1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gem/i915_gem_lmem.h" 10 #include "gt/gen8_engine_cs.h" 11 #include "gt/intel_breadcrumbs.h" 12 #include "gt/intel_context.h" 13 #include "gt/intel_engine_heartbeat.h" 14 #include "gt/intel_engine_pm.h" 15 #include "gt/intel_engine_regs.h" 16 #include "gt/intel_gpu_commands.h" 17 #include "gt/intel_gt.h" 18 #include "gt/intel_gt_clock_utils.h" 19 #include "gt/intel_gt_irq.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_gt_regs.h" 22 #include "gt/intel_gt_requests.h" 23 #include "gt/intel_lrc.h" 24 #include "gt/intel_lrc_reg.h" 25 #include "gt/intel_mocs.h" 26 #include "gt/intel_ring.h" 27 28 #include "intel_guc_ads.h" 29 #include "intel_guc_capture.h" 30 #include "intel_guc_print.h" 31 #include "intel_guc_submission.h" 32 33 #include "i915_drv.h" 34 #include "i915_reg.h" 35 #include "i915_irq.h" 36 #include "i915_trace.h" 37 38 /** 39 * DOC: GuC-based command submission 40 * 41 * The Scratch registers: 42 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 43 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 44 * triggers an interrupt on the GuC via another register write (0xC4C8). 45 * Firmware writes a success/fail code back to the action register after 46 * processes the request. The kernel driver polls waiting for this update and 47 * then proceeds. 48 * 49 * Command Transport buffers (CTBs): 50 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 51 * - G2H) are a message interface between the i915 and GuC. 52 * 53 * Context registration: 54 * Before a context can be submitted it must be registered with the GuC via a 55 * H2G. A unique guc_id is associated with each context. The context is either 56 * registered at request creation time (normal operation) or at submission time 57 * (abnormal operation, e.g. after a reset). 58 * 59 * Context submission: 60 * The i915 updates the LRC tail value in memory. The i915 must enable the 61 * scheduling of the context within the GuC for the GuC to actually consider it. 62 * Therefore, the first time a disabled context is submitted we use a schedule 63 * enable H2G, while follow up submissions are done via the context submit H2G, 64 * which informs the GuC that a previously enabled context has new work 65 * available. 66 * 67 * Context unpin: 68 * To unpin a context a H2G is used to disable scheduling. When the 69 * corresponding G2H returns indicating the scheduling disable operation has 70 * completed it is safe to unpin the context. While a disable is in flight it 71 * isn't safe to resubmit the context so a fence is used to stall all future 72 * requests of that context until the G2H is returned. Because this interaction 73 * with the GuC takes a non-zero amount of time we delay the disabling of 74 * scheduling after the pin count goes to zero by a configurable period of time 75 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of 76 * time to resubmit something on the context before doing this costly operation. 77 * This delay is only done if the context isn't closed and the guc_id usage is 78 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). 79 * 80 * Context deregistration: 81 * Before a context can be destroyed or if we steal its guc_id we must 82 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 83 * safe to submit anything to this guc_id until the deregister completes so a 84 * fence is used to stall all requests associated with this guc_id until the 85 * corresponding G2H returns indicating the guc_id has been deregistered. 86 * 87 * submission_state.guc_ids: 88 * Unique number associated with private GuC context data passed in during 89 * context registration / submission / deregistration. 64k available. Simple ida 90 * is used for allocation. 91 * 92 * Stealing guc_ids: 93 * If no guc_ids are available they can be stolen from another context at 94 * request creation time if that context is unpinned. If a guc_id can't be found 95 * we punt this problem to the user as we believe this is near impossible to hit 96 * during normal use cases. 97 * 98 * Locking: 99 * In the GuC submission code we have 3 basic spin locks which protect 100 * everything. Details about each below. 101 * 102 * sched_engine->lock 103 * This is the submission lock for all contexts that share an i915 schedule 104 * engine (sched_engine), thus only one of the contexts which share a 105 * sched_engine can be submitting at a time. Currently only one sched_engine is 106 * used for all of GuC submission but that could change in the future. 107 * 108 * guc->submission_state.lock 109 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 110 * list. 111 * 112 * ce->guc_state.lock 113 * Protects everything under ce->guc_state. Ensures that a context is in the 114 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 115 * on a disabled context (bad idea), we don't issue a schedule enable when a 116 * schedule disable is in flight, etc... Also protects list of inflight requests 117 * on the context and the priority management state. Lock is individual to each 118 * context. 119 * 120 * Lock ordering rules: 121 * sched_engine->lock -> ce->guc_state.lock 122 * guc->submission_state.lock -> ce->guc_state.lock 123 * 124 * Reset races: 125 * When a full GT reset is triggered it is assumed that some G2H responses to 126 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 127 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 128 * contexts, release guc_ids, etc...). When this occurs we can scrub the 129 * context state and cleanup appropriately, however this is quite racey. 130 * To avoid races, the reset code must disable submission before scrubbing for 131 * the missing G2H, while the submission code must check for submission being 132 * disabled and skip sending H2Gs and updating context states when it is. Both 133 * sides must also make sure to hold the relevant locks. 134 */ 135 136 /* GuC Virtual Engine */ 137 struct guc_virtual_engine { 138 struct intel_engine_cs base; 139 struct intel_context context; 140 }; 141 142 static struct intel_context * 143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 144 unsigned long flags); 145 146 static struct intel_context * 147 guc_create_parallel(struct intel_engine_cs **engines, 148 unsigned int num_siblings, 149 unsigned int width); 150 151 #define GUC_REQUEST_SIZE 64 /* bytes */ 152 153 /* 154 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 155 * per the GuC submission interface. A different allocation algorithm is used 156 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 157 * partition the guc_id space. We believe the number of multi-lrc contexts in 158 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 159 * multi-lrc. 160 */ 161 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 162 ((guc)->submission_state.num_guc_ids / 16) 163 164 /* 165 * Below is a set of functions which control the GuC scheduling state which 166 * require a lock. 167 */ 168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 169 #define SCHED_STATE_DESTROYED BIT(1) 170 #define SCHED_STATE_PENDING_DISABLE BIT(2) 171 #define SCHED_STATE_BANNED BIT(3) 172 #define SCHED_STATE_ENABLED BIT(4) 173 #define SCHED_STATE_PENDING_ENABLE BIT(5) 174 #define SCHED_STATE_REGISTERED BIT(6) 175 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 176 #define SCHED_STATE_CLOSED BIT(8) 177 #define SCHED_STATE_BLOCKED_SHIFT 9 178 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 179 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 180 181 static inline void init_sched_state(struct intel_context *ce) 182 { 183 lockdep_assert_held(&ce->guc_state.lock); 184 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 185 } 186 187 /* 188 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. 189 * A context close can race with the submission path, so SCHED_STATE_CLOSED 190 * can be set immediately before we try to register. 191 */ 192 #define SCHED_STATE_VALID_INIT \ 193 (SCHED_STATE_BLOCKED_MASK | \ 194 SCHED_STATE_CLOSED | \ 195 SCHED_STATE_REGISTERED) 196 197 __maybe_unused 198 static bool sched_state_is_init(struct intel_context *ce) 199 { 200 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); 201 } 202 203 static inline bool 204 context_wait_for_deregister_to_register(struct intel_context *ce) 205 { 206 return ce->guc_state.sched_state & 207 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 208 } 209 210 static inline void 211 set_context_wait_for_deregister_to_register(struct intel_context *ce) 212 { 213 lockdep_assert_held(&ce->guc_state.lock); 214 ce->guc_state.sched_state |= 215 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 216 } 217 218 static inline void 219 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 220 { 221 lockdep_assert_held(&ce->guc_state.lock); 222 ce->guc_state.sched_state &= 223 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 224 } 225 226 static inline bool 227 context_destroyed(struct intel_context *ce) 228 { 229 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 230 } 231 232 static inline void 233 set_context_destroyed(struct intel_context *ce) 234 { 235 lockdep_assert_held(&ce->guc_state.lock); 236 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 237 } 238 239 static inline void 240 clr_context_destroyed(struct intel_context *ce) 241 { 242 lockdep_assert_held(&ce->guc_state.lock); 243 ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED; 244 } 245 246 static inline bool context_pending_disable(struct intel_context *ce) 247 { 248 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 249 } 250 251 static inline void set_context_pending_disable(struct intel_context *ce) 252 { 253 lockdep_assert_held(&ce->guc_state.lock); 254 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 255 } 256 257 static inline void clr_context_pending_disable(struct intel_context *ce) 258 { 259 lockdep_assert_held(&ce->guc_state.lock); 260 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 261 } 262 263 static inline bool context_banned(struct intel_context *ce) 264 { 265 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 266 } 267 268 static inline void set_context_banned(struct intel_context *ce) 269 { 270 lockdep_assert_held(&ce->guc_state.lock); 271 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 272 } 273 274 static inline void clr_context_banned(struct intel_context *ce) 275 { 276 lockdep_assert_held(&ce->guc_state.lock); 277 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 278 } 279 280 static inline bool context_enabled(struct intel_context *ce) 281 { 282 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 283 } 284 285 static inline void set_context_enabled(struct intel_context *ce) 286 { 287 lockdep_assert_held(&ce->guc_state.lock); 288 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 289 } 290 291 static inline void clr_context_enabled(struct intel_context *ce) 292 { 293 lockdep_assert_held(&ce->guc_state.lock); 294 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 295 } 296 297 static inline bool context_pending_enable(struct intel_context *ce) 298 { 299 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 300 } 301 302 static inline void set_context_pending_enable(struct intel_context *ce) 303 { 304 lockdep_assert_held(&ce->guc_state.lock); 305 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 306 } 307 308 static inline void clr_context_pending_enable(struct intel_context *ce) 309 { 310 lockdep_assert_held(&ce->guc_state.lock); 311 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 312 } 313 314 static inline bool context_registered(struct intel_context *ce) 315 { 316 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 317 } 318 319 static inline void set_context_registered(struct intel_context *ce) 320 { 321 lockdep_assert_held(&ce->guc_state.lock); 322 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 323 } 324 325 static inline void clr_context_registered(struct intel_context *ce) 326 { 327 lockdep_assert_held(&ce->guc_state.lock); 328 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 329 } 330 331 static inline bool context_policy_required(struct intel_context *ce) 332 { 333 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 334 } 335 336 static inline void set_context_policy_required(struct intel_context *ce) 337 { 338 lockdep_assert_held(&ce->guc_state.lock); 339 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 340 } 341 342 static inline void clr_context_policy_required(struct intel_context *ce) 343 { 344 lockdep_assert_held(&ce->guc_state.lock); 345 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 346 } 347 348 static inline bool context_close_done(struct intel_context *ce) 349 { 350 return ce->guc_state.sched_state & SCHED_STATE_CLOSED; 351 } 352 353 static inline void set_context_close_done(struct intel_context *ce) 354 { 355 lockdep_assert_held(&ce->guc_state.lock); 356 ce->guc_state.sched_state |= SCHED_STATE_CLOSED; 357 } 358 359 static inline u32 context_blocked(struct intel_context *ce) 360 { 361 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 362 SCHED_STATE_BLOCKED_SHIFT; 363 } 364 365 static inline void incr_context_blocked(struct intel_context *ce) 366 { 367 lockdep_assert_held(&ce->guc_state.lock); 368 369 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 370 371 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 372 } 373 374 static inline void decr_context_blocked(struct intel_context *ce) 375 { 376 lockdep_assert_held(&ce->guc_state.lock); 377 378 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 379 380 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 381 } 382 383 static struct intel_context * 384 request_to_scheduling_context(struct i915_request *rq) 385 { 386 return intel_context_to_parent(rq->context); 387 } 388 389 static inline bool context_guc_id_invalid(struct intel_context *ce) 390 { 391 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 392 } 393 394 static inline void set_context_guc_id_invalid(struct intel_context *ce) 395 { 396 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 397 } 398 399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 400 { 401 return gt_to_guc(ce->engine->gt); 402 } 403 404 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 405 { 406 return rb_entry(rb, struct i915_priolist, node); 407 } 408 409 /* 410 * When using multi-lrc submission a scratch memory area is reserved in the 411 * parent's context state for the process descriptor, work queue, and handshake 412 * between the parent + children contexts to insert safe preemption points 413 * between each of the BBs. Currently the scratch area is sized to a page. 414 * 415 * The layout of this scratch area is below: 416 * 0 guc_process_desc 417 * + sizeof(struct guc_process_desc) child go 418 * + CACHELINE_BYTES child join[0] 419 * ... 420 * + CACHELINE_BYTES child join[n - 1] 421 * ... unused 422 * PARENT_SCRATCH_SIZE / 2 work queue start 423 * ... work queue 424 * PARENT_SCRATCH_SIZE - 1 work queue end 425 */ 426 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 427 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 428 429 struct sync_semaphore { 430 u32 semaphore; 431 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 432 }; 433 434 struct parent_scratch { 435 union guc_descs { 436 struct guc_sched_wq_desc wq_desc; 437 struct guc_process_desc_v69 pdesc; 438 } descs; 439 440 struct sync_semaphore go; 441 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 442 443 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 444 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 445 446 u32 wq[WQ_SIZE / sizeof(u32)]; 447 }; 448 449 static u32 __get_parent_scratch_offset(struct intel_context *ce) 450 { 451 GEM_BUG_ON(!ce->parallel.guc.parent_page); 452 453 return ce->parallel.guc.parent_page * PAGE_SIZE; 454 } 455 456 static u32 __get_wq_offset(struct intel_context *ce) 457 { 458 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 459 460 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 461 } 462 463 static struct parent_scratch * 464 __get_parent_scratch(struct intel_context *ce) 465 { 466 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 467 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 468 469 /* 470 * Need to subtract LRC_STATE_OFFSET here as the 471 * parallel.guc.parent_page is the offset into ce->state while 472 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 473 */ 474 return (struct parent_scratch *) 475 (ce->lrc_reg_state + 476 ((__get_parent_scratch_offset(ce) - 477 LRC_STATE_OFFSET) / sizeof(u32))); 478 } 479 480 static struct guc_process_desc_v69 * 481 __get_process_desc_v69(struct intel_context *ce) 482 { 483 struct parent_scratch *ps = __get_parent_scratch(ce); 484 485 return &ps->descs.pdesc; 486 } 487 488 static struct guc_sched_wq_desc * 489 __get_wq_desc_v70(struct intel_context *ce) 490 { 491 struct parent_scratch *ps = __get_parent_scratch(ce); 492 493 return &ps->descs.wq_desc; 494 } 495 496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 497 { 498 /* 499 * Check for space in work queue. Caching a value of head pointer in 500 * intel_context structure in order reduce the number accesses to shared 501 * GPU memory which may be across a PCIe bus. 502 */ 503 #define AVAILABLE_SPACE \ 504 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 505 if (wqi_size > AVAILABLE_SPACE) { 506 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 507 508 if (wqi_size > AVAILABLE_SPACE) 509 return NULL; 510 } 511 #undef AVAILABLE_SPACE 512 513 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 514 } 515 516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 517 { 518 struct intel_context *ce = xa_load(&guc->context_lookup, id); 519 520 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 521 522 return ce; 523 } 524 525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 526 { 527 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 528 529 if (!base) 530 return NULL; 531 532 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 533 534 return &base[index]; 535 } 536 537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 538 { 539 u32 size; 540 int ret; 541 542 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 543 GUC_MAX_CONTEXT_ID); 544 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 545 (void **)&guc->lrc_desc_pool_vaddr_v69); 546 if (ret) 547 return ret; 548 549 return 0; 550 } 551 552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 553 { 554 if (!guc->lrc_desc_pool_vaddr_v69) 555 return; 556 557 guc->lrc_desc_pool_vaddr_v69 = NULL; 558 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 559 } 560 561 static inline bool guc_submission_initialized(struct intel_guc *guc) 562 { 563 return guc->submission_initialized; 564 } 565 566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 567 { 568 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 569 570 if (desc) 571 memset(desc, 0, sizeof(*desc)); 572 } 573 574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 575 { 576 return __get_context(guc, id); 577 } 578 579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 580 struct intel_context *ce) 581 { 582 unsigned long flags; 583 584 /* 585 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 586 * lower level functions directly. 587 */ 588 xa_lock_irqsave(&guc->context_lookup, flags); 589 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 590 xa_unlock_irqrestore(&guc->context_lookup, flags); 591 } 592 593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 594 { 595 unsigned long flags; 596 597 if (unlikely(!guc_submission_initialized(guc))) 598 return; 599 600 _reset_lrc_desc_v69(guc, id); 601 602 /* 603 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 604 * the lower level functions directly. 605 */ 606 xa_lock_irqsave(&guc->context_lookup, flags); 607 __xa_erase(&guc->context_lookup, id); 608 xa_unlock_irqrestore(&guc->context_lookup, flags); 609 } 610 611 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 612 { 613 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 614 wake_up_all(&guc->ct.wq); 615 } 616 617 static int guc_submission_send_busy_loop(struct intel_guc *guc, 618 const u32 *action, 619 u32 len, 620 u32 g2h_len_dw, 621 bool loop) 622 { 623 int ret; 624 625 /* 626 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 627 * so we don't handle the case where we don't get a reply because we 628 * aborted the send due to the channel being busy. 629 */ 630 GEM_BUG_ON(g2h_len_dw && !loop); 631 632 if (g2h_len_dw) 633 atomic_inc(&guc->outstanding_submission_g2h); 634 635 ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 636 if (ret) 637 atomic_dec(&guc->outstanding_submission_g2h); 638 639 return ret; 640 } 641 642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 643 atomic_t *wait_var, 644 bool interruptible, 645 long timeout) 646 { 647 const int state = interruptible ? 648 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 649 DEFINE_WAIT(wait); 650 651 might_sleep(); 652 GEM_BUG_ON(timeout < 0); 653 654 if (!atomic_read(wait_var)) 655 return 0; 656 657 if (!timeout) 658 return -ETIME; 659 660 for (;;) { 661 prepare_to_wait(&guc->ct.wq, &wait, state); 662 663 if (!atomic_read(wait_var)) 664 break; 665 666 if (signal_pending_state(state, current)) { 667 timeout = -EINTR; 668 break; 669 } 670 671 if (!timeout) { 672 timeout = -ETIME; 673 break; 674 } 675 676 timeout = io_schedule_timeout(timeout); 677 } 678 finish_wait(&guc->ct.wq, &wait); 679 680 return (timeout < 0) ? timeout : 0; 681 } 682 683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 684 { 685 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 686 return 0; 687 688 return intel_guc_wait_for_pending_msg(guc, 689 &guc->outstanding_submission_g2h, 690 true, timeout); 691 } 692 693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 694 static int try_context_registration(struct intel_context *ce, bool loop); 695 696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 697 { 698 int err = 0; 699 struct intel_context *ce = request_to_scheduling_context(rq); 700 u32 action[3]; 701 int len = 0; 702 u32 g2h_len_dw = 0; 703 bool enabled; 704 705 lockdep_assert_held(&rq->engine->sched_engine->lock); 706 707 /* 708 * Corner case where requests were sitting in the priority list or a 709 * request resubmitted after the context was banned. 710 */ 711 if (unlikely(!intel_context_is_schedulable(ce))) { 712 i915_request_put(i915_request_mark_eio(rq)); 713 intel_engine_signal_breadcrumbs(ce->engine); 714 return 0; 715 } 716 717 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 718 GEM_BUG_ON(context_guc_id_invalid(ce)); 719 720 if (context_policy_required(ce)) { 721 err = guc_context_policy_init_v70(ce, false); 722 if (err) 723 return err; 724 } 725 726 spin_lock(&ce->guc_state.lock); 727 728 /* 729 * The request / context will be run on the hardware when scheduling 730 * gets enabled in the unblock. For multi-lrc we still submit the 731 * context to move the LRC tails. 732 */ 733 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 734 goto out; 735 736 enabled = context_enabled(ce) || context_blocked(ce); 737 738 if (!enabled) { 739 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 740 action[len++] = ce->guc_id.id; 741 action[len++] = GUC_CONTEXT_ENABLE; 742 set_context_pending_enable(ce); 743 intel_context_get(ce); 744 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 745 } else { 746 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 747 action[len++] = ce->guc_id.id; 748 } 749 750 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 751 if (!enabled && !err) { 752 trace_intel_context_sched_enable(ce); 753 atomic_inc(&guc->outstanding_submission_g2h); 754 set_context_enabled(ce); 755 756 /* 757 * Without multi-lrc KMD does the submission step (moving the 758 * lrc tail) so enabling scheduling is sufficient to submit the 759 * context. This isn't the case in multi-lrc submission as the 760 * GuC needs to move the tails, hence the need for another H2G 761 * to submit a multi-lrc context after enabling scheduling. 762 */ 763 if (intel_context_is_parent(ce)) { 764 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 765 err = intel_guc_send_nb(guc, action, len - 1, 0); 766 } 767 } else if (!enabled) { 768 clr_context_pending_enable(ce); 769 intel_context_put(ce); 770 } 771 if (likely(!err)) 772 trace_i915_request_guc_submit(rq); 773 774 out: 775 spin_unlock(&ce->guc_state.lock); 776 return err; 777 } 778 779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 780 { 781 int ret = __guc_add_request(guc, rq); 782 783 if (unlikely(ret == -EBUSY)) { 784 guc->stalled_request = rq; 785 guc->submission_stall_reason = STALL_ADD_REQUEST; 786 } 787 788 return ret; 789 } 790 791 static inline void guc_set_lrc_tail(struct i915_request *rq) 792 { 793 rq->context->lrc_reg_state[CTX_RING_TAIL] = 794 intel_ring_set_tail(rq->ring, rq->tail); 795 } 796 797 static inline int rq_prio(const struct i915_request *rq) 798 { 799 return rq->sched.attr.priority; 800 } 801 802 static bool is_multi_lrc_rq(struct i915_request *rq) 803 { 804 return intel_context_is_parallel(rq->context); 805 } 806 807 static bool can_merge_rq(struct i915_request *rq, 808 struct i915_request *last) 809 { 810 return request_to_scheduling_context(rq) == 811 request_to_scheduling_context(last); 812 } 813 814 static u32 wq_space_until_wrap(struct intel_context *ce) 815 { 816 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 817 } 818 819 static void write_wqi(struct intel_context *ce, u32 wqi_size) 820 { 821 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 822 823 /* 824 * Ensure WQI are visible before updating tail 825 */ 826 intel_guc_write_barrier(ce_to_guc(ce)); 827 828 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 829 (WQ_SIZE - 1); 830 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 831 } 832 833 static int guc_wq_noop_append(struct intel_context *ce) 834 { 835 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 836 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 837 838 if (!wqi) 839 return -EBUSY; 840 841 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 842 843 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 844 FIELD_PREP(WQ_LEN_MASK, len_dw); 845 ce->parallel.guc.wqi_tail = 0; 846 847 return 0; 848 } 849 850 static int __guc_wq_item_append(struct i915_request *rq) 851 { 852 struct intel_context *ce = request_to_scheduling_context(rq); 853 struct intel_context *child; 854 unsigned int wqi_size = (ce->parallel.number_children + 4) * 855 sizeof(u32); 856 u32 *wqi; 857 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 858 int ret; 859 860 /* Ensure context is in correct state updating work queue */ 861 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 862 GEM_BUG_ON(context_guc_id_invalid(ce)); 863 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 864 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 865 866 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 867 if (wqi_size > wq_space_until_wrap(ce)) { 868 ret = guc_wq_noop_append(ce); 869 if (ret) 870 return ret; 871 } 872 873 wqi = get_wq_pointer(ce, wqi_size); 874 if (!wqi) 875 return -EBUSY; 876 877 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 878 879 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 880 FIELD_PREP(WQ_LEN_MASK, len_dw); 881 *wqi++ = ce->lrc.lrca; 882 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 883 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 884 *wqi++ = 0; /* fence_id */ 885 for_each_child(ce, child) 886 *wqi++ = child->ring->tail / sizeof(u64); 887 888 write_wqi(ce, wqi_size); 889 890 return 0; 891 } 892 893 static int guc_wq_item_append(struct intel_guc *guc, 894 struct i915_request *rq) 895 { 896 struct intel_context *ce = request_to_scheduling_context(rq); 897 int ret; 898 899 if (unlikely(!intel_context_is_schedulable(ce))) 900 return 0; 901 902 ret = __guc_wq_item_append(rq); 903 if (unlikely(ret == -EBUSY)) { 904 guc->stalled_request = rq; 905 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 906 } 907 908 return ret; 909 } 910 911 static bool multi_lrc_submit(struct i915_request *rq) 912 { 913 struct intel_context *ce = request_to_scheduling_context(rq); 914 915 intel_ring_set_tail(rq->ring, rq->tail); 916 917 /* 918 * We expect the front end (execbuf IOCTL) to set this flag on the last 919 * request generated from a multi-BB submission. This indicates to the 920 * backend (GuC interface) that we should submit this context thus 921 * submitting all the requests generated in parallel. 922 */ 923 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 924 !intel_context_is_schedulable(ce); 925 } 926 927 static int guc_dequeue_one_context(struct intel_guc *guc) 928 { 929 struct i915_sched_engine * const sched_engine = guc->sched_engine; 930 struct i915_request *last = NULL; 931 bool submit = false; 932 struct rb_node *rb; 933 int ret; 934 935 lockdep_assert_held(&sched_engine->lock); 936 937 if (guc->stalled_request) { 938 submit = true; 939 last = guc->stalled_request; 940 941 switch (guc->submission_stall_reason) { 942 case STALL_REGISTER_CONTEXT: 943 goto register_context; 944 case STALL_MOVE_LRC_TAIL: 945 goto move_lrc_tail; 946 case STALL_ADD_REQUEST: 947 goto add_request; 948 default: 949 MISSING_CASE(guc->submission_stall_reason); 950 } 951 } 952 953 while ((rb = rb_first_cached(&sched_engine->queue))) { 954 struct i915_priolist *p = to_priolist(rb); 955 struct i915_request *rq, *rn; 956 957 priolist_for_each_request_consume(rq, rn, p) { 958 if (last && !can_merge_rq(rq, last)) 959 goto register_context; 960 961 list_del_init(&rq->sched.link); 962 963 __i915_request_submit(rq); 964 965 trace_i915_request_in(rq, 0); 966 last = rq; 967 968 if (is_multi_lrc_rq(rq)) { 969 /* 970 * We need to coalesce all multi-lrc requests in 971 * a relationship into a single H2G. We are 972 * guaranteed that all of these requests will be 973 * submitted sequentially. 974 */ 975 if (multi_lrc_submit(rq)) { 976 submit = true; 977 goto register_context; 978 } 979 } else { 980 submit = true; 981 } 982 } 983 984 rb_erase_cached(&p->node, &sched_engine->queue); 985 i915_priolist_free(p); 986 } 987 988 register_context: 989 if (submit) { 990 struct intel_context *ce = request_to_scheduling_context(last); 991 992 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 993 intel_context_is_schedulable(ce))) { 994 ret = try_context_registration(ce, false); 995 if (unlikely(ret == -EPIPE)) { 996 goto deadlk; 997 } else if (ret == -EBUSY) { 998 guc->stalled_request = last; 999 guc->submission_stall_reason = 1000 STALL_REGISTER_CONTEXT; 1001 goto schedule_tasklet; 1002 } else if (ret != 0) { 1003 GEM_WARN_ON(ret); /* Unexpected */ 1004 goto deadlk; 1005 } 1006 } 1007 1008 move_lrc_tail: 1009 if (is_multi_lrc_rq(last)) { 1010 ret = guc_wq_item_append(guc, last); 1011 if (ret == -EBUSY) { 1012 goto schedule_tasklet; 1013 } else if (ret != 0) { 1014 GEM_WARN_ON(ret); /* Unexpected */ 1015 goto deadlk; 1016 } 1017 } else { 1018 guc_set_lrc_tail(last); 1019 } 1020 1021 add_request: 1022 ret = guc_add_request(guc, last); 1023 if (unlikely(ret == -EPIPE)) { 1024 goto deadlk; 1025 } else if (ret == -EBUSY) { 1026 goto schedule_tasklet; 1027 } else if (ret != 0) { 1028 GEM_WARN_ON(ret); /* Unexpected */ 1029 goto deadlk; 1030 } 1031 } 1032 1033 guc->stalled_request = NULL; 1034 guc->submission_stall_reason = STALL_NONE; 1035 return submit; 1036 1037 deadlk: 1038 sched_engine->tasklet.callback = NULL; 1039 tasklet_disable_nosync(&sched_engine->tasklet); 1040 return false; 1041 1042 schedule_tasklet: 1043 tasklet_schedule(&sched_engine->tasklet); 1044 return false; 1045 } 1046 1047 static void guc_submission_tasklet(struct tasklet_struct *t) 1048 { 1049 struct i915_sched_engine *sched_engine = 1050 from_tasklet(sched_engine, t, tasklet); 1051 unsigned long flags; 1052 bool loop; 1053 1054 spin_lock_irqsave(&sched_engine->lock, flags); 1055 1056 do { 1057 loop = guc_dequeue_one_context(sched_engine->private_data); 1058 } while (loop); 1059 1060 i915_sched_engine_reset_on_empty(sched_engine); 1061 1062 spin_unlock_irqrestore(&sched_engine->lock, flags); 1063 } 1064 1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1066 { 1067 if (iir & GT_RENDER_USER_INTERRUPT) 1068 intel_engine_signal_breadcrumbs(engine); 1069 } 1070 1071 static void __guc_context_destroy(struct intel_context *ce); 1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1073 static void guc_signal_context_fence(struct intel_context *ce); 1074 static void guc_cancel_context_requests(struct intel_context *ce); 1075 static void guc_blocked_fence_complete(struct intel_context *ce); 1076 1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1078 { 1079 struct intel_context *ce; 1080 unsigned long index, flags; 1081 bool pending_disable, pending_enable, deregister, destroyed, banned; 1082 1083 xa_lock_irqsave(&guc->context_lookup, flags); 1084 xa_for_each(&guc->context_lookup, index, ce) { 1085 /* 1086 * Corner case where the ref count on the object is zero but and 1087 * deregister G2H was lost. In this case we don't touch the ref 1088 * count and finish the destroy of the context. 1089 */ 1090 bool do_put = kref_get_unless_zero(&ce->ref); 1091 1092 xa_unlock(&guc->context_lookup); 1093 1094 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 1095 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { 1096 /* successful cancel so jump straight to close it */ 1097 intel_context_sched_disable_unpin(ce); 1098 } 1099 1100 spin_lock(&ce->guc_state.lock); 1101 1102 /* 1103 * Once we are at this point submission_disabled() is guaranteed 1104 * to be visible to all callers who set the below flags (see above 1105 * flush and flushes in reset_prepare). If submission_disabled() 1106 * is set, the caller shouldn't set these flags. 1107 */ 1108 1109 destroyed = context_destroyed(ce); 1110 pending_enable = context_pending_enable(ce); 1111 pending_disable = context_pending_disable(ce); 1112 deregister = context_wait_for_deregister_to_register(ce); 1113 banned = context_banned(ce); 1114 init_sched_state(ce); 1115 1116 spin_unlock(&ce->guc_state.lock); 1117 1118 if (pending_enable || destroyed || deregister) { 1119 decr_outstanding_submission_g2h(guc); 1120 if (deregister) 1121 guc_signal_context_fence(ce); 1122 if (destroyed) { 1123 intel_gt_pm_put_async_untracked(guc_to_gt(guc)); 1124 release_guc_id(guc, ce); 1125 __guc_context_destroy(ce); 1126 } 1127 if (pending_enable || deregister) 1128 intel_context_put(ce); 1129 } 1130 1131 /* Not mutualy exclusive with above if statement. */ 1132 if (pending_disable) { 1133 guc_signal_context_fence(ce); 1134 if (banned) { 1135 guc_cancel_context_requests(ce); 1136 intel_engine_signal_breadcrumbs(ce->engine); 1137 } 1138 intel_context_sched_disable_unpin(ce); 1139 decr_outstanding_submission_g2h(guc); 1140 1141 spin_lock(&ce->guc_state.lock); 1142 guc_blocked_fence_complete(ce); 1143 spin_unlock(&ce->guc_state.lock); 1144 1145 intel_context_put(ce); 1146 } 1147 1148 if (do_put) 1149 intel_context_put(ce); 1150 xa_lock(&guc->context_lookup); 1151 } 1152 xa_unlock_irqrestore(&guc->context_lookup, flags); 1153 } 1154 1155 /* 1156 * GuC stores busyness stats for each engine at context in/out boundaries. A 1157 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1158 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1159 * GuC. 1160 * 1161 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1162 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1163 * active. For an active engine total busyness = total + (now - start), where 1164 * 'now' is the time at which the busyness is sampled. For inactive engine, 1165 * total busyness = total. 1166 * 1167 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1168 * 1169 * The start and total values provided by GuC are 32 bits and wrap around in a 1170 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1171 * increasing ns values, there is a need for this implementation to account for 1172 * overflows and extend the GuC provided values to 64 bits before returning 1173 * busyness to the user. In order to do that, a worker runs periodically at 1174 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1175 * 27 seconds for a gt clock frequency of 19.2 MHz). 1176 */ 1177 1178 #define WRAP_TIME_CLKS U32_MAX 1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1180 1181 static void 1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1183 { 1184 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1185 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1186 1187 if (new_start == lower_32_bits(*prev_start)) 1188 return; 1189 1190 /* 1191 * When gt is unparked, we update the gt timestamp and start the ping 1192 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1193 * is unparked, all switched in contexts will have a start time that is 1194 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1195 * 1196 * If neither gt_stamp nor new_start has rolled over, then the 1197 * gt_stamp_hi does not need to be adjusted, however if one of them has 1198 * rolled over, we need to adjust gt_stamp_hi accordingly. 1199 * 1200 * The below conditions address the cases of new_start rollover and 1201 * gt_stamp_last rollover respectively. 1202 */ 1203 if (new_start < gt_stamp_last && 1204 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1205 gt_stamp_hi++; 1206 1207 if (new_start > gt_stamp_last && 1208 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1209 gt_stamp_hi--; 1210 1211 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1212 } 1213 1214 #define record_read(map_, field_) \ 1215 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1216 1217 /* 1218 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1219 * we run into a race where the value read is inconsistent. Sometimes the 1220 * inconsistency is in reading the upper MSB bytes of the last_in value when 1221 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1222 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1223 * determine validity of these values. Instead we read the values multiple times 1224 * until they are consistent. In test runs, 3 attempts results in consistent 1225 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1226 * any new occurences. 1227 */ 1228 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1229 u32 *last_in, u32 *id, u32 *total) 1230 { 1231 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1232 int i = 0; 1233 1234 do { 1235 *last_in = record_read(&rec_map, last_switch_in_stamp); 1236 *id = record_read(&rec_map, current_context_index); 1237 *total = record_read(&rec_map, total_runtime); 1238 1239 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1240 record_read(&rec_map, current_context_index) == *id && 1241 record_read(&rec_map, total_runtime) == *total) 1242 break; 1243 } while (++i < 6); 1244 } 1245 1246 static void __set_engine_usage_record(struct intel_engine_cs *engine, 1247 u32 last_in, u32 id, u32 total) 1248 { 1249 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1250 1251 #define record_write(map_, field_, val_) \ 1252 iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_) 1253 1254 record_write(&rec_map, last_switch_in_stamp, last_in); 1255 record_write(&rec_map, current_context_index, id); 1256 record_write(&rec_map, total_runtime, total); 1257 1258 #undef record_write 1259 } 1260 1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1262 { 1263 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1264 struct intel_guc *guc = gt_to_guc(engine->gt); 1265 u32 last_switch, ctx_id, total; 1266 1267 lockdep_assert_held(&guc->timestamp.lock); 1268 1269 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1270 1271 stats->running = ctx_id != ~0U && last_switch; 1272 if (stats->running) 1273 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1274 1275 /* 1276 * Instead of adjusting the total for overflow, just add the 1277 * difference from previous sample stats->total_gt_clks 1278 */ 1279 if (total && total != ~0U) { 1280 stats->total_gt_clks += (u32)(total - stats->prev_total); 1281 stats->prev_total = total; 1282 } 1283 } 1284 1285 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1286 { 1287 intel_wakeref_t wakeref; 1288 u32 reg, shift; 1289 1290 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1291 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1292 1293 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1294 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1295 1296 return 3 - shift; 1297 } 1298 1299 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1300 { 1301 struct intel_gt *gt = guc_to_gt(guc); 1302 u32 gt_stamp_lo, gt_stamp_hi; 1303 u64 gpm_ts; 1304 1305 lockdep_assert_held(&guc->timestamp.lock); 1306 1307 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1308 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1309 MISC_STATUS1) >> guc->timestamp.shift; 1310 gt_stamp_lo = lower_32_bits(gpm_ts); 1311 *now = ktime_get(); 1312 1313 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1314 gt_stamp_hi++; 1315 1316 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1317 } 1318 1319 /* 1320 * Unlike the execlist mode of submission total and active times are in terms of 1321 * gt clocks. The *now parameter is retained to return the cpu time at which the 1322 * busyness was sampled. 1323 */ 1324 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1325 { 1326 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1327 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1328 struct intel_gt *gt = engine->gt; 1329 struct intel_guc *guc = gt_to_guc(gt); 1330 u64 total, gt_stamp_saved; 1331 unsigned long flags; 1332 u32 reset_count; 1333 bool in_reset; 1334 intel_wakeref_t wakeref; 1335 1336 spin_lock_irqsave(&guc->timestamp.lock, flags); 1337 1338 /* 1339 * If a reset happened, we risk reading partially updated engine 1340 * busyness from GuC, so we just use the driver stored copy of busyness. 1341 * Synchronize with gt reset using reset_count and the 1342 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1343 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1344 * usable by checking the flag afterwards. 1345 */ 1346 reset_count = i915_reset_count(gpu_error); 1347 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1348 1349 *now = ktime_get(); 1350 1351 /* 1352 * The active busyness depends on start_gt_clk and gt_stamp. 1353 * gt_stamp is updated by i915 only when gt is awake and the 1354 * start_gt_clk is derived from GuC state. To get a consistent 1355 * view of activity, we query the GuC state only if gt is awake. 1356 */ 1357 wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt); 1358 if (wakeref) { 1359 stats_saved = *stats; 1360 gt_stamp_saved = guc->timestamp.gt_stamp; 1361 /* 1362 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1363 * start_gt_clk' calculation below for active engines. 1364 */ 1365 guc_update_engine_gt_clks(engine); 1366 guc_update_pm_timestamp(guc, now); 1367 intel_gt_pm_put_async(gt, wakeref); 1368 if (i915_reset_count(gpu_error) != reset_count) { 1369 *stats = stats_saved; 1370 guc->timestamp.gt_stamp = gt_stamp_saved; 1371 } 1372 } 1373 1374 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1375 if (stats->running) { 1376 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1377 1378 total += intel_gt_clock_interval_to_ns(gt, clk); 1379 } 1380 1381 if (total > stats->total) 1382 stats->total = total; 1383 1384 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1385 1386 return ns_to_ktime(stats->total); 1387 } 1388 1389 static void guc_enable_busyness_worker(struct intel_guc *guc) 1390 { 1391 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay); 1392 } 1393 1394 static void guc_cancel_busyness_worker(struct intel_guc *guc) 1395 { 1396 /* 1397 * There are many different call stacks that can get here. Some of them 1398 * hold the reset mutex. The busyness worker also attempts to acquire the 1399 * reset mutex. Synchronously flushing a worker thread requires acquiring 1400 * the worker mutex. Lockdep sees this as a conflict. It thinks that the 1401 * flush can deadlock because it holds the worker mutex while waiting for 1402 * the reset mutex, but another thread is holding the reset mutex and might 1403 * attempt to use other worker functions. 1404 * 1405 * In practice, this scenario does not exist because the busyness worker 1406 * does not block waiting for the reset mutex. It does a try-lock on it and 1407 * immediately exits if the lock is already held. Unfortunately, the mutex 1408 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep 1409 * annotation but not to the extent of explaining the 'might lock' is also a 1410 * 'does not need to lock'. So one option would be to add more complex lockdep 1411 * annotations to ignore the issue (if at all possible). A simpler option is to 1412 * just not flush synchronously when a rest in progress. Given that the worker 1413 * will just early exit and re-schedule itself anyway, there is no advantage 1414 * to running it immediately. 1415 * 1416 * If a reset is not in progress, then the synchronous flush may be required. 1417 * As noted many call stacks lead here, some during suspend and driver unload 1418 * which do require a synchronous flush to make sure the worker is stopped 1419 * before memory is freed. 1420 * 1421 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through 1422 * every possible call stack is unfeasible. It would be too intrusive to many 1423 * areas that really don't care about the GuC backend. However, there is the 1424 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked. 1425 * So just use those. Note that testing both is required due to the hideously 1426 * complex nature of the i915 driver's reset code paths. 1427 * 1428 * And note that in the case of a reset occurring during driver unload 1429 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the 1430 * reset flag/mutex are set) is fine because there is another explicit cancel in 1431 * intel_guc_submission_fini (when the reset flag/mutex are not). 1432 */ 1433 if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) || 1434 test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags)) 1435 cancel_delayed_work(&guc->timestamp.work); 1436 else 1437 cancel_delayed_work_sync(&guc->timestamp.work); 1438 } 1439 1440 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1441 { 1442 struct intel_gt *gt = guc_to_gt(guc); 1443 struct intel_engine_cs *engine; 1444 enum intel_engine_id id; 1445 unsigned long flags; 1446 ktime_t unused; 1447 1448 spin_lock_irqsave(&guc->timestamp.lock, flags); 1449 1450 guc_update_pm_timestamp(guc, &unused); 1451 for_each_engine(engine, gt, id) { 1452 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1453 1454 guc_update_engine_gt_clks(engine); 1455 1456 /* 1457 * If resetting a running context, accumulate the active 1458 * time as well since there will be no context switch. 1459 */ 1460 if (stats->running) { 1461 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1462 1463 stats->total_gt_clks += clk; 1464 } 1465 stats->prev_total = 0; 1466 stats->running = 0; 1467 } 1468 1469 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1470 } 1471 1472 static void __update_guc_busyness_stats(struct intel_guc *guc) 1473 { 1474 struct intel_gt *gt = guc_to_gt(guc); 1475 struct intel_engine_cs *engine; 1476 enum intel_engine_id id; 1477 unsigned long flags; 1478 ktime_t unused; 1479 1480 guc->timestamp.last_stat_jiffies = jiffies; 1481 1482 spin_lock_irqsave(&guc->timestamp.lock, flags); 1483 1484 guc_update_pm_timestamp(guc, &unused); 1485 for_each_engine(engine, gt, id) 1486 guc_update_engine_gt_clks(engine); 1487 1488 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1489 } 1490 1491 static void __guc_context_update_stats(struct intel_context *ce) 1492 { 1493 struct intel_guc *guc = ce_to_guc(ce); 1494 unsigned long flags; 1495 1496 spin_lock_irqsave(&guc->timestamp.lock, flags); 1497 lrc_update_runtime(ce); 1498 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1499 } 1500 1501 static void guc_context_update_stats(struct intel_context *ce) 1502 { 1503 if (!intel_context_pin_if_active(ce)) 1504 return; 1505 1506 __guc_context_update_stats(ce); 1507 intel_context_unpin(ce); 1508 } 1509 1510 static void guc_timestamp_ping(struct work_struct *wrk) 1511 { 1512 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1513 timestamp.work.work); 1514 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1515 struct intel_gt *gt = guc_to_gt(guc); 1516 struct intel_context *ce; 1517 intel_wakeref_t wakeref; 1518 unsigned long index; 1519 int srcu, ret; 1520 1521 /* 1522 * Ideally the busyness worker should take a gt pm wakeref because the 1523 * worker only needs to be active while gt is awake. However, the 1524 * gt_park path cancels the worker synchronously and this complicates 1525 * the flow if the worker is also running at the same time. The cancel 1526 * waits for the worker and when the worker releases the wakeref, that 1527 * would call gt_park and would lead to a deadlock. 1528 * 1529 * The resolution is to take the global pm wakeref if runtime pm is 1530 * already active. If not, we don't need to update the busyness stats as 1531 * the stats would already be updated when the gt was parked. 1532 * 1533 * Note: 1534 * - We do not requeue the worker if we cannot take a reference to runtime 1535 * pm since intel_guc_busyness_unpark would requeue the worker in the 1536 * resume path. 1537 * 1538 * - If the gt was parked longer than time taken for GT timestamp to roll 1539 * over, we ignore those rollovers since we don't care about tracking 1540 * the exact GT time. We only care about roll overs when the gt is 1541 * active and running workloads. 1542 * 1543 * - There is a window of time between gt_park and runtime suspend, 1544 * where the worker may run. This is acceptable since the worker will 1545 * not find any new data to update busyness. 1546 */ 1547 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm); 1548 if (!wakeref) 1549 return; 1550 1551 /* 1552 * Synchronize with gt reset to make sure the worker does not 1553 * corrupt the engine/guc stats. NB: can't actually block waiting 1554 * for a reset to complete as the reset requires flushing out 1555 * this worker thread if started. So waiting would deadlock. 1556 */ 1557 ret = intel_gt_reset_trylock(gt, &srcu); 1558 if (ret) 1559 goto err_trylock; 1560 1561 __update_guc_busyness_stats(guc); 1562 1563 /* adjust context stats for overflow */ 1564 xa_for_each(&guc->context_lookup, index, ce) 1565 guc_context_update_stats(ce); 1566 1567 intel_gt_reset_unlock(gt, srcu); 1568 1569 guc_enable_busyness_worker(guc); 1570 1571 err_trylock: 1572 intel_runtime_pm_put(>->i915->runtime_pm, wakeref); 1573 } 1574 1575 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1576 { 1577 struct intel_gt *gt = guc_to_gt(guc); 1578 struct intel_engine_cs *engine; 1579 enum intel_engine_id id; 1580 u32 offset = intel_guc_engine_usage_offset(guc); 1581 u32 action[] = { 1582 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1583 offset, 1584 0, 1585 }; 1586 1587 for_each_engine(engine, gt, id) 1588 __set_engine_usage_record(engine, 0, 0xffffffff, 0); 1589 1590 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1591 } 1592 1593 static int guc_init_engine_stats(struct intel_guc *guc) 1594 { 1595 struct intel_gt *gt = guc_to_gt(guc); 1596 intel_wakeref_t wakeref; 1597 int ret; 1598 1599 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1600 ret = guc_action_enable_usage_stats(guc); 1601 1602 if (ret) 1603 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret)); 1604 else 1605 guc_enable_busyness_worker(guc); 1606 1607 return ret; 1608 } 1609 1610 static void guc_fini_engine_stats(struct intel_guc *guc) 1611 { 1612 guc_cancel_busyness_worker(guc); 1613 } 1614 1615 void intel_guc_busyness_park(struct intel_gt *gt) 1616 { 1617 struct intel_guc *guc = gt_to_guc(gt); 1618 1619 if (!guc_submission_initialized(guc)) 1620 return; 1621 1622 /* 1623 * There is a race with suspend flow where the worker runs after suspend 1624 * and causes an unclaimed register access warning. Cancel the worker 1625 * synchronously here. 1626 */ 1627 guc_cancel_busyness_worker(guc); 1628 1629 /* 1630 * Before parking, we should sample engine busyness stats if we need to. 1631 * We can skip it if we are less than half a ping from the last time we 1632 * sampled the busyness stats. 1633 */ 1634 if (guc->timestamp.last_stat_jiffies && 1635 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1636 (guc->timestamp.ping_delay / 2))) 1637 return; 1638 1639 __update_guc_busyness_stats(guc); 1640 } 1641 1642 void intel_guc_busyness_unpark(struct intel_gt *gt) 1643 { 1644 struct intel_guc *guc = gt_to_guc(gt); 1645 unsigned long flags; 1646 ktime_t unused; 1647 1648 if (!guc_submission_initialized(guc)) 1649 return; 1650 1651 spin_lock_irqsave(&guc->timestamp.lock, flags); 1652 guc_update_pm_timestamp(guc, &unused); 1653 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1654 guc_enable_busyness_worker(guc); 1655 } 1656 1657 static inline bool 1658 submission_disabled(struct intel_guc *guc) 1659 { 1660 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1661 1662 return unlikely(!sched_engine || 1663 !__tasklet_is_enabled(&sched_engine->tasklet) || 1664 intel_gt_is_wedged(guc_to_gt(guc))); 1665 } 1666 1667 static void disable_submission(struct intel_guc *guc) 1668 { 1669 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1670 1671 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1672 GEM_BUG_ON(!guc->ct.enabled); 1673 __tasklet_disable_sync_once(&sched_engine->tasklet); 1674 sched_engine->tasklet.callback = NULL; 1675 } 1676 } 1677 1678 static void enable_submission(struct intel_guc *guc) 1679 { 1680 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1681 unsigned long flags; 1682 1683 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1684 sched_engine->tasklet.callback = guc_submission_tasklet; 1685 wmb(); /* Make sure callback visible */ 1686 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1687 __tasklet_enable(&sched_engine->tasklet)) { 1688 GEM_BUG_ON(!guc->ct.enabled); 1689 1690 /* And kick in case we missed a new request submission. */ 1691 tasklet_hi_schedule(&sched_engine->tasklet); 1692 } 1693 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1694 } 1695 1696 static void guc_flush_submissions(struct intel_guc *guc) 1697 { 1698 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1699 unsigned long flags; 1700 1701 spin_lock_irqsave(&sched_engine->lock, flags); 1702 spin_unlock_irqrestore(&sched_engine->lock, flags); 1703 } 1704 1705 void intel_guc_submission_flush_work(struct intel_guc *guc) 1706 { 1707 flush_work(&guc->submission_state.destroyed_worker); 1708 } 1709 1710 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1711 1712 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1713 { 1714 if (unlikely(!guc_submission_initialized(guc))) { 1715 /* Reset called during driver load? GuC not yet initialised! */ 1716 return; 1717 } 1718 1719 intel_gt_park_heartbeats(guc_to_gt(guc)); 1720 disable_submission(guc); 1721 guc->interrupts.disable(guc); 1722 __reset_guc_busyness_stats(guc); 1723 1724 /* Flush IRQ handler */ 1725 spin_lock_irq(guc_to_gt(guc)->irq_lock); 1726 spin_unlock_irq(guc_to_gt(guc)->irq_lock); 1727 1728 guc_flush_submissions(guc); 1729 guc_flush_destroyed_contexts(guc); 1730 flush_work(&guc->ct.requests.worker); 1731 1732 scrub_guc_desc_for_outstanding_g2h(guc); 1733 } 1734 1735 static struct intel_engine_cs * 1736 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1737 { 1738 struct intel_engine_cs *engine; 1739 intel_engine_mask_t tmp, mask = ve->mask; 1740 unsigned int num_siblings = 0; 1741 1742 for_each_engine_masked(engine, ve->gt, mask, tmp) 1743 if (num_siblings++ == sibling) 1744 return engine; 1745 1746 return NULL; 1747 } 1748 1749 static inline struct intel_engine_cs * 1750 __context_to_physical_engine(struct intel_context *ce) 1751 { 1752 struct intel_engine_cs *engine = ce->engine; 1753 1754 if (intel_engine_is_virtual(engine)) 1755 engine = guc_virtual_get_sibling(engine, 0); 1756 1757 return engine; 1758 } 1759 1760 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1761 { 1762 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1763 1764 if (!intel_context_is_schedulable(ce)) 1765 return; 1766 1767 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1768 1769 /* 1770 * We want a simple context + ring to execute the breadcrumb update. 1771 * We cannot rely on the context being intact across the GPU hang, 1772 * so clear it and rebuild just what we need for the breadcrumb. 1773 * All pending requests for this context will be zapped, and any 1774 * future request will be after userspace has had the opportunity 1775 * to recreate its own state. 1776 */ 1777 if (scrub) 1778 lrc_init_regs(ce, engine, true); 1779 1780 /* Rerun the request; its payload has been neutered (if guilty). */ 1781 lrc_update_regs(ce, engine, head); 1782 } 1783 1784 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1785 { 1786 /* 1787 * Wa_22011802037: In addition to stopping the cs, we need 1788 * to wait for any pending mi force wakeups 1789 */ 1790 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) { 1791 intel_engine_stop_cs(engine); 1792 intel_engine_wait_for_pending_mi_fw(engine); 1793 } 1794 } 1795 1796 static void guc_reset_nop(struct intel_engine_cs *engine) 1797 { 1798 } 1799 1800 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1801 { 1802 } 1803 1804 static void 1805 __unwind_incomplete_requests(struct intel_context *ce) 1806 { 1807 struct i915_request *rq, *rn; 1808 struct list_head *pl; 1809 int prio = I915_PRIORITY_INVALID; 1810 struct i915_sched_engine * const sched_engine = 1811 ce->engine->sched_engine; 1812 unsigned long flags; 1813 1814 spin_lock_irqsave(&sched_engine->lock, flags); 1815 spin_lock(&ce->guc_state.lock); 1816 list_for_each_entry_safe_reverse(rq, rn, 1817 &ce->guc_state.requests, 1818 sched.link) { 1819 if (i915_request_completed(rq)) 1820 continue; 1821 1822 list_del_init(&rq->sched.link); 1823 __i915_request_unsubmit(rq); 1824 1825 /* Push the request back into the queue for later resubmission. */ 1826 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1827 if (rq_prio(rq) != prio) { 1828 prio = rq_prio(rq); 1829 pl = i915_sched_lookup_priolist(sched_engine, prio); 1830 } 1831 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1832 1833 list_add(&rq->sched.link, pl); 1834 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1835 } 1836 spin_unlock(&ce->guc_state.lock); 1837 spin_unlock_irqrestore(&sched_engine->lock, flags); 1838 } 1839 1840 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1841 { 1842 bool guilty; 1843 struct i915_request *rq; 1844 unsigned long flags; 1845 u32 head; 1846 int i, number_children = ce->parallel.number_children; 1847 struct intel_context *parent = ce; 1848 1849 GEM_BUG_ON(intel_context_is_child(ce)); 1850 1851 intel_context_get(ce); 1852 1853 /* 1854 * GuC will implicitly mark the context as non-schedulable when it sends 1855 * the reset notification. Make sure our state reflects this change. The 1856 * context will be marked enabled on resubmission. 1857 */ 1858 spin_lock_irqsave(&ce->guc_state.lock, flags); 1859 clr_context_enabled(ce); 1860 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1861 1862 /* 1863 * For each context in the relationship find the hanging request 1864 * resetting each context / request as needed 1865 */ 1866 for (i = 0; i < number_children + 1; ++i) { 1867 if (!intel_context_is_pinned(ce)) 1868 goto next_context; 1869 1870 guilty = false; 1871 rq = intel_context_get_active_request(ce); 1872 if (!rq) { 1873 head = ce->ring->tail; 1874 goto out_replay; 1875 } 1876 1877 if (i915_request_started(rq)) 1878 guilty = stalled & ce->engine->mask; 1879 1880 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1881 head = intel_ring_wrap(ce->ring, rq->head); 1882 1883 __i915_request_reset(rq, guilty); 1884 i915_request_put(rq); 1885 out_replay: 1886 guc_reset_state(ce, head, guilty); 1887 next_context: 1888 if (i != number_children) 1889 ce = list_next_entry(ce, parallel.child_link); 1890 } 1891 1892 __unwind_incomplete_requests(parent); 1893 intel_context_put(parent); 1894 } 1895 1896 void wake_up_all_tlb_invalidate(struct intel_guc *guc) 1897 { 1898 struct intel_guc_tlb_wait *wait; 1899 unsigned long i; 1900 1901 if (!intel_guc_tlb_invalidation_is_available(guc)) 1902 return; 1903 1904 xa_lock_irq(&guc->tlb_lookup); 1905 xa_for_each(&guc->tlb_lookup, i, wait) 1906 wake_up(&wait->wq); 1907 xa_unlock_irq(&guc->tlb_lookup); 1908 } 1909 1910 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1911 { 1912 struct intel_context *ce; 1913 unsigned long index; 1914 unsigned long flags; 1915 1916 if (unlikely(!guc_submission_initialized(guc))) { 1917 /* Reset called during driver load? GuC not yet initialised! */ 1918 return; 1919 } 1920 1921 xa_lock_irqsave(&guc->context_lookup, flags); 1922 xa_for_each(&guc->context_lookup, index, ce) { 1923 if (!kref_get_unless_zero(&ce->ref)) 1924 continue; 1925 1926 xa_unlock(&guc->context_lookup); 1927 1928 if (intel_context_is_pinned(ce) && 1929 !intel_context_is_child(ce)) 1930 __guc_reset_context(ce, stalled); 1931 1932 intel_context_put(ce); 1933 1934 xa_lock(&guc->context_lookup); 1935 } 1936 xa_unlock_irqrestore(&guc->context_lookup, flags); 1937 1938 /* GuC is blown away, drop all references to contexts */ 1939 xa_destroy(&guc->context_lookup); 1940 } 1941 1942 static void guc_cancel_context_requests(struct intel_context *ce) 1943 { 1944 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1945 struct i915_request *rq; 1946 unsigned long flags; 1947 1948 /* Mark all executing requests as skipped. */ 1949 spin_lock_irqsave(&sched_engine->lock, flags); 1950 spin_lock(&ce->guc_state.lock); 1951 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1952 i915_request_put(i915_request_mark_eio(rq)); 1953 spin_unlock(&ce->guc_state.lock); 1954 spin_unlock_irqrestore(&sched_engine->lock, flags); 1955 } 1956 1957 static void 1958 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1959 { 1960 struct i915_request *rq, *rn; 1961 struct rb_node *rb; 1962 unsigned long flags; 1963 1964 /* Can be called during boot if GuC fails to load */ 1965 if (!sched_engine) 1966 return; 1967 1968 /* 1969 * Before we call engine->cancel_requests(), we should have exclusive 1970 * access to the submission state. This is arranged for us by the 1971 * caller disabling the interrupt generation, the tasklet and other 1972 * threads that may then access the same state, giving us a free hand 1973 * to reset state. However, we still need to let lockdep be aware that 1974 * we know this state may be accessed in hardirq context, so we 1975 * disable the irq around this manipulation and we want to keep 1976 * the spinlock focused on its duties and not accidentally conflate 1977 * coverage to the submission's irq state. (Similarly, although we 1978 * shouldn't need to disable irq around the manipulation of the 1979 * submission's irq state, we also wish to remind ourselves that 1980 * it is irq state.) 1981 */ 1982 spin_lock_irqsave(&sched_engine->lock, flags); 1983 1984 /* Flush the queued requests to the timeline list (for retiring). */ 1985 while ((rb = rb_first_cached(&sched_engine->queue))) { 1986 struct i915_priolist *p = to_priolist(rb); 1987 1988 priolist_for_each_request_consume(rq, rn, p) { 1989 list_del_init(&rq->sched.link); 1990 1991 __i915_request_submit(rq); 1992 1993 i915_request_put(i915_request_mark_eio(rq)); 1994 } 1995 1996 rb_erase_cached(&p->node, &sched_engine->queue); 1997 i915_priolist_free(p); 1998 } 1999 2000 /* Remaining _unready_ requests will be nop'ed when submitted */ 2001 2002 sched_engine->queue_priority_hint = INT_MIN; 2003 sched_engine->queue = RB_ROOT_CACHED; 2004 2005 spin_unlock_irqrestore(&sched_engine->lock, flags); 2006 } 2007 2008 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 2009 { 2010 struct intel_context *ce; 2011 unsigned long index; 2012 unsigned long flags; 2013 2014 xa_lock_irqsave(&guc->context_lookup, flags); 2015 xa_for_each(&guc->context_lookup, index, ce) { 2016 if (!kref_get_unless_zero(&ce->ref)) 2017 continue; 2018 2019 xa_unlock(&guc->context_lookup); 2020 2021 if (intel_context_is_pinned(ce) && 2022 !intel_context_is_child(ce)) 2023 guc_cancel_context_requests(ce); 2024 2025 intel_context_put(ce); 2026 2027 xa_lock(&guc->context_lookup); 2028 } 2029 xa_unlock_irqrestore(&guc->context_lookup, flags); 2030 2031 guc_cancel_sched_engine_requests(guc->sched_engine); 2032 2033 /* GuC is blown away, drop all references to contexts */ 2034 xa_destroy(&guc->context_lookup); 2035 2036 /* 2037 * Wedged GT won't respond to any TLB invalidation request. Simply 2038 * release all the blocked waiters. 2039 */ 2040 wake_up_all_tlb_invalidate(guc); 2041 } 2042 2043 void intel_guc_submission_reset_finish(struct intel_guc *guc) 2044 { 2045 /* Reset called during driver load or during wedge? */ 2046 if (unlikely(!guc_submission_initialized(guc) || 2047 !intel_guc_is_fw_running(guc) || 2048 intel_gt_is_wedged(guc_to_gt(guc)))) { 2049 return; 2050 } 2051 2052 /* 2053 * Technically possible for either of these values to be non-zero here, 2054 * but very unlikely + harmless. Regardless let's add an error so we can 2055 * see in CI if this happens frequently / a precursor to taking down the 2056 * machine. 2057 */ 2058 if (atomic_read(&guc->outstanding_submission_g2h)) 2059 guc_err(guc, "Unexpected outstanding GuC to Host in reset finish\n"); 2060 atomic_set(&guc->outstanding_submission_g2h, 0); 2061 2062 intel_guc_global_policies_update(guc); 2063 enable_submission(guc); 2064 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 2065 2066 /* 2067 * The full GT reset will have cleared the TLB caches and flushed the 2068 * G2H message queue; we can release all the blocked waiters. 2069 */ 2070 wake_up_all_tlb_invalidate(guc); 2071 } 2072 2073 static void destroyed_worker_func(struct work_struct *w); 2074 static void reset_fail_worker_func(struct work_struct *w); 2075 2076 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc) 2077 { 2078 return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) && 2079 intel_guc_is_ready(guc); 2080 } 2081 2082 static int init_tlb_lookup(struct intel_guc *guc) 2083 { 2084 struct intel_guc_tlb_wait *wait; 2085 int err; 2086 2087 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) 2088 return 0; 2089 2090 xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC); 2091 2092 wait = kzalloc(sizeof(*wait), GFP_KERNEL); 2093 if (!wait) 2094 return -ENOMEM; 2095 2096 init_waitqueue_head(&wait->wq); 2097 2098 /* Preallocate a shared id for use under memory pressure. */ 2099 err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait, 2100 xa_limit_32b, &guc->next_seqno, GFP_KERNEL); 2101 if (err < 0) { 2102 kfree(wait); 2103 return err; 2104 } 2105 2106 return 0; 2107 } 2108 2109 static void fini_tlb_lookup(struct intel_guc *guc) 2110 { 2111 struct intel_guc_tlb_wait *wait; 2112 2113 if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) 2114 return; 2115 2116 wait = xa_load(&guc->tlb_lookup, guc->serial_slot); 2117 if (wait && wait->busy) 2118 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n"); 2119 kfree(wait); 2120 2121 xa_destroy(&guc->tlb_lookup); 2122 } 2123 2124 /* 2125 * Set up the memory resources to be shared with the GuC (via the GGTT) 2126 * at firmware loading time. 2127 */ 2128 int intel_guc_submission_init(struct intel_guc *guc) 2129 { 2130 struct intel_gt *gt = guc_to_gt(guc); 2131 int ret; 2132 2133 if (guc->submission_initialized) 2134 return 0; 2135 2136 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { 2137 ret = guc_lrc_desc_pool_create_v69(guc); 2138 if (ret) 2139 return ret; 2140 } 2141 2142 ret = init_tlb_lookup(guc); 2143 if (ret) 2144 goto destroy_pool; 2145 2146 guc->submission_state.guc_ids_bitmap = 2147 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 2148 if (!guc->submission_state.guc_ids_bitmap) { 2149 ret = -ENOMEM; 2150 goto destroy_tlb; 2151 } 2152 2153 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 2154 guc->timestamp.shift = gpm_timestamp_shift(gt); 2155 guc->submission_initialized = true; 2156 2157 return 0; 2158 2159 destroy_tlb: 2160 fini_tlb_lookup(guc); 2161 destroy_pool: 2162 guc_lrc_desc_pool_destroy_v69(guc); 2163 return ret; 2164 } 2165 2166 void intel_guc_submission_fini(struct intel_guc *guc) 2167 { 2168 if (!guc->submission_initialized) 2169 return; 2170 2171 guc_fini_engine_stats(guc); 2172 guc_flush_destroyed_contexts(guc); 2173 guc_lrc_desc_pool_destroy_v69(guc); 2174 i915_sched_engine_put(guc->sched_engine); 2175 bitmap_free(guc->submission_state.guc_ids_bitmap); 2176 fini_tlb_lookup(guc); 2177 guc->submission_initialized = false; 2178 } 2179 2180 static inline void queue_request(struct i915_sched_engine *sched_engine, 2181 struct i915_request *rq, 2182 int prio) 2183 { 2184 GEM_BUG_ON(!list_empty(&rq->sched.link)); 2185 list_add_tail(&rq->sched.link, 2186 i915_sched_lookup_priolist(sched_engine, prio)); 2187 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 2188 tasklet_hi_schedule(&sched_engine->tasklet); 2189 } 2190 2191 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 2192 struct i915_request *rq) 2193 { 2194 int ret = 0; 2195 2196 __i915_request_submit(rq); 2197 2198 trace_i915_request_in(rq, 0); 2199 2200 if (is_multi_lrc_rq(rq)) { 2201 if (multi_lrc_submit(rq)) { 2202 ret = guc_wq_item_append(guc, rq); 2203 if (!ret) 2204 ret = guc_add_request(guc, rq); 2205 } 2206 } else { 2207 guc_set_lrc_tail(rq); 2208 ret = guc_add_request(guc, rq); 2209 } 2210 2211 if (unlikely(ret == -EPIPE)) 2212 disable_submission(guc); 2213 2214 return ret; 2215 } 2216 2217 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 2218 { 2219 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 2220 struct intel_context *ce = request_to_scheduling_context(rq); 2221 2222 return submission_disabled(guc) || guc->stalled_request || 2223 !i915_sched_engine_is_empty(sched_engine) || 2224 !ctx_id_mapped(guc, ce->guc_id.id); 2225 } 2226 2227 static void guc_submit_request(struct i915_request *rq) 2228 { 2229 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 2230 struct intel_guc *guc = gt_to_guc(rq->engine->gt); 2231 unsigned long flags; 2232 2233 /* Will be called from irq-context when using foreign fences. */ 2234 spin_lock_irqsave(&sched_engine->lock, flags); 2235 2236 if (need_tasklet(guc, rq)) 2237 queue_request(sched_engine, rq, rq_prio(rq)); 2238 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 2239 tasklet_hi_schedule(&sched_engine->tasklet); 2240 2241 spin_unlock_irqrestore(&sched_engine->lock, flags); 2242 } 2243 2244 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 2245 { 2246 int ret; 2247 2248 GEM_BUG_ON(intel_context_is_child(ce)); 2249 2250 if (intel_context_is_parent(ce)) 2251 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 2252 NUMBER_MULTI_LRC_GUC_ID(guc), 2253 order_base_2(ce->parallel.number_children 2254 + 1)); 2255 else 2256 ret = ida_alloc_range(&guc->submission_state.guc_ids, 2257 NUMBER_MULTI_LRC_GUC_ID(guc), 2258 guc->submission_state.num_guc_ids - 1, 2259 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 2260 if (unlikely(ret < 0)) 2261 return ret; 2262 2263 if (!intel_context_is_parent(ce)) 2264 ++guc->submission_state.guc_ids_in_use; 2265 2266 ce->guc_id.id = ret; 2267 return 0; 2268 } 2269 2270 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2271 { 2272 GEM_BUG_ON(intel_context_is_child(ce)); 2273 2274 if (!context_guc_id_invalid(ce)) { 2275 if (intel_context_is_parent(ce)) { 2276 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2277 ce->guc_id.id, 2278 order_base_2(ce->parallel.number_children 2279 + 1)); 2280 } else { 2281 --guc->submission_state.guc_ids_in_use; 2282 ida_free(&guc->submission_state.guc_ids, 2283 ce->guc_id.id); 2284 } 2285 clr_ctx_id_mapping(guc, ce->guc_id.id); 2286 set_context_guc_id_invalid(ce); 2287 } 2288 if (!list_empty(&ce->guc_id.link)) 2289 list_del_init(&ce->guc_id.link); 2290 } 2291 2292 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2293 { 2294 unsigned long flags; 2295 2296 spin_lock_irqsave(&guc->submission_state.lock, flags); 2297 __release_guc_id(guc, ce); 2298 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2299 } 2300 2301 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2302 { 2303 struct intel_context *cn; 2304 2305 lockdep_assert_held(&guc->submission_state.lock); 2306 GEM_BUG_ON(intel_context_is_child(ce)); 2307 GEM_BUG_ON(intel_context_is_parent(ce)); 2308 2309 if (!list_empty(&guc->submission_state.guc_id_list)) { 2310 cn = list_first_entry(&guc->submission_state.guc_id_list, 2311 struct intel_context, 2312 guc_id.link); 2313 2314 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2315 GEM_BUG_ON(context_guc_id_invalid(cn)); 2316 GEM_BUG_ON(intel_context_is_child(cn)); 2317 GEM_BUG_ON(intel_context_is_parent(cn)); 2318 2319 list_del_init(&cn->guc_id.link); 2320 ce->guc_id.id = cn->guc_id.id; 2321 2322 spin_lock(&cn->guc_state.lock); 2323 clr_context_registered(cn); 2324 spin_unlock(&cn->guc_state.lock); 2325 2326 set_context_guc_id_invalid(cn); 2327 2328 #ifdef CONFIG_DRM_I915_SELFTEST 2329 guc->number_guc_id_stolen++; 2330 #endif 2331 2332 return 0; 2333 } else { 2334 return -EAGAIN; 2335 } 2336 } 2337 2338 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2339 { 2340 int ret; 2341 2342 lockdep_assert_held(&guc->submission_state.lock); 2343 GEM_BUG_ON(intel_context_is_child(ce)); 2344 2345 ret = new_guc_id(guc, ce); 2346 if (unlikely(ret < 0)) { 2347 if (intel_context_is_parent(ce)) 2348 return -ENOSPC; 2349 2350 ret = steal_guc_id(guc, ce); 2351 if (ret < 0) 2352 return ret; 2353 } 2354 2355 if (intel_context_is_parent(ce)) { 2356 struct intel_context *child; 2357 int i = 1; 2358 2359 for_each_child(ce, child) 2360 child->guc_id.id = ce->guc_id.id + i++; 2361 } 2362 2363 return 0; 2364 } 2365 2366 #define PIN_GUC_ID_TRIES 4 2367 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2368 { 2369 int ret = 0; 2370 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2371 2372 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2373 2374 try_again: 2375 spin_lock_irqsave(&guc->submission_state.lock, flags); 2376 2377 might_lock(&ce->guc_state.lock); 2378 2379 if (context_guc_id_invalid(ce)) { 2380 ret = assign_guc_id(guc, ce); 2381 if (ret) 2382 goto out_unlock; 2383 ret = 1; /* Indidcates newly assigned guc_id */ 2384 } 2385 if (!list_empty(&ce->guc_id.link)) 2386 list_del_init(&ce->guc_id.link); 2387 atomic_inc(&ce->guc_id.ref); 2388 2389 out_unlock: 2390 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2391 2392 /* 2393 * -EAGAIN indicates no guc_id are available, let's retire any 2394 * outstanding requests to see if that frees up a guc_id. If the first 2395 * retire didn't help, insert a sleep with the timeslice duration before 2396 * attempting to retire more requests. Double the sleep period each 2397 * subsequent pass before finally giving up. The sleep period has max of 2398 * 100ms and minimum of 1ms. 2399 */ 2400 if (ret == -EAGAIN && --tries) { 2401 if (PIN_GUC_ID_TRIES - tries > 1) { 2402 unsigned int timeslice_shifted = 2403 ce->engine->props.timeslice_duration_ms << 2404 (PIN_GUC_ID_TRIES - tries - 2); 2405 unsigned int max = min_t(unsigned int, 100, 2406 timeslice_shifted); 2407 2408 msleep(max_t(unsigned int, max, 1)); 2409 } 2410 intel_gt_retire_requests(guc_to_gt(guc)); 2411 goto try_again; 2412 } 2413 2414 return ret; 2415 } 2416 2417 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2418 { 2419 unsigned long flags; 2420 2421 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2422 GEM_BUG_ON(intel_context_is_child(ce)); 2423 2424 if (unlikely(context_guc_id_invalid(ce) || 2425 intel_context_is_parent(ce))) 2426 return; 2427 2428 spin_lock_irqsave(&guc->submission_state.lock, flags); 2429 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2430 !atomic_read(&ce->guc_id.ref)) 2431 list_add_tail(&ce->guc_id.link, 2432 &guc->submission_state.guc_id_list); 2433 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2434 } 2435 2436 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2437 struct intel_context *ce, 2438 u32 guc_id, 2439 u32 offset, 2440 bool loop) 2441 { 2442 struct intel_context *child; 2443 u32 action[4 + MAX_ENGINE_INSTANCE]; 2444 int len = 0; 2445 2446 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2447 2448 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2449 action[len++] = guc_id; 2450 action[len++] = ce->parallel.number_children + 1; 2451 action[len++] = offset; 2452 for_each_child(ce, child) { 2453 offset += sizeof(struct guc_lrc_desc_v69); 2454 action[len++] = offset; 2455 } 2456 2457 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2458 } 2459 2460 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2461 struct intel_context *ce, 2462 struct guc_ctxt_registration_info *info, 2463 bool loop) 2464 { 2465 struct intel_context *child; 2466 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2467 int len = 0; 2468 u32 next_id; 2469 2470 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2471 2472 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2473 action[len++] = info->flags; 2474 action[len++] = info->context_idx; 2475 action[len++] = info->engine_class; 2476 action[len++] = info->engine_submit_mask; 2477 action[len++] = info->wq_desc_lo; 2478 action[len++] = info->wq_desc_hi; 2479 action[len++] = info->wq_base_lo; 2480 action[len++] = info->wq_base_hi; 2481 action[len++] = info->wq_size; 2482 action[len++] = ce->parallel.number_children + 1; 2483 action[len++] = info->hwlrca_lo; 2484 action[len++] = info->hwlrca_hi; 2485 2486 next_id = info->context_idx + 1; 2487 for_each_child(ce, child) { 2488 GEM_BUG_ON(next_id++ != child->guc_id.id); 2489 2490 /* 2491 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2492 * only supports 32 bit currently. 2493 */ 2494 action[len++] = lower_32_bits(child->lrc.lrca); 2495 action[len++] = upper_32_bits(child->lrc.lrca); 2496 } 2497 2498 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2499 2500 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2501 } 2502 2503 static int __guc_action_register_context_v69(struct intel_guc *guc, 2504 u32 guc_id, 2505 u32 offset, 2506 bool loop) 2507 { 2508 u32 action[] = { 2509 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2510 guc_id, 2511 offset, 2512 }; 2513 2514 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2515 0, loop); 2516 } 2517 2518 static int __guc_action_register_context_v70(struct intel_guc *guc, 2519 struct guc_ctxt_registration_info *info, 2520 bool loop) 2521 { 2522 u32 action[] = { 2523 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2524 info->flags, 2525 info->context_idx, 2526 info->engine_class, 2527 info->engine_submit_mask, 2528 info->wq_desc_lo, 2529 info->wq_desc_hi, 2530 info->wq_base_lo, 2531 info->wq_base_hi, 2532 info->wq_size, 2533 info->hwlrca_lo, 2534 info->hwlrca_hi, 2535 }; 2536 2537 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2538 0, loop); 2539 } 2540 2541 static void prepare_context_registration_info_v69(struct intel_context *ce); 2542 static void prepare_context_registration_info_v70(struct intel_context *ce, 2543 struct guc_ctxt_registration_info *info); 2544 2545 static int 2546 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2547 { 2548 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2549 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2550 2551 prepare_context_registration_info_v69(ce); 2552 2553 if (intel_context_is_parent(ce)) 2554 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2555 offset, loop); 2556 else 2557 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2558 offset, loop); 2559 } 2560 2561 static int 2562 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2563 { 2564 struct guc_ctxt_registration_info info; 2565 2566 prepare_context_registration_info_v70(ce, &info); 2567 2568 if (intel_context_is_parent(ce)) 2569 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2570 else 2571 return __guc_action_register_context_v70(guc, &info, loop); 2572 } 2573 2574 static int register_context(struct intel_context *ce, bool loop) 2575 { 2576 struct intel_guc *guc = ce_to_guc(ce); 2577 int ret; 2578 2579 GEM_BUG_ON(intel_context_is_child(ce)); 2580 trace_intel_context_register(ce); 2581 2582 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2583 ret = register_context_v70(guc, ce, loop); 2584 else 2585 ret = register_context_v69(guc, ce, loop); 2586 2587 if (likely(!ret)) { 2588 unsigned long flags; 2589 2590 spin_lock_irqsave(&ce->guc_state.lock, flags); 2591 set_context_registered(ce); 2592 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2593 2594 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2595 guc_context_policy_init_v70(ce, loop); 2596 } 2597 2598 return ret; 2599 } 2600 2601 static int __guc_action_deregister_context(struct intel_guc *guc, 2602 u32 guc_id) 2603 { 2604 u32 action[] = { 2605 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2606 guc_id, 2607 }; 2608 2609 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2610 G2H_LEN_DW_DEREGISTER_CONTEXT, 2611 true); 2612 } 2613 2614 static int deregister_context(struct intel_context *ce, u32 guc_id) 2615 { 2616 struct intel_guc *guc = ce_to_guc(ce); 2617 2618 GEM_BUG_ON(intel_context_is_child(ce)); 2619 trace_intel_context_deregister(ce); 2620 2621 return __guc_action_deregister_context(guc, guc_id); 2622 } 2623 2624 static inline void clear_children_join_go_memory(struct intel_context *ce) 2625 { 2626 struct parent_scratch *ps = __get_parent_scratch(ce); 2627 int i; 2628 2629 ps->go.semaphore = 0; 2630 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2631 ps->join[i].semaphore = 0; 2632 } 2633 2634 static inline u32 get_children_go_value(struct intel_context *ce) 2635 { 2636 return __get_parent_scratch(ce)->go.semaphore; 2637 } 2638 2639 static inline u32 get_children_join_value(struct intel_context *ce, 2640 u8 child_index) 2641 { 2642 return __get_parent_scratch(ce)->join[child_index].semaphore; 2643 } 2644 2645 struct context_policy { 2646 u32 count; 2647 struct guc_update_context_policy h2g; 2648 }; 2649 2650 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2651 { 2652 size_t bytes = sizeof(policy->h2g.header) + 2653 (sizeof(policy->h2g.klv[0]) * policy->count); 2654 2655 return bytes / sizeof(u32); 2656 } 2657 2658 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2659 { 2660 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2661 policy->h2g.header.ctx_id = guc_id; 2662 policy->count = 0; 2663 } 2664 2665 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2666 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2667 { \ 2668 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2669 policy->h2g.klv[policy->count].kl = \ 2670 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2671 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2672 policy->h2g.klv[policy->count].value = data; \ 2673 policy->count++; \ 2674 } 2675 2676 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2677 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2678 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2679 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2680 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY) 2681 2682 #undef MAKE_CONTEXT_POLICY_ADD 2683 2684 static int __guc_context_set_context_policies(struct intel_guc *guc, 2685 struct context_policy *policy, 2686 bool loop) 2687 { 2688 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2689 __guc_context_policy_action_size(policy), 2690 0, loop); 2691 } 2692 2693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2694 { 2695 struct intel_engine_cs *engine = ce->engine; 2696 struct intel_guc *guc = gt_to_guc(engine->gt); 2697 struct context_policy policy; 2698 u32 execution_quantum; 2699 u32 preemption_timeout; 2700 u32 slpc_ctx_freq_req = 0; 2701 unsigned long flags; 2702 int ret; 2703 2704 /* NB: For both of these, zero means disabled. */ 2705 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2706 execution_quantum)); 2707 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2708 preemption_timeout)); 2709 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2710 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2711 2712 if (ce->flags & BIT(CONTEXT_LOW_LATENCY)) 2713 slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE; 2714 2715 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2716 2717 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2718 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2719 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2720 __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req); 2721 2722 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2723 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2724 2725 ret = __guc_context_set_context_policies(guc, &policy, loop); 2726 2727 spin_lock_irqsave(&ce->guc_state.lock, flags); 2728 if (ret != 0) 2729 set_context_policy_required(ce); 2730 else 2731 clr_context_policy_required(ce); 2732 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2733 2734 return ret; 2735 } 2736 2737 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2738 struct guc_lrc_desc_v69 *desc) 2739 { 2740 desc->policy_flags = 0; 2741 2742 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2743 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2744 2745 /* NB: For both of these, zero means disabled. */ 2746 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2747 desc->execution_quantum)); 2748 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2749 desc->preemption_timeout)); 2750 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2751 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2752 } 2753 2754 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2755 { 2756 /* 2757 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2758 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2759 */ 2760 switch (prio) { 2761 default: 2762 MISSING_CASE(prio); 2763 fallthrough; 2764 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2765 return GEN12_CTX_PRIORITY_NORMAL; 2766 case GUC_CLIENT_PRIORITY_NORMAL: 2767 return GEN12_CTX_PRIORITY_LOW; 2768 case GUC_CLIENT_PRIORITY_HIGH: 2769 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2770 return GEN12_CTX_PRIORITY_HIGH; 2771 } 2772 } 2773 2774 static void prepare_context_registration_info_v69(struct intel_context *ce) 2775 { 2776 struct intel_engine_cs *engine = ce->engine; 2777 struct intel_guc *guc = gt_to_guc(engine->gt); 2778 u32 ctx_id = ce->guc_id.id; 2779 struct guc_lrc_desc_v69 *desc; 2780 struct intel_context *child; 2781 2782 GEM_BUG_ON(!engine->mask); 2783 2784 /* 2785 * Ensure LRC + CT vmas are is same region as write barrier is done 2786 * based on CT vma region. 2787 */ 2788 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2789 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2790 2791 desc = __get_lrc_desc_v69(guc, ctx_id); 2792 GEM_BUG_ON(!desc); 2793 desc->engine_class = engine_class_to_guc_class(engine->class); 2794 desc->engine_submit_mask = engine->logical_mask; 2795 desc->hw_context_desc = ce->lrc.lrca; 2796 desc->priority = ce->guc_state.prio; 2797 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2798 guc_context_policy_init_v69(engine, desc); 2799 2800 /* 2801 * If context is a parent, we need to register a process descriptor 2802 * describing a work queue and register all child contexts. 2803 */ 2804 if (intel_context_is_parent(ce)) { 2805 struct guc_process_desc_v69 *pdesc; 2806 2807 ce->parallel.guc.wqi_tail = 0; 2808 ce->parallel.guc.wqi_head = 0; 2809 2810 desc->process_desc = i915_ggtt_offset(ce->state) + 2811 __get_parent_scratch_offset(ce); 2812 desc->wq_addr = i915_ggtt_offset(ce->state) + 2813 __get_wq_offset(ce); 2814 desc->wq_size = WQ_SIZE; 2815 2816 pdesc = __get_process_desc_v69(ce); 2817 memset(pdesc, 0, sizeof(*(pdesc))); 2818 pdesc->stage_id = ce->guc_id.id; 2819 pdesc->wq_base_addr = desc->wq_addr; 2820 pdesc->wq_size_bytes = desc->wq_size; 2821 pdesc->wq_status = WQ_STATUS_ACTIVE; 2822 2823 ce->parallel.guc.wq_head = &pdesc->head; 2824 ce->parallel.guc.wq_tail = &pdesc->tail; 2825 ce->parallel.guc.wq_status = &pdesc->wq_status; 2826 2827 for_each_child(ce, child) { 2828 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2829 2830 desc->engine_class = 2831 engine_class_to_guc_class(engine->class); 2832 desc->hw_context_desc = child->lrc.lrca; 2833 desc->priority = ce->guc_state.prio; 2834 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2835 guc_context_policy_init_v69(engine, desc); 2836 } 2837 2838 clear_children_join_go_memory(ce); 2839 } 2840 } 2841 2842 static void prepare_context_registration_info_v70(struct intel_context *ce, 2843 struct guc_ctxt_registration_info *info) 2844 { 2845 struct intel_engine_cs *engine = ce->engine; 2846 struct intel_guc *guc = gt_to_guc(engine->gt); 2847 u32 ctx_id = ce->guc_id.id; 2848 2849 GEM_BUG_ON(!engine->mask); 2850 2851 /* 2852 * Ensure LRC + CT vmas are is same region as write barrier is done 2853 * based on CT vma region. 2854 */ 2855 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2856 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2857 2858 memset(info, 0, sizeof(*info)); 2859 info->context_idx = ctx_id; 2860 info->engine_class = engine_class_to_guc_class(engine->class); 2861 info->engine_submit_mask = engine->logical_mask; 2862 /* 2863 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2864 * only supports 32 bit currently. 2865 */ 2866 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2867 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2868 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2869 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2870 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2871 2872 /* 2873 * If context is a parent, we need to register a process descriptor 2874 * describing a work queue and register all child contexts. 2875 */ 2876 if (intel_context_is_parent(ce)) { 2877 struct guc_sched_wq_desc *wq_desc; 2878 u64 wq_desc_offset, wq_base_offset; 2879 2880 ce->parallel.guc.wqi_tail = 0; 2881 ce->parallel.guc.wqi_head = 0; 2882 2883 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) + 2884 __get_parent_scratch_offset(ce); 2885 wq_base_offset = (u64)i915_ggtt_offset(ce->state) + 2886 __get_wq_offset(ce); 2887 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2888 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2889 info->wq_base_lo = lower_32_bits(wq_base_offset); 2890 info->wq_base_hi = upper_32_bits(wq_base_offset); 2891 info->wq_size = WQ_SIZE; 2892 2893 wq_desc = __get_wq_desc_v70(ce); 2894 memset(wq_desc, 0, sizeof(*wq_desc)); 2895 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2896 2897 ce->parallel.guc.wq_head = &wq_desc->head; 2898 ce->parallel.guc.wq_tail = &wq_desc->tail; 2899 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2900 2901 clear_children_join_go_memory(ce); 2902 } 2903 } 2904 2905 static int try_context_registration(struct intel_context *ce, bool loop) 2906 { 2907 struct intel_engine_cs *engine = ce->engine; 2908 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2909 struct intel_guc *guc = gt_to_guc(engine->gt); 2910 intel_wakeref_t wakeref; 2911 u32 ctx_id = ce->guc_id.id; 2912 bool context_registered; 2913 int ret = 0; 2914 2915 GEM_BUG_ON(!sched_state_is_init(ce)); 2916 2917 context_registered = ctx_id_mapped(guc, ctx_id); 2918 2919 clr_ctx_id_mapping(guc, ctx_id); 2920 set_ctx_id_mapping(guc, ctx_id, ce); 2921 2922 /* 2923 * The context_lookup xarray is used to determine if the hardware 2924 * context is currently registered. There are two cases in which it 2925 * could be registered either the guc_id has been stolen from another 2926 * context or the lrc descriptor address of this context has changed. In 2927 * either case the context needs to be deregistered with the GuC before 2928 * registering this context. 2929 */ 2930 if (context_registered) { 2931 bool disabled; 2932 unsigned long flags; 2933 2934 trace_intel_context_steal_guc_id(ce); 2935 GEM_BUG_ON(!loop); 2936 2937 /* Seal race with Reset */ 2938 spin_lock_irqsave(&ce->guc_state.lock, flags); 2939 disabled = submission_disabled(guc); 2940 if (likely(!disabled)) { 2941 set_context_wait_for_deregister_to_register(ce); 2942 intel_context_get(ce); 2943 } 2944 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2945 if (unlikely(disabled)) { 2946 clr_ctx_id_mapping(guc, ctx_id); 2947 return 0; /* Will get registered later */ 2948 } 2949 2950 /* 2951 * If stealing the guc_id, this ce has the same guc_id as the 2952 * context whose guc_id was stolen. 2953 */ 2954 with_intel_runtime_pm(runtime_pm, wakeref) 2955 ret = deregister_context(ce, ce->guc_id.id); 2956 if (unlikely(ret == -ENODEV)) 2957 ret = 0; /* Will get registered later */ 2958 } else { 2959 with_intel_runtime_pm(runtime_pm, wakeref) 2960 ret = register_context(ce, loop); 2961 if (unlikely(ret == -EBUSY)) { 2962 clr_ctx_id_mapping(guc, ctx_id); 2963 } else if (unlikely(ret == -ENODEV)) { 2964 clr_ctx_id_mapping(guc, ctx_id); 2965 ret = 0; /* Will get registered later */ 2966 } 2967 } 2968 2969 return ret; 2970 } 2971 2972 static int __guc_context_pre_pin(struct intel_context *ce, 2973 struct intel_engine_cs *engine, 2974 struct i915_gem_ww_ctx *ww, 2975 void **vaddr) 2976 { 2977 return lrc_pre_pin(ce, engine, ww, vaddr); 2978 } 2979 2980 static int __guc_context_pin(struct intel_context *ce, 2981 struct intel_engine_cs *engine, 2982 void *vaddr) 2983 { 2984 if (i915_ggtt_offset(ce->state) != 2985 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2986 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2987 2988 /* 2989 * GuC context gets pinned in guc_request_alloc. See that function for 2990 * explaination of why. 2991 */ 2992 2993 return lrc_pin(ce, engine, vaddr); 2994 } 2995 2996 static int guc_context_pre_pin(struct intel_context *ce, 2997 struct i915_gem_ww_ctx *ww, 2998 void **vaddr) 2999 { 3000 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 3001 } 3002 3003 static int guc_context_pin(struct intel_context *ce, void *vaddr) 3004 { 3005 int ret = __guc_context_pin(ce, ce->engine, vaddr); 3006 3007 if (likely(!ret && !intel_context_is_barrier(ce))) 3008 intel_engine_pm_get(ce->engine); 3009 3010 return ret; 3011 } 3012 3013 static void guc_context_unpin(struct intel_context *ce) 3014 { 3015 struct intel_guc *guc = ce_to_guc(ce); 3016 3017 __guc_context_update_stats(ce); 3018 unpin_guc_id(guc, ce); 3019 lrc_unpin(ce); 3020 3021 if (likely(!intel_context_is_barrier(ce))) 3022 intel_engine_pm_put_async(ce->engine); 3023 } 3024 3025 static void guc_context_post_unpin(struct intel_context *ce) 3026 { 3027 lrc_post_unpin(ce); 3028 } 3029 3030 static void __guc_context_sched_enable(struct intel_guc *guc, 3031 struct intel_context *ce) 3032 { 3033 u32 action[] = { 3034 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 3035 ce->guc_id.id, 3036 GUC_CONTEXT_ENABLE 3037 }; 3038 3039 trace_intel_context_sched_enable(ce); 3040 3041 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 3042 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 3043 } 3044 3045 static void __guc_context_sched_disable(struct intel_guc *guc, 3046 struct intel_context *ce, 3047 u16 guc_id) 3048 { 3049 u32 action[] = { 3050 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 3051 guc_id, /* ce->guc_id.id not stable */ 3052 GUC_CONTEXT_DISABLE 3053 }; 3054 3055 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 3056 3057 GEM_BUG_ON(intel_context_is_child(ce)); 3058 trace_intel_context_sched_disable(ce); 3059 3060 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 3061 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 3062 } 3063 3064 static void guc_blocked_fence_complete(struct intel_context *ce) 3065 { 3066 lockdep_assert_held(&ce->guc_state.lock); 3067 3068 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 3069 i915_sw_fence_complete(&ce->guc_state.blocked); 3070 } 3071 3072 static void guc_blocked_fence_reinit(struct intel_context *ce) 3073 { 3074 lockdep_assert_held(&ce->guc_state.lock); 3075 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 3076 3077 /* 3078 * This fence is always complete unless a pending schedule disable is 3079 * outstanding. We arm the fence here and complete it when we receive 3080 * the pending schedule disable complete message. 3081 */ 3082 i915_sw_fence_fini(&ce->guc_state.blocked); 3083 i915_sw_fence_reinit(&ce->guc_state.blocked); 3084 i915_sw_fence_await(&ce->guc_state.blocked); 3085 i915_sw_fence_commit(&ce->guc_state.blocked); 3086 } 3087 3088 static u16 prep_context_pending_disable(struct intel_context *ce) 3089 { 3090 lockdep_assert_held(&ce->guc_state.lock); 3091 3092 set_context_pending_disable(ce); 3093 clr_context_enabled(ce); 3094 guc_blocked_fence_reinit(ce); 3095 intel_context_get(ce); 3096 3097 return ce->guc_id.id; 3098 } 3099 3100 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 3101 { 3102 struct intel_guc *guc = ce_to_guc(ce); 3103 unsigned long flags; 3104 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 3105 intel_wakeref_t wakeref; 3106 u16 guc_id; 3107 bool enabled; 3108 3109 GEM_BUG_ON(intel_context_is_child(ce)); 3110 3111 spin_lock_irqsave(&ce->guc_state.lock, flags); 3112 3113 incr_context_blocked(ce); 3114 3115 enabled = context_enabled(ce); 3116 if (unlikely(!enabled || submission_disabled(guc))) { 3117 if (enabled) 3118 clr_context_enabled(ce); 3119 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3120 return &ce->guc_state.blocked; 3121 } 3122 3123 /* 3124 * We add +2 here as the schedule disable complete CTB handler calls 3125 * intel_context_sched_disable_unpin (-2 to pin_count). 3126 */ 3127 atomic_add(2, &ce->pin_count); 3128 3129 guc_id = prep_context_pending_disable(ce); 3130 3131 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3132 3133 with_intel_runtime_pm(runtime_pm, wakeref) 3134 __guc_context_sched_disable(guc, ce, guc_id); 3135 3136 return &ce->guc_state.blocked; 3137 } 3138 3139 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 3140 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 3141 #define SCHED_STATE_NO_UNBLOCK \ 3142 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 3143 SCHED_STATE_PENDING_DISABLE | \ 3144 SCHED_STATE_BANNED) 3145 3146 static bool context_cant_unblock(struct intel_context *ce) 3147 { 3148 lockdep_assert_held(&ce->guc_state.lock); 3149 3150 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 3151 context_guc_id_invalid(ce) || 3152 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 3153 !intel_context_is_pinned(ce); 3154 } 3155 3156 static void guc_context_unblock(struct intel_context *ce) 3157 { 3158 struct intel_guc *guc = ce_to_guc(ce); 3159 unsigned long flags; 3160 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 3161 intel_wakeref_t wakeref; 3162 bool enable; 3163 3164 GEM_BUG_ON(context_enabled(ce)); 3165 GEM_BUG_ON(intel_context_is_child(ce)); 3166 3167 spin_lock_irqsave(&ce->guc_state.lock, flags); 3168 3169 if (unlikely(submission_disabled(guc) || 3170 context_cant_unblock(ce))) { 3171 enable = false; 3172 } else { 3173 enable = true; 3174 set_context_pending_enable(ce); 3175 set_context_enabled(ce); 3176 intel_context_get(ce); 3177 } 3178 3179 decr_context_blocked(ce); 3180 3181 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3182 3183 if (enable) { 3184 with_intel_runtime_pm(runtime_pm, wakeref) 3185 __guc_context_sched_enable(guc, ce); 3186 } 3187 } 3188 3189 static void guc_context_cancel_request(struct intel_context *ce, 3190 struct i915_request *rq) 3191 { 3192 struct intel_context *block_context = 3193 request_to_scheduling_context(rq); 3194 3195 if (i915_sw_fence_signaled(&rq->submit)) { 3196 struct i915_sw_fence *fence; 3197 3198 intel_context_get(ce); 3199 fence = guc_context_block(block_context); 3200 i915_sw_fence_wait(fence); 3201 if (!i915_request_completed(rq)) { 3202 __i915_request_skip(rq); 3203 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 3204 true); 3205 } 3206 3207 guc_context_unblock(block_context); 3208 intel_context_put(ce); 3209 } 3210 } 3211 3212 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 3213 u16 guc_id, 3214 u32 preemption_timeout) 3215 { 3216 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 3217 struct context_policy policy; 3218 3219 __guc_context_policy_start_klv(&policy, guc_id); 3220 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 3221 __guc_context_set_context_policies(guc, &policy, true); 3222 } else { 3223 u32 action[] = { 3224 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 3225 guc_id, 3226 preemption_timeout 3227 }; 3228 3229 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3230 } 3231 } 3232 3233 static void 3234 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 3235 unsigned int preempt_timeout_ms) 3236 { 3237 struct intel_guc *guc = ce_to_guc(ce); 3238 struct intel_runtime_pm *runtime_pm = 3239 &ce->engine->gt->i915->runtime_pm; 3240 intel_wakeref_t wakeref; 3241 unsigned long flags; 3242 3243 GEM_BUG_ON(intel_context_is_child(ce)); 3244 3245 guc_flush_submissions(guc); 3246 3247 spin_lock_irqsave(&ce->guc_state.lock, flags); 3248 set_context_banned(ce); 3249 3250 if (submission_disabled(guc) || 3251 (!context_enabled(ce) && !context_pending_disable(ce))) { 3252 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3253 3254 guc_cancel_context_requests(ce); 3255 intel_engine_signal_breadcrumbs(ce->engine); 3256 } else if (!context_pending_disable(ce)) { 3257 u16 guc_id; 3258 3259 /* 3260 * We add +2 here as the schedule disable complete CTB handler 3261 * calls intel_context_sched_disable_unpin (-2 to pin_count). 3262 */ 3263 atomic_add(2, &ce->pin_count); 3264 3265 guc_id = prep_context_pending_disable(ce); 3266 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3267 3268 /* 3269 * In addition to disabling scheduling, set the preemption 3270 * timeout to the minimum value (1 us) so the banned context 3271 * gets kicked off the HW ASAP. 3272 */ 3273 with_intel_runtime_pm(runtime_pm, wakeref) { 3274 __guc_context_set_preemption_timeout(guc, guc_id, 3275 preempt_timeout_ms); 3276 __guc_context_sched_disable(guc, ce, guc_id); 3277 } 3278 } else { 3279 if (!context_guc_id_invalid(ce)) 3280 with_intel_runtime_pm(runtime_pm, wakeref) 3281 __guc_context_set_preemption_timeout(guc, 3282 ce->guc_id.id, 3283 preempt_timeout_ms); 3284 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3285 } 3286 } 3287 3288 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, 3289 unsigned long flags) 3290 __releases(ce->guc_state.lock) 3291 { 3292 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3293 intel_wakeref_t wakeref; 3294 u16 guc_id; 3295 3296 lockdep_assert_held(&ce->guc_state.lock); 3297 guc_id = prep_context_pending_disable(ce); 3298 3299 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3300 3301 with_intel_runtime_pm(runtime_pm, wakeref) 3302 __guc_context_sched_disable(guc, ce, guc_id); 3303 } 3304 3305 static bool bypass_sched_disable(struct intel_guc *guc, 3306 struct intel_context *ce) 3307 { 3308 lockdep_assert_held(&ce->guc_state.lock); 3309 GEM_BUG_ON(intel_context_is_child(ce)); 3310 3311 if (submission_disabled(guc) || context_guc_id_invalid(ce) || 3312 !ctx_id_mapped(guc, ce->guc_id.id)) { 3313 clr_context_enabled(ce); 3314 return true; 3315 } 3316 3317 return !context_enabled(ce); 3318 } 3319 3320 static void __delay_sched_disable(struct work_struct *wrk) 3321 { 3322 struct intel_context *ce = 3323 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); 3324 struct intel_guc *guc = ce_to_guc(ce); 3325 unsigned long flags; 3326 3327 spin_lock_irqsave(&ce->guc_state.lock, flags); 3328 3329 if (bypass_sched_disable(guc, ce)) { 3330 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3331 intel_context_sched_disable_unpin(ce); 3332 } else { 3333 do_sched_disable(guc, ce, flags); 3334 } 3335 } 3336 3337 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) 3338 { 3339 /* 3340 * parent contexts are perma-pinned, if we are unpinning do schedule 3341 * disable immediately. 3342 */ 3343 if (intel_context_is_parent(ce)) 3344 return true; 3345 3346 /* 3347 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. 3348 */ 3349 return guc->submission_state.guc_ids_in_use > 3350 guc->submission_state.sched_disable_gucid_threshold; 3351 } 3352 3353 static void guc_context_sched_disable(struct intel_context *ce) 3354 { 3355 struct intel_guc *guc = ce_to_guc(ce); 3356 u64 delay = guc->submission_state.sched_disable_delay_ms; 3357 unsigned long flags; 3358 3359 spin_lock_irqsave(&ce->guc_state.lock, flags); 3360 3361 if (bypass_sched_disable(guc, ce)) { 3362 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3363 intel_context_sched_disable_unpin(ce); 3364 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && 3365 delay) { 3366 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3367 mod_delayed_work(system_unbound_wq, 3368 &ce->guc_state.sched_disable_delay_work, 3369 msecs_to_jiffies(delay)); 3370 } else { 3371 do_sched_disable(guc, ce, flags); 3372 } 3373 } 3374 3375 static void guc_context_close(struct intel_context *ce) 3376 { 3377 unsigned long flags; 3378 3379 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 3380 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) 3381 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); 3382 3383 spin_lock_irqsave(&ce->guc_state.lock, flags); 3384 set_context_close_done(ce); 3385 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3386 } 3387 3388 static inline int guc_lrc_desc_unpin(struct intel_context *ce) 3389 { 3390 struct intel_guc *guc = ce_to_guc(ce); 3391 struct intel_gt *gt = guc_to_gt(guc); 3392 unsigned long flags; 3393 bool disabled; 3394 int ret; 3395 3396 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3397 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3398 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3399 GEM_BUG_ON(context_enabled(ce)); 3400 3401 /* Seal race with Reset */ 3402 spin_lock_irqsave(&ce->guc_state.lock, flags); 3403 disabled = submission_disabled(guc); 3404 if (likely(!disabled)) { 3405 /* 3406 * Take a gt-pm ref and change context state to be destroyed. 3407 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back 3408 */ 3409 __intel_gt_pm_get(gt); 3410 set_context_destroyed(ce); 3411 clr_context_registered(ce); 3412 } 3413 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3414 3415 if (unlikely(disabled)) { 3416 release_guc_id(guc, ce); 3417 __guc_context_destroy(ce); 3418 return 0; 3419 } 3420 3421 /* 3422 * GuC is active, lets destroy this context, but at this point we can still be racing 3423 * with suspend, so we undo everything if the H2G fails in deregister_context so 3424 * that GuC reset will find this context during clean up. 3425 */ 3426 ret = deregister_context(ce, ce->guc_id.id); 3427 if (ret) { 3428 spin_lock(&ce->guc_state.lock); 3429 set_context_registered(ce); 3430 clr_context_destroyed(ce); 3431 spin_unlock(&ce->guc_state.lock); 3432 /* 3433 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements 3434 * the wakeref immediately but per function spec usage call this after unlock. 3435 */ 3436 intel_wakeref_put_async(>->wakeref); 3437 } 3438 3439 return ret; 3440 } 3441 3442 static void __guc_context_destroy(struct intel_context *ce) 3443 { 3444 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3445 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3446 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3447 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3448 3449 lrc_fini(ce); 3450 intel_context_fini(ce); 3451 3452 if (intel_engine_is_virtual(ce->engine)) { 3453 struct guc_virtual_engine *ve = 3454 container_of(ce, typeof(*ve), context); 3455 3456 if (ve->base.breadcrumbs) 3457 intel_breadcrumbs_put(ve->base.breadcrumbs); 3458 3459 kfree(ve); 3460 } else { 3461 intel_context_free(ce); 3462 } 3463 } 3464 3465 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3466 { 3467 struct intel_context *ce; 3468 unsigned long flags; 3469 3470 GEM_BUG_ON(!submission_disabled(guc) && 3471 guc_submission_initialized(guc)); 3472 3473 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3474 spin_lock_irqsave(&guc->submission_state.lock, flags); 3475 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3476 struct intel_context, 3477 destroyed_link); 3478 if (ce) 3479 list_del_init(&ce->destroyed_link); 3480 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3481 3482 if (!ce) 3483 break; 3484 3485 release_guc_id(guc, ce); 3486 __guc_context_destroy(ce); 3487 } 3488 } 3489 3490 static void deregister_destroyed_contexts(struct intel_guc *guc) 3491 { 3492 struct intel_context *ce; 3493 unsigned long flags; 3494 3495 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3496 spin_lock_irqsave(&guc->submission_state.lock, flags); 3497 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3498 struct intel_context, 3499 destroyed_link); 3500 if (ce) 3501 list_del_init(&ce->destroyed_link); 3502 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3503 3504 if (!ce) 3505 break; 3506 3507 if (guc_lrc_desc_unpin(ce)) { 3508 /* 3509 * This means GuC's CT link severed mid-way which could happen 3510 * in suspend-resume corner cases. In this case, put the 3511 * context back into the destroyed_contexts list which will 3512 * get picked up on the next context deregistration event or 3513 * purged in a GuC sanitization event (reset/unload/wedged/...). 3514 */ 3515 spin_lock_irqsave(&guc->submission_state.lock, flags); 3516 list_add_tail(&ce->destroyed_link, 3517 &guc->submission_state.destroyed_contexts); 3518 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3519 /* Bail now since the list might never be emptied if h2gs fail */ 3520 break; 3521 } 3522 3523 } 3524 } 3525 3526 static void destroyed_worker_func(struct work_struct *w) 3527 { 3528 struct intel_guc *guc = container_of(w, struct intel_guc, 3529 submission_state.destroyed_worker); 3530 struct intel_gt *gt = guc_to_gt(guc); 3531 intel_wakeref_t wakeref; 3532 3533 /* 3534 * In rare cases we can get here via async context-free fence-signals that 3535 * come very late in suspend flow or very early in resume flows. In these 3536 * cases, GuC won't be ready but just skipping it here is fine as these 3537 * pending-destroy-contexts get destroyed totally at GuC reset time at the 3538 * end of suspend.. OR.. this worker can be picked up later on the next 3539 * context destruction trigger after resume-completes 3540 */ 3541 if (!intel_guc_is_ready(guc)) 3542 return; 3543 3544 with_intel_gt_pm(gt, wakeref) 3545 deregister_destroyed_contexts(guc); 3546 } 3547 3548 static void guc_context_destroy(struct kref *kref) 3549 { 3550 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3551 struct intel_guc *guc = ce_to_guc(ce); 3552 unsigned long flags; 3553 bool destroy; 3554 3555 /* 3556 * If the guc_id is invalid this context has been stolen and we can free 3557 * it immediately. Also can be freed immediately if the context is not 3558 * registered with the GuC or the GuC is in the middle of a reset. 3559 */ 3560 spin_lock_irqsave(&guc->submission_state.lock, flags); 3561 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3562 !ctx_id_mapped(guc, ce->guc_id.id); 3563 if (likely(!destroy)) { 3564 if (!list_empty(&ce->guc_id.link)) 3565 list_del_init(&ce->guc_id.link); 3566 list_add_tail(&ce->destroyed_link, 3567 &guc->submission_state.destroyed_contexts); 3568 } else { 3569 __release_guc_id(guc, ce); 3570 } 3571 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3572 if (unlikely(destroy)) { 3573 __guc_context_destroy(ce); 3574 return; 3575 } 3576 3577 /* 3578 * We use a worker to issue the H2G to deregister the context as we can 3579 * take the GT PM for the first time which isn't allowed from an atomic 3580 * context. 3581 */ 3582 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3583 } 3584 3585 static int guc_context_alloc(struct intel_context *ce) 3586 { 3587 return lrc_alloc(ce, ce->engine); 3588 } 3589 3590 static void __guc_context_set_prio(struct intel_guc *guc, 3591 struct intel_context *ce) 3592 { 3593 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 3594 struct context_policy policy; 3595 3596 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3597 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3598 __guc_context_set_context_policies(guc, &policy, true); 3599 } else { 3600 u32 action[] = { 3601 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3602 ce->guc_id.id, 3603 ce->guc_state.prio, 3604 }; 3605 3606 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3607 } 3608 } 3609 3610 static void guc_context_set_prio(struct intel_guc *guc, 3611 struct intel_context *ce, 3612 u8 prio) 3613 { 3614 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3615 prio > GUC_CLIENT_PRIORITY_NORMAL); 3616 lockdep_assert_held(&ce->guc_state.lock); 3617 3618 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3619 !context_registered(ce)) { 3620 ce->guc_state.prio = prio; 3621 return; 3622 } 3623 3624 ce->guc_state.prio = prio; 3625 __guc_context_set_prio(guc, ce); 3626 3627 trace_intel_context_set_prio(ce); 3628 } 3629 3630 static inline u8 map_i915_prio_to_guc_prio(int prio) 3631 { 3632 if (prio == I915_PRIORITY_NORMAL) 3633 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3634 else if (prio < I915_PRIORITY_NORMAL) 3635 return GUC_CLIENT_PRIORITY_NORMAL; 3636 else if (prio < I915_PRIORITY_DISPLAY) 3637 return GUC_CLIENT_PRIORITY_HIGH; 3638 else 3639 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3640 } 3641 3642 static inline void add_context_inflight_prio(struct intel_context *ce, 3643 u8 guc_prio) 3644 { 3645 lockdep_assert_held(&ce->guc_state.lock); 3646 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3647 3648 ++ce->guc_state.prio_count[guc_prio]; 3649 3650 /* Overflow protection */ 3651 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3652 } 3653 3654 static inline void sub_context_inflight_prio(struct intel_context *ce, 3655 u8 guc_prio) 3656 { 3657 lockdep_assert_held(&ce->guc_state.lock); 3658 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3659 3660 /* Underflow protection */ 3661 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3662 3663 --ce->guc_state.prio_count[guc_prio]; 3664 } 3665 3666 static inline void update_context_prio(struct intel_context *ce) 3667 { 3668 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3669 int i; 3670 3671 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3672 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3673 3674 lockdep_assert_held(&ce->guc_state.lock); 3675 3676 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3677 if (ce->guc_state.prio_count[i]) { 3678 guc_context_set_prio(guc, ce, i); 3679 break; 3680 } 3681 } 3682 } 3683 3684 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3685 { 3686 /* Lower value is higher priority */ 3687 return new_guc_prio < old_guc_prio; 3688 } 3689 3690 static void add_to_context(struct i915_request *rq) 3691 { 3692 struct intel_context *ce = request_to_scheduling_context(rq); 3693 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3694 3695 GEM_BUG_ON(intel_context_is_child(ce)); 3696 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3697 3698 spin_lock(&ce->guc_state.lock); 3699 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3700 3701 if (rq->guc_prio == GUC_PRIO_INIT) { 3702 rq->guc_prio = new_guc_prio; 3703 add_context_inflight_prio(ce, rq->guc_prio); 3704 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3705 sub_context_inflight_prio(ce, rq->guc_prio); 3706 rq->guc_prio = new_guc_prio; 3707 add_context_inflight_prio(ce, rq->guc_prio); 3708 } 3709 update_context_prio(ce); 3710 3711 spin_unlock(&ce->guc_state.lock); 3712 } 3713 3714 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3715 { 3716 lockdep_assert_held(&ce->guc_state.lock); 3717 3718 if (rq->guc_prio != GUC_PRIO_INIT && 3719 rq->guc_prio != GUC_PRIO_FINI) { 3720 sub_context_inflight_prio(ce, rq->guc_prio); 3721 update_context_prio(ce); 3722 } 3723 rq->guc_prio = GUC_PRIO_FINI; 3724 } 3725 3726 static void remove_from_context(struct i915_request *rq) 3727 { 3728 struct intel_context *ce = request_to_scheduling_context(rq); 3729 3730 GEM_BUG_ON(intel_context_is_child(ce)); 3731 3732 spin_lock_irq(&ce->guc_state.lock); 3733 3734 list_del_init(&rq->sched.link); 3735 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3736 3737 /* Prevent further __await_execution() registering a cb, then flush */ 3738 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3739 3740 guc_prio_fini(rq, ce); 3741 3742 spin_unlock_irq(&ce->guc_state.lock); 3743 3744 atomic_dec(&ce->guc_id.ref); 3745 i915_request_notify_execute_cb_imm(rq); 3746 } 3747 3748 static const struct intel_context_ops guc_context_ops = { 3749 .flags = COPS_RUNTIME_CYCLES, 3750 .alloc = guc_context_alloc, 3751 3752 .close = guc_context_close, 3753 3754 .pre_pin = guc_context_pre_pin, 3755 .pin = guc_context_pin, 3756 .unpin = guc_context_unpin, 3757 .post_unpin = guc_context_post_unpin, 3758 3759 .revoke = guc_context_revoke, 3760 3761 .cancel_request = guc_context_cancel_request, 3762 3763 .enter = intel_context_enter_engine, 3764 .exit = intel_context_exit_engine, 3765 3766 .sched_disable = guc_context_sched_disable, 3767 3768 .update_stats = guc_context_update_stats, 3769 3770 .reset = lrc_reset, 3771 .destroy = guc_context_destroy, 3772 3773 .create_virtual = guc_create_virtual, 3774 .create_parallel = guc_create_parallel, 3775 }; 3776 3777 static void submit_work_cb(struct irq_work *wrk) 3778 { 3779 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3780 3781 might_lock(&rq->engine->sched_engine->lock); 3782 i915_sw_fence_complete(&rq->submit); 3783 } 3784 3785 static void __guc_signal_context_fence(struct intel_context *ce) 3786 { 3787 struct i915_request *rq, *rn; 3788 3789 lockdep_assert_held(&ce->guc_state.lock); 3790 3791 if (!list_empty(&ce->guc_state.fences)) 3792 trace_intel_context_fence_release(ce); 3793 3794 /* 3795 * Use an IRQ to ensure locking order of sched_engine->lock -> 3796 * ce->guc_state.lock is preserved. 3797 */ 3798 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3799 guc_fence_link) { 3800 list_del(&rq->guc_fence_link); 3801 irq_work_queue(&rq->submit_work); 3802 } 3803 3804 INIT_LIST_HEAD(&ce->guc_state.fences); 3805 } 3806 3807 static void guc_signal_context_fence(struct intel_context *ce) 3808 { 3809 unsigned long flags; 3810 3811 GEM_BUG_ON(intel_context_is_child(ce)); 3812 3813 spin_lock_irqsave(&ce->guc_state.lock, flags); 3814 clr_context_wait_for_deregister_to_register(ce); 3815 __guc_signal_context_fence(ce); 3816 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3817 } 3818 3819 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3820 { 3821 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3822 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3823 !submission_disabled(ce_to_guc(ce)); 3824 } 3825 3826 static void guc_context_init(struct intel_context *ce) 3827 { 3828 const struct i915_gem_context *ctx; 3829 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3830 3831 rcu_read_lock(); 3832 ctx = rcu_dereference(ce->gem_context); 3833 if (ctx) 3834 prio = ctx->sched.priority; 3835 rcu_read_unlock(); 3836 3837 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3838 3839 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, 3840 __delay_sched_disable); 3841 3842 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3843 } 3844 3845 static int guc_request_alloc(struct i915_request *rq) 3846 { 3847 struct intel_context *ce = request_to_scheduling_context(rq); 3848 struct intel_guc *guc = ce_to_guc(ce); 3849 unsigned long flags; 3850 int ret; 3851 3852 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3853 3854 /* 3855 * Flush enough space to reduce the likelihood of waiting after 3856 * we start building the request - in which case we will just 3857 * have to repeat work. 3858 */ 3859 rq->reserved_space += GUC_REQUEST_SIZE; 3860 3861 /* 3862 * Note that after this point, we have committed to using 3863 * this request as it is being used to both track the 3864 * state of engine initialisation and liveness of the 3865 * golden renderstate above. Think twice before you try 3866 * to cancel/unwind this request now. 3867 */ 3868 3869 /* Unconditionally invalidate GPU caches and TLBs. */ 3870 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3871 if (ret) 3872 return ret; 3873 3874 rq->reserved_space -= GUC_REQUEST_SIZE; 3875 3876 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3877 guc_context_init(ce); 3878 3879 /* 3880 * If the context gets closed while the execbuf is ongoing, the context 3881 * close code will race with the below code to cancel the delayed work. 3882 * If the context close wins the race and cancels the work, it will 3883 * immediately call the sched disable (see guc_context_close), so there 3884 * is a chance we can get past this check while the sched_disable code 3885 * is being executed. To make sure that code completes before we check 3886 * the status further down, we wait for the close process to complete. 3887 * Else, this code path could send a request down thinking that the 3888 * context is still in a schedule-enable mode while the GuC ends up 3889 * dropping the request completely because the disable did go from the 3890 * context_close path right to GuC just prior. In the event the CT is 3891 * full, we could potentially need to wait up to 1.5 seconds. 3892 */ 3893 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) 3894 intel_context_sched_disable_unpin(ce); 3895 else if (intel_context_is_closed(ce)) 3896 if (wait_for(context_close_done(ce), 1500)) 3897 guc_warn(guc, "timed out waiting on context sched close before realloc\n"); 3898 /* 3899 * Call pin_guc_id here rather than in the pinning step as with 3900 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3901 * guc_id and creating horrible race conditions. This is especially bad 3902 * when guc_id are being stolen due to over subscription. By the time 3903 * this function is reached, it is guaranteed that the guc_id will be 3904 * persistent until the generated request is retired. Thus, sealing these 3905 * race conditions. It is still safe to fail here if guc_id are 3906 * exhausted and return -EAGAIN to the user indicating that they can try 3907 * again in the future. 3908 * 3909 * There is no need for a lock here as the timeline mutex ensures at 3910 * most one context can be executing this code path at once. The 3911 * guc_id_ref is incremented once for every request in flight and 3912 * decremented on each retire. When it is zero, a lock around the 3913 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3914 */ 3915 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3916 goto out; 3917 3918 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3919 if (unlikely(ret < 0)) 3920 return ret; 3921 if (context_needs_register(ce, !!ret)) { 3922 ret = try_context_registration(ce, true); 3923 if (unlikely(ret)) { /* unwind */ 3924 if (ret == -EPIPE) { 3925 disable_submission(guc); 3926 goto out; /* GPU will be reset */ 3927 } 3928 atomic_dec(&ce->guc_id.ref); 3929 unpin_guc_id(guc, ce); 3930 return ret; 3931 } 3932 } 3933 3934 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3935 3936 out: 3937 /* 3938 * We block all requests on this context if a G2H is pending for a 3939 * schedule disable or context deregistration as the GuC will fail a 3940 * schedule enable or context registration if either G2H is pending 3941 * respectfully. Once a G2H returns, the fence is released that is 3942 * blocking these requests (see guc_signal_context_fence). 3943 */ 3944 spin_lock_irqsave(&ce->guc_state.lock, flags); 3945 if (context_wait_for_deregister_to_register(ce) || 3946 context_pending_disable(ce)) { 3947 init_irq_work(&rq->submit_work, submit_work_cb); 3948 i915_sw_fence_await(&rq->submit); 3949 3950 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3951 } 3952 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3953 3954 return 0; 3955 } 3956 3957 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3958 struct i915_gem_ww_ctx *ww, 3959 void **vaddr) 3960 { 3961 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3962 3963 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3964 } 3965 3966 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3967 { 3968 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3969 int ret = __guc_context_pin(ce, engine, vaddr); 3970 intel_engine_mask_t tmp, mask = ce->engine->mask; 3971 3972 if (likely(!ret)) 3973 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3974 intel_engine_pm_get(engine); 3975 3976 return ret; 3977 } 3978 3979 static void guc_virtual_context_unpin(struct intel_context *ce) 3980 { 3981 intel_engine_mask_t tmp, mask = ce->engine->mask; 3982 struct intel_engine_cs *engine; 3983 struct intel_guc *guc = ce_to_guc(ce); 3984 3985 GEM_BUG_ON(context_enabled(ce)); 3986 GEM_BUG_ON(intel_context_is_barrier(ce)); 3987 3988 unpin_guc_id(guc, ce); 3989 lrc_unpin(ce); 3990 3991 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3992 intel_engine_pm_put_async(engine); 3993 } 3994 3995 static void guc_virtual_context_enter(struct intel_context *ce) 3996 { 3997 intel_engine_mask_t tmp, mask = ce->engine->mask; 3998 struct intel_engine_cs *engine; 3999 4000 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 4001 intel_engine_pm_get(engine); 4002 4003 intel_timeline_enter(ce->timeline); 4004 } 4005 4006 static void guc_virtual_context_exit(struct intel_context *ce) 4007 { 4008 intel_engine_mask_t tmp, mask = ce->engine->mask; 4009 struct intel_engine_cs *engine; 4010 4011 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 4012 intel_engine_pm_put(engine); 4013 4014 intel_timeline_exit(ce->timeline); 4015 } 4016 4017 static int guc_virtual_context_alloc(struct intel_context *ce) 4018 { 4019 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 4020 4021 return lrc_alloc(ce, engine); 4022 } 4023 4024 static const struct intel_context_ops virtual_guc_context_ops = { 4025 .flags = COPS_RUNTIME_CYCLES, 4026 .alloc = guc_virtual_context_alloc, 4027 4028 .close = guc_context_close, 4029 4030 .pre_pin = guc_virtual_context_pre_pin, 4031 .pin = guc_virtual_context_pin, 4032 .unpin = guc_virtual_context_unpin, 4033 .post_unpin = guc_context_post_unpin, 4034 4035 .revoke = guc_context_revoke, 4036 4037 .cancel_request = guc_context_cancel_request, 4038 4039 .enter = guc_virtual_context_enter, 4040 .exit = guc_virtual_context_exit, 4041 4042 .sched_disable = guc_context_sched_disable, 4043 .update_stats = guc_context_update_stats, 4044 4045 .destroy = guc_context_destroy, 4046 4047 .get_sibling = guc_virtual_get_sibling, 4048 }; 4049 4050 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 4051 { 4052 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 4053 struct intel_guc *guc = ce_to_guc(ce); 4054 int ret; 4055 4056 GEM_BUG_ON(!intel_context_is_parent(ce)); 4057 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4058 4059 ret = pin_guc_id(guc, ce); 4060 if (unlikely(ret < 0)) 4061 return ret; 4062 4063 return __guc_context_pin(ce, engine, vaddr); 4064 } 4065 4066 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 4067 { 4068 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 4069 4070 GEM_BUG_ON(!intel_context_is_child(ce)); 4071 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4072 4073 __intel_context_pin(ce->parallel.parent); 4074 return __guc_context_pin(ce, engine, vaddr); 4075 } 4076 4077 static void guc_parent_context_unpin(struct intel_context *ce) 4078 { 4079 struct intel_guc *guc = ce_to_guc(ce); 4080 4081 GEM_BUG_ON(context_enabled(ce)); 4082 GEM_BUG_ON(intel_context_is_barrier(ce)); 4083 GEM_BUG_ON(!intel_context_is_parent(ce)); 4084 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4085 4086 unpin_guc_id(guc, ce); 4087 lrc_unpin(ce); 4088 } 4089 4090 static void guc_child_context_unpin(struct intel_context *ce) 4091 { 4092 GEM_BUG_ON(context_enabled(ce)); 4093 GEM_BUG_ON(intel_context_is_barrier(ce)); 4094 GEM_BUG_ON(!intel_context_is_child(ce)); 4095 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4096 4097 lrc_unpin(ce); 4098 } 4099 4100 static void guc_child_context_post_unpin(struct intel_context *ce) 4101 { 4102 GEM_BUG_ON(!intel_context_is_child(ce)); 4103 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 4104 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 4105 4106 lrc_post_unpin(ce); 4107 intel_context_unpin(ce->parallel.parent); 4108 } 4109 4110 static void guc_child_context_destroy(struct kref *kref) 4111 { 4112 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 4113 4114 __guc_context_destroy(ce); 4115 } 4116 4117 static const struct intel_context_ops virtual_parent_context_ops = { 4118 .alloc = guc_virtual_context_alloc, 4119 4120 .close = guc_context_close, 4121 4122 .pre_pin = guc_context_pre_pin, 4123 .pin = guc_parent_context_pin, 4124 .unpin = guc_parent_context_unpin, 4125 .post_unpin = guc_context_post_unpin, 4126 4127 .revoke = guc_context_revoke, 4128 4129 .cancel_request = guc_context_cancel_request, 4130 4131 .enter = guc_virtual_context_enter, 4132 .exit = guc_virtual_context_exit, 4133 4134 .sched_disable = guc_context_sched_disable, 4135 4136 .destroy = guc_context_destroy, 4137 4138 .get_sibling = guc_virtual_get_sibling, 4139 }; 4140 4141 static const struct intel_context_ops virtual_child_context_ops = { 4142 .alloc = guc_virtual_context_alloc, 4143 4144 .pre_pin = guc_context_pre_pin, 4145 .pin = guc_child_context_pin, 4146 .unpin = guc_child_context_unpin, 4147 .post_unpin = guc_child_context_post_unpin, 4148 4149 .cancel_request = guc_context_cancel_request, 4150 4151 .enter = guc_virtual_context_enter, 4152 .exit = guc_virtual_context_exit, 4153 4154 .destroy = guc_child_context_destroy, 4155 4156 .get_sibling = guc_virtual_get_sibling, 4157 }; 4158 4159 /* 4160 * The below override of the breadcrumbs is enabled when the user configures a 4161 * context for parallel submission (multi-lrc, parent-child). 4162 * 4163 * The overridden breadcrumbs implements an algorithm which allows the GuC to 4164 * safely preempt all the hw contexts configured for parallel submission 4165 * between each BB. The contract between the i915 and GuC is if the parent 4166 * context can be preempted, all the children can be preempted, and the GuC will 4167 * always try to preempt the parent before the children. A handshake between the 4168 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 4169 * creating a window to preempt between each set of BBs. 4170 */ 4171 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4172 u64 offset, u32 len, 4173 const unsigned int flags); 4174 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4175 u64 offset, u32 len, 4176 const unsigned int flags); 4177 static u32 * 4178 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4179 u32 *cs); 4180 static u32 * 4181 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4182 u32 *cs); 4183 4184 static struct intel_context * 4185 guc_create_parallel(struct intel_engine_cs **engines, 4186 unsigned int num_siblings, 4187 unsigned int width) 4188 { 4189 struct intel_engine_cs **siblings = NULL; 4190 struct intel_context *parent = NULL, *ce, *err; 4191 int i, j; 4192 4193 siblings = kmalloc_array(num_siblings, 4194 sizeof(*siblings), 4195 GFP_KERNEL); 4196 if (!siblings) 4197 return ERR_PTR(-ENOMEM); 4198 4199 for (i = 0; i < width; ++i) { 4200 for (j = 0; j < num_siblings; ++j) 4201 siblings[j] = engines[i * num_siblings + j]; 4202 4203 ce = intel_engine_create_virtual(siblings, num_siblings, 4204 FORCE_VIRTUAL); 4205 if (IS_ERR(ce)) { 4206 err = ERR_CAST(ce); 4207 goto unwind; 4208 } 4209 4210 if (i == 0) { 4211 parent = ce; 4212 parent->ops = &virtual_parent_context_ops; 4213 } else { 4214 ce->ops = &virtual_child_context_ops; 4215 intel_context_bind_parent_child(parent, ce); 4216 } 4217 } 4218 4219 parent->parallel.fence_context = dma_fence_context_alloc(1); 4220 4221 parent->engine->emit_bb_start = 4222 emit_bb_start_parent_no_preempt_mid_batch; 4223 parent->engine->emit_fini_breadcrumb = 4224 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 4225 parent->engine->emit_fini_breadcrumb_dw = 4226 12 + 4 * parent->parallel.number_children; 4227 for_each_child(parent, ce) { 4228 ce->engine->emit_bb_start = 4229 emit_bb_start_child_no_preempt_mid_batch; 4230 ce->engine->emit_fini_breadcrumb = 4231 emit_fini_breadcrumb_child_no_preempt_mid_batch; 4232 ce->engine->emit_fini_breadcrumb_dw = 16; 4233 } 4234 4235 kfree(siblings); 4236 return parent; 4237 4238 unwind: 4239 if (parent) 4240 intel_context_put(parent); 4241 kfree(siblings); 4242 return err; 4243 } 4244 4245 static bool 4246 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 4247 { 4248 struct intel_engine_cs *sibling; 4249 intel_engine_mask_t tmp, mask = b->engine_mask; 4250 bool result = false; 4251 4252 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 4253 result |= intel_engine_irq_enable(sibling); 4254 4255 return result; 4256 } 4257 4258 static void 4259 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 4260 { 4261 struct intel_engine_cs *sibling; 4262 intel_engine_mask_t tmp, mask = b->engine_mask; 4263 4264 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 4265 intel_engine_irq_disable(sibling); 4266 } 4267 4268 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 4269 { 4270 int i; 4271 4272 /* 4273 * In GuC submission mode we do not know which physical engine a request 4274 * will be scheduled on, this creates a problem because the breadcrumb 4275 * interrupt is per physical engine. To work around this we attach 4276 * requests and direct all breadcrumb interrupts to the first instance 4277 * of an engine per class. In addition all breadcrumb interrupts are 4278 * enabled / disabled across an engine class in unison. 4279 */ 4280 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 4281 struct intel_engine_cs *sibling = 4282 engine->gt->engine_class[engine->class][i]; 4283 4284 if (sibling) { 4285 if (engine->breadcrumbs != sibling->breadcrumbs) { 4286 intel_breadcrumbs_put(engine->breadcrumbs); 4287 engine->breadcrumbs = 4288 intel_breadcrumbs_get(sibling->breadcrumbs); 4289 } 4290 break; 4291 } 4292 } 4293 4294 if (engine->breadcrumbs) { 4295 engine->breadcrumbs->engine_mask |= engine->mask; 4296 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 4297 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 4298 } 4299 } 4300 4301 static void guc_bump_inflight_request_prio(struct i915_request *rq, 4302 int prio) 4303 { 4304 struct intel_context *ce = request_to_scheduling_context(rq); 4305 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 4306 4307 /* Short circuit function */ 4308 if (prio < I915_PRIORITY_NORMAL) 4309 return; 4310 4311 spin_lock(&ce->guc_state.lock); 4312 4313 if (rq->guc_prio == GUC_PRIO_FINI) 4314 goto exit; 4315 4316 if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio)) 4317 goto exit; 4318 4319 if (rq->guc_prio != GUC_PRIO_INIT) 4320 sub_context_inflight_prio(ce, rq->guc_prio); 4321 4322 rq->guc_prio = new_guc_prio; 4323 add_context_inflight_prio(ce, rq->guc_prio); 4324 update_context_prio(ce); 4325 4326 exit: 4327 spin_unlock(&ce->guc_state.lock); 4328 } 4329 4330 static void guc_retire_inflight_request_prio(struct i915_request *rq) 4331 { 4332 struct intel_context *ce = request_to_scheduling_context(rq); 4333 4334 spin_lock(&ce->guc_state.lock); 4335 guc_prio_fini(rq, ce); 4336 spin_unlock(&ce->guc_state.lock); 4337 } 4338 4339 static void sanitize_hwsp(struct intel_engine_cs *engine) 4340 { 4341 struct intel_timeline *tl; 4342 4343 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 4344 intel_timeline_reset_seqno(tl); 4345 } 4346 4347 static void guc_sanitize(struct intel_engine_cs *engine) 4348 { 4349 /* 4350 * Poison residual state on resume, in case the suspend didn't! 4351 * 4352 * We have to assume that across suspend/resume (or other loss 4353 * of control) that the contents of our pinned buffers has been 4354 * lost, replaced by garbage. Since this doesn't always happen, 4355 * let's poison such state so that we more quickly spot when 4356 * we falsely assume it has been preserved. 4357 */ 4358 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 4359 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 4360 4361 /* 4362 * The kernel_context HWSP is stored in the status_page. As above, 4363 * that may be lost on resume/initialisation, and so we need to 4364 * reset the value in the HWSP. 4365 */ 4366 sanitize_hwsp(engine); 4367 4368 /* And scrub the dirty cachelines for the HWSP */ 4369 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 4370 4371 intel_engine_reset_pinned_contexts(engine); 4372 } 4373 4374 static void setup_hwsp(struct intel_engine_cs *engine) 4375 { 4376 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 4377 4378 ENGINE_WRITE_FW(engine, 4379 RING_HWS_PGA, 4380 i915_ggtt_offset(engine->status_page.vma)); 4381 } 4382 4383 static void start_engine(struct intel_engine_cs *engine) 4384 { 4385 ENGINE_WRITE_FW(engine, 4386 RING_MODE_GEN7, 4387 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 4388 4389 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 4390 ENGINE_POSTING_READ(engine, RING_MI_MODE); 4391 } 4392 4393 static int guc_resume(struct intel_engine_cs *engine) 4394 { 4395 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 4396 4397 intel_mocs_init_engine(engine); 4398 4399 intel_breadcrumbs_reset(engine->breadcrumbs); 4400 4401 setup_hwsp(engine); 4402 start_engine(engine); 4403 4404 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 4405 xehp_enable_ccs_engines(engine); 4406 4407 return 0; 4408 } 4409 4410 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 4411 { 4412 return !sched_engine->tasklet.callback; 4413 } 4414 4415 static void guc_set_default_submission(struct intel_engine_cs *engine) 4416 { 4417 engine->submit_request = guc_submit_request; 4418 } 4419 4420 static inline int guc_kernel_context_pin(struct intel_guc *guc, 4421 struct intel_context *ce) 4422 { 4423 int ret; 4424 4425 /* 4426 * Note: we purposefully do not check the returns below because 4427 * the registration can only fail if a reset is just starting. 4428 * This is called at the end of reset so presumably another reset 4429 * isn't happening and even it did this code would be run again. 4430 */ 4431 4432 if (context_guc_id_invalid(ce)) { 4433 ret = pin_guc_id(guc, ce); 4434 4435 if (ret < 0) 4436 return ret; 4437 } 4438 4439 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) 4440 guc_context_init(ce); 4441 4442 ret = try_context_registration(ce, true); 4443 if (ret) 4444 unpin_guc_id(guc, ce); 4445 4446 return ret; 4447 } 4448 4449 static inline int guc_init_submission(struct intel_guc *guc) 4450 { 4451 struct intel_gt *gt = guc_to_gt(guc); 4452 struct intel_engine_cs *engine; 4453 enum intel_engine_id id; 4454 4455 /* make sure all descriptors are clean... */ 4456 xa_destroy(&guc->context_lookup); 4457 4458 /* 4459 * A reset might have occurred while we had a pending stalled request, 4460 * so make sure we clean that up. 4461 */ 4462 guc->stalled_request = NULL; 4463 guc->submission_stall_reason = STALL_NONE; 4464 4465 /* 4466 * Some contexts might have been pinned before we enabled GuC 4467 * submission, so we need to add them to the GuC bookeeping. 4468 * Also, after a reset the of the GuC we want to make sure that the 4469 * information shared with GuC is properly reset. The kernel LRCs are 4470 * not attached to the gem_context, so they need to be added separately. 4471 */ 4472 for_each_engine(engine, gt, id) { 4473 struct intel_context *ce; 4474 4475 list_for_each_entry(ce, &engine->pinned_contexts_list, 4476 pinned_contexts_link) { 4477 int ret = guc_kernel_context_pin(guc, ce); 4478 4479 if (ret) { 4480 /* No point in trying to clean up as i915 will wedge on failure */ 4481 return ret; 4482 } 4483 } 4484 } 4485 4486 return 0; 4487 } 4488 4489 static void guc_release(struct intel_engine_cs *engine) 4490 { 4491 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4492 4493 intel_engine_cleanup_common(engine); 4494 lrc_fini_wa_ctx(engine); 4495 } 4496 4497 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4498 { 4499 struct intel_engine_cs *e; 4500 intel_engine_mask_t tmp, mask = engine->mask; 4501 4502 for_each_engine_masked(e, engine->gt, mask, tmp) 4503 e->serial++; 4504 } 4505 4506 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4507 { 4508 /* Default vfuncs which can be overridden by each engine. */ 4509 4510 engine->resume = guc_resume; 4511 4512 engine->cops = &guc_context_ops; 4513 engine->request_alloc = guc_request_alloc; 4514 engine->add_active_request = add_to_context; 4515 engine->remove_active_request = remove_from_context; 4516 4517 engine->sched_engine->schedule = i915_schedule; 4518 4519 engine->reset.prepare = guc_engine_reset_prepare; 4520 engine->reset.rewind = guc_rewind_nop; 4521 engine->reset.cancel = guc_reset_nop; 4522 engine->reset.finish = guc_reset_nop; 4523 4524 engine->emit_flush = gen8_emit_flush_xcs; 4525 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4526 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4527 if (GRAPHICS_VER(engine->i915) >= 12) { 4528 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4529 engine->emit_flush = gen12_emit_flush_xcs; 4530 } 4531 engine->set_default_submission = guc_set_default_submission; 4532 engine->busyness = guc_engine_busyness; 4533 4534 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4535 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4536 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4537 4538 /* Wa_14014475959:dg2 */ 4539 if (engine->class == COMPUTE_CLASS) 4540 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 4541 IS_DG2(engine->i915)) 4542 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; 4543 4544 /* Wa_16019325821 */ 4545 /* Wa_14019159160 */ 4546 if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) && 4547 IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 4548 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; 4549 4550 /* 4551 * TODO: GuC supports timeslicing and semaphores as well, but they're 4552 * handled by the firmware so some minor tweaks are required before 4553 * enabling. 4554 * 4555 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4556 */ 4557 4558 engine->emit_bb_start = gen8_emit_bb_start; 4559 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 4560 engine->emit_bb_start = xehp_emit_bb_start; 4561 } 4562 4563 static void rcs_submission_override(struct intel_engine_cs *engine) 4564 { 4565 switch (GRAPHICS_VER(engine->i915)) { 4566 case 12: 4567 engine->emit_flush = gen12_emit_flush_rcs; 4568 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4569 break; 4570 case 11: 4571 engine->emit_flush = gen11_emit_flush_rcs; 4572 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4573 break; 4574 default: 4575 engine->emit_flush = gen8_emit_flush_rcs; 4576 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4577 break; 4578 } 4579 } 4580 4581 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4582 { 4583 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4584 intel_engine_set_irq_handler(engine, cs_irq_handler); 4585 } 4586 4587 static void guc_sched_engine_destroy(struct kref *kref) 4588 { 4589 struct i915_sched_engine *sched_engine = 4590 container_of(kref, typeof(*sched_engine), ref); 4591 struct intel_guc *guc = sched_engine->private_data; 4592 4593 guc->sched_engine = NULL; 4594 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4595 kfree(sched_engine); 4596 } 4597 4598 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4599 { 4600 struct drm_i915_private *i915 = engine->i915; 4601 struct intel_guc *guc = gt_to_guc(engine->gt); 4602 4603 /* 4604 * The setup relies on several assumptions (e.g. irqs always enabled) 4605 * that are only valid on gen11+ 4606 */ 4607 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4608 4609 if (!guc->sched_engine) { 4610 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4611 if (!guc->sched_engine) 4612 return -ENOMEM; 4613 4614 guc->sched_engine->schedule = i915_schedule; 4615 guc->sched_engine->disabled = guc_sched_engine_disabled; 4616 guc->sched_engine->private_data = guc; 4617 guc->sched_engine->destroy = guc_sched_engine_destroy; 4618 guc->sched_engine->bump_inflight_request_prio = 4619 guc_bump_inflight_request_prio; 4620 guc->sched_engine->retire_inflight_request_prio = 4621 guc_retire_inflight_request_prio; 4622 tasklet_setup(&guc->sched_engine->tasklet, 4623 guc_submission_tasklet); 4624 } 4625 i915_sched_engine_put(engine->sched_engine); 4626 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4627 4628 guc_default_vfuncs(engine); 4629 guc_default_irqs(engine); 4630 guc_init_breadcrumbs(engine); 4631 4632 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4633 rcs_submission_override(engine); 4634 4635 lrc_init_wa_ctx(engine); 4636 4637 /* Finally, take ownership and responsibility for cleanup! */ 4638 engine->sanitize = guc_sanitize; 4639 engine->release = guc_release; 4640 4641 return 0; 4642 } 4643 4644 struct scheduling_policy { 4645 /* internal data */ 4646 u32 max_words, num_words; 4647 u32 count; 4648 /* API data */ 4649 struct guc_update_scheduling_policy h2g; 4650 }; 4651 4652 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) 4653 { 4654 u32 *start = (void *)&policy->h2g; 4655 u32 *end = policy->h2g.data + policy->num_words; 4656 size_t delta = end - start; 4657 4658 return delta; 4659 } 4660 4661 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) 4662 { 4663 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; 4664 policy->max_words = ARRAY_SIZE(policy->h2g.data); 4665 policy->num_words = 0; 4666 policy->count = 0; 4667 4668 return policy; 4669 } 4670 4671 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, 4672 u32 action, u32 *data, u32 len) 4673 { 4674 u32 *klv_ptr = policy->h2g.data + policy->num_words; 4675 4676 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); 4677 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | 4678 FIELD_PREP(GUC_KLV_0_LEN, len); 4679 memcpy(klv_ptr, data, sizeof(u32) * len); 4680 policy->num_words += 1 + len; 4681 policy->count++; 4682 } 4683 4684 static int __guc_action_set_scheduling_policies(struct intel_guc *guc, 4685 struct scheduling_policy *policy) 4686 { 4687 int ret; 4688 4689 ret = intel_guc_send(guc, (u32 *)&policy->h2g, 4690 __guc_scheduling_policy_action_size(policy)); 4691 if (ret < 0) { 4692 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n", 4693 ERR_PTR(ret)); 4694 return ret; 4695 } 4696 4697 if (ret != policy->count) { 4698 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!", 4699 ret, policy->count); 4700 if (ret > policy->count) 4701 return -EPROTO; 4702 } 4703 4704 return 0; 4705 } 4706 4707 static int guc_init_global_schedule_policy(struct intel_guc *guc) 4708 { 4709 struct scheduling_policy policy; 4710 struct intel_gt *gt = guc_to_gt(guc); 4711 intel_wakeref_t wakeref; 4712 int ret; 4713 4714 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) 4715 return 0; 4716 4717 __guc_scheduling_policy_start_klv(&policy); 4718 4719 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 4720 u32 yield[] = { 4721 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, 4722 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, 4723 }; 4724 4725 __guc_scheduling_policy_add_klv(&policy, 4726 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, 4727 yield, ARRAY_SIZE(yield)); 4728 4729 ret = __guc_action_set_scheduling_policies(guc, &policy); 4730 } 4731 4732 return ret; 4733 } 4734 4735 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) 4736 { 4737 struct intel_gt *gt = guc_to_gt(guc); 4738 u32 val; 4739 4740 if (GRAPHICS_VER(gt->i915) < 12) 4741 return; 4742 4743 if (to_guc) 4744 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; 4745 else 4746 val = 0; 4747 4748 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); 4749 } 4750 4751 int intel_guc_submission_enable(struct intel_guc *guc) 4752 { 4753 int ret; 4754 4755 /* Semaphore interrupt enable and route to GuC */ 4756 guc_route_semaphores(guc, true); 4757 4758 ret = guc_init_submission(guc); 4759 if (ret) 4760 goto fail_sem; 4761 4762 ret = guc_init_engine_stats(guc); 4763 if (ret) 4764 goto fail_sem; 4765 4766 ret = guc_init_global_schedule_policy(guc); 4767 if (ret) 4768 goto fail_stats; 4769 4770 return 0; 4771 4772 fail_stats: 4773 guc_fini_engine_stats(guc); 4774 fail_sem: 4775 guc_route_semaphores(guc, false); 4776 return ret; 4777 } 4778 4779 /* Note: By the time we're here, GuC may have already been reset */ 4780 void intel_guc_submission_disable(struct intel_guc *guc) 4781 { 4782 guc_cancel_busyness_worker(guc); 4783 4784 /* Semaphore interrupt disable and route to host */ 4785 guc_route_semaphores(guc, false); 4786 } 4787 4788 static bool __guc_submission_supported(struct intel_guc *guc) 4789 { 4790 /* GuC submission is unavailable for pre-Gen11 */ 4791 return intel_guc_is_supported(guc) && 4792 GRAPHICS_VER(guc_to_i915(guc)) >= 11; 4793 } 4794 4795 static bool __guc_submission_selected(struct intel_guc *guc) 4796 { 4797 struct drm_i915_private *i915 = guc_to_i915(guc); 4798 4799 if (!intel_guc_submission_is_supported(guc)) 4800 return false; 4801 4802 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4803 } 4804 4805 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) 4806 { 4807 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); 4808 } 4809 4810 /* 4811 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher 4812 * workloads are able to enjoy the latency reduction when delaying the schedule-disable 4813 * operation. This matches the 30fps game-render + encode (real world) workload this 4814 * knob was tested against. 4815 */ 4816 #define SCHED_DISABLE_DELAY_MS 34 4817 4818 /* 4819 * A threshold of 75% is a reasonable starting point considering that real world apps 4820 * generally don't get anywhere near this. 4821 */ 4822 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ 4823 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) 4824 4825 void intel_guc_submission_init_early(struct intel_guc *guc) 4826 { 4827 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4828 4829 spin_lock_init(&guc->submission_state.lock); 4830 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4831 ida_init(&guc->submission_state.guc_ids); 4832 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4833 INIT_WORK(&guc->submission_state.destroyed_worker, 4834 destroyed_worker_func); 4835 INIT_WORK(&guc->submission_state.reset_fail_worker, 4836 reset_fail_worker_func); 4837 4838 spin_lock_init(&guc->timestamp.lock); 4839 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4840 4841 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; 4842 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4843 guc->submission_state.sched_disable_gucid_threshold = 4844 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); 4845 guc->submission_supported = __guc_submission_supported(guc); 4846 guc->submission_selected = __guc_submission_selected(guc); 4847 } 4848 4849 static inline struct intel_context * 4850 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4851 { 4852 struct intel_context *ce; 4853 4854 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4855 guc_err(guc, "Invalid ctx_id %u\n", ctx_id); 4856 return NULL; 4857 } 4858 4859 ce = __get_context(guc, ctx_id); 4860 if (unlikely(!ce)) { 4861 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id); 4862 return NULL; 4863 } 4864 4865 if (unlikely(intel_context_is_child(ce))) { 4866 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id); 4867 return NULL; 4868 } 4869 4870 return ce; 4871 } 4872 4873 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno) 4874 { 4875 struct intel_guc_tlb_wait *wait; 4876 unsigned long flags; 4877 4878 xa_lock_irqsave(&guc->tlb_lookup, flags); 4879 wait = xa_load(&guc->tlb_lookup, seqno); 4880 4881 if (wait) 4882 wake_up(&wait->wq); 4883 else 4884 guc_dbg(guc, 4885 "Stale TLB invalidation response with seqno %d\n", seqno); 4886 4887 xa_unlock_irqrestore(&guc->tlb_lookup, flags); 4888 } 4889 4890 int intel_guc_tlb_invalidation_done(struct intel_guc *guc, 4891 const u32 *payload, u32 len) 4892 { 4893 if (len < 1) 4894 return -EPROTO; 4895 4896 wait_wake_outstanding_tlb_g2h(guc, payload[0]); 4897 return 0; 4898 } 4899 4900 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout) 4901 { 4902 /* 4903 * This is equivalent to wait_woken() with the exception that 4904 * we do not wake up early if the kthread task has been completed. 4905 * As we are called from page reclaim in any task context, 4906 * we may be invoked from stopped kthreads, but we *must* 4907 * complete the wait from the HW. 4908 */ 4909 do { 4910 set_current_state(TASK_UNINTERRUPTIBLE); 4911 if (wq_entry->flags & WQ_FLAG_WOKEN) 4912 break; 4913 4914 timeout = schedule_timeout(timeout); 4915 } while (timeout); 4916 4917 /* See wait_woken() and woken_wake_function() */ 4918 __set_current_state(TASK_RUNNING); 4919 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); 4920 4921 return timeout; 4922 } 4923 4924 static bool intel_gt_is_enabled(const struct intel_gt *gt) 4925 { 4926 /* Check if GT is wedged or suspended */ 4927 if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915)) 4928 return false; 4929 return true; 4930 } 4931 4932 static int guc_send_invalidate_tlb(struct intel_guc *guc, 4933 enum intel_guc_tlb_invalidation_type type) 4934 { 4935 struct intel_guc_tlb_wait _wq, *wq = &_wq; 4936 struct intel_gt *gt = guc_to_gt(guc); 4937 DEFINE_WAIT_FUNC(wait, woken_wake_function); 4938 int err; 4939 u32 seqno; 4940 u32 action[] = { 4941 INTEL_GUC_ACTION_TLB_INVALIDATION, 4942 0, 4943 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) | 4944 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK, 4945 INTEL_GUC_TLB_INVAL_MODE_HEAVY) | 4946 INTEL_GUC_TLB_INVAL_FLUSH_CACHE, 4947 }; 4948 u32 size = ARRAY_SIZE(action); 4949 4950 /* 4951 * Early guard against GT enablement. TLB invalidation should not be 4952 * attempted if the GT is disabled due to suspend/wedge. 4953 */ 4954 if (!intel_gt_is_enabled(gt)) 4955 return -EINVAL; 4956 4957 init_waitqueue_head(&_wq.wq); 4958 4959 if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq, 4960 xa_limit_32b, &guc->next_seqno, 4961 GFP_ATOMIC | __GFP_NOWARN) < 0) { 4962 /* Under severe memory pressure? Serialise TLB allocations */ 4963 xa_lock_irq(&guc->tlb_lookup); 4964 wq = xa_load(&guc->tlb_lookup, guc->serial_slot); 4965 wait_event_lock_irq(wq->wq, 4966 !READ_ONCE(wq->busy), 4967 guc->tlb_lookup.xa_lock); 4968 /* 4969 * Update wq->busy under lock to ensure only one waiter can 4970 * issue the TLB invalidation command using the serial slot at a 4971 * time. The condition is set to true before releasing the lock 4972 * so that other caller continue to wait until woken up again. 4973 */ 4974 wq->busy = true; 4975 xa_unlock_irq(&guc->tlb_lookup); 4976 4977 seqno = guc->serial_slot; 4978 } 4979 4980 action[1] = seqno; 4981 4982 add_wait_queue(&wq->wq, &wait); 4983 4984 /* This is a critical reclaim path and thus we must loop here. */ 4985 err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true); 4986 if (err) 4987 goto out; 4988 4989 /* 4990 * Late guard against GT enablement. It is not an error for the TLB 4991 * invalidation to time out if the GT is disabled during the process 4992 * due to suspend/wedge. In fact, the TLB invalidation is cancelled 4993 * in this case. 4994 */ 4995 if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) && 4996 intel_gt_is_enabled(gt)) { 4997 guc_err(guc, 4998 "TLB invalidation response timed out for seqno %u\n", seqno); 4999 err = -ETIME; 5000 } 5001 out: 5002 remove_wait_queue(&wq->wq, &wait); 5003 if (seqno != guc->serial_slot) 5004 xa_erase_irq(&guc->tlb_lookup, seqno); 5005 5006 return err; 5007 } 5008 5009 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */ 5010 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc) 5011 { 5012 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES); 5013 } 5014 5015 /* Send a H2G command to invalidate the GuC's internal TLB. */ 5016 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc) 5017 { 5018 return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC); 5019 } 5020 5021 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 5022 const u32 *msg, 5023 u32 len) 5024 { 5025 struct intel_context *ce; 5026 u32 ctx_id; 5027 5028 if (unlikely(len < 1)) { 5029 guc_err(guc, "Invalid length %u\n", len); 5030 return -EPROTO; 5031 } 5032 ctx_id = msg[0]; 5033 5034 ce = g2h_context_lookup(guc, ctx_id); 5035 if (unlikely(!ce)) 5036 return -EPROTO; 5037 5038 trace_intel_context_deregister_done(ce); 5039 5040 #ifdef CONFIG_DRM_I915_SELFTEST 5041 if (unlikely(ce->drop_deregister)) { 5042 ce->drop_deregister = false; 5043 return 0; 5044 } 5045 #endif 5046 5047 if (context_wait_for_deregister_to_register(ce)) { 5048 struct intel_runtime_pm *runtime_pm = 5049 &ce->engine->gt->i915->runtime_pm; 5050 intel_wakeref_t wakeref; 5051 5052 /* 5053 * Previous owner of this guc_id has been deregistered, now safe 5054 * register this context. 5055 */ 5056 with_intel_runtime_pm(runtime_pm, wakeref) 5057 register_context(ce, true); 5058 guc_signal_context_fence(ce); 5059 intel_context_put(ce); 5060 } else if (context_destroyed(ce)) { 5061 /* Context has been destroyed */ 5062 intel_gt_pm_put_async_untracked(guc_to_gt(guc)); 5063 release_guc_id(guc, ce); 5064 __guc_context_destroy(ce); 5065 } 5066 5067 decr_outstanding_submission_g2h(guc); 5068 5069 return 0; 5070 } 5071 5072 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 5073 const u32 *msg, 5074 u32 len) 5075 { 5076 struct intel_context *ce; 5077 unsigned long flags; 5078 u32 ctx_id; 5079 5080 if (unlikely(len < 2)) { 5081 guc_err(guc, "Invalid length %u\n", len); 5082 return -EPROTO; 5083 } 5084 ctx_id = msg[0]; 5085 5086 ce = g2h_context_lookup(guc, ctx_id); 5087 if (unlikely(!ce)) 5088 return -EPROTO; 5089 5090 if (unlikely(context_destroyed(ce) || 5091 (!context_pending_enable(ce) && 5092 !context_pending_disable(ce)))) { 5093 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n", 5094 ce->guc_state.sched_state, ctx_id); 5095 return -EPROTO; 5096 } 5097 5098 trace_intel_context_sched_done(ce); 5099 5100 if (context_pending_enable(ce)) { 5101 #ifdef CONFIG_DRM_I915_SELFTEST 5102 if (unlikely(ce->drop_schedule_enable)) { 5103 ce->drop_schedule_enable = false; 5104 return 0; 5105 } 5106 #endif 5107 5108 spin_lock_irqsave(&ce->guc_state.lock, flags); 5109 clr_context_pending_enable(ce); 5110 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 5111 } else if (context_pending_disable(ce)) { 5112 bool banned; 5113 5114 #ifdef CONFIG_DRM_I915_SELFTEST 5115 if (unlikely(ce->drop_schedule_disable)) { 5116 ce->drop_schedule_disable = false; 5117 return 0; 5118 } 5119 #endif 5120 5121 /* 5122 * Unpin must be done before __guc_signal_context_fence, 5123 * otherwise a race exists between the requests getting 5124 * submitted + retired before this unpin completes resulting in 5125 * the pin_count going to zero and the context still being 5126 * enabled. 5127 */ 5128 intel_context_sched_disable_unpin(ce); 5129 5130 spin_lock_irqsave(&ce->guc_state.lock, flags); 5131 banned = context_banned(ce); 5132 clr_context_banned(ce); 5133 clr_context_pending_disable(ce); 5134 __guc_signal_context_fence(ce); 5135 guc_blocked_fence_complete(ce); 5136 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 5137 5138 if (banned) { 5139 guc_cancel_context_requests(ce); 5140 intel_engine_signal_breadcrumbs(ce->engine); 5141 } 5142 } 5143 5144 decr_outstanding_submission_g2h(guc); 5145 intel_context_put(ce); 5146 5147 return 0; 5148 } 5149 5150 static void capture_error_state(struct intel_guc *guc, 5151 struct intel_context *ce) 5152 { 5153 struct intel_gt *gt = guc_to_gt(guc); 5154 struct drm_i915_private *i915 = gt->i915; 5155 intel_wakeref_t wakeref; 5156 intel_engine_mask_t engine_mask; 5157 5158 if (intel_engine_is_virtual(ce->engine)) { 5159 struct intel_engine_cs *e; 5160 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask; 5161 5162 engine_mask = 0; 5163 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) { 5164 bool match = intel_guc_capture_is_matching_engine(gt, ce, e); 5165 5166 if (match) { 5167 intel_engine_set_hung_context(e, ce); 5168 engine_mask |= e->mask; 5169 i915_increase_reset_engine_count(&i915->gpu_error, 5170 e); 5171 } 5172 } 5173 5174 if (!engine_mask) { 5175 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s", 5176 ce->guc_id.id, ce->engine->name); 5177 engine_mask = ~0U; 5178 } 5179 } else { 5180 intel_engine_set_hung_context(ce->engine, ce); 5181 engine_mask = ce->engine->mask; 5182 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine); 5183 } 5184 5185 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 5186 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 5187 } 5188 5189 static void guc_context_replay(struct intel_context *ce) 5190 { 5191 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 5192 5193 __guc_reset_context(ce, ce->engine->mask); 5194 tasklet_hi_schedule(&sched_engine->tasklet); 5195 } 5196 5197 static void guc_handle_context_reset(struct intel_guc *guc, 5198 struct intel_context *ce) 5199 { 5200 bool capture = intel_context_is_schedulable(ce); 5201 5202 trace_intel_context_reset(ce); 5203 5204 guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n", 5205 capture ? "Got" : "Ignoring", 5206 ce->guc_id.id, ce->engine->name, 5207 str_yes_no(intel_context_is_exiting(ce)), 5208 str_yes_no(intel_context_is_banned(ce))); 5209 5210 if (capture) { 5211 capture_error_state(guc, ce); 5212 guc_context_replay(ce); 5213 } 5214 } 5215 5216 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 5217 const u32 *msg, u32 len) 5218 { 5219 struct intel_context *ce; 5220 unsigned long flags; 5221 int ctx_id; 5222 5223 if (unlikely(len != 1)) { 5224 guc_err(guc, "Invalid length %u", len); 5225 return -EPROTO; 5226 } 5227 5228 ctx_id = msg[0]; 5229 5230 /* 5231 * The context lookup uses the xarray but lookups only require an RCU lock 5232 * not the full spinlock. So take the lock explicitly and keep it until the 5233 * context has been reference count locked to ensure it can't be destroyed 5234 * asynchronously until the reset is done. 5235 */ 5236 xa_lock_irqsave(&guc->context_lookup, flags); 5237 ce = g2h_context_lookup(guc, ctx_id); 5238 if (ce) 5239 intel_context_get(ce); 5240 xa_unlock_irqrestore(&guc->context_lookup, flags); 5241 5242 if (unlikely(!ce)) 5243 return -EPROTO; 5244 5245 guc_handle_context_reset(guc, ce); 5246 intel_context_put(ce); 5247 5248 return 0; 5249 } 5250 5251 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 5252 const u32 *msg, u32 len) 5253 { 5254 u32 status; 5255 5256 if (unlikely(len != 1)) { 5257 guc_dbg(guc, "Invalid length %u", len); 5258 return -EPROTO; 5259 } 5260 5261 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 5262 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 5263 guc_warn(guc, "No space for error capture"); 5264 5265 intel_guc_capture_process(guc); 5266 5267 return 0; 5268 } 5269 5270 struct intel_engine_cs * 5271 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 5272 { 5273 struct intel_gt *gt = guc_to_gt(guc); 5274 u8 engine_class = guc_class_to_engine_class(guc_class); 5275 5276 /* Class index is checked in class converter */ 5277 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 5278 5279 return gt->engine_class[engine_class][instance]; 5280 } 5281 5282 static void reset_fail_worker_func(struct work_struct *w) 5283 { 5284 struct intel_guc *guc = container_of(w, struct intel_guc, 5285 submission_state.reset_fail_worker); 5286 struct intel_gt *gt = guc_to_gt(guc); 5287 intel_engine_mask_t reset_fail_mask; 5288 unsigned long flags; 5289 5290 spin_lock_irqsave(&guc->submission_state.lock, flags); 5291 reset_fail_mask = guc->submission_state.reset_fail_mask; 5292 guc->submission_state.reset_fail_mask = 0; 5293 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 5294 5295 if (likely(reset_fail_mask)) { 5296 struct intel_engine_cs *engine; 5297 enum intel_engine_id id; 5298 5299 /* 5300 * GuC is toast at this point - it dead loops after sending the failed 5301 * reset notification. So need to manually determine the guilty context. 5302 * Note that it should be reliable to do this here because the GuC is 5303 * toast and will not be scheduling behind the KMD's back. 5304 */ 5305 for_each_engine_masked(engine, gt, reset_fail_mask, id) 5306 intel_guc_find_hung_context(engine); 5307 5308 intel_gt_handle_error(gt, reset_fail_mask, 5309 I915_ERROR_CAPTURE, 5310 "GuC failed to reset engine mask=0x%x", 5311 reset_fail_mask); 5312 } 5313 } 5314 5315 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 5316 const u32 *msg, u32 len) 5317 { 5318 struct intel_engine_cs *engine; 5319 u8 guc_class, instance; 5320 u32 reason; 5321 unsigned long flags; 5322 5323 if (unlikely(len != 3)) { 5324 guc_err(guc, "Invalid length %u", len); 5325 return -EPROTO; 5326 } 5327 5328 guc_class = msg[0]; 5329 instance = msg[1]; 5330 reason = msg[2]; 5331 5332 engine = intel_guc_lookup_engine(guc, guc_class, instance); 5333 if (unlikely(!engine)) { 5334 guc_err(guc, "Invalid engine %d:%d", guc_class, instance); 5335 return -EPROTO; 5336 } 5337 5338 /* 5339 * This is an unexpected failure of a hardware feature. So, log a real 5340 * error message not just the informational that comes with the reset. 5341 */ 5342 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X", 5343 guc_class, instance, engine->name, reason); 5344 5345 spin_lock_irqsave(&guc->submission_state.lock, flags); 5346 guc->submission_state.reset_fail_mask |= engine->mask; 5347 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 5348 5349 /* 5350 * A GT reset flushes this worker queue (G2H handler) so we must use 5351 * another worker to trigger a GT reset. 5352 */ 5353 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 5354 5355 return 0; 5356 } 5357 5358 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 5359 { 5360 struct intel_guc *guc = gt_to_guc(engine->gt); 5361 struct intel_context *ce; 5362 struct i915_request *rq; 5363 unsigned long index; 5364 unsigned long flags; 5365 5366 /* Reset called during driver load? GuC not yet initialised! */ 5367 if (unlikely(!guc_submission_initialized(guc))) 5368 return; 5369 5370 xa_lock_irqsave(&guc->context_lookup, flags); 5371 xa_for_each(&guc->context_lookup, index, ce) { 5372 bool found; 5373 5374 if (!kref_get_unless_zero(&ce->ref)) 5375 continue; 5376 5377 xa_unlock(&guc->context_lookup); 5378 5379 if (!intel_context_is_pinned(ce)) 5380 goto next; 5381 5382 if (intel_engine_is_virtual(ce->engine)) { 5383 if (!(ce->engine->mask & engine->mask)) 5384 goto next; 5385 } else { 5386 if (ce->engine != engine) 5387 goto next; 5388 } 5389 5390 found = false; 5391 spin_lock(&ce->guc_state.lock); 5392 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 5393 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 5394 continue; 5395 5396 found = true; 5397 break; 5398 } 5399 spin_unlock(&ce->guc_state.lock); 5400 5401 if (found) { 5402 intel_engine_set_hung_context(engine, ce); 5403 5404 /* Can only cope with one hang at a time... */ 5405 intel_context_put(ce); 5406 xa_lock(&guc->context_lookup); 5407 goto done; 5408 } 5409 5410 next: 5411 intel_context_put(ce); 5412 xa_lock(&guc->context_lookup); 5413 } 5414 done: 5415 xa_unlock_irqrestore(&guc->context_lookup, flags); 5416 } 5417 5418 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 5419 struct i915_request *hung_rq, 5420 struct drm_printer *m) 5421 { 5422 struct intel_guc *guc = gt_to_guc(engine->gt); 5423 struct intel_context *ce; 5424 unsigned long index; 5425 unsigned long flags; 5426 5427 /* Reset called during driver load? GuC not yet initialised! */ 5428 if (unlikely(!guc_submission_initialized(guc))) 5429 return; 5430 5431 xa_lock_irqsave(&guc->context_lookup, flags); 5432 xa_for_each(&guc->context_lookup, index, ce) { 5433 if (!kref_get_unless_zero(&ce->ref)) 5434 continue; 5435 5436 xa_unlock(&guc->context_lookup); 5437 5438 if (!intel_context_is_pinned(ce)) 5439 goto next; 5440 5441 if (intel_engine_is_virtual(ce->engine)) { 5442 if (!(ce->engine->mask & engine->mask)) 5443 goto next; 5444 } else { 5445 if (ce->engine != engine) 5446 goto next; 5447 } 5448 5449 spin_lock(&ce->guc_state.lock); 5450 intel_engine_dump_active_requests(&ce->guc_state.requests, 5451 hung_rq, m); 5452 spin_unlock(&ce->guc_state.lock); 5453 5454 next: 5455 intel_context_put(ce); 5456 xa_lock(&guc->context_lookup); 5457 } 5458 xa_unlock_irqrestore(&guc->context_lookup, flags); 5459 } 5460 5461 void intel_guc_submission_print_info(struct intel_guc *guc, 5462 struct drm_printer *p) 5463 { 5464 struct i915_sched_engine *sched_engine = guc->sched_engine; 5465 struct rb_node *rb; 5466 unsigned long flags; 5467 5468 if (!sched_engine) 5469 return; 5470 5471 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n", 5472 guc->submission_version.major, guc->submission_version.minor, 5473 guc->submission_version.patch); 5474 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 5475 atomic_read(&guc->outstanding_submission_g2h)); 5476 drm_printf(p, "GuC tasklet count: %u\n", 5477 atomic_read(&sched_engine->tasklet.count)); 5478 5479 spin_lock_irqsave(&sched_engine->lock, flags); 5480 drm_printf(p, "Requests in GuC submit tasklet:\n"); 5481 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 5482 struct i915_priolist *pl = to_priolist(rb); 5483 struct i915_request *rq; 5484 5485 priolist_for_each_request(rq, pl) 5486 drm_printf(p, "guc_id=%u, seqno=%llu\n", 5487 rq->context->guc_id.id, 5488 rq->fence.seqno); 5489 } 5490 spin_unlock_irqrestore(&sched_engine->lock, flags); 5491 drm_printf(p, "\n"); 5492 } 5493 5494 static inline void guc_log_context_priority(struct drm_printer *p, 5495 struct intel_context *ce) 5496 { 5497 int i; 5498 5499 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 5500 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 5501 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 5502 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 5503 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 5504 i, ce->guc_state.prio_count[i]); 5505 } 5506 drm_printf(p, "\n"); 5507 } 5508 5509 static inline void guc_log_context(struct drm_printer *p, 5510 struct intel_context *ce) 5511 { 5512 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 5513 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 5514 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 5515 ce->ring->head, 5516 ce->lrc_reg_state[CTX_RING_HEAD]); 5517 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 5518 ce->ring->tail, 5519 ce->lrc_reg_state[CTX_RING_TAIL]); 5520 drm_printf(p, "\t\tContext Pin Count: %u\n", 5521 atomic_read(&ce->pin_count)); 5522 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 5523 atomic_read(&ce->guc_id.ref)); 5524 drm_printf(p, "\t\tSchedule State: 0x%x\n", 5525 ce->guc_state.sched_state); 5526 } 5527 5528 void intel_guc_submission_print_context_info(struct intel_guc *guc, 5529 struct drm_printer *p) 5530 { 5531 struct intel_context *ce; 5532 unsigned long index; 5533 unsigned long flags; 5534 5535 xa_lock_irqsave(&guc->context_lookup, flags); 5536 xa_for_each(&guc->context_lookup, index, ce) { 5537 GEM_BUG_ON(intel_context_is_child(ce)); 5538 5539 guc_log_context(p, ce); 5540 guc_log_context_priority(p, ce); 5541 5542 if (intel_context_is_parent(ce)) { 5543 struct intel_context *child; 5544 5545 drm_printf(p, "\t\tNumber children: %u\n", 5546 ce->parallel.number_children); 5547 5548 if (ce->parallel.guc.wq_status) { 5549 drm_printf(p, "\t\tWQI Head: %u\n", 5550 READ_ONCE(*ce->parallel.guc.wq_head)); 5551 drm_printf(p, "\t\tWQI Tail: %u\n", 5552 READ_ONCE(*ce->parallel.guc.wq_tail)); 5553 drm_printf(p, "\t\tWQI Status: %u\n", 5554 READ_ONCE(*ce->parallel.guc.wq_status)); 5555 } 5556 5557 if (ce->engine->emit_bb_start == 5558 emit_bb_start_parent_no_preempt_mid_batch) { 5559 u8 i; 5560 5561 drm_printf(p, "\t\tChildren Go: %u\n", 5562 get_children_go_value(ce)); 5563 for (i = 0; i < ce->parallel.number_children; ++i) 5564 drm_printf(p, "\t\tChildren Join: %u\n", 5565 get_children_join_value(ce, i)); 5566 } 5567 5568 for_each_child(ce, child) 5569 guc_log_context(p, child); 5570 } 5571 } 5572 xa_unlock_irqrestore(&guc->context_lookup, flags); 5573 } 5574 5575 static inline u32 get_children_go_addr(struct intel_context *ce) 5576 { 5577 GEM_BUG_ON(!intel_context_is_parent(ce)); 5578 5579 return i915_ggtt_offset(ce->state) + 5580 __get_parent_scratch_offset(ce) + 5581 offsetof(struct parent_scratch, go.semaphore); 5582 } 5583 5584 static inline u32 get_children_join_addr(struct intel_context *ce, 5585 u8 child_index) 5586 { 5587 GEM_BUG_ON(!intel_context_is_parent(ce)); 5588 5589 return i915_ggtt_offset(ce->state) + 5590 __get_parent_scratch_offset(ce) + 5591 offsetof(struct parent_scratch, join[child_index].semaphore); 5592 } 5593 5594 #define PARENT_GO_BB 1 5595 #define PARENT_GO_FINI_BREADCRUMB 0 5596 #define CHILD_GO_BB 1 5597 #define CHILD_GO_FINI_BREADCRUMB 0 5598 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 5599 u64 offset, u32 len, 5600 const unsigned int flags) 5601 { 5602 struct intel_context *ce = rq->context; 5603 u32 *cs; 5604 u8 i; 5605 5606 GEM_BUG_ON(!intel_context_is_parent(ce)); 5607 5608 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 5609 if (IS_ERR(cs)) 5610 return PTR_ERR(cs); 5611 5612 /* Wait on children */ 5613 for (i = 0; i < ce->parallel.number_children; ++i) { 5614 *cs++ = (MI_SEMAPHORE_WAIT | 5615 MI_SEMAPHORE_GLOBAL_GTT | 5616 MI_SEMAPHORE_POLL | 5617 MI_SEMAPHORE_SAD_EQ_SDD); 5618 *cs++ = PARENT_GO_BB; 5619 *cs++ = get_children_join_addr(ce, i); 5620 *cs++ = 0; 5621 } 5622 5623 /* Turn off preemption */ 5624 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5625 *cs++ = MI_NOOP; 5626 5627 /* Tell children go */ 5628 cs = gen8_emit_ggtt_write(cs, 5629 CHILD_GO_BB, 5630 get_children_go_addr(ce), 5631 0); 5632 5633 /* Jump to batch */ 5634 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5635 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5636 *cs++ = lower_32_bits(offset); 5637 *cs++ = upper_32_bits(offset); 5638 *cs++ = MI_NOOP; 5639 5640 intel_ring_advance(rq, cs); 5641 5642 return 0; 5643 } 5644 5645 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 5646 u64 offset, u32 len, 5647 const unsigned int flags) 5648 { 5649 struct intel_context *ce = rq->context; 5650 struct intel_context *parent = intel_context_to_parent(ce); 5651 u32 *cs; 5652 5653 GEM_BUG_ON(!intel_context_is_child(ce)); 5654 5655 cs = intel_ring_begin(rq, 12); 5656 if (IS_ERR(cs)) 5657 return PTR_ERR(cs); 5658 5659 /* Signal parent */ 5660 cs = gen8_emit_ggtt_write(cs, 5661 PARENT_GO_BB, 5662 get_children_join_addr(parent, 5663 ce->parallel.child_index), 5664 0); 5665 5666 /* Wait on parent for go */ 5667 *cs++ = (MI_SEMAPHORE_WAIT | 5668 MI_SEMAPHORE_GLOBAL_GTT | 5669 MI_SEMAPHORE_POLL | 5670 MI_SEMAPHORE_SAD_EQ_SDD); 5671 *cs++ = CHILD_GO_BB; 5672 *cs++ = get_children_go_addr(parent); 5673 *cs++ = 0; 5674 5675 /* Turn off preemption */ 5676 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5677 5678 /* Jump to batch */ 5679 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5680 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5681 *cs++ = lower_32_bits(offset); 5682 *cs++ = upper_32_bits(offset); 5683 5684 intel_ring_advance(rq, cs); 5685 5686 return 0; 5687 } 5688 5689 static u32 * 5690 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5691 u32 *cs) 5692 { 5693 struct intel_context *ce = rq->context; 5694 u8 i; 5695 5696 GEM_BUG_ON(!intel_context_is_parent(ce)); 5697 5698 /* Wait on children */ 5699 for (i = 0; i < ce->parallel.number_children; ++i) { 5700 *cs++ = (MI_SEMAPHORE_WAIT | 5701 MI_SEMAPHORE_GLOBAL_GTT | 5702 MI_SEMAPHORE_POLL | 5703 MI_SEMAPHORE_SAD_EQ_SDD); 5704 *cs++ = PARENT_GO_FINI_BREADCRUMB; 5705 *cs++ = get_children_join_addr(ce, i); 5706 *cs++ = 0; 5707 } 5708 5709 /* Turn on preemption */ 5710 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5711 *cs++ = MI_NOOP; 5712 5713 /* Tell children go */ 5714 cs = gen8_emit_ggtt_write(cs, 5715 CHILD_GO_FINI_BREADCRUMB, 5716 get_children_go_addr(ce), 5717 0); 5718 5719 return cs; 5720 } 5721 5722 /* 5723 * If this true, a submission of multi-lrc requests had an error and the 5724 * requests need to be skipped. The front end (execuf IOCTL) should've called 5725 * i915_request_skip which squashes the BB but we still need to emit the fini 5726 * breadrcrumbs seqno write. At this point we don't know how many of the 5727 * requests in the multi-lrc submission were generated so we can't do the 5728 * handshake between the parent and children (e.g. if 4 requests should be 5729 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 5730 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 5731 * has occurred on any of the requests in submission / relationship. 5732 */ 5733 static inline bool skip_handshake(struct i915_request *rq) 5734 { 5735 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 5736 } 5737 5738 #define NON_SKIP_LEN 6 5739 static u32 * 5740 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5741 u32 *cs) 5742 { 5743 struct intel_context *ce = rq->context; 5744 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5745 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5746 5747 GEM_BUG_ON(!intel_context_is_parent(ce)); 5748 5749 if (unlikely(skip_handshake(rq))) { 5750 /* 5751 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 5752 * the NON_SKIP_LEN comes from the length of the emits below. 5753 */ 5754 memset(cs, 0, sizeof(u32) * 5755 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5756 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5757 } else { 5758 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 5759 } 5760 5761 /* Emit fini breadcrumb */ 5762 before_fini_breadcrumb_user_interrupt_cs = cs; 5763 cs = gen8_emit_ggtt_write(cs, 5764 rq->fence.seqno, 5765 i915_request_active_timeline(rq)->hwsp_offset, 5766 0); 5767 5768 /* User interrupt */ 5769 *cs++ = MI_USER_INTERRUPT; 5770 *cs++ = MI_NOOP; 5771 5772 /* Ensure our math for skip + emit is correct */ 5773 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5774 cs); 5775 GEM_BUG_ON(start_fini_breadcrumb_cs + 5776 ce->engine->emit_fini_breadcrumb_dw != cs); 5777 5778 rq->tail = intel_ring_offset(rq, cs); 5779 5780 return cs; 5781 } 5782 5783 static u32 * 5784 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5785 u32 *cs) 5786 { 5787 struct intel_context *ce = rq->context; 5788 struct intel_context *parent = intel_context_to_parent(ce); 5789 5790 GEM_BUG_ON(!intel_context_is_child(ce)); 5791 5792 /* Turn on preemption */ 5793 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5794 *cs++ = MI_NOOP; 5795 5796 /* Signal parent */ 5797 cs = gen8_emit_ggtt_write(cs, 5798 PARENT_GO_FINI_BREADCRUMB, 5799 get_children_join_addr(parent, 5800 ce->parallel.child_index), 5801 0); 5802 5803 /* Wait parent on for go */ 5804 *cs++ = (MI_SEMAPHORE_WAIT | 5805 MI_SEMAPHORE_GLOBAL_GTT | 5806 MI_SEMAPHORE_POLL | 5807 MI_SEMAPHORE_SAD_EQ_SDD); 5808 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5809 *cs++ = get_children_go_addr(parent); 5810 *cs++ = 0; 5811 5812 return cs; 5813 } 5814 5815 static u32 * 5816 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5817 u32 *cs) 5818 { 5819 struct intel_context *ce = rq->context; 5820 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5821 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5822 5823 GEM_BUG_ON(!intel_context_is_child(ce)); 5824 5825 if (unlikely(skip_handshake(rq))) { 5826 /* 5827 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5828 * the NON_SKIP_LEN comes from the length of the emits below. 5829 */ 5830 memset(cs, 0, sizeof(u32) * 5831 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5832 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5833 } else { 5834 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5835 } 5836 5837 /* Emit fini breadcrumb */ 5838 before_fini_breadcrumb_user_interrupt_cs = cs; 5839 cs = gen8_emit_ggtt_write(cs, 5840 rq->fence.seqno, 5841 i915_request_active_timeline(rq)->hwsp_offset, 5842 0); 5843 5844 /* User interrupt */ 5845 *cs++ = MI_USER_INTERRUPT; 5846 *cs++ = MI_NOOP; 5847 5848 /* Ensure our math for skip + emit is correct */ 5849 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5850 cs); 5851 GEM_BUG_ON(start_fini_breadcrumb_cs + 5852 ce->engine->emit_fini_breadcrumb_dw != cs); 5853 5854 rq->tail = intel_ring_offset(rq, cs); 5855 5856 return cs; 5857 } 5858 5859 #undef NON_SKIP_LEN 5860 5861 static struct intel_context * 5862 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5863 unsigned long flags) 5864 { 5865 struct guc_virtual_engine *ve; 5866 struct intel_guc *guc; 5867 unsigned int n; 5868 int err; 5869 5870 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5871 if (!ve) 5872 return ERR_PTR(-ENOMEM); 5873 5874 guc = gt_to_guc(siblings[0]->gt); 5875 5876 ve->base.i915 = siblings[0]->i915; 5877 ve->base.gt = siblings[0]->gt; 5878 ve->base.uncore = siblings[0]->uncore; 5879 ve->base.id = -1; 5880 5881 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5882 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5883 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5884 ve->base.saturated = ALL_ENGINES; 5885 5886 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5887 5888 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5889 5890 ve->base.cops = &virtual_guc_context_ops; 5891 ve->base.request_alloc = guc_request_alloc; 5892 ve->base.bump_serial = virtual_guc_bump_serial; 5893 5894 ve->base.submit_request = guc_submit_request; 5895 5896 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5897 5898 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES); 5899 ve->base.mask = VIRTUAL_ENGINES; 5900 5901 intel_context_init(&ve->context, &ve->base); 5902 5903 for (n = 0; n < count; n++) { 5904 struct intel_engine_cs *sibling = siblings[n]; 5905 5906 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5907 if (sibling->mask & ve->base.mask) { 5908 guc_dbg(guc, "duplicate %s entry in load balancer\n", 5909 sibling->name); 5910 err = -EINVAL; 5911 goto err_put; 5912 } 5913 5914 ve->base.mask |= sibling->mask; 5915 ve->base.logical_mask |= sibling->logical_mask; 5916 5917 if (n != 0 && ve->base.class != sibling->class) { 5918 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n", 5919 sibling->class, ve->base.class); 5920 err = -EINVAL; 5921 goto err_put; 5922 } else if (n == 0) { 5923 ve->base.class = sibling->class; 5924 ve->base.uabi_class = sibling->uabi_class; 5925 snprintf(ve->base.name, sizeof(ve->base.name), 5926 "v%dx%d", ve->base.class, count); 5927 ve->base.context_size = sibling->context_size; 5928 5929 ve->base.add_active_request = 5930 sibling->add_active_request; 5931 ve->base.remove_active_request = 5932 sibling->remove_active_request; 5933 ve->base.emit_bb_start = sibling->emit_bb_start; 5934 ve->base.emit_flush = sibling->emit_flush; 5935 ve->base.emit_init_breadcrumb = 5936 sibling->emit_init_breadcrumb; 5937 ve->base.emit_fini_breadcrumb = 5938 sibling->emit_fini_breadcrumb; 5939 ve->base.emit_fini_breadcrumb_dw = 5940 sibling->emit_fini_breadcrumb_dw; 5941 ve->base.breadcrumbs = 5942 intel_breadcrumbs_get(sibling->breadcrumbs); 5943 5944 ve->base.flags |= sibling->flags; 5945 5946 ve->base.props.timeslice_duration_ms = 5947 sibling->props.timeslice_duration_ms; 5948 ve->base.props.preempt_timeout_ms = 5949 sibling->props.preempt_timeout_ms; 5950 } 5951 } 5952 5953 return &ve->context; 5954 5955 err_put: 5956 intel_context_put(&ve->context); 5957 return ERR_PTR(err); 5958 } 5959 5960 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5961 { 5962 struct intel_engine_cs *engine; 5963 intel_engine_mask_t tmp, mask = ve->mask; 5964 5965 for_each_engine_masked(engine, ve->gt, mask, tmp) 5966 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5967 return true; 5968 5969 return false; 5970 } 5971 5972 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5973 #include "selftest_guc.c" 5974 #include "selftest_guc_multi_lrc.c" 5975 #include "selftest_guc_hangcheck.c" 5976 #endif 5977