: 989 if (submit) { 990 struct intel_context *ce = request_to_scheduling_context(last); 991 992 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 993 intel_context_is_schedulable(ce))) { 994 ret = try_context_registration(ce, false); 995 if (unlikely(ret == -EPIPE)) { 996 goto deadlk; 997 } else if (ret == -EBUSY) { 998 guc->stalled_request = last; 999 guc->submission_stall_reason = 1000 STALL_REGISTER_CONTEXT; 1001 goto schedule_tasklet; 1002 } else if (ret != 0) { 1003 GEM_WARN_ON(ret); /* Unexpected */ 1004 goto deadlk; 1005 } 1006 } 1007 1008 move_lrc_tail: 1009 if (is_multi_lrc_rq(last)) { 1010 ret = guc_wq_item_append(guc, last); 1011 if (ret == -EBUSY) { 1012 goto schedule_tasklet; 1013 } else if (ret != 0) { 1014 GEM_WARN_ON(ret); /* Unexpected */ 1015 goto deadlk; 1016 } 1017 } else { 1018 guc_set_lrc_tail(last); 1019 } 1020 1021 add_request: 1022 ret = guc_add_request(guc, last); 1023 if (unlikely(ret == -EPIPE)) { 1024 goto deadlk; 1025 } else if (ret == -EBUSY) { 1026 goto schedule_tasklet; 1027 } else if (ret != 0) { 1028 GEM_WARN_ON(ret); /* Unexpected */ 1029 goto deadlk; 1030 } 1031 } 1032 1033 guc->stalled_request = NULL; 1034 guc->submission_stall_reason = STALL_NONE; 1035 return submit; 1036 1037 deadlk: 1038 sched_engine->tasklet.callback = NULL; 1039 tasklet_disable_nosync(&sched_engine->tasklet); 1040 return false; 1041 1042 schedule_tasklet: 1043 tasklet_schedule(&sched_engine->tasklet); 1044 return false; 1045 } 1046 1047 static void guc_submission_tasklet(struct tasklet_struct *t) 1048 { 1049 struct i915_sched_engine *sched_engine = 1050 from_tasklet(sched_engine, t, tasklet); 1051 unsigned long flags; 1052 bool loop; 1053 1054 spin_lock_irqsave(&sched_engine->lock, flags); 1055 1056 do { 1057 loop = guc_dequeue_one_context(sched_engine->private_data); 1058 } while (loop); 1059 1060 i915_sched_engine_reset_on_empty(sched_engine); 1061 1062 spin_unlock_irqrestore(&sched_engine->lock, flags); 1063 } 1064 1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1066 { 1067 if (iir & GT_RENDER_USER_INTERRUPT) 1068 intel_engine_signal_breadcrumbs(engine); 1069 } 1070 1071 static void __guc_context_destroy(struct intel_context *ce); 1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1073 static void guc_signal_context_fence(struct intel_context *ce); 1074 static void guc_cancel_context_requests(struct intel_context *ce); 1075 static void guc_blocked_fence_complete(struct intel_context *ce); 1076 1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1078 { 1079 struct intel_context *ce; 1080 unsigned long index, flags; 1081 bool pending_disable, pending_enable, deregister, destroyed, banned; 1082 1083 xa_lock_irqsave(&guc->context_lookup, flags); 1084 xa_for_each(&guc->context_lookup, index, ce) { 1085 /* 1086 * Corner case where the ref count on the object is zero but and 1087 * deregister G2H was lost. In this case we don't touch the ref 1088 * count and finish the destroy of the context. 1089 */ 1090 bool do_put = kref_get_unless_zero(&ce->ref); 1091 1092 xa_unlock(&guc->context_lookup); 1093 1094 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 1095 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { 1096 /* successful cancel so jump straight to close it */ 1097 intel_context_sched_disable_unpin(ce); 1098 } 1099 1100 spin_lock(&ce->guc_state.lock); 1101 1102 /* 1103 * Once we are at this point submission_disabled() is guaranteed 1104 * to be visible to all callers who set the below flags (see above 1105 * flush and flushes in reset_prepare). If submission_disabled() 1106 * is set, the caller shouldn't set these flags. 1107 */ 1108 1109 destroyed = context_destroyed(ce); 1110 pending_enable = context_pending_enable(ce); 1111 pending_disable = context_pending_disable(ce); 1112 deregister = context_wait_for_deregister_to_register(ce); 1113 banned = context_banned(ce); 1114 init_sched_state(ce); 1115 1116 spin_unlock(&ce->guc_state.lock); 1117 1118 if (pending_enable || destroyed || deregister) { 1119 decr_outstanding_submission_g2h(guc); 1120 if (deregister) 1121 guc_signal_context_fence(ce); 1122 if (destroyed) { 1123 intel_gt_pm_put_async_untracked(guc_to_gt(guc)); 1124 release_guc_id(guc, ce); 1125 __guc_context_destroy(ce); 1126 } 1127 if (pending_enable || deregister) 1128 intel_context_put(ce); 1129 } 1130 1131 /* Not mutualy exclusive with above if statement. */ 1132 if (pending_disable) { 1133 guc_signal_context_fence(ce); 1134 if (banned) { 1135 guc_cancel_context_requests(ce); 1136 intel_engine_signal_breadcrumbs(ce->engine); 1137 } 1138 intel_context_sched_disable_unpin(ce); 1139 decr_outstanding_submission_g2h(guc); 1140 1141 spin_lock(&ce->guc_state.lock); 1142 guc_blocked_fence_complete(ce); 1143 spin_unlock(&ce->guc_state.lock); 1144 1145 intel_context_put(ce); 1146 } 1147 1148 if (do_put) 1149 intel_context_put(ce); 1150 xa_lock(&guc->context_lookup); 1151 } 1152 xa_unlock_irqrestore(&guc->context_lookup, flags); 1153 } 1154 1155 /* 1156 * GuC stores busyness stats for each engine at context in/out boundaries. A 1157 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1158 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1159 * GuC. 1160 * 1161 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1162 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1163 * active. For an active engine total busyness = total + (now - start), where 1164 * 'now' is the time at which the busyness is sampled. For inactive engine, 1165 * total busyness = total. 1166 * 1167 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1168 * 1169 * The start and total values provided by GuC are 32 bits and wrap around in a 1170 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1171 * increasing ns values, there is a need for this implementation to account for 1172 * overflows and extend the GuC provided values to 64 bits before returning 1173 * busyness to the user. In order to do that, a worker runs periodically at 1174 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1175 * 27 seconds for a gt clock frequency of 19.2 MHz). 1176 */ 1177 1178 #define WRAP_TIME_CLKS U32_MAX 1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1180 1181 static void 1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1183 { 1184 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1185 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1186 1187 if (new_start == lower_32_bits(*prev_start)) 1188 return; 1189 1190 /* 1191 * When gt is unparked, we update the gt timestamp and start the ping 1192 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1193 * is unparked, all switched in contexts will have a start time that is 1194 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1195 * 1196 * If neither gt_stamp nor new_start has rolled over, then the 1197 * gt_stamp_hi does not need to be adjusted, however if one of them has 1198 * rolled over, we need to adjust gt_stamp_hi accordingly. 1199 * 1200 * The below conditions address the cases of new_start rollover and 1201 * gt_stamp_last rollover respectively. 1202 */ 1203 if (new_start < gt_stamp_last && 1204 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1205 gt_stamp_hi++; 1206 1207 if (new_start > gt_stamp_last && 1208 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1209 gt_stamp_hi--; 1210 1211 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1212 } 1213 1214 #define record_read(map_, field_) \ 1215 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1216 1217 /* 1218 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1219 * we run into a race where the value read is inconsistent. Sometimes the 1220 * inconsistency is in reading the upper MSB bytes of the last_in value when 1221 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1222 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1223 * determine validity of these values. Instead we read the values multiple times 1224 * until they are consistent. In test runs, 3 attempts results in consistent 1225 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1226 * any new occurences. 1227 */ 1228 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1229 u32 *last_in, u32 *id, u32 *total) 1230 { 1231 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1232 int i = 0; 1233 1234 do { 1235 *last_in = record_read(&rec_map, last_switch_in_stamp); 1236 *id = record_read(&rec_map, current_context_index); 1237 *total = record_read(&rec_map, total_runtime); 1238 1239 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1240 record_read(&rec_map, current_context_index) == *id && 1241 record_read(&rec_map, total_runtime) == *total) 1242 break; 1243 } while (++i < 6); 1244 } 1245 1246 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1247 { 1248 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1249 struct intel_guc *guc = gt_to_guc(engine->gt); 1250 u32 last_switch, ctx_id, total; 1251 1252 lockdep_assert_held(&guc->timestamp.lock); 1253 1254 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1255 1256 stats->running = ctx_id != ~0U && last_switch; 1257 if (stats->running) 1258 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1259 1260 /* 1261 * Instead of adjusting the total for overflow, just add the 1262 * difference from previous sample stats->total_gt_clks 1263 */ 1264 if (total && total != ~0U) { 1265 stats->total_gt_clks += (u32)(total - stats->prev_total); 1266 stats->prev_total = total; 1267 } 1268 } 1269 1270 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1271 { 1272 intel_wakeref_t wakeref; 1273 u32 reg, shift; 1274 1275 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1276 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1277 1278 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1279 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1280 1281 return 3 - shift; 1282 } 1283 1284 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1285 { 1286 struct intel_gt *gt = guc_to_gt(guc); 1287 u32 gt_stamp_lo, gt_stamp_hi; 1288 u64 gpm_ts; 1289 1290 lockdep_assert_held(&guc->timestamp.lock); 1291 1292 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1293 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1294 MISC_STATUS1) >> guc->timestamp.shift; 1295 gt_stamp_lo = lower_32_bits(gpm_ts); 1296 *now = ktime_get(); 1297 1298 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1299 gt_stamp_hi++; 1300 1301 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1302 } 1303 1304 /* 1305 * Unlike the execlist mode of submission total and active times are in terms of 1306 * gt clocks. The *now parameter is retained to return the cpu time at which the 1307 * busyness was sampled. 1308 */ 1309 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1310 { 1311 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1312 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1313 struct intel_gt *gt = engine->gt; 1314 struct intel_guc *guc = gt_to_guc(gt); 1315 u64 total, gt_stamp_saved; 1316 unsigned long flags; 1317 u32 reset_count; 1318 bool in_reset; 1319 intel_wakeref_t wakeref; 1320 1321 spin_lock_irqsave(&guc->timestamp.lock, flags); 1322 1323 /* 1324 * If a reset happened, we risk reading partially updated engine 1325 * busyness from GuC, so we just use the driver stored copy of busyness. 1326 * Synchronize with gt reset using reset_count and the 1327 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1328 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1329 * usable by checking the flag afterwards. 1330 */ 1331 reset_count = i915_reset_count(gpu_error); 1332 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1333 1334 *now = ktime_get(); 1335 1336 /* 1337 * The active busyness depends on start_gt_clk and gt_stamp. 1338 * gt_stamp is updated by i915 only when gt is awake and the 1339 * start_gt_clk is derived from GuC state. To get a consistent 1340 * view of activity, we query the GuC state only if gt is awake. 1341 */ 1342 wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt); 1343 if (wakeref) { 1344 stats_saved = *stats; 1345 gt_stamp_saved = guc->timestamp.gt_stamp; 1346 /* 1347 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1348 * start_gt_clk' calculation below for active engines. 1349 */ 1350 guc_update_engine_gt_clks(engine); 1351 guc_update_pm_timestamp(guc, now); 1352 intel_gt_pm_put_async(gt, wakeref); 1353 if (i915_reset_count(gpu_error) != reset_count) { 1354 *stats = stats_saved; 1355 guc->timestamp.gt_stamp = gt_stamp_saved; 1356 } 1357 } 1358 1359 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1360 if (stats->running) { 1361 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1362 1363 total += intel_gt_clock_interval_to_ns(gt, clk); 1364 } 1365 1366 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1367 1368 return ns_to_ktime(total); 1369 } 1370 1371 static void guc_enable_busyness_worker(struct intel_guc *guc) 1372 { 1373 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay); 1374 } 1375 1376 static void guc_cancel_busyness_worker(struct intel_guc *guc) 1377 { 1378 /* 1379 * There are many different call stacks that can get here. Some of them 1380 * hold the reset mutex. The busyness worker also attempts to acquire the 1381 * reset mutex. Synchronously flushing a worker thread requires acquiring 1382 * the worker mutex. Lockdep sees this as a conflict. It thinks that the 1383 * flush can deadlock because it holds the worker mutex while waiting for 1384 * the reset mutex, but another thread is holding the reset mutex and might 1385 * attempt to use other worker functions. 1386 * 1387 * In practice, this scenario does not exist because the busyness worker 1388 * does not block waiting for the reset mutex. It does a try-lock on it and 1389 * immediately exits if the lock is already held. Unfortunately, the mutex 1390 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep 1391 * annotation but not to the extent of explaining the 'might lock' is also a 1392 * 'does not need to lock'. So one option would be to add more complex lockdep 1393 * annotations to ignore the issue (if at all possible). A simpler option is to 1394 * just not flush synchronously when a rest in progress. Given that the worker 1395 * will just early exit and re-schedule itself anyway, there is no advantage 1396 * to running it immediately. 1397 * 1398 * If a reset is not in progress, then the synchronous flush may be required. 1399 * As noted many call stacks lead here, some during suspend and driver unload 1400 * which do require a synchronous flush to make sure the worker is stopped 1401 * before memory is freed. 1402 * 1403 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through 1404 * every possible call stack is unfeasible. It would be too intrusive to many 1405 * areas that really don't care about the GuC backend. However, there is the 1406 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked. 1407 * So just use those. Note that testing both is required due to the hideously 1408 * complex nature of the i915 driver's reset code paths. 1409 * 1410 * And note that in the case of a reset occurring during driver unload 1411 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the 1412 * reset flag/mutex are set) is fine because there is another explicit cancel in 1413 * intel_guc_submission_fini (when the reset flag/mutex are not). 1414 */ 1415 if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) || 1416 test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags)) 1417 cancel_delayed_work(&guc->timestamp.work); 1418 else 1419 cancel_delayed_work_sync(&guc->timestamp.work); 1420 } 1421 1422 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1423 { 1424 struct intel_gt *gt = guc_to_gt(guc); 1425 struct intel_engine_cs *engine; 1426 enum intel_engine_id id; 1427 unsigned long flags; 1428 ktime_t unused; 1429 1430 spin_lock_irqsave(&guc->timestamp.lock, flags); 1431 1432 guc_update_pm_timestamp(guc, &unused); 1433 for_each_engine(engine, gt, id) { 1434 guc_update_engine_gt_clks(engine); 1435 engine->stats.guc.prev_total = 0; 1436 } 1437 1438 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1439 } 1440 1441 static void __update_guc_busyness_stats(struct intel_guc *guc) 1442 { 1443 struct intel_gt *gt = guc_to_gt(guc); 1444 struct intel_engine_cs *engine; 1445 enum intel_engine_id id; 1446 unsigned long flags; 1447 ktime_t unused; 1448 1449 guc->timestamp.last_stat_jiffies = jiffies; 1450 1451 spin_lock_irqsave(&guc->timestamp.lock, flags); 1452 1453 guc_update_pm_timestamp(guc, &unused); 1454 for_each_engine(engine, gt, id) 1455 guc_update_engine_gt_clks(engine); 1456 1457 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1458 } 1459 1460 static void __guc_context_update_stats(struct intel_context *ce) 1461 { 1462 struct intel_guc *guc = ce_to_guc(ce); 1463 unsigned long flags; 1464 1465 spin_lock_irqsave(&guc->timestamp.lock, flags); 1466 lrc_update_runtime(ce); 1467 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1468 } 1469 1470 static void guc_context_update_stats(struct intel_context *ce) 1471 { 1472 if (!intel_context_pin_if_active(ce)) 1473 return; 1474 1475 __guc_context_update_stats(ce); 1476 intel_context_unpin(ce); 1477 } 1478 1479 static void guc_timestamp_ping(struct work_struct *wrk) 1480 { 1481 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1482 timestamp.work.work); 1483 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1484 struct intel_gt *gt = guc_to_gt(guc); 1485 struct intel_context *ce; 1486 intel_wakeref_t wakeref; 1487 unsigned long index; 1488 int srcu, ret; 1489 1490 /* 1491 * Ideally the busyness worker should take a gt pm wakeref because the 1492 * worker only needs to be active while gt is awake. However, the 1493 * gt_park path cancels the worker synchronously and this complicates 1494 * the flow if the worker is also running at the same time. The cancel 1495 * waits for the worker and when the worker releases the wakeref, that 1496 * would call gt_park and would lead to a deadlock. 1497 * 1498 * The resolution is to take the global pm wakeref if runtime pm is 1499 * already active. If not, we don't need to update the busyness stats as 1500 * the stats would already be updated when the gt was parked. 1501 * 1502 * Note: 1503 * - We do not requeue the worker if we cannot take a reference to runtime 1504 * pm since intel_guc_busyness_unpark would requeue the worker in the 1505 * resume path. 1506 * 1507 * - If the gt was parked longer than time taken for GT timestamp to roll 1508 * over, we ignore those rollovers since we don't care about tracking 1509 * the exact GT time. We only care about roll overs when the gt is 1510 * active and running workloads. 1511 * 1512 * - There is a window of time between gt_park and runtime suspend, 1513 * where the worker may run. This is acceptable since the worker will 1514 * not find any new data to update busyness. 1515 */ 1516 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm); 1517 if (!wakeref) 1518 return; 1519 1520 /* 1521 * Synchronize with gt reset to make sure the worker does not 1522 * corrupt the engine/guc stats. NB: can't actually block waiting 1523 * for a reset to complete as the reset requires flushing out 1524 * this worker thread if started. So waiting would deadlock. 1525 */ 1526 ret = intel_gt_reset_trylock(gt, &srcu); 1527 if (ret) 1528 goto err_trylock; 1529 1530 __update_guc_busyness_stats(guc); 1531 1532 /* adjust context stats for overflow */ 1533 xa_for_each(&guc->context_lookup, index, ce) 1534 guc_context_update_stats(ce); 1535 1536 intel_gt_reset_unlock(gt, srcu); 1537 1538 guc_enable_busyness_worker(guc); 1539 1540 err_trylock: 1541 intel_runtime_pm_put(>->i915->runtime_pm, wakeref); 1542 } 1543 1544 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1545 { 1546 u32 offset = intel_guc_engine_usage_offset(guc); 1547 u32 action[] = { 1548 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1549 offset, 1550 0, 1551 }; 1552 1553 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1554 } 1555 1556 static int guc_init_engine_stats(struct intel_guc *guc) 1557 { 1558 struct intel_gt *gt = guc_to_gt(guc); 1559 intel_wakeref_t wakeref; 1560 int ret; 1561 1562 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1563 ret = guc_action_enable_usage_stats(guc); 1564 1565 if (ret) 1566 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret)); 1567 else 1568 guc_enable_busyness_worker(guc); 1569 1570 return ret; 1571 } 1572 1573 static void guc_fini_engine_stats(struct intel_guc *guc) 1574 { 1575 guc_cancel_busyness_worker(guc); 1576 } 1577 1578 void intel_guc_busyness_park(struct intel_gt *gt) 1579 { 1580 struct intel_guc *guc = gt_to_guc(gt); 1581 1582 if (!guc_submission_initialized(guc)) 1583 return; 1584 1585 /* 1586 * There is a race with suspend flow where the worker runs after suspend 1587 * and causes an unclaimed register access warning. Cancel the worker 1588 * synchronously here. 1589 */ 1590 guc_cancel_busyness_worker(guc); 1591 1592 /* 1593 * Before parking, we should sample engine busyness stats if we need to. 1594 * We can skip it if we are less than half a ping from the last time we 1595 * sampled the busyness stats. 1596 */ 1597 if (guc->timestamp.last_stat_jiffies && 1598 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1599 (guc->timestamp.ping_delay / 2))) 1600 return; 1601 1602 __update_guc_busyness_stats(guc); 1603 } 1604 1605 void intel_guc_busyness_unpark(struct intel_gt *gt) 1606 { 1607 struct intel_guc *guc = gt_to_guc(gt); 1608 unsigned long flags; 1609 ktime_t unused; 1610 1611 if (!guc_submission_initialized(guc)) 1612 return; 1613 1614 spin_lock_irqsave(&guc->timestamp.lock, flags); 1615 guc_update_pm_timestamp(guc, &unused); 1616 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1617 guc_enable_busyness_worker(guc); 1618 } 1619 1620 static inline bool 1621 submission_disabled(struct intel_guc *guc) 1622 { 1623 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1624 1625 return unlikely(!sched_engine || 1626 !__tasklet_is_enabled(&sched_engine->tasklet) || 1627 intel_gt_is_wedged(guc_to_gt(guc))); 1628 } 1629 1630 static void disable_submission(struct intel_guc *guc) 1631 { 1632 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1633 1634 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1635 GEM_BUG_ON(!guc->ct.enabled); 1636 __tasklet_disable_sync_once(&sched_engine->tasklet); 1637 sched_engine->tasklet.callback = NULL; 1638 } 1639 } 1640 1641 static void enable_submission(struct intel_guc *guc) 1642 { 1643 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1644 unsigned long flags; 1645 1646 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1647 sched_engine->tasklet.callback = guc_submission_tasklet; 1648 wmb(); /* Make sure callback visible */ 1649 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1650 __tasklet_enable(&sched_engine->tasklet)) { 1651 GEM_BUG_ON(!guc->ct.enabled); 1652 1653 /* And kick in case we missed a new request submission. */ 1654 tasklet_hi_schedule(&sched_engine->tasklet); 1655 } 1656 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1657 } 1658 1659 static void guc_flush_submissions(struct intel_guc *guc) 1660 { 1661 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1662 unsigned long flags; 1663 1664 spin_lock_irqsave(&sched_engine->lock, flags); 1665 spin_unlock_irqrestore(&sched_engine->lock, flags); 1666 } 1667 1668 void intel_guc_submission_flush_work(struct intel_guc *guc) 1669 { 1670 flush_work(&guc->submission_state.destroyed_worker); 1671 } 1672 1673 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1674 1675 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1676 { 1677 if (unlikely(!guc_submission_initialized(guc))) { 1678 /* Reset called during driver load? GuC not yet initialised! */ 1679 return; 1680 } 1681 1682 intel_gt_park_heartbeats(guc_to_gt(guc)); 1683 disable_submission(guc); 1684 guc->interrupts.disable(guc); 1685 __reset_guc_busyness_stats(guc); 1686 1687 /* Flush IRQ handler */ 1688 spin_lock_irq(guc_to_gt(guc)->irq_lock); 1689 spin_unlock_irq(guc_to_gt(guc)->irq_lock); 1690 1691 guc_flush_submissions(guc); 1692 guc_flush_destroyed_contexts(guc); 1693 flush_work(&guc->ct.requests.worker); 1694 1695 scrub_guc_desc_for_outstanding_g2h(guc); 1696 } 1697 1698 static struct intel_engine_cs * 1699 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1700 { 1701 struct intel_engine_cs *engine; 1702 intel_engine_mask_t tmp, mask = ve->mask; 1703 unsigned int num_siblings = 0; 1704 1705 for_each_engine_masked(engine, ve->gt, mask, tmp) 1706 if (num_siblings++ == sibling) 1707 return engine; 1708 1709 return NULL; 1710 } 1711 1712 static inline struct intel_engine_cs * 1713 __context_to_physical_engine(struct intel_context *ce) 1714 { 1715 struct intel_engine_cs *engine = ce->engine; 1716 1717 if (intel_engine_is_virtual(engine)) 1718 engine = guc_virtual_get_sibling(engine, 0); 1719 1720 return engine; 1721 } 1722 1723 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1724 { 1725 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1726 1727 if (!intel_context_is_schedulable(ce)) 1728 return; 1729 1730 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1731 1732 /* 1733 * We want a simple context + ring to execute the breadcrumb update. 1734 * We cannot rely on the context being intact across the GPU hang, 1735 * so clear it and rebuild just what we need for the breadcrumb. 1736 * All pending requests for this context will be zapped, and any 1737 * future request will be after userspace has had the opportunity 1738 * to recreate its own state. 1739 */ 1740 if (scrub) 1741 lrc_init_regs(ce, engine, true); 1742 1743 /* Rerun the request; its payload has been neutered (if guilty). */ 1744 lrc_update_regs(ce, engine, head); 1745 } 1746 1747 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1748 { 1749 /* 1750 * Wa_22011802037: In addition to stopping the cs, we need 1751 * to wait for any pending mi force wakeups 1752 */ 1753 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) { 1754 intel_engine_stop_cs(engine); 1755 intel_engine_wait_for_pending_mi_fw(engine); 1756 } 1757 } 1758 1759 static void guc_reset_nop(struct intel_engine_cs *engine) 1760 { 1761 } 1762 1763 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1764 { 1765 } 1766 1767 static void 1768 __unwind_incomplete_requests(struct intel_context *ce) 1769 { 1770 struct i915_request *rq, *rn; 1771 struct list_head *pl; 1772 int prio = I915_PRIORITY_INVALID; 1773 struct i915_sched_engine * const sched_engine = 1774 ce->engine->sched_engine; 1775 unsigned long flags; 1776 1777 spin_lock_irqsave(&sched_engine->lock, flags); 1778 spin_lock(&ce->guc_state.lock); 1779 list_for_each_entry_safe_reverse(rq, rn, 1780 &ce->guc_state.requests, 1781 sched.link) { 1782 if (i915_request_completed(rq)) 1783 continue; 1784 1785 list_del_init(&rq->sched.link); 1786 __i915_request_unsubmit(rq); 1787 1788 /* Push the request back into the queue for later resubmission. */ 1789 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1790 if (rq_prio(rq) != prio) { 1791 prio = rq_prio(rq); 1792 pl = i915_sched_lookup_priolist(sched_engine, prio); 1793 } 1794 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1795 1796 list_add(&rq->sched.link, pl); 1797 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1798 } 1799 spin_unlock(&ce->guc_state.lock); 1800 spin_unlock_irqrestore(&sched_engine->lock, flags); 1801 } 1802 1803 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1804 { 1805 bool guilty; 1806 struct i915_request *rq; 1807 unsigned long flags; 1808 u32 head; 1809 int i, number_children = ce->parallel.number_children; 1810 struct intel_context *parent = ce; 1811 1812 GEM_BUG_ON(intel_context_is_child(ce)); 1813 1814 intel_context_get(ce); 1815 1816 /* 1817 * GuC will implicitly mark the context as non-schedulable when it sends 1818 * the reset notification. Make sure our state reflects this change. The 1819 * context will be marked enabled on resubmission. 1820 */ 1821 spin_lock_irqsave(&ce->guc_state.lock, flags); 1822 clr_context_enabled(ce); 1823 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1824 1825 /* 1826 * For each context in the relationship find the hanging request 1827 * resetting each context / request as needed 1828 */ 1829 for (i = 0; i < number_children + 1; ++i) { 1830 if (!intel_context_is_pinned(ce)) 1831 goto next_context; 1832 1833 guilty = false; 1834 rq = intel_context_get_active_request(ce); 1835 if (!rq) { 1836 head = ce->ring->tail; 1837 goto out_replay; 1838 } 1839 1840 if (i915_request_started(rq)) 1841 guilty = stalled & ce->engine->mask; 1842 1843 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1844 head = intel_ring_wrap(ce->ring, rq->head); 1845 1846 __i915_request_reset(rq, guilty); 1847 i915_request_put(rq); 1848 out_replay: 1849 guc_reset_state(ce, head, guilty); 1850 next_context: 1851 if (i != number_children) 1852 ce = list_next_entry(ce, parallel.child_link); 1853 } 1854 1855 __unwind_incomplete_requests(parent); 1856 intel_context_put(parent); 1857 } 1858 1859 void wake_up_all_tlb_invalidate(struct intel_guc *guc) 1860 { 1861 struct intel_guc_tlb_wait *wait; 1862 unsigned long i; 1863 1864 if (!intel_guc_tlb_invalidation_is_available(guc)) 1865 return; 1866 1867 xa_lock_irq(&guc->tlb_lookup); 1868 xa_for_each(&guc->tlb_lookup, i, wait) 1869 wake_up(&wait->wq); 1870 xa_unlock_irq(&guc->tlb_lookup); 1871 } 1872 1873 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1874 { 1875 struct intel_context *ce; 1876 unsigned long index; 1877 unsigned long flags; 1878 1879 if (unlikely(!guc_submission_initialized(guc))) { 1880 /* Reset called during driver load? GuC not yet initialised! */ 1881 return; 1882 } 1883 1884 xa_lock_irqsave(&guc->context_lookup, flags); 1885 xa_for_each(&guc->context_lookup, index, ce) { 1886 if (!kref_get_unless_zero(&ce->ref)) 1887 continue; 1888 1889 xa_unlock(&guc->context_lookup); 1890 1891 if (intel_context_is_pinned(ce) && 1892 !intel_context_is_child(ce)) 1893 __guc_reset_context(ce, stalled); 1894 1895 intel_context_put(ce); 1896 1897 xa_lock(&guc->context_lookup); 1898 } 1899 xa_unlock_irqrestore(&guc->context_lookup, flags); 1900 1901 /* GuC is blown away, drop all references to contexts */ 1902 xa_destroy(&guc->context_lookup); 1903 } 1904 1905 static void guc_cancel_context_requests(struct intel_context *ce) 1906 { 1907 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1908 struct i915_request *rq; 1909 unsigned long flags; 1910 1911 /* Mark all executing requests as skipped. */ 1912 spin_lock_irqsave(&sched_engine->lock, flags); 1913 spin_lock(&ce->guc_state.lock); 1914 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1915 i915_request_put(i915_request_mark_eio(rq)); 1916 spin_unlock(&ce->guc_state.lock); 1917 spin_unlock_irqrestore(&sched_engine->lock, flags); 1918 } 1919 1920 static void 1921 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1922 { 1923 struct i915_request *rq, *rn; 1924 struct rb_node *rb; 1925 unsigned long flags; 1926 1927 /* Can be called during boot if GuC fails to load */ 1928 if (!sched_engine) 1929 return; 1930 1931 /* 1932 * Before we call engine->cancel_requests(), we should have exclusive 1933 * access to the submission state. This is arranged for us by the 1934 * caller disabling the interrupt generation, the tasklet and other 1935 * threads that may then access the same state, giving us a free hand 1936 * to reset state. However, we still need to let lockdep be aware that 1937 * we know this state may be accessed in hardirq context, so we 1938 * disable the irq around this manipulation and we want to keep 1939 * the spinlock focused on its duties and not accidentally conflate 1940 * coverage to the submission's irq state. (Similarly, although we 1941 * shouldn't need to disable irq around the manipulation of the 1942 * submission's irq state, we also wish to remind ourselves that 1943 * it is irq state.) 1944 */ 1945 spin_lock_irqsave(&sched_engine->lock, flags); 1946 1947 /* Flush the queued requests to the timeline list (for retiring). */ 1948 while ((rb = rb_first_cached(&sched_engine->queue))) { 1949 struct i915_priolist *p = to_priolist(rb); 1950 1951 priolist_for_each_request_consume(rq, rn, p) { 1952 list_del_init(&rq->sched.link); 1953 1954 __i915_request_submit(rq); 1955 1956 i915_request_put(i915_request_mark_eio(rq)); 1957 } 1958 1959 rb_erase_cached(&p->node, &sched_engine->queue); 1960 i915_priolist_free(p); 1961 } 1962 1963 /* Remaining _unready_ requests will be nop'ed when submitted */ 1964 1965 sched_engine->queue_priority_hint = INT_MIN; 1966 sched_engine->queue = RB_ROOT_CACHED; 1967 1968 spin_unlock_irqrestore(&sched_engine->lock, flags); 1969 } 1970 1971 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1972 { 1973 struct intel_context *ce; 1974 unsigned long index; 1975 unsigned long flags; 1976 1977 xa_lock_irqsave(&guc->context_lookup, flags); 1978 xa_for_each(&guc->context_lookup, index, ce) { 1979 if (!kref_get_unless_zero(&ce->ref)) 1980 continue; 1981 1982 xa_unlock(&guc->context_lookup); 1983 1984 if (intel_context_is_pinned(ce) && 1985 !intel_context_is_child(ce)) 1986 guc_cancel_context_requests(ce); 1987 1988 intel_context_put(ce); 1989 1990 xa_lock(&guc->context_lookup); 1991 } 1992 xa_unlock_irqrestore(&guc->context_lookup, flags); 1993 1994 guc_cancel_sched_engine_requests(guc->sched_engine); 1995 1996 /* GuC is blown away, drop all references to contexts */ 1997 xa_destroy(&guc->context_lookup); 1998 1999 /* 2000 * Wedged GT won't respond to any TLB invalidation request. Simply 2001 * release all the blocked waiters. 2002 */ 2003 wake_up_all_tlb_invalidate(guc); 2004 } 2005 2006 void intel_guc_submission_reset_finish(struct intel_guc *guc) 2007 { 2008 /* Reset called during driver load or during wedge? */ 2009 if (unlikely(!guc_submission_initialized(guc) || 2010 !intel_guc_is_fw_running(guc) || 2011 intel_gt_is_wedged(guc_to_gt(guc)))) { 2012 return; 2013 } 2014 2015 /* 2016 * Technically possible for either of these values to be non-zero here, 2017 * but very unlikely + harmless. Regardless let's add an error so we can 2018 * see in CI if this happens frequently / a precursor to taking down the 2019 * machine. 2020 */ 2021 if (atomic_read(&guc->outstanding_submission_g2h)) 2022 guc_err(guc, "Unexpected outstanding GuC to Host in reset finish\n"); 2023 atomic_set(&guc->outstanding_submission_g2h, 0); 2024 2025 intel_guc_global_policies_update(guc); 2026 enable_submission(guc); 2027 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 2028 2029 /* 2030 * The full GT reset will have cleared the TLB caches and flushed the 2031 * G2H message queue; we can release all the blocked waiters. 2032 */ 2033 wake_up_all_tlb_invalidate(guc); 2034 } 2035 2036 static void destroyed_worker_func(struct work_struct *w); 2037 static void reset_fail_worker_func(struct work_struct *w); 2038 2039 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc) 2040 { 2041 return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) && 2042 intel_guc_is_ready(guc); 2043 } 2044 2045 static int init_tlb_lookup(struct intel_guc *guc) 2046 { 2047 struct intel_guc_tlb_wait *wait; 2048 int err; 2049 2050 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) 2051 return 0; 2052 2053 xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC); 2054 2055 wait = kzalloc(sizeof(*wait), GFP_KERNEL); 2056 if (!wait) 2057 return -ENOMEM; 2058 2059 init_waitqueue_head(&wait->wq); 2060 2061 /* Preallocate a shared id for use under memory pressure. */ 2062 err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait, 2063 xa_limit_32b, &guc->next_seqno, GFP_KERNEL); 2064 if (err < 0) { 2065 kfree(wait); 2066 return err; 2067 } 2068 2069 return 0; 2070 } 2071 2072 static void fini_tlb_lookup(struct intel_guc *guc) 2073 { 2074 struct intel_guc_tlb_wait *wait; 2075 2076 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) 2077 return; 2078 2079 wait = xa_load(&guc->tlb_lookup, guc->serial_slot); 2080 if (wait && wait->busy) 2081 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n"); 2082 kfree(wait); 2083 2084 xa_destroy(&guc->tlb_lookup); 2085 } 2086 2087 /* 2088 * Set up the memory resources to be shared with the GuC (via the GGTT) 2089 * at firmware loading time. 2090 */ 2091 int intel_guc_submission_init(struct intel_guc *guc) 2092 { 2093 struct intel_gt *gt = guc_to_gt(guc); 2094 int ret; 2095 2096 if (guc->submission_initialized) 2097 return 0; 2098 2099 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { 2100 ret = guc_lrc_desc_pool_create_v69(guc); 2101 if (ret) 2102 return ret; 2103 } 2104 2105 ret = init_tlb_lookup(guc); 2106 if (ret) 2107 goto destroy_pool; 2108 2109 guc->submission_state.guc_ids_bitmap = 2110 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 2111 if (!guc->submission_state.guc_ids_bitmap) { 2112 ret = -ENOMEM; 2113 goto destroy_tlb; 2114 } 2115 2116 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 2117 guc->timestamp.shift = gpm_timestamp_shift(gt); 2118 guc->submission_initialized = true; 2119 2120 return 0; 2121 2122 destroy_tlb: 2123 fini_tlb_lookup(guc); 2124 destroy_pool: 2125 guc_lrc_desc_pool_destroy_v69(guc); 2126 return ret; 2127 } 2128 2129 void intel_guc_submission_fini(struct intel_guc *guc) 2130 { 2131 if (!guc->submission_initialized) 2132 return; 2133 2134 guc_fini_engine_stats(guc); 2135 guc_flush_destroyed_contexts(guc); 2136 guc_lrc_desc_pool_destroy_v69(guc); 2137 i915_sched_engine_put(guc->sched_engine); 2138 bitmap_free(guc->submission_state.guc_ids_bitmap); 2139 fini_tlb_lookup(guc); 2140 guc->submission_initialized = false; 2141 } 2142 2143 static inline void queue_request(struct i915_sched_engine *sched_engine, 2144 struct i915_request *rq, 2145 int prio) 2146 { 2147 GEM_BUG_ON(!list_empty(&rq->sched.link)); 2148 list_add_tail(&rq->sched.link, 2149 i915_sched_lookup_priolist(sched_engine, prio)); 2150 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 2151 tasklet_hi_schedule(&sched_engine->tasklet); 2152 } 2153 2154 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 2155 struct i915_request *rq) 2156 { 2157 int ret = 0; 2158 2159 __i915_request_submit(rq); 2160 2161 trace_i915_request_in(rq, 0); 2162 2163 if (is_multi_lrc_rq(rq)) { 2164 if (multi_lrc_submit(rq)) { 2165 ret = guc_wq_item_append(guc, rq); 2166 if (!ret) 2167 ret = guc_add_request(guc, rq); 2168 } 2169 } else { 2170 guc_set_lrc_tail(rq); 2171 ret = guc_add_request(guc, rq); 2172 } 2173 2174 if (unlikely(ret == -EPIPE)) 2175 disable_submission(guc); 2176 2177 return ret; 2178 } 2179 2180 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 2181 { 2182 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 2183 struct intel_context *ce = request_to_scheduling_context(rq); 2184 2185 return submission_disabled(guc) || guc->stalled_request || 2186 !i915_sched_engine_is_empty(sched_engine) || 2187 !ctx_id_mapped(guc, ce->guc_id.id); 2188 } 2189 2190 static void guc_submit_request(struct i915_request *rq) 2191 { 2192 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 2193 struct intel_guc *guc = gt_to_guc(rq->engine->gt); 2194 unsigned long flags; 2195 2196 /* Will be called from irq-context when using foreign fences. */ 2197 spin_lock_irqsave(&sched_engine->lock, flags); 2198 2199 if (need_tasklet(guc, rq)) 2200 queue_request(sched_engine, rq, rq_prio(rq)); 2201 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 2202 tasklet_hi_schedule(&sched_engine->tasklet); 2203 2204 spin_unlock_irqrestore(&sched_engine->lock, flags); 2205 } 2206 2207 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 2208 { 2209 int ret; 2210 2211 GEM_BUG_ON(intel_context_is_child(ce)); 2212 2213 if (intel_context_is_parent(ce)) 2214 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 2215 NUMBER_MULTI_LRC_GUC_ID(guc), 2216 order_base_2(ce->parallel.number_children 2217 + 1)); 2218 else 2219 ret = ida_alloc_range(&guc->submission_state.guc_ids, 2220 NUMBER_MULTI_LRC_GUC_ID(guc), 2221 guc->submission_state.num_guc_ids - 1, 2222 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 2223 if (unlikely(ret < 0)) 2224 return ret; 2225 2226 if (!intel_context_is_parent(ce)) 2227 ++guc->submission_state.guc_ids_in_use; 2228 2229 ce->guc_id.id = ret; 2230 return 0; 2231 } 2232 2233 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2234 { 2235 GEM_BUG_ON(intel_context_is_child(ce)); 2236 2237 if (!context_guc_id_invalid(ce)) { 2238 if (intel_context_is_parent(ce)) { 2239 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2240 ce->guc_id.id, 2241 order_base_2(ce->parallel.number_children 2242 + 1)); 2243 } else { 2244 --guc->submission_state.guc_ids_in_use; 2245 ida_free(&guc->submission_state.guc_ids, 2246 ce->guc_id.id); 2247 } 2248 clr_ctx_id_mapping(guc, ce->guc_id.id); 2249 set_context_guc_id_invalid(ce); 2250 } 2251 if (!list_empty(&ce->guc_id.link)) 2252 list_del_init(&ce->guc_id.link); 2253 } 2254 2255 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2256 { 2257 unsigned long flags; 2258 2259 spin_lock_irqsave(&guc->submission_state.lock, flags); 2260 __release_guc_id(guc, ce); 2261 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2262 } 2263 2264 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2265 { 2266 struct intel_context *cn; 2267 2268 lockdep_assert_held(&guc->submission_state.lock); 2269 GEM_BUG_ON(intel_context_is_child(ce)); 2270 GEM_BUG_ON(intel_context_is_parent(ce)); 2271 2272 if (!list_empty(&guc->submission_state.guc_id_list)) { 2273 cn = list_first_entry(&guc->submission_state.guc_id_list, 2274 struct intel_context, 2275 guc_id.link); 2276 2277 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2278 GEM_BUG_ON(context_guc_id_invalid(cn)); 2279 GEM_BUG_ON(intel_context_is_child(cn)); 2280 GEM_BUG_ON(intel_context_is_parent(cn)); 2281 2282 list_del_init(&cn->guc_id.link); 2283 ce->guc_id.id = cn->guc_id.id; 2284 2285 spin_lock(&cn->guc_state.lock); 2286 clr_context_registered(cn); 2287 spin_unlock(&cn->guc_state.lock); 2288 2289 set_context_guc_id_invalid(cn); 2290 2291 #ifdef CONFIG_DRM_I915_SELFTEST 2292 guc->number_guc_id_stolen++; 2293 #endif 2294 2295 return 0; 2296 } else { 2297 return -EAGAIN; 2298 } 2299 } 2300 2301 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2302 { 2303 int ret; 2304 2305 lockdep_assert_held(&guc->submission_state.lock); 2306 GEM_BUG_ON(intel_context_is_child(ce)); 2307 2308 ret = new_guc_id(guc, ce); 2309 if (unlikely(ret < 0)) { 2310 if (intel_context_is_parent(ce)) 2311 return -ENOSPC; 2312 2313 ret = steal_guc_id(guc, ce); 2314 if (ret < 0) 2315 return ret; 2316 } 2317 2318 if (intel_context_is_parent(ce)) { 2319 struct intel_context *child; 2320 int i = 1; 2321 2322 for_each_child(ce, child) 2323 child->guc_id.id = ce->guc_id.id + i++; 2324 } 2325 2326 return 0; 2327 } 2328 2329 #define PIN_GUC_ID_TRIES 4 2330 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2331 { 2332 int ret = 0; 2333 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2334 2335 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2336 2337 try_again: 2338 spin_lock_irqsave(&guc->submission_state.lock, flags); 2339 2340 might_lock(&ce->guc_state.lock); 2341 2342 if (context_guc_id_invalid(ce)) { 2343 ret = assign_guc_id(guc, ce); 2344 if (ret) 2345 goto out_unlock; 2346 ret = 1; /* Indidcates newly assigned guc_id */ 2347 } 2348 if (!list_empty(&ce->guc_id.link)) 2349 list_del_init(&ce->guc_id.link); 2350 atomic_inc(&ce->guc_id.ref); 2351 2352 out_unlock: 2353 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2354 2355 /* 2356 * -EAGAIN indicates no guc_id are available, let's retire any 2357 * outstanding requests to see if that frees up a guc_id. If the first 2358 * retire didn't help, insert a sleep with the timeslice duration before 2359 * attempting to retire more requests. Double the sleep period each 2360 * subsequent pass before finally giving up. The sleep period has max of 2361 * 100ms and minimum of 1ms. 2362 */ 2363 if (ret == -EAGAIN && --tries) { 2364 if (PIN_GUC_ID_TRIES - tries > 1) { 2365 unsigned int timeslice_shifted = 2366 ce->engine->props.timeslice_duration_ms << 2367 (PIN_GUC_ID_TRIES - tries - 2); 2368 unsigned int max = min_t(unsigned int, 100, 2369 timeslice_shifted); 2370 2371 msleep(max_t(unsigned int, max, 1)); 2372 } 2373 intel_gt_retire_requests(guc_to_gt(guc)); 2374 goto try_again; 2375 } 2376 2377 return ret; 2378 } 2379 2380 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2381 { 2382 unsigned long flags; 2383 2384 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2385 GEM_BUG_ON(intel_context_is_child(ce)); 2386 2387 if (unlikely(context_guc_id_invalid(ce) || 2388 intel_context_is_parent(ce))) 2389 return; 2390 2391 spin_lock_irqsave(&guc->submission_state.lock, flags); 2392 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2393 !atomic_read(&ce->guc_id.ref)) 2394 list_add_tail(&ce->guc_id.link, 2395 &guc->submission_state.guc_id_list); 2396 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2397 } 2398 2399 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2400 struct intel_context *ce, 2401 u32 guc_id, 2402 u32 offset, 2403 bool loop) 2404 { 2405 struct intel_context *child; 2406 u32 action[4 + MAX_ENGINE_INSTANCE]; 2407 int len = 0; 2408 2409 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2410 2411 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2412 action[len++] = guc_id; 2413 action[len++] = ce->parallel.number_children + 1; 2414 action[len++] = offset; 2415 for_each_child(ce, child) { 2416 offset += sizeof(struct guc_lrc_desc_v69); 2417 action[len++] = offset; 2418 } 2419 2420 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2421 } 2422 2423 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2424 struct intel_context *ce, 2425 struct guc_ctxt_registration_info *info, 2426 bool loop) 2427 { 2428 struct intel_context *child; 2429 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2430 int len = 0; 2431 u32 next_id; 2432 2433 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2434 2435 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2436 action[len++] = info->flags; 2437 action[len++] = info->context_idx; 2438 action[len++] = info->engine_class; 2439 action[len++] = info->engine_submit_mask; 2440 action[len++] = info->wq_desc_lo; 2441 action[len++] = info->wq_desc_hi; 2442 action[len++] = info->wq_base_lo; 2443 action[len++] = info->wq_base_hi; 2444 action[len++] = info->wq_size; 2445 action[len++] = ce->parallel.number_children + 1; 2446 action[len++] = info->hwlrca_lo; 2447 action[len++] = info->hwlrca_hi; 2448 2449 next_id = info->context_idx + 1; 2450 for_each_child(ce, child) { 2451 GEM_BUG_ON(next_id++ != child->guc_id.id); 2452 2453 /* 2454 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2455 * only supports 32 bit currently. 2456 */ 2457 action[len++] = lower_32_bits(child->lrc.lrca); 2458 action[len++] = upper_32_bits(child->lrc.lrca); 2459 } 2460 2461 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2462 2463 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2464 } 2465 2466 static int __guc_action_register_context_v69(struct intel_guc *guc, 2467 u32 guc_id, 2468 u32 offset, 2469 bool loop) 2470 { 2471 u32 action[] = { 2472 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2473 guc_id, 2474 offset, 2475 }; 2476 2477 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2478 0, loop); 2479 } 2480 2481 static int __guc_action_register_context_v70(struct intel_guc *guc, 2482 struct guc_ctxt_registration_info *info, 2483 bool loop) 2484 { 2485 u32 action[] = { 2486 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2487 info->flags, 2488 info->context_idx, 2489 info->engine_class, 2490 info->engine_submit_mask, 2491 info->wq_desc_lo, 2492 info->wq_desc_hi, 2493 info->wq_base_lo, 2494 info->wq_base_hi, 2495 info->wq_size, 2496 info->hwlrca_lo, 2497 info->hwlrca_hi, 2498 }; 2499 2500 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2501 0, loop); 2502 } 2503 2504 static void prepare_context_registration_info_v69(struct intel_context *ce); 2505 static void prepare_context_registration_info_v70(struct intel_context *ce, 2506 struct guc_ctxt_registration_info *info); 2507 2508 static int 2509 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2510 { 2511 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2512 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2513 2514 prepare_context_registration_info_v69(ce); 2515 2516 if (intel_context_is_parent(ce)) 2517 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2518 offset, loop); 2519 else 2520 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2521 offset, loop); 2522 } 2523 2524 static int 2525 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2526 { 2527 struct guc_ctxt_registration_info info; 2528 2529 prepare_context_registration_info_v70(ce, &info); 2530 2531 if (intel_context_is_parent(ce)) 2532 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2533 else 2534 return __guc_action_register_context_v70(guc, &info, loop); 2535 } 2536 2537 static int register_context(struct intel_context *ce, bool loop) 2538 { 2539 struct intel_guc *guc = ce_to_guc(ce); 2540 int ret; 2541 2542 GEM_BUG_ON(intel_context_is_child(ce)); 2543 trace_intel_context_register(ce); 2544 2545 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2546 ret = register_context_v70(guc, ce, loop); 2547 else 2548 ret = register_context_v69(guc, ce, loop); 2549 2550 if (likely(!ret)) { 2551 unsigned long flags; 2552 2553 spin_lock_irqsave(&ce->guc_state.lock, flags); 2554 set_context_registered(ce); 2555 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2556 2557 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2558 guc_context_policy_init_v70(ce, loop); 2559 } 2560 2561 return ret; 2562 } 2563 2564 static int __guc_action_deregister_context(struct intel_guc *guc, 2565 u32 guc_id) 2566 { 2567 u32 action[] = { 2568 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2569 guc_id, 2570 }; 2571 2572 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2573 G2H_LEN_DW_DEREGISTER_CONTEXT, 2574 true); 2575 } 2576 2577 static int deregister_context(struct intel_context *ce, u32 guc_id) 2578 { 2579 struct intel_guc *guc = ce_to_guc(ce); 2580 2581 GEM_BUG_ON(intel_context_is_child(ce)); 2582 trace_intel_context_deregister(ce); 2583 2584 return __guc_action_deregister_context(guc, guc_id); 2585 } 2586 2587 static inline void clear_children_join_go_memory(struct intel_context *ce) 2588 { 2589 struct parent_scratch *ps = __get_parent_scratch(ce); 2590 int i; 2591 2592 ps->go.semaphore = 0; 2593 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2594 ps->join[i].semaphore = 0; 2595 } 2596 2597 static inline u32 get_children_go_value(struct intel_context *ce) 2598 { 2599 return __get_parent_scratch(ce)->go.semaphore; 2600 } 2601 2602 static inline u32 get_children_join_value(struct intel_context *ce, 2603 u8 child_index) 2604 { 2605 return __get_parent_scratch(ce)->join[child_index].semaphore; 2606 } 2607 2608 struct context_policy { 2609 u32 count; 2610 struct guc_update_context_policy h2g; 2611 }; 2612 2613 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2614 { 2615 size_t bytes = sizeof(policy->h2g.header) + 2616 (sizeof(policy->h2g.klv[0]) * policy->count); 2617 2618 return bytes / sizeof(u32); 2619 } 2620 2621 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2622 { 2623 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2624 policy->h2g.header.ctx_id = guc_id; 2625 policy->count = 0; 2626 } 2627 2628 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2629 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2630 { \ 2631 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2632 policy->h2g.klv[policy->count].kl = \ 2633 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2634 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2635 policy->h2g.klv[policy->count].value = data; \ 2636 policy->count++; \ 2637 } 2638 2639 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2640 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2641 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2642 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2643 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY) 2644 2645 #undef MAKE_CONTEXT_POLICY_ADD 2646 2647 static int __guc_context_set_context_policies(struct intel_guc *guc, 2648 struct context_policy *policy, 2649 bool loop) 2650 { 2651 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2652 __guc_context_policy_action_size(policy), 2653 0, loop); 2654 } 2655 2656 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2657 { 2658 struct intel_engine_cs *engine = ce->engine; 2659 struct intel_guc *guc = gt_to_guc(engine->gt); 2660 struct context_policy policy; 2661 u32 execution_quantum; 2662 u32 preemption_timeout; 2663 u32 slpc_ctx_freq_req = 0; 2664 unsigned long flags; 2665 int ret; 2666 2667 /* NB: For both of these, zero means disabled. */ 2668 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2669 execution_quantum)); 2670 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2671 preemption_timeout)); 2672 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2673 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2674 2675 if (ce->flags & BIT(CONTEXT_LOW_LATENCY)) 2676 slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE; 2677 2678 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2679 2680 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2681 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2682 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2683 __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req); 2684 2685 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2686 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2687 2688 ret = __guc_context_set_context_policies(guc, &policy, loop); 2689 2690 spin_lock_irqsave(&ce->guc_state.lock, flags); 2691 if (ret != 0) 2692 set_context_policy_required(ce); 2693 else 2694 clr_context_policy_required(ce); 2695 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2696 2697 return ret; 2698 } 2699 2700 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2701 struct guc_lrc_desc_v69 *desc) 2702 { 2703 desc->policy_flags = 0; 2704 2705 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2706 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2707 2708 /* NB: For both of these, zero means disabled. */ 2709 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2710 desc->execution_quantum)); 2711 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2712 desc->preemption_timeout)); 2713 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2714 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2715 } 2716 2717 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2718 { 2719 /* 2720 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2721 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2722 */ 2723 switch (prio) { 2724 default: 2725 MISSING_CASE(prio); 2726 fallthrough; 2727 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2728 return GEN12_CTX_PRIORITY_NORMAL; 2729 case GUC_CLIENT_PRIORITY_NORMAL: 2730 return GEN12_CTX_PRIORITY_LOW; 2731 case GUC_CLIENT_PRIORITY_HIGH: 2732 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2733 return GEN12_CTX_PRIORITY_HIGH; 2734 } 2735 } 2736 2737 static void prepare_context_registration_info_v69(struct intel_context *ce) 2738 { 2739 struct intel_engine_cs *engine = ce->engine; 2740 struct intel_guc *guc = gt_to_guc(engine->gt); 2741 u32 ctx_id = ce->guc_id.id; 2742 struct guc_lrc_desc_v69 *desc; 2743 struct intel_context *child; 2744 2745 GEM_BUG_ON(!engine->mask); 2746 2747 /* 2748 * Ensure LRC + CT vmas are is same region as write barrier is done 2749 * based on CT vma region. 2750 */ 2751 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2752 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2753 2754 desc = __get_lrc_desc_v69(guc, ctx_id); 2755 GEM_BUG_ON(!desc); 2756 desc->engine_class = engine_class_to_guc_class(engine->class); 2757 desc->engine_submit_mask = engine->logical_mask; 2758 desc->hw_context_desc = ce->lrc.lrca; 2759 desc->priority = ce->guc_state.prio; 2760 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2761 guc_context_policy_init_v69(engine, desc); 2762 2763 /* 2764 * If context is a parent, we need to register a process descriptor 2765 * describing a work queue and register all child contexts. 2766 */ 2767 if (intel_context_is_parent(ce)) { 2768 struct guc_process_desc_v69 *pdesc; 2769 2770 ce->parallel.guc.wqi_tail = 0; 2771 ce->parallel.guc.wqi_head = 0; 2772 2773 desc->process_desc = i915_ggtt_offset(ce->state) + 2774 __get_parent_scratch_offset(ce); 2775 desc->wq_addr = i915_ggtt_offset(ce->state) + 2776 __get_wq_offset(ce); 2777 desc->wq_size = WQ_SIZE; 2778 2779 pdesc = __get_process_desc_v69(ce); 2780 memset(pdesc, 0, sizeof(*(pdesc))); 2781 pdesc->stage_id = ce->guc_id.id; 2782 pdesc->wq_base_addr = desc->wq_addr; 2783 pdesc->wq_size_bytes = desc->wq_size; 2784 pdesc->wq_status = WQ_STATUS_ACTIVE; 2785 2786 ce->parallel.guc.wq_head = &pdesc->head; 2787 ce->parallel.guc.wq_tail = &pdesc->tail; 2788 ce->parallel.guc.wq_status = &pdesc->wq_status; 2789 2790 for_each_child(ce, child) { 2791 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2792 2793 desc->engine_class = 2794 engine_class_to_guc_class(engine->class); 2795 desc->hw_context_desc = child->lrc.lrca; 2796 desc->priority = ce->guc_state.prio; 2797 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2798 guc_context_policy_init_v69(engine, desc); 2799 } 2800 2801 clear_children_join_go_memory(ce); 2802 } 2803 } 2804 2805 static void prepare_context_registration_info_v70(struct intel_context *ce, 2806 struct guc_ctxt_registration_info *info) 2807 { 2808 struct intel_engine_cs *engine = ce->engine; 2809 struct intel_guc *guc = gt_to_guc(engine->gt); 2810 u32 ctx_id = ce->guc_id.id; 2811 2812 GEM_BUG_ON(!engine->mask); 2813 2814 /* 2815 * Ensure LRC + CT vmas are is same region as write barrier is done 2816 * based on CT vma region. 2817 */ 2818 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2819 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2820 2821 memset(info, 0, sizeof(*info)); 2822 info->context_idx = ctx_id; 2823 info->engine_class = engine_class_to_guc_class(engine->class); 2824 info->engine_submit_mask = engine->logical_mask; 2825 /* 2826 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2827 * only supports 32 bit currently. 2828 */ 2829 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2830 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2831 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2832 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2833 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2834 2835 /* 2836 * If context is a parent, we need to register a process descriptor 2837 * describing a work queue and register all child contexts. 2838 */ 2839 if (intel_context_is_parent(ce)) { 2840 struct guc_sched_wq_desc *wq_desc; 2841 u64 wq_desc_offset, wq_base_offset; 2842 2843 ce->parallel.guc.wqi_tail = 0; 2844 ce->parallel.guc.wqi_head = 0; 2845 2846 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) + 2847 __get_parent_scratch_offset(ce); 2848 wq_base_offset = (u64)i915_ggtt_offset(ce->state) + 2849 __get_wq_offset(ce); 2850 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2851 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2852 info->wq_base_lo = lower_32_bits(wq_base_offset); 2853 info->wq_base_hi = upper_32_bits(wq_base_offset); 2854 info->wq_size = WQ_SIZE; 2855 2856 wq_desc = __get_wq_desc_v70(ce); 2857 memset(wq_desc, 0, sizeof(*wq_desc)); 2858 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2859 2860 ce->parallel.guc.wq_head = &wq_desc->head; 2861 ce->parallel.guc.wq_tail = &wq_desc->tail; 2862 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2863 2864 clear_children_join_go_memory(ce); 2865 } 2866 } 2867 2868 static int try_context_registration(struct intel_context *ce, bool loop) 2869 { 2870 struct intel_engine_cs *engine = ce->engine; 2871 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2872 struct intel_guc *guc = gt_to_guc(engine->gt); 2873 intel_wakeref_t wakeref; 2874 u32 ctx_id = ce->guc_id.id; 2875 bool context_registered; 2876 int ret = 0; 2877 2878 GEM_BUG_ON(!sched_state_is_init(ce)); 2879 2880 context_registered = ctx_id_mapped(guc, ctx_id); 2881 2882 clr_ctx_id_mapping(guc, ctx_id); 2883 set_ctx_id_mapping(guc, ctx_id, ce); 2884 2885 /* 2886 * The context_lookup xarray is used to determine if the hardware 2887 * context is currently registered. There are two cases in which it 2888 * could be registered either the guc_id has been stolen from another 2889 * context or the lrc descriptor address of this context has changed. In 2890 * either case the context needs to be deregistered with the GuC before 2891 * registering this context. 2892 */ 2893 if (context_registered) { 2894 bool disabled; 2895 unsigned long flags; 2896 2897 trace_intel_context_steal_guc_id(ce); 2898 GEM_BUG_ON(!loop); 2899 2900 /* Seal race with Reset */ 2901 spin_lock_irqsave(&ce->guc_state.lock, flags); 2902 disabled = submission_disabled(guc); 2903 if (likely(!disabled)) { 2904 set_context_wait_for_deregister_to_register(ce); 2905 intel_context_get(ce); 2906 } 2907 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2908 if (unlikely(disabled)) { 2909 clr_ctx_id_mapping(guc, ctx_id); 2910 return 0; /* Will get registered later */ 2911 } 2912 2913 /* 2914 * If stealing the guc_id, this ce has the same guc_id as the 2915 * context whose guc_id was stolen. 2916 */ 2917 with_intel_runtime_pm(runtime_pm, wakeref) 2918 ret = deregister_context(ce, ce->guc_id.id); 2919 if (unlikely(ret == -ENODEV)) 2920 ret = 0; /* Will get registered later */ 2921 } else { 2922 with_intel_runtime_pm(runtime_pm, wakeref) 2923 ret = register_context(ce, loop); 2924 if (unlikely(ret == -EBUSY)) { 2925 clr_ctx_id_mapping(guc, ctx_id); 2926 } else if (unlikely(ret == -ENODEV)) { 2927 clr_ctx_id_mapping(guc, ctx_id); 2928 ret = 0; /* Will get registered later */ 2929 } 2930 } 2931 2932 return ret; 2933 } 2934 2935 static int __guc_context_pre_pin(struct intel_context *ce, 2936 struct intel_engine_cs *engine, 2937 struct i915_gem_ww_ctx *ww, 2938 void **vaddr) 2939 { 2940 return lrc_pre_pin(ce, engine, ww, vaddr); 2941 } 2942 2943 static int __guc_context_pin(struct intel_context *ce, 2944 struct intel_engine_cs *engine, 2945 void *vaddr) 2946 { 2947 if (i915_ggtt_offset(ce->state) != 2948 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2949 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2950 2951 /* 2952 * GuC context gets pinned in guc_request_alloc. See that function for 2953 * explaination of why. 2954 */ 2955 2956 return lrc_pin(ce, engine, vaddr); 2957 } 2958 2959 static int guc_context_pre_pin(struct intel_context *ce, 2960 struct i915_gem_ww_ctx *ww, 2961 void **vaddr) 2962 { 2963 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2964 } 2965 2966 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2967 { 2968 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2969 2970 if (likely(!ret && !intel_context_is_barrier(ce))) 2971 intel_engine_pm_get(ce->engine); 2972 2973 return ret; 2974 } 2975 2976 static void guc_context_unpin(struct intel_context *ce) 2977 { 2978 struct intel_guc *guc = ce_to_guc(ce); 2979 2980 __guc_context_update_stats(ce); 2981 unpin_guc_id(guc, ce); 2982 lrc_unpin(ce); 2983 2984 if (likely(!intel_context_is_barrier(ce))) 2985 intel_engine_pm_put_async(ce->engine); 2986 } 2987 2988 static void guc_context_post_unpin(struct intel_context *ce) 2989 { 2990 lrc_post_unpin(ce); 2991 } 2992 2993 static void __guc_context_sched_enable(struct intel_guc *guc, 2994 struct intel_context *ce) 2995 { 2996 u32 action[] = { 2997 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2998 ce->guc_id.id, 2999 GUC_CONTEXT_ENABLE 3000 }; 3001 3002 trace_intel_context_sched_enable(ce); 3003 3004 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 3005 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 3006 } 3007 3008 static void __guc_context_sched_disable(struct intel_guc *guc, 3009 struct intel_context *ce, 3010 u16 guc_id) 3011 { 3012 u32 action[] = { 3013 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 3014 guc_id, /* ce->guc_id.id not stable */ 3015 GUC_CONTEXT_DISABLE 3016 }; 3017 3018 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 3019 3020 GEM_BUG_ON(intel_context_is_child(ce)); 3021 trace_intel_context_sched_disable(ce); 3022 3023 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 3024 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 3025 } 3026 3027 static void guc_blocked_fence_complete(struct intel_context *ce) 3028 { 3029 lockdep_assert_held(&ce->guc_state.lock); 3030 3031 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 3032 i915_sw_fence_complete(&ce->guc_state.blocked); 3033 } 3034 3035 static void guc_blocked_fence_reinit(struct intel_context *ce) 3036 { 3037 lockdep_assert_held(&ce->guc_state.lock); 3038 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 3039 3040 /* 3041 * This fence is always complete unless a pending schedule disable is 3042 * outstanding. We arm the fence here and complete it when we receive 3043 * the pending schedule disable complete message. 3044 */ 3045 i915_sw_fence_fini(&ce->guc_state.blocked); 3046 i915_sw_fence_reinit(&ce->guc_state.blocked); 3047 i915_sw_fence_await(&ce->guc_state.blocked); 3048 i915_sw_fence_commit(&ce->guc_state.blocked); 3049 } 3050 3051 static u16 prep_context_pending_disable(struct intel_context *ce) 3052 { 3053 lockdep_assert_held(&ce->guc_state.lock); 3054 3055 set_context_pending_disable(ce); 3056 clr_context_enabled(ce); 3057 guc_blocked_fence_reinit(ce); 3058 intel_context_get(ce); 3059 3060 return ce->guc_id.id; 3061 } 3062 3063 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 3064 { 3065 struct intel_guc *guc = ce_to_guc(ce); 3066 unsigned long flags; 3067 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 3068 intel_wakeref_t wakeref; 3069 u16 guc_id; 3070 bool enabled; 3071 3072 GEM_BUG_ON(intel_context_is_child(ce)); 3073 3074 spin_lock_irqsave(&ce->guc_state.lock, flags); 3075 3076 incr_context_blocked(ce); 3077 3078 enabled = context_enabled(ce); 3079 if (unlikely(!enabled || submission_disabled(guc))) { 3080 if (enabled) 3081 clr_context_enabled(ce); 3082 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3083 return &ce->guc_state.blocked; 3084 } 3085 3086 /* 3087 * We add +2 here as the schedule disable complete CTB handler calls 3088 * intel_context_sched_disable_unpin (-2 to pin_count). 3089 */ 3090 atomic_add(2, &ce->pin_count); 3091 3092 guc_id = prep_context_pending_disable(ce); 3093 3094 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3095 3096 with_intel_runtime_pm(runtime_pm, wakeref) 3097 __guc_context_sched_disable(guc, ce, guc_id); 3098 3099 return &ce->guc_state.blocked; 3100 } 3101 3102 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 3103 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 3104 #define SCHED_STATE_NO_UNBLOCK \ 3105 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 3106 SCHED_STATE_PENDING_DISABLE | \ 3107 SCHED_STATE_BANNED) 3108 3109 static bool context_cant_unblock(struct intel_context *ce) 3110 { 3111 lockdep_assert_held(&ce->guc_state.lock); 3112 3113 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 3114 context_guc_id_invalid(ce) || 3115 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 3116 !intel_context_is_pinned(ce); 3117 } 3118 3119 static void guc_context_unblock(struct intel_context *ce) 3120 { 3121 struct intel_guc *guc = ce_to_guc(ce); 3122 unsigned long flags; 3123 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 3124 intel_wakeref_t wakeref; 3125 bool enable; 3126 3127 GEM_BUG_ON(context_enabled(ce)); 3128 GEM_BUG_ON(intel_context_is_child(ce)); 3129 3130 spin_lock_irqsave(&ce->guc_state.lock, flags); 3131 3132 if (unlikely(submission_disabled(guc) || 3133 context_cant_unblock(ce))) { 3134 enable = false; 3135 } else { 3136 enable = true; 3137 set_context_pending_enable(ce); 3138 set_context_enabled(ce); 3139 intel_context_get(ce); 3140 } 3141 3142 decr_context_blocked(ce); 3143 3144 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3145 3146 if (enable) { 3147 with_intel_runtime_pm(runtime_pm, wakeref) 3148 __guc_context_sched_enable(guc, ce); 3149 } 3150 } 3151 3152 static void guc_context_cancel_request(struct intel_context *ce, 3153 struct i915_request *rq) 3154 { 3155 struct intel_context *block_context = 3156 request_to_scheduling_context(rq); 3157 3158 if (i915_sw_fence_signaled(&rq->submit)) { 3159 struct i915_sw_fence *fence; 3160 3161 intel_context_get(ce); 3162 fence = guc_context_block(block_context); 3163 i915_sw_fence_wait(fence); 3164 if (!i915_request_completed(rq)) { 3165 __i915_request_skip(rq); 3166 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 3167 true); 3168 } 3169 3170 guc_context_unblock(block_context); 3171 intel_context_put(ce); 3172 } 3173 } 3174 3175 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 3176 u16 guc_id, 3177 u32 preemption_timeout) 3178 { 3179 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 3180 struct context_policy policy; 3181 3182 __guc_context_policy_start_klv(&policy, guc_id); 3183 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 3184 __guc_context_set_context_policies(guc, &policy, true); 3185 } else { 3186 u32 action[] = { 3187 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 3188 guc_id, 3189 preemption_timeout 3190 }; 3191 3192 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3193 } 3194 } 3195 3196 static void 3197 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 3198 unsigned int preempt_timeout_ms) 3199 { 3200 struct intel_guc *guc = ce_to_guc(ce); 3201 struct intel_runtime_pm *runtime_pm = 3202 &ce->engine->gt->i915->runtime_pm; 3203 intel_wakeref_t wakeref; 3204 unsigned long flags; 3205 3206 GEM_BUG_ON(intel_context_is_child(ce)); 3207 3208 guc_flush_submissions(guc); 3209 3210 spin_lock_irqsave(&ce->guc_state.lock, flags); 3211 set_context_banned(ce); 3212 3213 if (submission_disabled(guc) || 3214 (!context_enabled(ce) && !context_pending_disable(ce))) { 3215 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3216 3217 guc_cancel_context_requests(ce); 3218 intel_engine_signal_breadcrumbs(ce->engine); 3219 } else if (!context_pending_disable(ce)) { 3220 u16 guc_id; 3221 3222 /* 3223 * We add +2 here as the schedule disable complete CTB handler 3224 * calls intel_context_sched_disable_unpin (-2 to pin_count). 3225 */ 3226 atomic_add(2, &ce->pin_count); 3227 3228 guc_id = prep_context_pending_disable(ce); 3229 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3230 3231 /* 3232 * In addition to disabling scheduling, set the preemption 3233 * timeout to the minimum value (1 us) so the banned context 3234 * gets kicked off the HW ASAP. 3235 */ 3236 with_intel_runtime_pm(runtime_pm, wakeref) { 3237 __guc_context_set_preemption_timeout(guc, guc_id, 3238 preempt_timeout_ms); 3239 __guc_context_sched_disable(guc, ce, guc_id); 3240 } 3241 } else { 3242 if (!context_guc_id_invalid(ce)) 3243 with_intel_runtime_pm(runtime_pm, wakeref) 3244 __guc_context_set_preemption_timeout(guc, 3245 ce->guc_id.id, 3246 preempt_timeout_ms); 3247 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3248 } 3249 } 3250 3251 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, 3252 unsigned long flags) 3253 __releases(ce->guc_state.lock) 3254 { 3255 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3256 intel_wakeref_t wakeref; 3257 u16 guc_id; 3258 3259 lockdep_assert_held(&ce->guc_state.lock); 3260 guc_id = prep_context_pending_disable(ce); 3261 3262 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3263 3264 with_intel_runtime_pm(runtime_pm, wakeref) 3265 __guc_context_sched_disable(guc, ce, guc_id); 3266 } 3267 3268 static bool bypass_sched_disable(struct intel_guc *guc, 3269 struct intel_context *ce) 3270 { 3271 lockdep_assert_held(&ce->guc_state.lock); 3272 GEM_BUG_ON(intel_context_is_child(ce)); 3273 3274 if (submission_disabled(guc) || context_guc_id_invalid(ce) || 3275 !ctx_id_mapped(guc, ce->guc_id.id)) { 3276 clr_context_enabled(ce); 3277 return true; 3278 } 3279 3280 return !context_enabled(ce); 3281 } 3282 3283 static void __delay_sched_disable(struct work_struct *wrk) 3284 { 3285 struct intel_context *ce = 3286 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); 3287 struct intel_guc *guc = ce_to_guc(ce); 3288 unsigned long flags; 3289 3290 spin_lock_irqsave(&ce->guc_state.lock, flags); 3291 3292 if (bypass_sched_disable(guc, ce)) { 3293 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3294 intel_context_sched_disable_unpin(ce); 3295 } else { 3296 do_sched_disable(guc, ce, flags); 3297 } 3298 } 3299 3300 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) 3301 { 3302 /* 3303 * parent contexts are perma-pinned, if we are unpinning do schedule 3304 * disable immediately. 3305 */ 3306 if (intel_context_is_parent(ce)) 3307 return true; 3308 3309 /* 3310 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. 3311 */ 3312 return guc->submission_state.guc_ids_in_use > 3313 guc->submission_state.sched_disable_gucid_threshold; 3314 } 3315 3316 static void guc_context_sched_disable(struct intel_context *ce) 3317 { 3318 struct intel_guc *guc = ce_to_guc(ce); 3319 u64 delay = guc->submission_state.sched_disable_delay_ms; 3320 unsigned long flags; 3321 3322 spin_lock_irqsave(&ce->guc_state.lock, flags); 3323 3324 if (bypass_sched_disable(guc, ce)) { 3325 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3326 intel_context_sched_disable_unpin(ce); 3327 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && 3328 delay) { 3329 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3330 mod_delayed_work(system_unbound_wq, 3331 &ce->guc_state.sched_disable_delay_work, 3332 msecs_to_jiffies(delay)); 3333 } else { 3334 do_sched_disable(guc, ce, flags); 3335 } 3336 } 3337 3338 static void guc_context_close(struct intel_context *ce) 3339 { 3340 unsigned long flags; 3341 3342 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 3343 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) 3344 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); 3345 3346 spin_lock_irqsave(&ce->guc_state.lock, flags); 3347 set_context_close_done(ce); 3348 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3349 } 3350 3351 static inline int guc_lrc_desc_unpin(struct intel_context *ce) 3352 { 3353 struct intel_guc *guc = ce_to_guc(ce); 3354 struct intel_gt *gt = guc_to_gt(guc); 3355 unsigned long flags; 3356 bool disabled; 3357 int ret; 3358 3359 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3360 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3361 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3362 GEM_BUG_ON(context_enabled(ce)); 3363 3364 /* Seal race with Reset */ 3365 spin_lock_irqsave(&ce->guc_state.lock, flags); 3366 disabled = submission_disabled(guc); 3367 if (likely(!disabled)) { 3368 /* 3369 * Take a gt-pm ref and change context state to be destroyed. 3370 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back 3371 */ 3372 __intel_gt_pm_get(gt); 3373 set_context_destroyed(ce); 3374 clr_context_registered(ce); 3375 } 3376 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3377 3378 if (unlikely(disabled)) { 3379 release_guc_id(guc, ce); 3380 __guc_context_destroy(ce); 3381 return 0; 3382 } 3383 3384 /* 3385 * GuC is active, lets destroy this context, but at this point we can still be racing 3386 * with suspend, so we undo everything if the H2G fails in deregister_context so 3387 * that GuC reset will find this context during clean up. 3388 */ 3389 ret = deregister_context(ce, ce->guc_id.id); 3390 if (ret) { 3391 spin_lock(&ce->guc_state.lock); 3392 set_context_registered(ce); 3393 clr_context_destroyed(ce); 3394 spin_unlock(&ce->guc_state.lock); 3395 /* 3396 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements 3397 * the wakeref immediately but per function spec usage call this after unlock. 3398 */ 3399 intel_wakeref_put_async(>->wakeref); 3400 } 3401 3402 return ret; 3403 } 3404 3405 static void __guc_context_destroy(struct intel_context *ce) 3406 { 3407 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3408 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3409 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3410 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3411 3412 lrc_fini(ce); 3413 intel_context_fini(ce); 3414 3415 if (intel_engine_is_virtual(ce->engine)) { 3416 struct guc_virtual_engine *ve = 3417 container_of(ce, typeof(*ve), context); 3418 3419 if (ve->base.breadcrumbs) 3420 intel_breadcrumbs_put(ve->base.breadcrumbs); 3421 3422 kfree(ve); 3423 } else { 3424 intel_context_free(ce); 3425 } 3426 } 3427 3428 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3429 { 3430 struct intel_context *ce; 3431 unsigned long flags; 3432 3433 GEM_BUG_ON(!submission_disabled(guc) && 3434 guc_submission_initialized(guc)); 3435 3436 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3437 spin_lock_irqsave(&guc->submission_state.lock, flags); 3438 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3439 struct intel_context, 3440 destroyed_link); 3441 if (ce) 3442 list_del_init(&ce->destroyed_link); 3443 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3444 3445 if (!ce) 3446 break; 3447 3448 release_guc_id(guc, ce); 3449 __guc_context_destroy(ce); 3450 } 3451 } 3452 3453 static void deregister_destroyed_contexts(struct intel_guc *guc) 3454 { 3455 struct intel_context *ce; 3456 unsigned long flags; 3457 3458 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3459 spin_lock_irqsave(&guc->submission_state.lock, flags); 3460 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3461 struct intel_context, 3462 destroyed_link); 3463 if (ce) 3464 list_del_init(&ce->destroyed_link); 3465 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3466 3467 if (!ce) 3468 break; 3469 3470 if (guc_lrc_desc_unpin(ce)) { 3471 /* 3472 * This means GuC's CT link severed mid-way which could happen 3473 * in suspend-resume corner cases. In this case, put the 3474 * context back into the destroyed_contexts list which will 3475 * get picked up on the next context deregistration event or 3476 * purged in a GuC sanitization event (reset/unload/wedged/...). 3477 */ 3478 spin_lock_irqsave(&guc->submission_state.lock, flags); 3479 list_add_tail(&ce->destroyed_link, 3480 &guc->submission_state.destroyed_contexts); 3481 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3482 /* Bail now since the list might never be emptied if h2gs fail */ 3483 break; 3484 } 3485 3486 } 3487 } 3488 3489 static void destroyed_worker_func(struct work_struct *w) 3490 { 3491 struct intel_guc *guc = container_of(w, struct intel_guc, 3492 submission_state.destroyed_worker); 3493 struct intel_gt *gt = guc_to_gt(guc); 3494 intel_wakeref_t wakeref; 3495 3496 /* 3497 * In rare cases we can get here via async context-free fence-signals that 3498 * come very late in suspend flow or very early in resume flows. In these 3499 * cases, GuC won't be ready but just skipping it here is fine as these 3500 * pending-destroy-contexts get destroyed totally at GuC reset time at the 3501 * end of suspend.. OR.. this worker can be picked up later on the next 3502 * context destruction trigger after resume-completes 3503 */ 3504 if (!intel_guc_is_ready(guc)) 3505 return; 3506 3507 with_intel_gt_pm(gt, wakeref) 3508 deregister_destroyed_contexts(guc); 3509 } 3510 3511 static void guc_context_destroy(struct kref *kref) 3512 { 3513 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3514 struct intel_guc *guc = ce_to_guc(ce); 3515 unsigned long flags; 3516 bool destroy; 3517 3518 /* 3519 * If the guc_id is invalid this context has been stolen and we can free 3520 * it immediately. Also can be freed immediately if the context is not 3521 * registered with the GuC or the GuC is in the middle of a reset. 3522 */ 3523 spin_lock_irqsave(&guc->submission_state.lock, flags); 3524 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3525 !ctx_id_mapped(guc, ce->guc_id.id); 3526 if (likely(!destroy)) { 3527 if (!list_empty(&ce->guc_id.link)) 3528 list_del_init(&ce->guc_id.link); 3529 list_add_tail(&ce->destroyed_link, 3530 &guc->submission_state.destroyed_contexts); 3531 } else { 3532 __release_guc_id(guc, ce); 3533 } 3534 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3535 if (unlikely(destroy)) { 3536 __guc_context_destroy(ce); 3537 return; 3538 } 3539 3540 /* 3541 * We use a worker to issue the H2G to deregister the context as we can 3542 * take the GT PM for the first time which isn't allowed from an atomic 3543 * context. 3544 */ 3545 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3546 } 3547 3548 static int guc_context_alloc(struct intel_context *ce) 3549 { 3550 return lrc_alloc(ce, ce->engine); 3551 } 3552 3553 static void __guc_context_set_prio(struct intel_guc *guc, 3554 struct intel_context *ce) 3555 { 3556 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 3557 struct context_policy policy; 3558 3559 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3560 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3561 __guc_context_set_context_policies(guc, &policy, true); 3562 } else { 3563 u32 action[] = { 3564 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3565 ce->guc_id.id, 3566 ce->guc_state.prio, 3567 }; 3568 3569 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3570 } 3571 } 3572 3573 static void guc_context_set_prio(struct intel_guc *guc, 3574 struct intel_context *ce, 3575 u8 prio) 3576 { 3577 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3578 prio > GUC_CLIENT_PRIORITY_NORMAL); 3579 lockdep_assert_held(&ce->guc_state.lock); 3580 3581 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3582 !context_registered(ce)) { 3583 ce->guc_state.prio = prio; 3584 return; 3585 } 3586 3587 ce->guc_state.prio = prio; 3588 __guc_context_set_prio(guc, ce); 3589 3590 trace_intel_context_set_prio(ce); 3591 } 3592 3593 static inline u8 map_i915_prio_to_guc_prio(int prio) 3594 { 3595 if (prio == I915_PRIORITY_NORMAL) 3596 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3597 else if (prio < I915_PRIORITY_NORMAL) 3598 return GUC_CLIENT_PRIORITY_NORMAL; 3599 else if (prio < I915_PRIORITY_DISPLAY) 3600 return GUC_CLIENT_PRIORITY_HIGH; 3601 else 3602 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3603 } 3604 3605 static inline void add_context_inflight_prio(struct intel_context *ce, 3606 u8 guc_prio) 3607 { 3608 lockdep_assert_held(&ce->guc_state.lock); 3609 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3610 3611 ++ce->guc_state.prio_count[guc_prio]; 3612 3613 /* Overflow protection */ 3614 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3615 } 3616 3617 static inline void sub_context_inflight_prio(struct intel_context *ce, 3618 u8 guc_prio) 3619 { 3620 lockdep_assert_held(&ce->guc_state.lock); 3621 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3622 3623 /* Underflow protection */ 3624 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3625 3626 --ce->guc_state.prio_count[guc_prio]; 3627 } 3628 3629 static inline void update_context_prio(struct intel_context *ce) 3630 { 3631 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3632 int i; 3633 3634 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3635 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3636 3637 lockdep_assert_held(&ce->guc_state.lock); 3638 3639 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3640 if (ce->guc_state.prio_count[i]) { 3641 guc_context_set_prio(guc, ce, i); 3642 break; 3643 } 3644 } 3645 } 3646 3647 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3648 { 3649 /* Lower value is higher priority */ 3650 return new_guc_prio < old_guc_prio; 3651 } 3652 3653 static void add_to_context(struct i915_request *rq) 3654 { 3655 struct intel_context *ce = request_to_scheduling_context(rq); 3656 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3657 3658 GEM_BUG_ON(intel_context_is_child(ce)); 3659 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3660 3661 spin_lock(&ce->guc_state.lock); 3662 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3663 3664 if (rq->guc_prio == GUC_PRIO_INIT) { 3665 rq->guc_prio = new_guc_prio; 3666 add_context_inflight_prio(ce, rq->guc_prio); 3667 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3668 sub_context_inflight_prio(ce, rq->guc_prio); 3669 rq->guc_prio = new_guc_prio; 3670 add_context_inflight_prio(ce, rq->guc_prio); 3671 } 3672 update_context_prio(ce); 3673 3674 spin_unlock(&ce->guc_state.lock); 3675 } 3676 3677 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3678 { 3679 lockdep_assert_held(&ce->guc_state.lock); 3680 3681 if (rq->guc_prio != GUC_PRIO_INIT && 3682 rq->guc_prio != GUC_PRIO_FINI) { 3683 sub_context_inflight_prio(ce, rq->guc_prio); 3684 update_context_prio(ce); 3685 } 3686 rq->guc_prio = GUC_PRIO_FINI; 3687 } 3688 3689 static void remove_from_context(struct i915_request *rq) 3690 { 3691 struct intel_context *ce = request_to_scheduling_context(rq); 3692 3693 GEM_BUG_ON(intel_context_is_child(ce)); 3694 3695 spin_lock_irq(&ce->guc_state.lock); 3696 3697 list_del_init(&rq->sched.link); 3698 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3699 3700 /* Prevent further __await_execution() registering a cb, then flush */ 3701 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3702 3703 guc_prio_fini(rq, ce); 3704 3705 spin_unlock_irq(&ce->guc_state.lock); 3706 3707 atomic_dec(&ce->guc_id.ref); 3708 i915_request_notify_execute_cb_imm(rq); 3709 } 3710 3711 static const struct intel_context_ops guc_context_ops = { 3712 .flags = COPS_RUNTIME_CYCLES, 3713 .alloc = guc_context_alloc, 3714 3715 .close = guc_context_close, 3716 3717 .pre_pin = guc_context_pre_pin, 3718 .pin = guc_context_pin, 3719 .unpin = guc_context_unpin, 3720 .post_unpin = guc_context_post_unpin, 3721 3722 .revoke = guc_context_revoke, 3723 3724 .cancel_request = guc_context_cancel_request, 3725 3726 .enter = intel_context_enter_engine, 3727 .exit = intel_context_exit_engine, 3728 3729 .sched_disable = guc_context_sched_disable, 3730 3731 .update_stats = guc_context_update_stats, 3732 3733 .reset = lrc_reset, 3734 .destroy = guc_context_destroy, 3735 3736 .create_virtual = guc_create_virtual, 3737 .create_parallel = guc_create_parallel, 3738 }; 3739 3740 static void submit_work_cb(struct irq_work *wrk) 3741 { 3742 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3743 3744 might_lock(&rq->engine->sched_engine->lock); 3745 i915_sw_fence_complete(&rq->submit); 3746 } 3747 3748 static void __guc_signal_context_fence(struct intel_context *ce) 3749 { 3750 struct i915_request *rq, *rn; 3751 3752 lockdep_assert_held(&ce->guc_state.lock); 3753 3754 if (!list_empty(&ce->guc_state.fences)) 3755 trace_intel_context_fence_release(ce); 3756 3757 /* 3758 * Use an IRQ to ensure locking order of sched_engine->lock -> 3759 * ce->guc_state.lock is preserved. 3760 */ 3761 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3762 guc_fence_link) { 3763 list_del(&rq->guc_fence_link); 3764 irq_work_queue(&rq->submit_work); 3765 } 3766 3767 INIT_LIST_HEAD(&ce->guc_state.fences); 3768 } 3769 3770 static void guc_signal_context_fence(struct intel_context *ce) 3771 { 3772 unsigned long flags; 3773 3774 GEM_BUG_ON(intel_context_is_child(ce)); 3775 3776 spin_lock_irqsave(&ce->guc_state.lock, flags); 3777 clr_context_wait_for_deregister_to_register(ce); 3778 __guc_signal_context_fence(ce); 3779 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3780 } 3781 3782 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3783 { 3784 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3785 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3786 !submission_disabled(ce_to_guc(ce)); 3787 } 3788 3789 static void guc_context_init(struct intel_context *ce) 3790 { 3791 const struct i915_gem_context *ctx; 3792 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3793 3794 rcu_read_lock(); 3795 ctx = rcu_dereference(ce->gem_context); 3796 if (ctx) 3797 prio = ctx->sched.priority; 3798 rcu_read_unlock(); 3799 3800 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3801 3802 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, 3803 __delay_sched_disable); 3804 3805 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3806 } 3807 3808 static int guc_request_alloc(struct i915_request *rq) 3809 { 3810 struct intel_context *ce = request_to_scheduling_context(rq); 3811 struct intel_guc *guc = ce_to_guc(ce); 3812 unsigned long flags; 3813 int ret; 3814 3815 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3816 3817 /* 3818 * Flush enough space to reduce the likelihood of waiting after 3819 * we start building the request - in which case we will just 3820 * have to repeat work. 3821 */ 3822 rq->reserved_space += GUC_REQUEST_SIZE; 3823 3824 /* 3825 * Note that after this point, we have committed to using 3826 * this request as it is being used to both track the 3827 * state of engine initialisation and liveness of the 3828 * golden renderstate above. Think twice before you try 3829 * to cancel/unwind this request now. 3830 */ 3831 3832 /* Unconditionally invalidate GPU caches and TLBs. */ 3833 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3834 if (ret) 3835 return ret; 3836 3837 rq->reserved_space -= GUC_REQUEST_SIZE; 3838 3839 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3840 guc_context_init(ce); 3841 3842 /* 3843 * If the context gets closed while the execbuf is ongoing, the context 3844 * close code will race with the below code to cancel the delayed work. 3845 * If the context close wins the race and cancels the work, it will 3846 * immediately call the sched disable (see guc_context_close), so there 3847 * is a chance we can get past this check while the sched_disable code 3848 * is being executed. To make sure that code completes before we check 3849 * the status further down, we wait for the close process to complete. 3850 * Else, this code path could send a request down thinking that the 3851 * context is still in a schedule-enable mode while the GuC ends up 3852 * dropping the request completely because the disable did go from the 3853 * context_close path right to GuC just prior. In the event the CT is 3854 * full, we could potentially need to wait up to 1.5 seconds. 3855 */ 3856 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) 3857 intel_context_sched_disable_unpin(ce); 3858 else if (intel_context_is_closed(ce)) 3859 if (wait_for(context_close_done(ce), 1500)) 3860 guc_warn(guc, "timed out waiting on context sched close before realloc\n"); 3861 /* 3862 * Call pin_guc_id here rather than in the pinning step as with 3863 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3864 * guc_id and creating horrible race conditions. This is especially bad 3865 * when guc_id are being stolen due to over subscription. By the time 3866 * this function is reached, it is guaranteed that the guc_id will be 3867 * persistent until the generated request is retired. Thus, sealing these 3868 * race conditions. It is still safe to fail here if guc_id are 3869 * exhausted and return -EAGAIN to the user indicating that they can try 3870 * again in the future. 3871 * 3872 * There is no need for a lock here as the timeline mutex ensures at 3873 * most one context can be executing this code path at once. The 3874 * guc_id_ref is incremented once for every request in flight and 3875 * decremented on each retire. When it is zero, a lock around the 3876 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3877 */ 3878 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3879 goto out; 3880 3881 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3882 if (unlikely(ret < 0)) 3883 return ret; 3884 if (context_needs_register(ce, !!ret)) { 3885 ret = try_context_registration(ce, true); 3886 if (unlikely(ret)) { /* unwind */ 3887 if (ret == -EPIPE) { 3888 disable_submission(guc); 3889 goto out; /* GPU will be reset */ 3890 } 3891 atomic_dec(&ce->guc_id.ref); 3892 unpin_guc_id(guc, ce); 3893 return ret; 3894 } 3895 } 3896 3897 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3898 3899 out: 3900 /* 3901 * We block all requests on this context if a G2H is pending for a 3902 * schedule disable or context deregistration as the GuC will fail a 3903 * schedule enable or context registration if either G2H is pending 3904 * respectfully. Once a G2H returns, the fence is released that is 3905 * blocking these requests (see guc_signal_context_fence). 3906 */ 3907 spin_lock_irqsave(&ce->guc_state.lock, flags); 3908 if (context_wait_for_deregister_to_register(ce) || 3909 context_pending_disable(ce)) { 3910 init_irq_work(&rq->submit_work, submit_work_cb); 3911 i915_sw_fence_await(&rq->submit); 3912 3913 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3914 } 3915 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3916 3917 return 0; 3918 } 3919 3920 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3921 struct i915_gem_ww_ctx *ww, 3922 void **vaddr) 3923 { 3924 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3925 3926 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3927 } 3928 3929 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3930 { 3931 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3932 int ret = __guc_context_pin(ce, engine, vaddr); 3933 intel_engine_mask_t tmp, mask = ce->engine->mask; 3934 3935 if (likely(!ret)) 3936 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3937 intel_engine_pm_get(engine); 3938 3939 return ret; 3940 } 3941 3942 static void guc_virtual_context_unpin(struct intel_context *ce) 3943 { 3944 intel_engine_mask_t tmp, mask = ce->engine->mask; 3945 struct intel_engine_cs *engine; 3946 struct intel_guc *guc = ce_to_guc(ce); 3947 3948 GEM_BUG_ON(context_enabled(ce)); 3949 GEM_BUG_ON(intel_context_is_barrier(ce)); 3950 3951 unpin_guc_id(guc, ce); 3952 lrc_unpin(ce); 3953 3954 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3955 intel_engine_pm_put_async(engine); 3956 } 3957 3958 static void guc_virtual_context_enter(struct intel_context *ce) 3959 { 3960 intel_engine_mask_t tmp, mask = ce->engine->mask; 3961 struct intel_engine_cs *engine; 3962 3963 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3964 intel_engine_pm_get(engine); 3965 3966 intel_timeline_enter(ce->timeline); 3967 } 3968 3969 static void guc_virtual_context_exit(struct intel_context *ce) 3970 { 3971 intel_engine_mask_t tmp, mask = ce->engine->mask; 3972 struct intel_engine_cs *engine; 3973 3974 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3975 intel_engine_pm_put(engine); 3976 3977 intel_timeline_exit(ce->timeline); 3978 } 3979 3980 static int guc_virtual_context_alloc(struct intel_context *ce) 3981 { 3982 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3983 3984 return lrc_alloc(ce, engine); 3985 } 3986 3987 static const struct intel_context_ops virtual_guc_context_ops = { 3988 .flags = COPS_RUNTIME_CYCLES, 3989 .alloc = guc_virtual_context_alloc, 3990 3991 .close = guc_context_close, 3992 3993 .pre_pin = guc_virtual_context_pre_pin, 3994 .pin = guc_virtual_context_pin, 3995 .unpin = guc_virtual_context_unpin, 3996 .post_unpin = guc_context_post_unpin, 3997 3998 .revoke = guc_context_revoke, 3999 4000 .cancel_request = guc_context_cancel_request, 4001 4002 .enter = guc_virtual_context_enter, 4003 .exit = guc_virtual_context_exit, 4004 4005 .sched_disable = guc_context_sched_disable, 4006 .update_stats = guc_context_update_stats, 4007 4008 .destroy = guc_context_destroy, 4009 4010 .get_sibling = guc_virtual_get_sibling, 4011 }; 4012 4013 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 4014 { 4015 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 4016 struct intel_guc *guc = ce_to_guc(ce); 4017 int ret; 4018 4019 GEM_BUG_ON(!intel_context_is_parent(ce)); 4020 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4021 4022 ret = pin_guc_id(guc, ce); 4023 if (unlikely(ret < 0)) 4024 return ret; 4025 4026 return __guc_context_pin(ce, engine, vaddr); 4027 } 4028 4029 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 4030 { 4031 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 4032 4033 GEM_BUG_ON(!intel_context_is_child(ce)); 4034 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4035 4036 __intel_context_pin(ce->parallel.parent); 4037 return __guc_context_pin(ce, engine, vaddr); 4038 } 4039 4040 static void guc_parent_context_unpin(struct intel_context *ce) 4041 { 4042 struct intel_guc *guc = ce_to_guc(ce); 4043 4044 GEM_BUG_ON(context_enabled(ce)); 4045 GEM_BUG_ON(intel_context_is_barrier(ce)); 4046 GEM_BUG_ON(!intel_context_is_parent(ce)); 4047 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4048 4049 unpin_guc_id(guc, ce); 4050 lrc_unpin(ce); 4051 } 4052 4053 static void guc_child_context_unpin(struct intel_context *ce) 4054 { 4055 GEM_BUG_ON(context_enabled(ce)); 4056 GEM_BUG_ON(intel_context_is_barrier(ce)); 4057 GEM_BUG_ON(!intel_context_is_child(ce)); 4058 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4059 4060 lrc_unpin(ce); 4061 } 4062 4063 static void guc_child_context_post_unpin(struct intel_context *ce) 4064 { 4065 GEM_BUG_ON(!intel_context_is_child(ce)); 4066 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 4067 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4068 4069 lrc_post_unpin(ce); 4070 intel_context_unpin(ce->parallel.parent); 4071 } 4072 4073 static void guc_child_context_destroy(struct kref *kref) 4074 { 4075 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 4076 4077 __guc_context_destroy(ce); 4078 } 4079 4080 static const struct intel_context_ops virtual_parent_context_ops = { 4081 .alloc = guc_virtual_context_alloc, 4082 4083 .close = guc_context_close, 4084 4085 .pre_pin = guc_context_pre_pin, 4086 .pin = guc_parent_context_pin, 4087 .unpin = guc_parent_context_unpin, 4088 .post_unpin = guc_context_post_unpin, 4089 4090 .revoke = guc_context_revoke, 4091 4092 .cancel_request = guc_context_cancel_request, 4093 4094 .enter = guc_virtual_context_enter, 4095 .exit = guc_virtual_context_exit, 4096 4097 .sched_disable = guc_context_sched_disable, 4098 4099 .destroy = guc_context_destroy, 4100 4101 .get_sibling = guc_virtual_get_sibling, 4102 }; 4103 4104 static const struct intel_context_ops virtual_child_context_ops = { 4105 .alloc = guc_virtual_context_alloc, 4106 4107 .pre_pin = guc_context_pre_pin, 4108 .pin = guc_child_context_pin, 4109 .unpin = guc_child_context_unpin, 4110 .post_unpin = guc_child_context_post_unpin, 4111 4112 .cancel_request = guc_context_cancel_request, 4113 4114 .enter = guc_virtual_context_enter, 4115 .exit = guc_virtual_context_exit, 4116 4117 .destroy = guc_child_context_destroy, 4118 4119 .get_sibling = guc_virtual_get_sibling, 4120 }; 4121 4122 /* 4123 * The below override of the breadcrumbs is enabled when the user configures a 4124 * context for parallel submission (multi-lrc, parent-child). 4125 * 4126 * The overridden breadcrumbs implements an algorithm which allows the GuC to 4127 * safely preempt all the hw contexts configured for parallel submission 4128 * between each BB. The contract between the i915 and GuC is if the parent 4129 * context can be preempted, all the children can be preempted, and the GuC will 4130 * always try to preempt the parent before the children. A handshake between the 4131 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 4132 * creating a window to preempt between each set of BBs. 4133 */ 4134 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4135 u64 offset, u32 len, 4136 const unsigned int flags); 4137 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4138 u64 offset, u32 len, 4139 const unsigned int flags); 4140 static u32 * 4141 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4142 u32 *cs); 4143 static u32 * 4144 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4145 u32 *cs); 4146 4147 static struct intel_context * 4148 guc_create_parallel(struct intel_engine_cs **engines, 4149 unsigned int num_siblings, 4150 unsigned int width) 4151 { 4152 struct intel_engine_cs **siblings = NULL; 4153 struct intel_context *parent = NULL, *ce, *err; 4154 int i, j; 4155 4156 siblings = kmalloc_array(num_siblings, 4157 sizeof(*siblings), 4158 GFP_KERNEL); 4159 if (!siblings) 4160 return ERR_PTR(-ENOMEM); 4161 4162 for (i = 0; i < width; ++i) { 4163 for (j = 0; j < num_siblings; ++j) 4164 siblings[j] = engines[i * num_siblings + j]; 4165 4166 ce = intel_engine_create_virtual(siblings, num_siblings, 4167 FORCE_VIRTUAL); 4168 if (IS_ERR(ce)) { 4169 err = ERR_CAST(ce); 4170 goto unwind; 4171 } 4172 4173 if (i == 0) { 4174 parent = ce; 4175 parent->ops = &virtual_parent_context_ops; 4176 } else { 4177 ce->ops = &virtual_child_context_ops; 4178 intel_context_bind_parent_child(parent, ce); 4179 } 4180 } 4181 4182 parent->parallel.fence_context = dma_fence_context_alloc(1); 4183 4184 parent->engine->emit_bb_start = 4185 emit_bb_start_parent_no_preempt_mid_batch; 4186 parent->engine->emit_fini_breadcrumb = 4187 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 4188 parent->engine->emit_fini_breadcrumb_dw = 4189 12 + 4 * parent->parallel.number_children; 4190 for_each_child(parent, ce) { 4191 ce->engine->emit_bb_start = 4192 emit_bb_start_child_no_preempt_mid_batch; 4193 ce->engine->emit_fini_breadcrumb = 4194 emit_fini_breadcrumb_child_no_preempt_mid_batch; 4195 ce->engine->emit_fini_breadcrumb_dw = 16; 4196 } 4197 4198 kfree(siblings); 4199 return parent; 4200 4201 unwind: 4202 if (parent) 4203 intel_context_put(parent); 4204 kfree(siblings); 4205 return err; 4206 } 4207 4208 static bool 4209 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 4210 { 4211 struct intel_engine_cs *sibling; 4212 intel_engine_mask_t tmp, mask = b->engine_mask; 4213 bool result = false; 4214 4215 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 4216 result |= intel_engine_irq_enable(sibling); 4217 4218 return result; 4219 } 4220 4221 static void 4222 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 4223 { 4224 struct intel_engine_cs *sibling; 4225 intel_engine_mask_t tmp, mask = b->engine_mask; 4226 4227 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 4228 intel_engine_irq_disable(sibling); 4229 } 4230 4231 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 4232 { 4233 int i; 4234 4235 /* 4236 * In GuC submission mode we do not know which physical engine a request 4237 * will be scheduled on, this creates a problem because the breadcrumb 4238 * interrupt is per physical engine. To work around this we attach 4239 * requests and direct all breadcrumb interrupts to the first instance 4240 * of an engine per class. In addition all breadcrumb interrupts are 4241 * enabled / disabled across an engine class in unison. 4242 */ 4243 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 4244 struct intel_engine_cs *sibling = 4245 engine->gt->engine_class[engine->class][i]; 4246 4247 if (sibling) { 4248 if (engine->breadcrumbs != sibling->breadcrumbs) { 4249 intel_breadcrumbs_put(engine->breadcrumbs); 4250 engine->breadcrumbs = 4251 intel_breadcrumbs_get(sibling->breadcrumbs); 4252 } 4253 break; 4254 } 4255 } 4256 4257 if (engine->breadcrumbs) { 4258 engine->breadcrumbs->engine_mask |= engine->mask; 4259 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 4260 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 4261 } 4262 } 4263 4264 static void guc_bump_inflight_request_prio(struct i915_request *rq, 4265 int prio) 4266 { 4267 struct intel_context *ce = request_to_scheduling_context(rq); 4268 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 4269 4270 /* Short circuit function */ 4271 if (prio < I915_PRIORITY_NORMAL) 4272 return; 4273 4274 spin_lock(&ce->guc_state.lock); 4275 4276 if (rq->guc_prio == GUC_PRIO_FINI) 4277 goto exit; 4278 4279 if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio)) 4280 goto exit; 4281 4282 if (rq->guc_prio != GUC_PRIO_INIT) 4283 sub_context_inflight_prio(ce, rq->guc_prio); 4284 4285 rq->guc_prio = new_guc_prio; 4286 add_context_inflight_prio(ce, rq->guc_prio); 4287 update_context_prio(ce); 4288 4289 exit: 4290 spin_unlock(&ce->guc_state.lock); 4291 } 4292 4293 static void guc_retire_inflight_request_prio(struct i915_request *rq) 4294 { 4295 struct intel_context *ce = request_to_scheduling_context(rq); 4296 4297 spin_lock(&ce->guc_state.lock); 4298 guc_prio_fini(rq, ce); 4299 spin_unlock(&ce->guc_state.lock); 4300 } 4301 4302 static void sanitize_hwsp(struct intel_engine_cs *engine) 4303 { 4304 struct intel_timeline *tl; 4305 4306 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 4307 intel_timeline_reset_seqno(tl); 4308 } 4309 4310 static void guc_sanitize(struct intel_engine_cs *engine) 4311 { 4312 /* 4313 * Poison residual state on resume, in case the suspend didn't! 4314 * 4315 * We have to assume that across suspend/resume (or other loss 4316 * of control) that the contents of our pinned buffers has been 4317 * lost, replaced by garbage. Since this doesn't always happen, 4318 * let's poison such state so that we more quickly spot when 4319 * we falsely assume it has been preserved. 4320 */ 4321 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 4322 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 4323 4324 /* 4325 * The kernel_context HWSP is stored in the status_page. As above, 4326 * that may be lost on resume/initialisation, and so we need to 4327 * reset the value in the HWSP. 4328 */ 4329 sanitize_hwsp(engine); 4330 4331 /* And scrub the dirty cachelines for the HWSP */ 4332 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 4333 4334 intel_engine_reset_pinned_contexts(engine); 4335 } 4336 4337 static void setup_hwsp(struct intel_engine_cs *engine) 4338 { 4339 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 4340 4341 ENGINE_WRITE_FW(engine, 4342 RING_HWS_PGA, 4343 i915_ggtt_offset(engine->status_page.vma)); 4344 } 4345 4346 static void start_engine(struct intel_engine_cs *engine) 4347 { 4348 ENGINE_WRITE_FW(engine, 4349 RING_MODE_GEN7, 4350 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 4351 4352 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 4353 ENGINE_POSTING_READ(engine, RING_MI_MODE); 4354 } 4355 4356 static int guc_resume(struct intel_engine_cs *engine) 4357 { 4358 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 4359 4360 intel_mocs_init_engine(engine); 4361 4362 intel_breadcrumbs_reset(engine->breadcrumbs); 4363 4364 setup_hwsp(engine); 4365 start_engine(engine); 4366 4367 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 4368 xehp_enable_ccs_engines(engine); 4369 4370 return 0; 4371 } 4372 4373 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 4374 { 4375 return !sched_engine->tasklet.callback; 4376 } 4377 4378 static void guc_set_default_submission(struct intel_engine_cs *engine) 4379 { 4380 engine->submit_request = guc_submit_request; 4381 } 4382 4383 static inline int guc_kernel_context_pin(struct intel_guc *guc, 4384 struct intel_context *ce) 4385 { 4386 int ret; 4387 4388 /* 4389 * Note: we purposefully do not check the returns below because 4390 * the registration can only fail if a reset is just starting. 4391 * This is called at the end of reset so presumably another reset 4392 * isn't happening and even it did this code would be run again. 4393 */ 4394 4395 if (context_guc_id_invalid(ce)) { 4396 ret = pin_guc_id(guc, ce); 4397 4398 if (ret < 0) 4399 return ret; 4400 } 4401 4402 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) 4403 guc_context_init(ce); 4404 4405 ret = try_context_registration(ce, true); 4406 if (ret) 4407 unpin_guc_id(guc, ce); 4408 4409 return ret; 4410 } 4411 4412 static inline int guc_init_submission(struct intel_guc *guc) 4413 { 4414 struct intel_gt *gt = guc_to_gt(guc); 4415 struct intel_engine_cs *engine; 4416 enum intel_engine_id id; 4417 4418 /* make sure all descriptors are clean... */ 4419 xa_destroy(&guc->context_lookup); 4420 4421 /* 4422 * A reset might have occurred while we had a pending stalled request, 4423 * so make sure we clean that up. 4424 */ 4425 guc->stalled_request = NULL; 4426 guc->submission_stall_reason = STALL_NONE; 4427 4428 /* 4429 * Some contexts might have been pinned before we enabled GuC 4430 * submission, so we need to add them to the GuC bookeeping. 4431 * Also, after a reset the of the GuC we want to make sure that the 4432 * information shared with GuC is properly reset. The kernel LRCs are 4433 * not attached to the gem_context, so they need to be added separately. 4434 */ 4435 for_each_engine(engine, gt, id) { 4436 struct intel_context *ce; 4437 4438 list_for_each_entry(ce, &engine->pinned_contexts_list, 4439 pinned_contexts_link) { 4440 int ret = guc_kernel_context_pin(guc, ce); 4441 4442 if (ret) { 4443 /* No point in trying to clean up as i915 will wedge on failure */ 4444 return ret; 4445 } 4446 } 4447 } 4448 4449 return 0; 4450 } 4451 4452 static void guc_release(struct intel_engine_cs *engine) 4453 { 4454 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4455 4456 intel_engine_cleanup_common(engine); 4457 lrc_fini_wa_ctx(engine); 4458 } 4459 4460 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4461 { 4462 struct intel_engine_cs *e; 4463 intel_engine_mask_t tmp, mask = engine->mask; 4464 4465 for_each_engine_masked(e, engine->gt, mask, tmp) 4466 e->serial++; 4467 } 4468 4469 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4470 { 4471 /* Default vfuncs which can be overridden by each engine. */ 4472 4473 engine->resume = guc_resume; 4474 4475 engine->cops = &guc_context_ops; 4476 engine->request_alloc = guc_request_alloc; 4477 engine->add_active_request = add_to_context; 4478 engine->remove_active_request = remove_from_context; 4479 4480 engine->sched_engine->schedule = i915_schedule; 4481 4482 engine->reset.prepare = guc_engine_reset_prepare; 4483 engine->reset.rewind = guc_rewind_nop; 4484 engine->reset.cancel = guc_reset_nop; 4485 engine->reset.finish = guc_reset_nop; 4486 4487 engine->emit_flush = gen8_emit_flush_xcs; 4488 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4489 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4490 if (GRAPHICS_VER(engine->i915) >= 12) { 4491 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4492 engine->emit_flush = gen12_emit_flush_xcs; 4493 } 4494 engine->set_default_submission = guc_set_default_submission; 4495 engine->busyness = guc_engine_busyness; 4496 4497 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4498 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4499 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4500 4501 /* Wa_14014475959:dg2 */ 4502 if (engine->class == COMPUTE_CLASS) 4503 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 4504 IS_DG2(engine->i915)) 4505 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; 4506 4507 /* Wa_16019325821 */ 4508 /* Wa_14019159160 */ 4509 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) && 4510 IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 4511 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; 4512 4513 /* 4514 * TODO: GuC supports timeslicing and semaphores as well, but they're 4515 * handled by the firmware so some minor tweaks are required before 4516 * enabling. 4517 * 4518 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4519 */ 4520 4521 engine->emit_bb_start = gen8_emit_bb_start; 4522 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 4523 engine->emit_bb_start = xehp_emit_bb_start; 4524 } 4525 4526 static void rcs_submission_override(struct intel_engine_cs *engine) 4527 { 4528 switch (GRAPHICS_VER(engine->i915)) { 4529 case 12: 4530 engine->emit_flush = gen12_emit_flush_rcs; 4531 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4532 break; 4533 case 11: 4534 engine->emit_flush = gen11_emit_flush_rcs; 4535 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4536 break; 4537 default: 4538 engine->emit_flush = gen8_emit_flush_rcs; 4539 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4540 break; 4541 } 4542 } 4543 4544 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4545 { 4546 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4547 intel_engine_set_irq_handler(engine, cs_irq_handler); 4548 } 4549 4550 static void guc_sched_engine_destroy(struct kref *kref) 4551 { 4552 struct i915_sched_engine *sched_engine = 4553 container_of(kref, typeof(*sched_engine), ref); 4554 struct intel_guc *guc = sched_engine->private_data; 4555 4556 guc->sched_engine = NULL; 4557 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4558 kfree(sched_engine); 4559 } 4560 4561 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4562 { 4563 struct drm_i915_private *i915 = engine->i915; 4564 struct intel_guc *guc = gt_to_guc(engine->gt); 4565 4566 /* 4567 * The setup relies on several assumptions (e.g. irqs always enabled) 4568 * that are only valid on gen11+ 4569 */ 4570 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4571 4572 if (!guc->sched_engine) { 4573 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4574 if (!guc->sched_engine) 4575 return -ENOMEM; 4576 4577 guc->sched_engine->schedule = i915_schedule; 4578 guc->sched_engine->disabled = guc_sched_engine_disabled; 4579 guc->sched_engine->private_data = guc; 4580 guc->sched_engine->destroy = guc_sched_engine_destroy; 4581 guc->sched_engine->bump_inflight_request_prio = 4582 guc_bump_inflight_request_prio; 4583 guc->sched_engine->retire_inflight_request_prio = 4584 guc_retire_inflight_request_prio; 4585 tasklet_setup(&guc->sched_engine->tasklet, 4586 guc_submission_tasklet); 4587 } 4588 i915_sched_engine_put(engine->sched_engine); 4589 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4590 4591 guc_default_vfuncs(engine); 4592 guc_default_irqs(engine); 4593 guc_init_breadcrumbs(engine); 4594 4595 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4596 rcs_submission_override(engine); 4597 4598 lrc_init_wa_ctx(engine); 4599 4600 /* Finally, take ownership and responsibility for cleanup! */ 4601 engine->sanitize = guc_sanitize; 4602 engine->release = guc_release; 4603 4604 return 0; 4605 } 4606 4607 struct scheduling_policy { 4608 /* internal data */ 4609 u32 max_words, num_words; 4610 u32 count; 4611 /* API data */ 4612 struct guc_update_scheduling_policy h2g; 4613 }; 4614 4615 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) 4616 { 4617 u32 *start = (void *)&policy->h2g; 4618 u32 *end = policy->h2g.data + policy->num_words; 4619 size_t delta = end - start; 4620 4621 return delta; 4622 } 4623 4624 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) 4625 { 4626 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; 4627 policy->max_words = ARRAY_SIZE(policy->h2g.data); 4628 policy->num_words = 0; 4629 policy->count = 0; 4630 4631 return policy; 4632 } 4633 4634 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, 4635 u32 action, u32 *data, u32 len) 4636 { 4637 u32 *klv_ptr = policy->h2g.data + policy->num_words; 4638 4639 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); 4640 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | 4641 FIELD_PREP(GUC_KLV_0_LEN, len); 4642 memcpy(klv_ptr, data, sizeof(u32) * len); 4643 policy->num_words += 1 + len; 4644 policy->count++; 4645 } 4646 4647 static int __guc_action_set_scheduling_policies(struct intel_guc *guc, 4648 struct scheduling_policy *policy) 4649 { 4650 int ret; 4651 4652 ret = intel_guc_send(guc, (u32 *)&policy->h2g, 4653 __guc_scheduling_policy_action_size(policy)); 4654 if (ret < 0) { 4655 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n", 4656 ERR_PTR(ret)); 4657 return ret; 4658 } 4659 4660 if (ret != policy->count) { 4661 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!", 4662 ret, policy->count); 4663 if (ret > policy->count) 4664 return -EPROTO; 4665 } 4666 4667 return 0; 4668 } 4669 4670 static int guc_init_global_schedule_policy(struct intel_guc *guc) 4671 { 4672 struct scheduling_policy policy; 4673 struct intel_gt *gt = guc_to_gt(guc); 4674 intel_wakeref_t wakeref; 4675 int ret; 4676 4677 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) 4678 return 0; 4679 4680 __guc_scheduling_policy_start_klv(&policy); 4681 4682 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 4683 u32 yield[] = { 4684 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, 4685 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, 4686 }; 4687 4688 __guc_scheduling_policy_add_klv(&policy, 4689 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, 4690 yield, ARRAY_SIZE(yield)); 4691 4692 ret = __guc_action_set_scheduling_policies(guc, &policy); 4693 } 4694 4695 return ret; 4696 } 4697 4698 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) 4699 { 4700 struct intel_gt *gt = guc_to_gt(guc); 4701 u32 val; 4702 4703 if (GRAPHICS_VER(gt->i915) < 12) 4704 return; 4705 4706 if (to_guc) 4707 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; 4708 else 4709 val = 0; 4710 4711 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); 4712 } 4713 4714 int intel_guc_submission_enable(struct intel_guc *guc) 4715 { 4716 int ret; 4717 4718 /* Semaphore interrupt enable and route to GuC */ 4719 guc_route_semaphores(guc, true); 4720 4721 ret = guc_init_submission(guc); 4722 if (ret) 4723 goto fail_sem; 4724 4725 ret = guc_init_engine_stats(guc); 4726 if (ret) 4727 goto fail_sem; 4728 4729 ret = guc_init_global_schedule_policy(guc); 4730 if (ret) 4731 goto fail_stats; 4732 4733 return 0; 4734 4735 fail_stats: 4736 guc_fini_engine_stats(guc); 4737 fail_sem: 4738 guc_route_semaphores(guc, false); 4739 return ret; 4740 } 4741 4742 /* Note: By the time we're here, GuC may have already been reset */ 4743 void intel_guc_submission_disable(struct intel_guc *guc) 4744 { 4745 guc_cancel_busyness_worker(guc); 4746 4747 /* Semaphore interrupt disable and route to host */ 4748 guc_route_semaphores(guc, false); 4749 } 4750 4751 static bool __guc_submission_supported(struct intel_guc *guc) 4752 { 4753 /* GuC submission is unavailable for pre-Gen11 */ 4754 return intel_guc_is_supported(guc) && 4755 GRAPHICS_VER(guc_to_i915(guc)) >= 11; 4756 } 4757 4758 static bool __guc_submission_selected(struct intel_guc *guc) 4759 { 4760 struct drm_i915_private *i915 = guc_to_i915(guc); 4761 4762 if (!intel_guc_submission_is_supported(guc)) 4763 return false; 4764 4765 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4766 } 4767 4768 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) 4769 { 4770 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); 4771 } 4772 4773 /* 4774 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher 4775 * workloads are able to enjoy the latency reduction when delaying the schedule-disable 4776 * operation. This matches the 30fps game-render + encode (real world) workload this 4777 * knob was tested against. 4778 */ 4779 #define SCHED_DISABLE_DELAY_MS 34 4780 4781 /* 4782 * A threshold of 75% is a reasonable starting point considering that real world apps 4783 * generally don't get anywhere near this. 4784 */ 4785 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ 4786 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) 4787 4788 void intel_guc_submission_init_early(struct intel_guc *guc) 4789 { 4790 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4791 4792 spin_lock_init(&guc->submission_state.lock); 4793 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4794 ida_init(&guc->submission_state.guc_ids); 4795 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4796 INIT_WORK(&guc->submission_state.destroyed_worker, 4797 destroyed_worker_func); 4798 INIT_WORK(&guc->submission_state.reset_fail_worker, 4799 reset_fail_worker_func); 4800 4801 spin_lock_init(&guc->timestamp.lock); 4802 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4803 4804 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; 4805 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4806 guc->submission_state.sched_disable_gucid_threshold = 4807 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); 4808 guc->submission_supported = __guc_submission_supported(guc); 4809 guc->submission_selected = __guc_submission_selected(guc); 4810 } 4811 4812 static inline struct intel_context * 4813 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4814 { 4815 struct intel_context *ce; 4816 4817 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4818 guc_err(guc, "Invalid ctx_id %u\n", ctx_id); 4819 return NULL; 4820 } 4821 4822 ce = __get_context(guc, ctx_id); 4823 if (unlikely(!ce)) { 4824 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id); 4825 return NULL; 4826 } 4827 4828 if (unlikely(intel_context_is_child(ce))) { 4829 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id); 4830 return NULL; 4831 } 4832 4833 return ce; 4834 } 4835 4836 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno) 4837 { 4838 struct intel_guc_tlb_wait *wait; 4839 unsigned long flags; 4840 4841 xa_lock_irqsave(&guc->tlb_lookup, flags); 4842 wait = xa_load(&guc->tlb_lookup, seqno); 4843 4844 if (wait) 4845 wake_up(&wait->wq); 4846 else 4847 guc_dbg(guc, 4848 "Stale TLB invalidation response with seqno %d\n", seqno); 4849 4850 xa_unlock_irqrestore(&guc->tlb_lookup, flags); 4851 } 4852 4853 int intel_guc_tlb_invalidation_done(struct intel_guc *guc, 4854 const u32 *payload, u32 len) 4855 { 4856 if (len < 1) 4857 return -EPROTO; 4858 4859 wait_wake_outstanding_tlb_g2h(guc, payload[0]); 4860 return 0; 4861 } 4862 4863 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout) 4864 { 4865 /* 4866 * This is equivalent to wait_woken() with the exception that 4867 * we do not wake up early if the kthread task has been completed. 4868 * As we are called from page reclaim in any task context, 4869 * we may be invoked from stopped kthreads, but we *must* 4870 * complete the wait from the HW. 4871 */ 4872 do { 4873 set_current_state(TASK_UNINTERRUPTIBLE); 4874 if (wq_entry->flags & WQ_FLAG_WOKEN) 4875 break; 4876 4877 timeout = schedule_timeout(timeout); 4878 } while (timeout); 4879 4880 /* See wait_woken() and woken_wake_function() */ 4881 __set_current_state(TASK_RUNNING); 4882 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); 4883 4884 return timeout; 4885 } 4886 4887 static bool intel_gt_is_enabled(const struct intel_gt *gt) 4888 { 4889 /* Check if GT is wedged or suspended */ 4890 if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915)) 4891 return false; 4892 return true; 4893 } 4894 4895 static int guc_send_invalidate_tlb(struct intel_guc *guc, 4896 enum intel_guc_tlb_invalidation_type type) 4897 { 4898 struct intel_guc_tlb_wait _wq, *wq = &_wq; 4899 struct intel_gt *gt = guc_to_gt(guc); 4900 DEFINE_WAIT_FUNC(wait, woken_wake_function); 4901 int err; 4902 u32 seqno; 4903 u32 action[] = { 4904 INTEL_GUC_ACTION_TLB_INVALIDATION, 4905 0, 4906 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) | 4907 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK, 4908 INTEL_GUC_TLB_INVAL_MODE_HEAVY) | 4909 INTEL_GUC_TLB_INVAL_FLUSH_CACHE, 4910 }; 4911 u32 size = ARRAY_SIZE(action); 4912 4913 /* 4914 * Early guard against GT enablement. TLB invalidation should not be 4915 * attempted if the GT is disabled due to suspend/wedge. 4916 */ 4917 if (!intel_gt_is_enabled(gt)) 4918 return -EINVAL; 4919 4920 init_waitqueue_head(&_wq.wq); 4921 4922 if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq, 4923 xa_limit_32b, &guc->next_seqno, 4924 GFP_ATOMIC | __GFP_NOWARN) < 0) { 4925 /* Under severe memory pressure? Serialise TLB allocations */ 4926 xa_lock_irq(&guc->tlb_lookup); 4927 wq = xa_load(&guc->tlb_lookup, guc->serial_slot); 4928 wait_event_lock_irq(wq->wq, 4929 !READ_ONCE(wq->busy), 4930 guc->tlb_lookup.xa_lock); 4931 /* 4932 * Update wq->busy under lock to ensure only one waiter can 4933 * issue the TLB invalidation command using the serial slot at a 4934 * time. The condition is set to true before releasing the lock 4935 * so that other caller continue to wait until woken up again. 4936 */ 4937 wq->busy = true; 4938 xa_unlock_irq(&guc->tlb_lookup); 4939 4940 seqno = guc->serial_slot; 4941 } 4942 4943 action[1] = seqno; 4944 4945 add_wait_queue(&wq->wq, &wait); 4946 4947 /* This is a critical reclaim path and thus we must loop here. */ 4948 err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true); 4949 if (err) 4950 goto out; 4951 4952 /* 4953 * Late guard against GT enablement. It is not an error for the TLB 4954 * invalidation to time out if the GT is disabled during the process 4955 * due to suspend/wedge. In fact, the TLB invalidation is cancelled 4956 * in this case. 4957 */ 4958 if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) && 4959 intel_gt_is_enabled(gt)) { 4960 guc_err(guc, 4961 "TLB invalidation response timed out for seqno %u\n", seqno); 4962 err = -ETIME; 4963 } 4964 out: 4965 remove_wait_queue(&wq->wq, &wait); 4966 if (seqno != guc->serial_slot) 4967 xa_erase_irq(&guc->tlb_lookup, seqno); 4968 4969 return err; 4970 } 4971 4972 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */ 4973 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc) 4974 { 4975 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES); 4976 } 4977 4978 /* Send a H2G command to invalidate the GuC's internal TLB. */ 4979 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc) 4980 { 4981 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC); 4982 } 4983 4984 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4985 const u32 *msg, 4986 u32 len) 4987 { 4988 struct intel_context *ce; 4989 u32 ctx_id; 4990 4991 if (unlikely(len < 1)) { 4992 guc_err(guc, "Invalid length %u\n", len); 4993 return -EPROTO; 4994 } 4995 ctx_id = msg[0]; 4996 4997 ce = g2h_context_lookup(guc, ctx_id); 4998 if (unlikely(!ce)) 4999 return -EPROTO; 5000 5001 trace_intel_context_deregister_done(ce); 5002 5003 #ifdef CONFIG_DRM_I915_SELFTEST 5004 if (unlikely(ce->drop_deregister)) { 5005 ce->drop_deregister = false; 5006 return 0; 5007 } 5008 #endif 5009 5010 if (context_wait_for_deregister_to_register(ce)) { 5011 struct intel_runtime_pm *runtime_pm = 5012 &ce->engine->gt->i915->runtime_pm; 5013 intel_wakeref_t wakeref; 5014 5015 /* 5016 * Previous owner of this guc_id has been deregistered, now safe 5017 * register this context. 5018 */ 5019 with_intel_runtime_pm(runtime_pm, wakeref) 5020 register_context(ce, true); 5021 guc_signal_context_fence(ce); 5022 intel_context_put(ce); 5023 } else if (context_destroyed(ce)) { 5024 /* Context has been destroyed */ 5025 intel_gt_pm_put_async_untracked(guc_to_gt(guc)); 5026 release_guc_id(guc, ce); 5027 __guc_context_destroy(ce); 5028 } 5029 5030 decr_outstanding_submission_g2h(guc); 5031 5032 return 0; 5033 } 5034 5035 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 5036 const u32 *msg, 5037 u32 len) 5038 { 5039 struct intel_context *ce; 5040 unsigned long flags; 5041 u32 ctx_id; 5042 5043 if (unlikely(len < 2)) { 5044 guc_err(guc, "Invalid length %u\n", len); 5045 return -EPROTO; 5046 } 5047 ctx_id = msg[0]; 5048 5049 ce = g2h_context_lookup(guc, ctx_id); 5050 if (unlikely(!ce)) 5051 return -EPROTO; 5052 5053 if (unlikely(context_destroyed(ce) || 5054 (!context_pending_enable(ce) && 5055 !context_pending_disable(ce)))) { 5056 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n", 5057 ce->guc_state.sched_state, ctx_id); 5058 return -EPROTO; 5059 } 5060 5061 trace_intel_context_sched_done(ce); 5062 5063 if (context_pending_enable(ce)) { 5064 #ifdef CONFIG_DRM_I915_SELFTEST 5065 if (unlikely(ce->drop_schedule_enable)) { 5066 ce->drop_schedule_enable = false; 5067 return 0; 5068 } 5069 #endif 5070 5071 spin_lock_irqsave(&ce->guc_state.lock, flags); 5072 clr_context_pending_enable(ce); 5073 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 5074 } else if (context_pending_disable(ce)) { 5075 bool banned; 5076 5077 #ifdef CONFIG_DRM_I915_SELFTEST 5078 if (unlikely(ce->drop_schedule_disable)) { 5079 ce->drop_schedule_disable = false; 5080 return 0; 5081 } 5082 #endif 5083 5084 /* 5085 * Unpin must be done before __guc_signal_context_fence, 5086 * otherwise a race exists between the requests getting 5087 * submitted + retired before this unpin completes resulting in 5088 * the pin_count going to zero and the context still being 5089 * enabled. 5090 */ 5091 intel_context_sched_disable_unpin(ce); 5092 5093 spin_lock_irqsave(&ce->guc_state.lock, flags); 5094 banned = context_banned(ce); 5095 clr_context_banned(ce); 5096 clr_context_pending_disable(ce); 5097 __guc_signal_context_fence(ce); 5098 guc_blocked_fence_complete(ce); 5099 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 5100 5101 if (banned) { 5102 guc_cancel_context_requests(ce); 5103 intel_engine_signal_breadcrumbs(ce->engine); 5104 } 5105 } 5106 5107 decr_outstanding_submission_g2h(guc); 5108 intel_context_put(ce); 5109 5110 return 0; 5111 } 5112 5113 static void capture_error_state(struct intel_guc *guc, 5114 struct intel_context *ce) 5115 { 5116 struct intel_gt *gt = guc_to_gt(guc); 5117 struct drm_i915_private *i915 = gt->i915; 5118 intel_wakeref_t wakeref; 5119 intel_engine_mask_t engine_mask; 5120 5121 if (intel_engine_is_virtual(ce->engine)) { 5122 struct intel_engine_cs *e; 5123 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask; 5124 5125 engine_mask = 0; 5126 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) { 5127 bool match = intel_guc_capture_is_matching_engine(gt, ce, e); 5128 5129 if (match) { 5130 intel_engine_set_hung_context(e, ce); 5131 engine_mask |= e->mask; 5132 i915_increase_reset_engine_count(&i915->gpu_error, 5133 e); 5134 } 5135 } 5136 5137 if (!engine_mask) { 5138 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s", 5139 ce->guc_id.id, ce->engine->name); 5140 engine_mask = ~0U; 5141 } 5142 } else { 5143 intel_engine_set_hung_context(ce->engine, ce); 5144 engine_mask = ce->engine->mask; 5145 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine); 5146 } 5147 5148 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 5149 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 5150 } 5151 5152 static void guc_context_replay(struct intel_context *ce) 5153 { 5154 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 5155 5156 __guc_reset_context(ce, ce->engine->mask); 5157 tasklet_hi_schedule(&sched_engine->tasklet); 5158 } 5159 5160 static void guc_handle_context_reset(struct intel_guc *guc, 5161 struct intel_context *ce) 5162 { 5163 bool capture = intel_context_is_schedulable(ce); 5164 5165 trace_intel_context_reset(ce); 5166 5167 guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n", 5168 capture ? "Got" : "Ignoring", 5169 ce->guc_id.id, ce->engine->name, 5170 str_yes_no(intel_context_is_exiting(ce)), 5171 str_yes_no(intel_context_is_banned(ce))); 5172 5173 if (capture) { 5174 capture_error_state(guc, ce); 5175 guc_context_replay(ce); 5176 } 5177 } 5178 5179 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 5180 const u32 *msg, u32 len) 5181 { 5182 struct intel_context *ce; 5183 unsigned long flags; 5184 int ctx_id; 5185 5186 if (unlikely(len != 1)) { 5187 guc_err(guc, "Invalid length %u", len); 5188 return -EPROTO; 5189 } 5190 5191 ctx_id = msg[0]; 5192 5193 /* 5194 * The context lookup uses the xarray but lookups only require an RCU lock 5195 * not the full spinlock. So take the lock explicitly and keep it until the 5196 * context has been reference count locked to ensure it can't be destroyed 5197 * asynchronously until the reset is done. 5198 */ 5199 xa_lock_irqsave(&guc->context_lookup, flags); 5200 ce = g2h_context_lookup(guc, ctx_id); 5201 if (ce) 5202 intel_context_get(ce); 5203 xa_unlock_irqrestore(&guc->context_lookup, flags); 5204 5205 if (unlikely(!ce)) 5206 return -EPROTO; 5207 5208 guc_handle_context_reset(guc, ce); 5209 intel_context_put(ce); 5210 5211 return 0; 5212 } 5213 5214 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 5215 const u32 *msg, u32 len) 5216 { 5217 u32 status; 5218 5219 if (unlikely(len != 1)) { 5220 guc_dbg(guc, "Invalid length %u", len); 5221 return -EPROTO; 5222 } 5223 5224 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 5225 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 5226 guc_warn(guc, "No space for error capture"); 5227 5228 intel_guc_capture_process(guc); 5229 5230 return 0; 5231 } 5232 5233 struct intel_engine_cs * 5234 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 5235 { 5236 struct intel_gt *gt = guc_to_gt(guc); 5237 u8 engine_class = guc_class_to_engine_class(guc_class); 5238 5239 /* Class index is checked in class converter */ 5240 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 5241 5242 return gt->engine_class[engine_class][instance]; 5243 } 5244 5245 static void reset_fail_worker_func(struct work_struct *w) 5246 { 5247 struct intel_guc *guc = container_of(w, struct intel_guc, 5248 submission_state.reset_fail_worker); 5249 struct intel_gt *gt = guc_to_gt(guc); 5250 intel_engine_mask_t reset_fail_mask; 5251 unsigned long flags; 5252 5253 spin_lock_irqsave(&guc->submission_state.lock, flags); 5254 reset_fail_mask = guc->submission_state.reset_fail_mask; 5255 guc->submission_state.reset_fail_mask = 0; 5256 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 5257 5258 if (likely(reset_fail_mask)) { 5259 struct intel_engine_cs *engine; 5260 enum intel_engine_id id; 5261 5262 /* 5263 * GuC is toast at this point - it dead loops after sending the failed 5264 * reset notification. So need to manually determine the guilty context. 5265 * Note that it should be reliable to do this here because the GuC is 5266 * toast and will not be scheduling behind the KMD's back. 5267 */ 5268 for_each_engine_masked(engine, gt, reset_fail_mask, id) 5269 intel_guc_find_hung_context(engine); 5270 5271 intel_gt_handle_error(gt, reset_fail_mask, 5272 I915_ERROR_CAPTURE, 5273 "GuC failed to reset engine mask=0x%x", 5274 reset_fail_mask); 5275 } 5276 } 5277 5278 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 5279 const u32 *msg, u32 len) 5280 { 5281 struct intel_engine_cs *engine; 5282 u8 guc_class, instance; 5283 u32 reason; 5284 unsigned long flags; 5285 5286 if (unlikely(len != 3)) { 5287 guc_err(guc, "Invalid length %u", len); 5288 return -EPROTO; 5289 } 5290 5291 guc_class = msg[0]; 5292 instance = msg[1]; 5293 reason = msg[2]; 5294 5295 engine = intel_guc_lookup_engine(guc, guc_class, instance); 5296 if (unlikely(!engine)) { 5297 guc_err(guc, "Invalid engine %d:%d", guc_class, instance); 5298 return -EPROTO; 5299 } 5300 5301 /* 5302 * This is an unexpected failure of a hardware feature. So, log a real 5303 * error message not just the informational that comes with the reset. 5304 */ 5305 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X", 5306 guc_class, instance, engine->name, reason); 5307 5308 spin_lock_irqsave(&guc->submission_state.lock, flags); 5309 guc->submission_state.reset_fail_mask |= engine->mask; 5310 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 5311 5312 /* 5313 * A GT reset flushes this worker queue (G2H handler) so we must use 5314 * another worker to trigger a GT reset. 5315 */ 5316 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 5317 5318 return 0; 5319 } 5320 5321 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 5322 { 5323 struct intel_guc *guc = gt_to_guc(engine->gt); 5324 struct intel_context *ce; 5325 struct i915_request *rq; 5326 unsigned long index; 5327 unsigned long flags; 5328 5329 /* Reset called during driver load? GuC not yet initialised! */ 5330 if (unlikely(!guc_submission_initialized(guc))) 5331 return; 5332 5333 xa_lock_irqsave(&guc->context_lookup, flags); 5334 xa_for_each(&guc->context_lookup, index, ce) { 5335 bool found; 5336 5337 if (!kref_get_unless_zero(&ce->ref)) 5338 continue; 5339 5340 xa_unlock(&guc->context_lookup); 5341 5342 if (!intel_context_is_pinned(ce)) 5343 goto next; 5344 5345 if (intel_engine_is_virtual(ce->engine)) { 5346 if (!(ce->engine->mask & engine->mask)) 5347 goto next; 5348 } else { 5349 if (ce->engine != engine) 5350 goto next; 5351 } 5352 5353 found = false; 5354 spin_lock(&ce->guc_state.lock); 5355 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 5356 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 5357 continue; 5358 5359 found = true; 5360 break; 5361 } 5362 spin_unlock(&ce->guc_state.lock); 5363 5364 if (found) { 5365 intel_engine_set_hung_context(engine, ce); 5366 5367 /* Can only cope with one hang at a time... */ 5368 intel_context_put(ce); 5369 xa_lock(&guc->context_lookup); 5370 goto done; 5371 } 5372 5373 next: 5374 intel_context_put(ce); 5375 xa_lock(&guc->context_lookup); 5376 } 5377 done: 5378 xa_unlock_irqrestore(&guc->context_lookup, flags); 5379 } 5380 5381 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 5382 struct i915_request *hung_rq, 5383 struct drm_printer *m) 5384 { 5385 struct intel_guc *guc = gt_to_guc(engine->gt); 5386 struct intel_context *ce; 5387 unsigned long index; 5388 unsigned long flags; 5389 5390 /* Reset called during driver load? GuC not yet initialised! */ 5391 if (unlikely(!guc_submission_initialized(guc))) 5392 return; 5393 5394 xa_lock_irqsave(&guc->context_lookup, flags); 5395 xa_for_each(&guc->context_lookup, index, ce) { 5396 if (!kref_get_unless_zero(&ce->ref)) 5397 continue; 5398 5399 xa_unlock(&guc->context_lookup); 5400 5401 if (!intel_context_is_pinned(ce)) 5402 goto next; 5403 5404 if (intel_engine_is_virtual(ce->engine)) { 5405 if (!(ce->engine->mask & engine->mask)) 5406 goto next; 5407 } else { 5408 if (ce->engine != engine) 5409 goto next; 5410 } 5411 5412 spin_lock(&ce->guc_state.lock); 5413 intel_engine_dump_active_requests(&ce->guc_state.requests, 5414 hung_rq, m); 5415 spin_unlock(&ce->guc_state.lock); 5416 5417 next: 5418 intel_context_put(ce); 5419 xa_lock(&guc->context_lookup); 5420 } 5421 xa_unlock_irqrestore(&guc->context_lookup, flags); 5422 } 5423 5424 void intel_guc_submission_print_info(struct intel_guc *guc, 5425 struct drm_printer *p) 5426 { 5427 struct i915_sched_engine *sched_engine = guc->sched_engine; 5428 struct rb_node *rb; 5429 unsigned long flags; 5430 5431 if (!sched_engine) 5432 return; 5433 5434 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n", 5435 guc->submission_version.major, guc->submission_version.minor, 5436 guc->submission_version.patch); 5437 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 5438 atomic_read(&guc->outstanding_submission_g2h)); 5439 drm_printf(p, "GuC tasklet count: %u\n", 5440 atomic_read(&sched_engine->tasklet.count)); 5441 5442 spin_lock_irqsave(&sched_engine->lock, flags); 5443 drm_printf(p, "Requests in GuC submit tasklet:\n"); 5444 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 5445 struct i915_priolist *pl = to_priolist(rb); 5446 struct i915_request *rq; 5447 5448 priolist_for_each_request(rq, pl) 5449 drm_printf(p, "guc_id=%u, seqno=%llu\n", 5450 rq->context->guc_id.id, 5451 rq->fence.seqno); 5452 } 5453 spin_unlock_irqrestore(&sched_engine->lock, flags); 5454 drm_printf(p, "\n"); 5455 } 5456 5457 static inline void guc_log_context_priority(struct drm_printer *p, 5458 struct intel_context *ce) 5459 { 5460 int i; 5461 5462 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 5463 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 5464 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 5465 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 5466 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 5467 i, ce->guc_state.prio_count[i]); 5468 } 5469 drm_printf(p, "\n"); 5470 } 5471 5472 static inline void guc_log_context(struct drm_printer *p, 5473 struct intel_context *ce) 5474 { 5475 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 5476 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 5477 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 5478 ce->ring->head, 5479 ce->lrc_reg_state[CTX_RING_HEAD]); 5480 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 5481 ce->ring->tail, 5482 ce->lrc_reg_state[CTX_RING_TAIL]); 5483 drm_printf(p, "\t\tContext Pin Count: %u\n", 5484 atomic_read(&ce->pin_count)); 5485 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 5486 atomic_read(&ce->guc_id.ref)); 5487 drm_printf(p, "\t\tSchedule State: 0x%x\n", 5488 ce->guc_state.sched_state); 5489 } 5490 5491 void intel_guc_submission_print_context_info(struct intel_guc *guc, 5492 struct drm_printer *p) 5493 { 5494 struct intel_context *ce; 5495 unsigned long index; 5496 unsigned long flags; 5497 5498 xa_lock_irqsave(&guc->context_lookup, flags); 5499 xa_for_each(&guc->context_lookup, index, ce) { 5500 GEM_BUG_ON(intel_context_is_child(ce)); 5501 5502 guc_log_context(p, ce); 5503 guc_log_context_priority(p, ce); 5504 5505 if (intel_context_is_parent(ce)) { 5506 struct intel_context *child; 5507 5508 drm_printf(p, "\t\tNumber children: %u\n", 5509 ce->parallel.number_children); 5510 5511 if (ce->parallel.guc.wq_status) { 5512 drm_printf(p, "\t\tWQI Head: %u\n", 5513 READ_ONCE(*ce->parallel.guc.wq_head)); 5514 drm_printf(p, "\t\tWQI Tail: %u\n", 5515 READ_ONCE(*ce->parallel.guc.wq_tail)); 5516 drm_printf(p, "\t\tWQI Status: %u\n", 5517 READ_ONCE(*ce->parallel.guc.wq_status)); 5518 } 5519 5520 if (ce->engine->emit_bb_start == 5521 emit_bb_start_parent_no_preempt_mid_batch) { 5522 u8 i; 5523 5524 drm_printf(p, "\t\tChildren Go: %u\n", 5525 get_children_go_value(ce)); 5526 for (i = 0; i < ce->parallel.number_children; ++i) 5527 drm_printf(p, "\t\tChildren Join: %u\n", 5528 get_children_join_value(ce, i)); 5529 } 5530 5531 for_each_child(ce, child) 5532 guc_log_context(p, child); 5533 } 5534 } 5535 xa_unlock_irqrestore(&guc->context_lookup, flags); 5536 } 5537 5538 static inline u32 get_children_go_addr(struct intel_context *ce) 5539 { 5540 GEM_BUG_ON(!intel_context_is_parent(ce)); 5541 5542 return i915_ggtt_offset(ce->state) + 5543 __get_parent_scratch_offset(ce) + 5544 offsetof(struct parent_scratch, go.semaphore); 5545 } 5546 5547 static inline u32 get_children_join_addr(struct intel_context *ce, 5548 u8 child_index) 5549 { 5550 GEM_BUG_ON(!intel_context_is_parent(ce)); 5551 5552 return i915_ggtt_offset(ce->state) + 5553 __get_parent_scratch_offset(ce) + 5554 offsetof(struct parent_scratch, join[child_index].semaphore); 5555 } 5556 5557 #define PARENT_GO_BB 1 5558 #define PARENT_GO_FINI_BREADCRUMB 0 5559 #define CHILD_GO_BB 1 5560 #define CHILD_GO_FINI_BREADCRUMB 0 5561 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 5562 u64 offset, u32 len, 5563 const unsigned int flags) 5564 { 5565 struct intel_context *ce = rq->context; 5566 u32 *cs; 5567 u8 i; 5568 5569 GEM_BUG_ON(!intel_context_is_parent(ce)); 5570 5571 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 5572 if (IS_ERR(cs)) 5573 return PTR_ERR(cs); 5574 5575 /* Wait on children */ 5576 for (i = 0; i < ce->parallel.number_children; ++i) { 5577 *cs++ = (MI_SEMAPHORE_WAIT | 5578 MI_SEMAPHORE_GLOBAL_GTT | 5579 MI_SEMAPHORE_POLL | 5580 MI_SEMAPHORE_SAD_EQ_SDD); 5581 *cs++ = PARENT_GO_BB; 5582 *cs++ = get_children_join_addr(ce, i); 5583 *cs++ = 0; 5584 } 5585 5586 /* Turn off preemption */ 5587 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5588 *cs++ = MI_NOOP; 5589 5590 /* Tell children go */ 5591 cs = gen8_emit_ggtt_write(cs, 5592 CHILD_GO_BB, 5593 get_children_go_addr(ce), 5594 0); 5595 5596 /* Jump to batch */ 5597 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5598 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5599 *cs++ = lower_32_bits(offset); 5600 *cs++ = upper_32_bits(offset); 5601 *cs++ = MI_NOOP; 5602 5603 intel_ring_advance(rq, cs); 5604 5605 return 0; 5606 } 5607 5608 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 5609 u64 offset, u32 len, 5610 const unsigned int flags) 5611 { 5612 struct intel_context *ce = rq->context; 5613 struct intel_context *parent = intel_context_to_parent(ce); 5614 u32 *cs; 5615 5616 GEM_BUG_ON(!intel_context_is_child(ce)); 5617 5618 cs = intel_ring_begin(rq, 12); 5619 if (IS_ERR(cs)) 5620 return PTR_ERR(cs); 5621 5622 /* Signal parent */ 5623 cs = gen8_emit_ggtt_write(cs, 5624 PARENT_GO_BB, 5625 get_children_join_addr(parent, 5626 ce->parallel.child_index), 5627 0); 5628 5629 /* Wait on parent for go */ 5630 *cs++ = (MI_SEMAPHORE_WAIT | 5631 MI_SEMAPHORE_GLOBAL_GTT | 5632 MI_SEMAPHORE_POLL | 5633 MI_SEMAPHORE_SAD_EQ_SDD); 5634 *cs++ = CHILD_GO_BB; 5635 *cs++ = get_children_go_addr(parent); 5636 *cs++ = 0; 5637 5638 /* Turn off preemption */ 5639 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5640 5641 /* Jump to batch */ 5642 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5643 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5644 *cs++ = lower_32_bits(offset); 5645 *cs++ = upper_32_bits(offset); 5646 5647 intel_ring_advance(rq, cs); 5648 5649 return 0; 5650 } 5651 5652 static u32 * 5653 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5654 u32 *cs) 5655 { 5656 struct intel_context *ce = rq->context; 5657 u8 i; 5658 5659 GEM_BUG_ON(!intel_context_is_parent(ce)); 5660 5661 /* Wait on children */ 5662 for (i = 0; i < ce->parallel.number_children; ++i) { 5663 *cs++ = (MI_SEMAPHORE_WAIT | 5664 MI_SEMAPHORE_GLOBAL_GTT | 5665 MI_SEMAPHORE_POLL | 5666 MI_SEMAPHORE_SAD_EQ_SDD); 5667 *cs++ = PARENT_GO_FINI_BREADCRUMB; 5668 *cs++ = get_children_join_addr(ce, i); 5669 *cs++ = 0; 5670 } 5671 5672 /* Turn on preemption */ 5673 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5674 *cs++ = MI_NOOP; 5675 5676 /* Tell children go */ 5677 cs = gen8_emit_ggtt_write(cs, 5678 CHILD_GO_FINI_BREADCRUMB, 5679 get_children_go_addr(ce), 5680 0); 5681 5682 return cs; 5683 } 5684 5685 /* 5686 * If this true, a submission of multi-lrc requests had an error and the 5687 * requests need to be skipped. The front end (execuf IOCTL) should've called 5688 * i915_request_skip which squashes the BB but we still need to emit the fini 5689 * breadrcrumbs seqno write. At this point we don't know how many of the 5690 * requests in the multi-lrc submission were generated so we can't do the 5691 * handshake between the parent and children (e.g. if 4 requests should be 5692 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 5693 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 5694 * has occurred on any of the requests in submission / relationship. 5695 */ 5696 static inline bool skip_handshake(struct i915_request *rq) 5697 { 5698 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 5699 } 5700 5701 #define NON_SKIP_LEN 6 5702 static u32 * 5703 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5704 u32 *cs) 5705 { 5706 struct intel_context *ce = rq->context; 5707 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5708 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5709 5710 GEM_BUG_ON(!intel_context_is_parent(ce)); 5711 5712 if (unlikely(skip_handshake(rq))) { 5713 /* 5714 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 5715 * the NON_SKIP_LEN comes from the length of the emits below. 5716 */ 5717 memset(cs, 0, sizeof(u32) * 5718 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5719 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5720 } else { 5721 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 5722 } 5723 5724 /* Emit fini breadcrumb */ 5725 before_fini_breadcrumb_user_interrupt_cs = cs; 5726 cs = gen8_emit_ggtt_write(cs, 5727 rq->fence.seqno, 5728 i915_request_active_timeline(rq)->hwsp_offset, 5729 0); 5730 5731 /* User interrupt */ 5732 *cs++ = MI_USER_INTERRUPT; 5733 *cs++ = MI_NOOP; 5734 5735 /* Ensure our math for skip + emit is correct */ 5736 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5737 cs); 5738 GEM_BUG_ON(start_fini_breadcrumb_cs + 5739 ce->engine->emit_fini_breadcrumb_dw != cs); 5740 5741 rq->tail = intel_ring_offset(rq, cs); 5742 5743 return cs; 5744 } 5745 5746 static u32 * 5747 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5748 u32 *cs) 5749 { 5750 struct intel_context *ce = rq->context; 5751 struct intel_context *parent = intel_context_to_parent(ce); 5752 5753 GEM_BUG_ON(!intel_context_is_child(ce)); 5754 5755 /* Turn on preemption */ 5756 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5757 *cs++ = MI_NOOP; 5758 5759 /* Signal parent */ 5760 cs = gen8_emit_ggtt_write(cs, 5761 PARENT_GO_FINI_BREADCRUMB, 5762 get_children_join_addr(parent, 5763 ce->parallel.child_index), 5764 0); 5765 5766 /* Wait parent on for go */ 5767 *cs++ = (MI_SEMAPHORE_WAIT | 5768 MI_SEMAPHORE_GLOBAL_GTT | 5769 MI_SEMAPHORE_POLL | 5770 MI_SEMAPHORE_SAD_EQ_SDD); 5771 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5772 *cs++ = get_children_go_addr(parent); 5773 *cs++ = 0; 5774 5775 return cs; 5776 } 5777 5778 static u32 * 5779 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5780 u32 *cs) 5781 { 5782 struct intel_context *ce = rq->context; 5783 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5784 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5785 5786 GEM_BUG_ON(!intel_context_is_child(ce)); 5787 5788 if (unlikely(skip_handshake(rq))) { 5789 /* 5790 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5791 * the NON_SKIP_LEN comes from the length of the emits below. 5792 */ 5793 memset(cs, 0, sizeof(u32) * 5794 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5795 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5796 } else { 5797 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5798 } 5799 5800 /* Emit fini breadcrumb */ 5801 before_fini_breadcrumb_user_interrupt_cs = cs; 5802 cs = gen8_emit_ggtt_write(cs, 5803 rq->fence.seqno, 5804 i915_request_active_timeline(rq)->hwsp_offset, 5805 0); 5806 5807 /* User interrupt */ 5808 *cs++ = MI_USER_INTERRUPT; 5809 *cs++ = MI_NOOP; 5810 5811 /* Ensure our math for skip + emit is correct */ 5812 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5813 cs); 5814 GEM_BUG_ON(start_fini_breadcrumb_cs + 5815 ce->engine->emit_fini_breadcrumb_dw != cs); 5816 5817 rq->tail = intel_ring_offset(rq, cs); 5818 5819 return cs; 5820 } 5821 5822 #undef NON_SKIP_LEN 5823 5824 static struct intel_context * 5825 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5826 unsigned long flags) 5827 { 5828 struct guc_virtual_engine *ve; 5829 struct intel_guc *guc; 5830 unsigned int n; 5831 int err; 5832 5833 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5834 if (!ve) 5835 return ERR_PTR(-ENOMEM); 5836 5837 guc = gt_to_guc(siblings[0]->gt); 5838 5839 ve->base.i915 = siblings[0]->i915; 5840 ve->base.gt = siblings[0]->gt; 5841 ve->base.uncore = siblings[0]->uncore; 5842 ve->base.id = -1; 5843 5844 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5845 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5846 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5847 ve->base.saturated = ALL_ENGINES; 5848 5849 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5850 5851 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5852 5853 ve->base.cops = &virtual_guc_context_ops; 5854 ve->base.request_alloc = guc_request_alloc; 5855 ve->base.bump_serial = virtual_guc_bump_serial; 5856 5857 ve->base.submit_request = guc_submit_request; 5858 5859 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5860 5861 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES); 5862 ve->base.mask = VIRTUAL_ENGINES; 5863 5864 intel_context_init(&ve->context, &ve->base); 5865 5866 for (n = 0; n < count; n++) { 5867 struct intel_engine_cs *sibling = siblings[n]; 5868 5869 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5870 if (sibling->mask & ve->base.mask) { 5871 guc_dbg(guc, "duplicate %s entry in load balancer\n", 5872 sibling->name); 5873 err = -EINVAL; 5874 goto err_put; 5875 } 5876 5877 ve->base.mask |= sibling->mask; 5878 ve->base.logical_mask |= sibling->logical_mask; 5879 5880 if (n != 0 && ve->base.class != sibling->class) { 5881 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n", 5882 sibling->class, ve->base.class); 5883 err = -EINVAL; 5884 goto err_put; 5885 } else if (n == 0) { 5886 ve->base.class = sibling->class; 5887 ve->base.uabi_class = sibling->uabi_class; 5888 snprintf(ve->base.name, sizeof(ve->base.name), 5889 "v%dx%d", ve->base.class, count); 5890 ve->base.context_size = sibling->context_size; 5891 5892 ve->base.add_active_request = 5893 sibling->add_active_request; 5894 ve->base.remove_active_request = 5895 sibling->remove_active_request; 5896 ve->base.emit_bb_start = sibling->emit_bb_start; 5897 ve->base.emit_flush = sibling->emit_flush; 5898 ve->base.emit_init_breadcrumb = 5899 sibling->emit_init_breadcrumb; 5900 ve->base.emit_fini_breadcrumb = 5901 sibling->emit_fini_breadcrumb; 5902 ve->base.emit_fini_breadcrumb_dw = 5903 sibling->emit_fini_breadcrumb_dw; 5904 ve->base.breadcrumbs = 5905 intel_breadcrumbs_get(sibling->breadcrumbs); 5906 5907 ve->base.flags |= sibling->flags; 5908 5909 ve->base.props.timeslice_duration_ms = 5910 sibling->props.timeslice_duration_ms; 5911 ve->base.props.preempt_timeout_ms = 5912 sibling->props.preempt_timeout_ms; 5913 } 5914 } 5915 5916 return &ve->context; 5917 5918 err_put: 5919 intel_context_put(&ve->context); 5920 return ERR_PTR(err); 5921 } 5922 5923 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5924 { 5925 struct intel_engine_cs *engine; 5926 intel_engine_mask_t tmp, mask = ve->mask; 5927 5928 for_each_engine_masked(engine, ve->gt, mask, tmp) 5929 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5930 return true; 5931 5932 return false; 5933 } 5934 5935 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5936 #include "selftest_guc.c" 5937 #include "selftest_guc_multi_lrc.c" 5938 #include "selftest_guc_hangcheck.c" 5939 #endif 5940