xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37 
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135 
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 	struct intel_engine_cs base;
139 	struct intel_context context;
140 };
141 
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 		   unsigned long flags);
145 
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 		    unsigned int num_siblings,
149 		    unsigned int width);
150 
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152 
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
162 	((guc)->submission_state.num_guc_ids / 16)
163 
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
169 #define SCHED_STATE_DESTROYED				BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
171 #define SCHED_STATE_BANNED				BIT(3)
172 #define SCHED_STATE_ENABLED				BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
174 #define SCHED_STATE_REGISTERED				BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
176 #define SCHED_STATE_CLOSED				BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT			9
178 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
180 
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 	lockdep_assert_held(&ce->guc_state.lock);
184 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186 
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193 	(SCHED_STATE_BLOCKED_MASK | \
194 	 SCHED_STATE_CLOSED | \
195 	 SCHED_STATE_REGISTERED)
196 
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202 
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 	return ce->guc_state.sched_state &
207 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209 
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 	lockdep_assert_held(&ce->guc_state.lock);
214 	ce->guc_state.sched_state |=
215 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217 
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 	lockdep_assert_held(&ce->guc_state.lock);
222 	ce->guc_state.sched_state &=
223 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225 
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231 
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235 	lockdep_assert_held(&ce->guc_state.lock);
236 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238 
239 static inline void
240 clr_context_destroyed(struct intel_context *ce)
241 {
242 	lockdep_assert_held(&ce->guc_state.lock);
243 	ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245 
246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250 
251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 	lockdep_assert_held(&ce->guc_state.lock);
254 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256 
257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 	lockdep_assert_held(&ce->guc_state.lock);
260 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262 
263 static inline bool context_banned(struct intel_context *ce)
264 {
265 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267 
268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 	lockdep_assert_held(&ce->guc_state.lock);
271 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273 
274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 	lockdep_assert_held(&ce->guc_state.lock);
277 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279 
280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284 
285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 	lockdep_assert_held(&ce->guc_state.lock);
288 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290 
291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 	lockdep_assert_held(&ce->guc_state.lock);
294 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296 
297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301 
302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 	lockdep_assert_held(&ce->guc_state.lock);
305 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307 
308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 	lockdep_assert_held(&ce->guc_state.lock);
311 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313 
314 static inline bool context_registered(struct intel_context *ce)
315 {
316 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318 
319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 	lockdep_assert_held(&ce->guc_state.lock);
322 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324 
325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 	lockdep_assert_held(&ce->guc_state.lock);
328 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330 
331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335 
336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 	lockdep_assert_held(&ce->guc_state.lock);
339 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341 
342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 	lockdep_assert_held(&ce->guc_state.lock);
345 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347 
348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352 
353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 	lockdep_assert_held(&ce->guc_state.lock);
356 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358 
359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 		SCHED_STATE_BLOCKED_SHIFT;
363 }
364 
365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 	lockdep_assert_held(&ce->guc_state.lock);
368 
369 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370 
371 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
372 }
373 
374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 	lockdep_assert_held(&ce->guc_state.lock);
377 
378 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
379 
380 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382 
383 static struct intel_context *
384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 	return intel_context_to_parent(rq->context);
387 }
388 
389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393 
394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398 
399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 	return gt_to_guc(ce->engine->gt);
402 }
403 
404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 	return rb_entry(rb, struct i915_priolist, node);
407 }
408 
409 /*
410  * When using multi-lrc submission a scratch memory area is reserved in the
411  * parent's context state for the process descriptor, work queue, and handshake
412  * between the parent + children contexts to insert safe preemption points
413  * between each of the BBs. Currently the scratch area is sized to a page.
414  *
415  * The layout of this scratch area is below:
416  * 0						guc_process_desc
417  * + sizeof(struct guc_process_desc)		child go
418  * + CACHELINE_BYTES				child join[0]
419  * ...
420  * + CACHELINE_BYTES				child join[n - 1]
421  * ...						unused
422  * PARENT_SCRATCH_SIZE / 2			work queue start
423  * ...						work queue
424  * PARENT_SCRATCH_SIZE - 1			work queue end
425  */
426 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
428 
429 struct sync_semaphore {
430 	u32 semaphore;
431 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433 
434 struct parent_scratch {
435 	union guc_descs {
436 		struct guc_sched_wq_desc wq_desc;
437 		struct guc_process_desc_v69 pdesc;
438 	} descs;
439 
440 	struct sync_semaphore go;
441 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442 
443 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445 
446 	u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448 
449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
452 
453 	return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455 
456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459 
460 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462 
463 static struct parent_scratch *
464 __get_parent_scratch(struct intel_context *ce)
465 {
466 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468 
469 	/*
470 	 * Need to subtract LRC_STATE_OFFSET here as the
471 	 * parallel.guc.parent_page is the offset into ce->state while
472 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 	 */
474 	return (struct parent_scratch *)
475 		(ce->lrc_reg_state +
476 		 ((__get_parent_scratch_offset(ce) -
477 		   LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479 
480 static struct guc_process_desc_v69 *
481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.pdesc;
486 }
487 
488 static struct guc_sched_wq_desc *
489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 	struct parent_scratch *ps = __get_parent_scratch(ce);
492 
493 	return &ps->descs.wq_desc;
494 }
495 
496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 	/*
499 	 * Check for space in work queue. Caching a value of head pointer in
500 	 * intel_context structure in order reduce the number accesses to shared
501 	 * GPU memory which may be across a PCIe bus.
502 	 */
503 #define AVAILABLE_SPACE	\
504 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 	if (wqi_size > AVAILABLE_SPACE) {
506 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507 
508 		if (wqi_size > AVAILABLE_SPACE)
509 			return NULL;
510 	}
511 #undef AVAILABLE_SPACE
512 
513 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515 
516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
519 
520 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521 
522 	return ce;
523 }
524 
525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528 
529 	if (!base)
530 		return NULL;
531 
532 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533 
534 	return &base[index];
535 }
536 
537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 	u32 size;
540 	int ret;
541 
542 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 			  GUC_MAX_CONTEXT_ID);
544 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
546 	if (ret)
547 		return ret;
548 
549 	return 0;
550 }
551 
552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 	if (!guc->lrc_desc_pool_vaddr_v69)
555 		return;
556 
557 	guc->lrc_desc_pool_vaddr_v69 = NULL;
558 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560 
561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 	return guc->submission_initialized;
564 }
565 
566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569 
570 	if (desc)
571 		memset(desc, 0, sizeof(*desc));
572 }
573 
574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 	return __get_context(guc, id);
577 }
578 
579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 				      struct intel_context *ce)
581 {
582 	unsigned long flags;
583 
584 	/*
585 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 	 * lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 	unsigned long flags;
596 
597 	if (unlikely(!guc_submission_initialized(guc)))
598 		return;
599 
600 	_reset_lrc_desc_v69(guc, id);
601 
602 	/*
603 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 	 * the lower level functions directly.
605 	 */
606 	xa_lock_irqsave(&guc->context_lookup, flags);
607 	__xa_erase(&guc->context_lookup, id);
608 	xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610 
611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 		wake_up_all(&guc->ct.wq);
615 }
616 
617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 					 const u32 *action,
619 					 u32 len,
620 					 u32 g2h_len_dw,
621 					 bool loop)
622 {
623 	int ret;
624 
625 	/*
626 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 	 * so we don't handle the case where we don't get a reply because we
628 	 * aborted the send due to the channel being busy.
629 	 */
630 	GEM_BUG_ON(g2h_len_dw && !loop);
631 
632 	if (g2h_len_dw)
633 		atomic_inc(&guc->outstanding_submission_g2h);
634 
635 	ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 	if (ret)
637 		atomic_dec(&guc->outstanding_submission_g2h);
638 
639 	return ret;
640 }
641 
642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 				   atomic_t *wait_var,
644 				   bool interruptible,
645 				   long timeout)
646 {
647 	const int state = interruptible ?
648 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 	DEFINE_WAIT(wait);
650 
651 	might_sleep();
652 	GEM_BUG_ON(timeout < 0);
653 
654 	if (!atomic_read(wait_var))
655 		return 0;
656 
657 	if (!timeout)
658 		return -ETIME;
659 
660 	for (;;) {
661 		prepare_to_wait(&guc->ct.wq, &wait, state);
662 
663 		if (!atomic_read(wait_var))
664 			break;
665 
666 		if (signal_pending_state(state, current)) {
667 			timeout = -EINTR;
668 			break;
669 		}
670 
671 		if (!timeout) {
672 			timeout = -ETIME;
673 			break;
674 		}
675 
676 		timeout = io_schedule_timeout(timeout);
677 	}
678 	finish_wait(&guc->ct.wq, &wait);
679 
680 	return (timeout < 0) ? timeout : 0;
681 }
682 
683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 		return 0;
687 
688 	return intel_guc_wait_for_pending_msg(guc,
689 					      &guc->outstanding_submission_g2h,
690 					      true, timeout);
691 }
692 
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695 
696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 	int err = 0;
699 	struct intel_context *ce = request_to_scheduling_context(rq);
700 	u32 action[3];
701 	int len = 0;
702 	u32 g2h_len_dw = 0;
703 	bool enabled;
704 
705 	lockdep_assert_held(&rq->engine->sched_engine->lock);
706 
707 	/*
708 	 * Corner case where requests were sitting in the priority list or a
709 	 * request resubmitted after the context was banned.
710 	 */
711 	if (unlikely(!intel_context_is_schedulable(ce))) {
712 		i915_request_put(i915_request_mark_eio(rq));
713 		intel_engine_signal_breadcrumbs(ce->engine);
714 		return 0;
715 	}
716 
717 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 	GEM_BUG_ON(context_guc_id_invalid(ce));
719 
720 	if (context_policy_required(ce)) {
721 		err = guc_context_policy_init_v70(ce, false);
722 		if (err)
723 			return err;
724 	}
725 
726 	spin_lock(&ce->guc_state.lock);
727 
728 	/*
729 	 * The request / context will be run on the hardware when scheduling
730 	 * gets enabled in the unblock. For multi-lrc we still submit the
731 	 * context to move the LRC tails.
732 	 */
733 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 		goto out;
735 
736 	enabled = context_enabled(ce) || context_blocked(ce);
737 
738 	if (!enabled) {
739 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 		action[len++] = ce->guc_id.id;
741 		action[len++] = GUC_CONTEXT_ENABLE;
742 		set_context_pending_enable(ce);
743 		intel_context_get(ce);
744 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 	} else {
746 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 		action[len++] = ce->guc_id.id;
748 	}
749 
750 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 	if (!enabled && !err) {
752 		trace_intel_context_sched_enable(ce);
753 		atomic_inc(&guc->outstanding_submission_g2h);
754 		set_context_enabled(ce);
755 
756 		/*
757 		 * Without multi-lrc KMD does the submission step (moving the
758 		 * lrc tail) so enabling scheduling is sufficient to submit the
759 		 * context. This isn't the case in multi-lrc submission as the
760 		 * GuC needs to move the tails, hence the need for another H2G
761 		 * to submit a multi-lrc context after enabling scheduling.
762 		 */
763 		if (intel_context_is_parent(ce)) {
764 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 			err = intel_guc_send_nb(guc, action, len - 1, 0);
766 		}
767 	} else if (!enabled) {
768 		clr_context_pending_enable(ce);
769 		intel_context_put(ce);
770 	}
771 	if (likely(!err))
772 		trace_i915_request_guc_submit(rq);
773 
774 out:
775 	spin_unlock(&ce->guc_state.lock);
776 	return err;
777 }
778 
779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 	int ret = __guc_add_request(guc, rq);
782 
783 	if (unlikely(ret == -EBUSY)) {
784 		guc->stalled_request = rq;
785 		guc->submission_stall_reason = STALL_ADD_REQUEST;
786 	}
787 
788 	return ret;
789 }
790 
791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 		intel_ring_set_tail(rq->ring, rq->tail);
795 }
796 
797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 	return rq->sched.attr.priority;
800 }
801 
802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 	return intel_context_is_parallel(rq->context);
805 }
806 
807 static bool can_merge_rq(struct i915_request *rq,
808 			 struct i915_request *last)
809 {
810 	return request_to_scheduling_context(rq) ==
811 		request_to_scheduling_context(last);
812 }
813 
814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818 
819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822 
823 	/*
824 	 * Ensure WQI are visible before updating tail
825 	 */
826 	intel_guc_write_barrier(ce_to_guc(ce));
827 
828 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 		(WQ_SIZE - 1);
830 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832 
833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837 
838 	if (!wqi)
839 		return -EBUSY;
840 
841 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842 
843 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 		FIELD_PREP(WQ_LEN_MASK, len_dw);
845 	ce->parallel.guc.wqi_tail = 0;
846 
847 	return 0;
848 }
849 
850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 	struct intel_context *ce = request_to_scheduling_context(rq);
853 	struct intel_context *child;
854 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 		sizeof(u32);
856 	u32 *wqi;
857 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 	int ret;
859 
860 	/* Ensure context is in correct state updating work queue */
861 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 	GEM_BUG_ON(context_guc_id_invalid(ce));
863 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865 
866 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
867 	if (wqi_size > wq_space_until_wrap(ce)) {
868 		ret = guc_wq_noop_append(ce);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	wqi = get_wq_pointer(ce, wqi_size);
874 	if (!wqi)
875 		return -EBUSY;
876 
877 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878 
879 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 		FIELD_PREP(WQ_LEN_MASK, len_dw);
881 	*wqi++ = ce->lrc.lrca;
882 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 	*wqi++ = 0;	/* fence_id */
885 	for_each_child(ce, child)
886 		*wqi++ = child->ring->tail / sizeof(u64);
887 
888 	write_wqi(ce, wqi_size);
889 
890 	return 0;
891 }
892 
893 static int guc_wq_item_append(struct intel_guc *guc,
894 			      struct i915_request *rq)
895 {
896 	struct intel_context *ce = request_to_scheduling_context(rq);
897 	int ret;
898 
899 	if (unlikely(!intel_context_is_schedulable(ce)))
900 		return 0;
901 
902 	ret = __guc_wq_item_append(rq);
903 	if (unlikely(ret == -EBUSY)) {
904 		guc->stalled_request = rq;
905 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 	}
907 
908 	return ret;
909 }
910 
911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 	struct intel_context *ce = request_to_scheduling_context(rq);
914 
915 	intel_ring_set_tail(rq->ring, rq->tail);
916 
917 	/*
918 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 	 * request generated from a multi-BB submission. This indicates to the
920 	 * backend (GuC interface) that we should submit this context thus
921 	 * submitting all the requests generated in parallel.
922 	 */
923 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 	       !intel_context_is_schedulable(ce);
925 }
926 
927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 	struct i915_request *last = NULL;
931 	bool submit = false;
932 	struct rb_node *rb;
933 	int ret;
934 
935 	lockdep_assert_held(&sched_engine->lock);
936 
937 	if (guc->stalled_request) {
938 		submit = true;
939 		last = guc->stalled_request;
940 
941 		switch (guc->submission_stall_reason) {
942 		case STALL_REGISTER_CONTEXT:
943 			goto register_context;
944 		case STALL_MOVE_LRC_TAIL:
945 			goto move_lrc_tail;
946 		case STALL_ADD_REQUEST:
947 			goto add_request;
948 		default:
949 			MISSING_CASE(guc->submission_stall_reason);
950 		}
951 	}
952 
953 	while ((rb = rb_first_cached(&sched_engine->queue))) {
954 		struct i915_priolist *p = to_priolist(rb);
955 		struct i915_request *rq, *rn;
956 
957 		priolist_for_each_request_consume(rq, rn, p) {
958 			if (last && !can_merge_rq(rq, last))
959 				goto register_context;
960 
961 			list_del_init(&rq->sched.link);
962 
963 			__i915_request_submit(rq);
964 
965 			trace_i915_request_in(rq, 0);
966 			last = rq;
967 
968 			if (is_multi_lrc_rq(rq)) {
969 				/*
970 				 * We need to coalesce all multi-lrc requests in
971 				 * a relationship into a single H2G. We are
972 				 * guaranteed that all of these requests will be
973 				 * submitted sequentially.
974 				 */
975 				if (multi_lrc_submit(rq)) {
976 					submit = true;
977 					goto register_context;
978 				}
979 			} else {
980 				submit = true;
981 			}
982 		}
983 
984 		rb_erase_cached(&p->node, &sched_engine->queue);
985 		i915_priolist_free(p);
986 	}
987 
988 register_context:
989 	if (submit) {
990 		struct intel_context *ce = request_to_scheduling_context(last);
991 
992 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 			     intel_context_is_schedulable(ce))) {
994 			ret = try_context_registration(ce, false);
995 			if (unlikely(ret == -EPIPE)) {
996 				goto deadlk;
997 			} else if (ret == -EBUSY) {
998 				guc->stalled_request = last;
999 				guc->submission_stall_reason =
1000 					STALL_REGISTER_CONTEXT;
1001 				goto schedule_tasklet;
1002 			} else if (ret != 0) {
1003 				GEM_WARN_ON(ret);	/* Unexpected */
1004 				goto deadlk;
1005 			}
1006 		}
1007 
1008 move_lrc_tail:
1009 		if (is_multi_lrc_rq(last)) {
1010 			ret = guc_wq_item_append(guc, last);
1011 			if (ret == -EBUSY) {
1012 				goto schedule_tasklet;
1013 			} else if (ret != 0) {
1014 				GEM_WARN_ON(ret);	/* Unexpected */
1015 				goto deadlk;
1016 			}
1017 		} else {
1018 			guc_set_lrc_tail(last);
1019 		}
1020 
1021 add_request:
1022 		ret = guc_add_request(guc, last);
1023 		if (unlikely(ret == -EPIPE)) {
1024 			goto deadlk;
1025 		} else if (ret == -EBUSY) {
1026 			goto schedule_tasklet;
1027 		} else if (ret != 0) {
1028 			GEM_WARN_ON(ret);	/* Unexpected */
1029 			goto deadlk;
1030 		}
1031 	}
1032 
1033 	guc->stalled_request = NULL;
1034 	guc->submission_stall_reason = STALL_NONE;
1035 	return submit;
1036 
1037 deadlk:
1038 	sched_engine->tasklet.callback = NULL;
1039 	tasklet_disable_nosync(&sched_engine->tasklet);
1040 	return false;
1041 
1042 schedule_tasklet:
1043 	tasklet_schedule(&sched_engine->tasklet);
1044 	return false;
1045 }
1046 
1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 	struct i915_sched_engine *sched_engine =
1050 		from_tasklet(sched_engine, t, tasklet);
1051 	unsigned long flags;
1052 	bool loop;
1053 
1054 	spin_lock_irqsave(&sched_engine->lock, flags);
1055 
1056 	do {
1057 		loop = guc_dequeue_one_context(sched_engine->private_data);
1058 	} while (loop);
1059 
1060 	i915_sched_engine_reset_on_empty(sched_engine);
1061 
1062 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064 
1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 	if (iir & GT_RENDER_USER_INTERRUPT)
1068 		intel_engine_signal_breadcrumbs(engine);
1069 }
1070 
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076 
1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 	struct intel_context *ce;
1080 	unsigned long index, flags;
1081 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1082 
1083 	xa_lock_irqsave(&guc->context_lookup, flags);
1084 	xa_for_each(&guc->context_lookup, index, ce) {
1085 		/*
1086 		 * Corner case where the ref count on the object is zero but and
1087 		 * deregister G2H was lost. In this case we don't touch the ref
1088 		 * count and finish the destroy of the context.
1089 		 */
1090 		bool do_put = kref_get_unless_zero(&ce->ref);
1091 
1092 		xa_unlock(&guc->context_lookup);
1093 
1094 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 			/* successful cancel so jump straight to close it */
1097 			intel_context_sched_disable_unpin(ce);
1098 		}
1099 
1100 		spin_lock(&ce->guc_state.lock);
1101 
1102 		/*
1103 		 * Once we are at this point submission_disabled() is guaranteed
1104 		 * to be visible to all callers who set the below flags (see above
1105 		 * flush and flushes in reset_prepare). If submission_disabled()
1106 		 * is set, the caller shouldn't set these flags.
1107 		 */
1108 
1109 		destroyed = context_destroyed(ce);
1110 		pending_enable = context_pending_enable(ce);
1111 		pending_disable = context_pending_disable(ce);
1112 		deregister = context_wait_for_deregister_to_register(ce);
1113 		banned = context_banned(ce);
1114 		init_sched_state(ce);
1115 
1116 		spin_unlock(&ce->guc_state.lock);
1117 
1118 		if (pending_enable || destroyed || deregister) {
1119 			decr_outstanding_submission_g2h(guc);
1120 			if (deregister)
1121 				guc_signal_context_fence(ce);
1122 			if (destroyed) {
1123 				intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 				release_guc_id(guc, ce);
1125 				__guc_context_destroy(ce);
1126 			}
1127 			if (pending_enable || deregister)
1128 				intel_context_put(ce);
1129 		}
1130 
1131 		/* Not mutualy exclusive with above if statement. */
1132 		if (pending_disable) {
1133 			guc_signal_context_fence(ce);
1134 			if (banned) {
1135 				guc_cancel_context_requests(ce);
1136 				intel_engine_signal_breadcrumbs(ce->engine);
1137 			}
1138 			intel_context_sched_disable_unpin(ce);
1139 			decr_outstanding_submission_g2h(guc);
1140 
1141 			spin_lock(&ce->guc_state.lock);
1142 			guc_blocked_fence_complete(ce);
1143 			spin_unlock(&ce->guc_state.lock);
1144 
1145 			intel_context_put(ce);
1146 		}
1147 
1148 		if (do_put)
1149 			intel_context_put(ce);
1150 		xa_lock(&guc->context_lookup);
1151 	}
1152 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154 
1155 /*
1156  * GuC stores busyness stats for each engine at context in/out boundaries. A
1157  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159  * GuC.
1160  *
1161  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163  * active. For an active engine total busyness = total + (now - start), where
1164  * 'now' is the time at which the busyness is sampled. For inactive engine,
1165  * total busyness = total.
1166  *
1167  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168  *
1169  * The start and total values provided by GuC are 32 bits and wrap around in a
1170  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171  * increasing ns values, there is a need for this implementation to account for
1172  * overflows and extend the GuC provided values to 64 bits before returning
1173  * busyness to the user. In order to do that, a worker runs periodically at
1174  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175  * 27 seconds for a gt clock frequency of 19.2 MHz).
1176  */
1177 
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180 
1181 static void
1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186 
1187 	if (new_start == lower_32_bits(*prev_start))
1188 		return;
1189 
1190 	/*
1191 	 * When gt is unparked, we update the gt timestamp and start the ping
1192 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 	 * is unparked, all switched in contexts will have a start time that is
1194 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 	 *
1196 	 * If neither gt_stamp nor new_start has rolled over, then the
1197 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 	 *
1200 	 * The below conditions address the cases of new_start rollover and
1201 	 * gt_stamp_last rollover respectively.
1202 	 */
1203 	if (new_start < gt_stamp_last &&
1204 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 		gt_stamp_hi++;
1206 
1207 	if (new_start > gt_stamp_last &&
1208 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 		gt_stamp_hi--;
1210 
1211 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213 
1214 #define record_read(map_, field_) \
1215 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216 
1217 /*
1218  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219  * we run into a race where the value read is inconsistent. Sometimes the
1220  * inconsistency is in reading the upper MSB bytes of the last_in value when
1221  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223  * determine validity of these values. Instead we read the values multiple times
1224  * until they are consistent. In test runs, 3 attempts results in consistent
1225  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226  * any new occurences.
1227  */
1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 				      u32 *last_in, u32 *id, u32 *total)
1230 {
1231 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 	int i = 0;
1233 
1234 	do {
1235 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1236 		*id = record_read(&rec_map, current_context_index);
1237 		*total = record_read(&rec_map, total_runtime);
1238 
1239 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 		    record_read(&rec_map, current_context_index) == *id &&
1241 		    record_read(&rec_map, total_runtime) == *total)
1242 			break;
1243 	} while (++i < 6);
1244 }
1245 
1246 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1247 {
1248 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1249 	struct intel_guc *guc = gt_to_guc(engine->gt);
1250 	u32 last_switch, ctx_id, total;
1251 
1252 	lockdep_assert_held(&guc->timestamp.lock);
1253 
1254 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1255 
1256 	stats->running = ctx_id != ~0U && last_switch;
1257 	if (stats->running)
1258 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1259 
1260 	/*
1261 	 * Instead of adjusting the total for overflow, just add the
1262 	 * difference from previous sample stats->total_gt_clks
1263 	 */
1264 	if (total && total != ~0U) {
1265 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1266 		stats->prev_total = total;
1267 	}
1268 }
1269 
1270 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1271 {
1272 	intel_wakeref_t wakeref;
1273 	u32 reg, shift;
1274 
1275 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1276 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1277 
1278 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1279 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1280 
1281 	return 3 - shift;
1282 }
1283 
1284 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1285 {
1286 	struct intel_gt *gt = guc_to_gt(guc);
1287 	u32 gt_stamp_lo, gt_stamp_hi;
1288 	u64 gpm_ts;
1289 
1290 	lockdep_assert_held(&guc->timestamp.lock);
1291 
1292 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1293 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1294 					  MISC_STATUS1) >> guc->timestamp.shift;
1295 	gt_stamp_lo = lower_32_bits(gpm_ts);
1296 	*now = ktime_get();
1297 
1298 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1299 		gt_stamp_hi++;
1300 
1301 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1302 }
1303 
1304 /*
1305  * Unlike the execlist mode of submission total and active times are in terms of
1306  * gt clocks. The *now parameter is retained to return the cpu time at which the
1307  * busyness was sampled.
1308  */
1309 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1310 {
1311 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1312 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1313 	struct intel_gt *gt = engine->gt;
1314 	struct intel_guc *guc = gt_to_guc(gt);
1315 	u64 total, gt_stamp_saved;
1316 	unsigned long flags;
1317 	u32 reset_count;
1318 	bool in_reset;
1319 	intel_wakeref_t wakeref;
1320 
1321 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1322 
1323 	/*
1324 	 * If a reset happened, we risk reading partially updated engine
1325 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1326 	 * Synchronize with gt reset using reset_count and the
1327 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1328 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1329 	 * usable by checking the flag afterwards.
1330 	 */
1331 	reset_count = i915_reset_count(gpu_error);
1332 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1333 
1334 	*now = ktime_get();
1335 
1336 	/*
1337 	 * The active busyness depends on start_gt_clk and gt_stamp.
1338 	 * gt_stamp is updated by i915 only when gt is awake and the
1339 	 * start_gt_clk is derived from GuC state. To get a consistent
1340 	 * view of activity, we query the GuC state only if gt is awake.
1341 	 */
1342 	wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt);
1343 	if (wakeref) {
1344 		stats_saved = *stats;
1345 		gt_stamp_saved = guc->timestamp.gt_stamp;
1346 		/*
1347 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1348 		 * start_gt_clk' calculation below for active engines.
1349 		 */
1350 		guc_update_engine_gt_clks(engine);
1351 		guc_update_pm_timestamp(guc, now);
1352 		intel_gt_pm_put_async(gt, wakeref);
1353 		if (i915_reset_count(gpu_error) != reset_count) {
1354 			*stats = stats_saved;
1355 			guc->timestamp.gt_stamp = gt_stamp_saved;
1356 		}
1357 	}
1358 
1359 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1360 	if (stats->running) {
1361 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1362 
1363 		total += intel_gt_clock_interval_to_ns(gt, clk);
1364 	}
1365 
1366 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1367 
1368 	return ns_to_ktime(total);
1369 }
1370 
1371 static void guc_enable_busyness_worker(struct intel_guc *guc)
1372 {
1373 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1374 }
1375 
1376 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1377 {
1378 	/*
1379 	 * There are many different call stacks that can get here. Some of them
1380 	 * hold the reset mutex. The busyness worker also attempts to acquire the
1381 	 * reset mutex. Synchronously flushing a worker thread requires acquiring
1382 	 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1383 	 * flush can deadlock because it holds the worker mutex while waiting for
1384 	 * the reset mutex, but another thread is holding the reset mutex and might
1385 	 * attempt to use other worker functions.
1386 	 *
1387 	 * In practice, this scenario does not exist because the busyness worker
1388 	 * does not block waiting for the reset mutex. It does a try-lock on it and
1389 	 * immediately exits if the lock is already held. Unfortunately, the mutex
1390 	 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1391 	 * annotation but not to the extent of explaining the 'might lock' is also a
1392 	 * 'does not need to lock'. So one option would be to add more complex lockdep
1393 	 * annotations to ignore the issue (if at all possible). A simpler option is to
1394 	 * just not flush synchronously when a rest in progress. Given that the worker
1395 	 * will just early exit and re-schedule itself anyway, there is no advantage
1396 	 * to running it immediately.
1397 	 *
1398 	 * If a reset is not in progress, then the synchronous flush may be required.
1399 	 * As noted many call stacks lead here, some during suspend and driver unload
1400 	 * which do require a synchronous flush to make sure the worker is stopped
1401 	 * before memory is freed.
1402 	 *
1403 	 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1404 	 * every possible call stack is unfeasible. It would be too intrusive to many
1405 	 * areas that really don't care about the GuC backend. However, there is the
1406 	 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1407 	 * So just use those. Note that testing both is required due to the hideously
1408 	 * complex nature of the i915 driver's reset code paths.
1409 	 *
1410 	 * And note that in the case of a reset occurring during driver unload
1411 	 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1412 	 * reset flag/mutex are set) is fine because there is another explicit cancel in
1413 	 * intel_guc_submission_fini (when the reset flag/mutex are not).
1414 	 */
1415 	if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1416 	    test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1417 		cancel_delayed_work(&guc->timestamp.work);
1418 	else
1419 		cancel_delayed_work_sync(&guc->timestamp.work);
1420 }
1421 
1422 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1423 {
1424 	struct intel_gt *gt = guc_to_gt(guc);
1425 	struct intel_engine_cs *engine;
1426 	enum intel_engine_id id;
1427 	unsigned long flags;
1428 	ktime_t unused;
1429 
1430 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1431 
1432 	guc_update_pm_timestamp(guc, &unused);
1433 	for_each_engine(engine, gt, id) {
1434 		guc_update_engine_gt_clks(engine);
1435 		engine->stats.guc.prev_total = 0;
1436 	}
1437 
1438 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1439 }
1440 
1441 static void __update_guc_busyness_stats(struct intel_guc *guc)
1442 {
1443 	struct intel_gt *gt = guc_to_gt(guc);
1444 	struct intel_engine_cs *engine;
1445 	enum intel_engine_id id;
1446 	unsigned long flags;
1447 	ktime_t unused;
1448 
1449 	guc->timestamp.last_stat_jiffies = jiffies;
1450 
1451 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1452 
1453 	guc_update_pm_timestamp(guc, &unused);
1454 	for_each_engine(engine, gt, id)
1455 		guc_update_engine_gt_clks(engine);
1456 
1457 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1458 }
1459 
1460 static void __guc_context_update_stats(struct intel_context *ce)
1461 {
1462 	struct intel_guc *guc = ce_to_guc(ce);
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1466 	lrc_update_runtime(ce);
1467 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1468 }
1469 
1470 static void guc_context_update_stats(struct intel_context *ce)
1471 {
1472 	if (!intel_context_pin_if_active(ce))
1473 		return;
1474 
1475 	__guc_context_update_stats(ce);
1476 	intel_context_unpin(ce);
1477 }
1478 
1479 static void guc_timestamp_ping(struct work_struct *wrk)
1480 {
1481 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1482 					     timestamp.work.work);
1483 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1484 	struct intel_gt *gt = guc_to_gt(guc);
1485 	struct intel_context *ce;
1486 	intel_wakeref_t wakeref;
1487 	unsigned long index;
1488 	int srcu, ret;
1489 
1490 	/*
1491 	 * Ideally the busyness worker should take a gt pm wakeref because the
1492 	 * worker only needs to be active while gt is awake. However, the
1493 	 * gt_park path cancels the worker synchronously and this complicates
1494 	 * the flow if the worker is also running at the same time. The cancel
1495 	 * waits for the worker and when the worker releases the wakeref, that
1496 	 * would call gt_park and would lead to a deadlock.
1497 	 *
1498 	 * The resolution is to take the global pm wakeref if runtime pm is
1499 	 * already active. If not, we don't need to update the busyness stats as
1500 	 * the stats would already be updated when the gt was parked.
1501 	 *
1502 	 * Note:
1503 	 * - We do not requeue the worker if we cannot take a reference to runtime
1504 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1505 	 *   resume path.
1506 	 *
1507 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1508 	 *   over, we ignore those rollovers since we don't care about tracking
1509 	 *   the exact GT time. We only care about roll overs when the gt is
1510 	 *   active and running workloads.
1511 	 *
1512 	 * - There is a window of time between gt_park and runtime suspend,
1513 	 *   where the worker may run. This is acceptable since the worker will
1514 	 *   not find any new data to update busyness.
1515 	 */
1516 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1517 	if (!wakeref)
1518 		return;
1519 
1520 	/*
1521 	 * Synchronize with gt reset to make sure the worker does not
1522 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1523 	 * for a reset to complete as the reset requires flushing out
1524 	 * this worker thread if started. So waiting would deadlock.
1525 	 */
1526 	ret = intel_gt_reset_trylock(gt, &srcu);
1527 	if (ret)
1528 		goto err_trylock;
1529 
1530 	__update_guc_busyness_stats(guc);
1531 
1532 	/* adjust context stats for overflow */
1533 	xa_for_each(&guc->context_lookup, index, ce)
1534 		guc_context_update_stats(ce);
1535 
1536 	intel_gt_reset_unlock(gt, srcu);
1537 
1538 	guc_enable_busyness_worker(guc);
1539 
1540 err_trylock:
1541 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1542 }
1543 
1544 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1545 {
1546 	u32 offset = intel_guc_engine_usage_offset(guc);
1547 	u32 action[] = {
1548 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1549 		offset,
1550 		0,
1551 	};
1552 
1553 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1554 }
1555 
1556 static int guc_init_engine_stats(struct intel_guc *guc)
1557 {
1558 	struct intel_gt *gt = guc_to_gt(guc);
1559 	intel_wakeref_t wakeref;
1560 	int ret;
1561 
1562 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1563 		ret = guc_action_enable_usage_stats(guc);
1564 
1565 	if (ret)
1566 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1567 	else
1568 		guc_enable_busyness_worker(guc);
1569 
1570 	return ret;
1571 }
1572 
1573 static void guc_fini_engine_stats(struct intel_guc *guc)
1574 {
1575 	guc_cancel_busyness_worker(guc);
1576 }
1577 
1578 void intel_guc_busyness_park(struct intel_gt *gt)
1579 {
1580 	struct intel_guc *guc = gt_to_guc(gt);
1581 
1582 	if (!guc_submission_initialized(guc))
1583 		return;
1584 
1585 	/*
1586 	 * There is a race with suspend flow where the worker runs after suspend
1587 	 * and causes an unclaimed register access warning. Cancel the worker
1588 	 * synchronously here.
1589 	 */
1590 	guc_cancel_busyness_worker(guc);
1591 
1592 	/*
1593 	 * Before parking, we should sample engine busyness stats if we need to.
1594 	 * We can skip it if we are less than half a ping from the last time we
1595 	 * sampled the busyness stats.
1596 	 */
1597 	if (guc->timestamp.last_stat_jiffies &&
1598 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1599 			(guc->timestamp.ping_delay / 2)))
1600 		return;
1601 
1602 	__update_guc_busyness_stats(guc);
1603 }
1604 
1605 void intel_guc_busyness_unpark(struct intel_gt *gt)
1606 {
1607 	struct intel_guc *guc = gt_to_guc(gt);
1608 	unsigned long flags;
1609 	ktime_t unused;
1610 
1611 	if (!guc_submission_initialized(guc))
1612 		return;
1613 
1614 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1615 	guc_update_pm_timestamp(guc, &unused);
1616 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1617 	guc_enable_busyness_worker(guc);
1618 }
1619 
1620 static inline bool
1621 submission_disabled(struct intel_guc *guc)
1622 {
1623 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1624 
1625 	return unlikely(!sched_engine ||
1626 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1627 			intel_gt_is_wedged(guc_to_gt(guc)));
1628 }
1629 
1630 static void disable_submission(struct intel_guc *guc)
1631 {
1632 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1633 
1634 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1635 		GEM_BUG_ON(!guc->ct.enabled);
1636 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1637 		sched_engine->tasklet.callback = NULL;
1638 	}
1639 }
1640 
1641 static void enable_submission(struct intel_guc *guc)
1642 {
1643 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1644 	unsigned long flags;
1645 
1646 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1647 	sched_engine->tasklet.callback = guc_submission_tasklet;
1648 	wmb();	/* Make sure callback visible */
1649 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1650 	    __tasklet_enable(&sched_engine->tasklet)) {
1651 		GEM_BUG_ON(!guc->ct.enabled);
1652 
1653 		/* And kick in case we missed a new request submission. */
1654 		tasklet_hi_schedule(&sched_engine->tasklet);
1655 	}
1656 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1657 }
1658 
1659 static void guc_flush_submissions(struct intel_guc *guc)
1660 {
1661 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1662 	unsigned long flags;
1663 
1664 	spin_lock_irqsave(&sched_engine->lock, flags);
1665 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1666 }
1667 
1668 void intel_guc_submission_flush_work(struct intel_guc *guc)
1669 {
1670 	flush_work(&guc->submission_state.destroyed_worker);
1671 }
1672 
1673 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1674 
1675 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1676 {
1677 	if (unlikely(!guc_submission_initialized(guc))) {
1678 		/* Reset called during driver load? GuC not yet initialised! */
1679 		return;
1680 	}
1681 
1682 	intel_gt_park_heartbeats(guc_to_gt(guc));
1683 	disable_submission(guc);
1684 	guc->interrupts.disable(guc);
1685 	__reset_guc_busyness_stats(guc);
1686 
1687 	/* Flush IRQ handler */
1688 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1689 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1690 
1691 	guc_flush_submissions(guc);
1692 	guc_flush_destroyed_contexts(guc);
1693 	flush_work(&guc->ct.requests.worker);
1694 
1695 	scrub_guc_desc_for_outstanding_g2h(guc);
1696 }
1697 
1698 static struct intel_engine_cs *
1699 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1700 {
1701 	struct intel_engine_cs *engine;
1702 	intel_engine_mask_t tmp, mask = ve->mask;
1703 	unsigned int num_siblings = 0;
1704 
1705 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1706 		if (num_siblings++ == sibling)
1707 			return engine;
1708 
1709 	return NULL;
1710 }
1711 
1712 static inline struct intel_engine_cs *
1713 __context_to_physical_engine(struct intel_context *ce)
1714 {
1715 	struct intel_engine_cs *engine = ce->engine;
1716 
1717 	if (intel_engine_is_virtual(engine))
1718 		engine = guc_virtual_get_sibling(engine, 0);
1719 
1720 	return engine;
1721 }
1722 
1723 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1724 {
1725 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1726 
1727 	if (!intel_context_is_schedulable(ce))
1728 		return;
1729 
1730 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1731 
1732 	/*
1733 	 * We want a simple context + ring to execute the breadcrumb update.
1734 	 * We cannot rely on the context being intact across the GPU hang,
1735 	 * so clear it and rebuild just what we need for the breadcrumb.
1736 	 * All pending requests for this context will be zapped, and any
1737 	 * future request will be after userspace has had the opportunity
1738 	 * to recreate its own state.
1739 	 */
1740 	if (scrub)
1741 		lrc_init_regs(ce, engine, true);
1742 
1743 	/* Rerun the request; its payload has been neutered (if guilty). */
1744 	lrc_update_regs(ce, engine, head);
1745 }
1746 
1747 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1748 {
1749 	/*
1750 	 * Wa_22011802037: In addition to stopping the cs, we need
1751 	 * to wait for any pending mi force wakeups
1752 	 */
1753 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1754 		intel_engine_stop_cs(engine);
1755 		intel_engine_wait_for_pending_mi_fw(engine);
1756 	}
1757 }
1758 
1759 static void guc_reset_nop(struct intel_engine_cs *engine)
1760 {
1761 }
1762 
1763 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1764 {
1765 }
1766 
1767 static void
1768 __unwind_incomplete_requests(struct intel_context *ce)
1769 {
1770 	struct i915_request *rq, *rn;
1771 	struct list_head *pl;
1772 	int prio = I915_PRIORITY_INVALID;
1773 	struct i915_sched_engine * const sched_engine =
1774 		ce->engine->sched_engine;
1775 	unsigned long flags;
1776 
1777 	spin_lock_irqsave(&sched_engine->lock, flags);
1778 	spin_lock(&ce->guc_state.lock);
1779 	list_for_each_entry_safe_reverse(rq, rn,
1780 					 &ce->guc_state.requests,
1781 					 sched.link) {
1782 		if (i915_request_completed(rq))
1783 			continue;
1784 
1785 		list_del_init(&rq->sched.link);
1786 		__i915_request_unsubmit(rq);
1787 
1788 		/* Push the request back into the queue for later resubmission. */
1789 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1790 		if (rq_prio(rq) != prio) {
1791 			prio = rq_prio(rq);
1792 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1793 		}
1794 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1795 
1796 		list_add(&rq->sched.link, pl);
1797 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1798 	}
1799 	spin_unlock(&ce->guc_state.lock);
1800 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1801 }
1802 
1803 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1804 {
1805 	bool guilty;
1806 	struct i915_request *rq;
1807 	unsigned long flags;
1808 	u32 head;
1809 	int i, number_children = ce->parallel.number_children;
1810 	struct intel_context *parent = ce;
1811 
1812 	GEM_BUG_ON(intel_context_is_child(ce));
1813 
1814 	intel_context_get(ce);
1815 
1816 	/*
1817 	 * GuC will implicitly mark the context as non-schedulable when it sends
1818 	 * the reset notification. Make sure our state reflects this change. The
1819 	 * context will be marked enabled on resubmission.
1820 	 */
1821 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1822 	clr_context_enabled(ce);
1823 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1824 
1825 	/*
1826 	 * For each context in the relationship find the hanging request
1827 	 * resetting each context / request as needed
1828 	 */
1829 	for (i = 0; i < number_children + 1; ++i) {
1830 		if (!intel_context_is_pinned(ce))
1831 			goto next_context;
1832 
1833 		guilty = false;
1834 		rq = intel_context_get_active_request(ce);
1835 		if (!rq) {
1836 			head = ce->ring->tail;
1837 			goto out_replay;
1838 		}
1839 
1840 		if (i915_request_started(rq))
1841 			guilty = stalled & ce->engine->mask;
1842 
1843 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1844 		head = intel_ring_wrap(ce->ring, rq->head);
1845 
1846 		__i915_request_reset(rq, guilty);
1847 		i915_request_put(rq);
1848 out_replay:
1849 		guc_reset_state(ce, head, guilty);
1850 next_context:
1851 		if (i != number_children)
1852 			ce = list_next_entry(ce, parallel.child_link);
1853 	}
1854 
1855 	__unwind_incomplete_requests(parent);
1856 	intel_context_put(parent);
1857 }
1858 
1859 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1860 {
1861 	struct intel_guc_tlb_wait *wait;
1862 	unsigned long i;
1863 
1864 	if (!intel_guc_tlb_invalidation_is_available(guc))
1865 		return;
1866 
1867 	xa_lock_irq(&guc->tlb_lookup);
1868 	xa_for_each(&guc->tlb_lookup, i, wait)
1869 		wake_up(&wait->wq);
1870 	xa_unlock_irq(&guc->tlb_lookup);
1871 }
1872 
1873 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1874 {
1875 	struct intel_context *ce;
1876 	unsigned long index;
1877 	unsigned long flags;
1878 
1879 	if (unlikely(!guc_submission_initialized(guc))) {
1880 		/* Reset called during driver load? GuC not yet initialised! */
1881 		return;
1882 	}
1883 
1884 	xa_lock_irqsave(&guc->context_lookup, flags);
1885 	xa_for_each(&guc->context_lookup, index, ce) {
1886 		if (!kref_get_unless_zero(&ce->ref))
1887 			continue;
1888 
1889 		xa_unlock(&guc->context_lookup);
1890 
1891 		if (intel_context_is_pinned(ce) &&
1892 		    !intel_context_is_child(ce))
1893 			__guc_reset_context(ce, stalled);
1894 
1895 		intel_context_put(ce);
1896 
1897 		xa_lock(&guc->context_lookup);
1898 	}
1899 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1900 
1901 	/* GuC is blown away, drop all references to contexts */
1902 	xa_destroy(&guc->context_lookup);
1903 }
1904 
1905 static void guc_cancel_context_requests(struct intel_context *ce)
1906 {
1907 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1908 	struct i915_request *rq;
1909 	unsigned long flags;
1910 
1911 	/* Mark all executing requests as skipped. */
1912 	spin_lock_irqsave(&sched_engine->lock, flags);
1913 	spin_lock(&ce->guc_state.lock);
1914 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1915 		i915_request_put(i915_request_mark_eio(rq));
1916 	spin_unlock(&ce->guc_state.lock);
1917 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1918 }
1919 
1920 static void
1921 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1922 {
1923 	struct i915_request *rq, *rn;
1924 	struct rb_node *rb;
1925 	unsigned long flags;
1926 
1927 	/* Can be called during boot if GuC fails to load */
1928 	if (!sched_engine)
1929 		return;
1930 
1931 	/*
1932 	 * Before we call engine->cancel_requests(), we should have exclusive
1933 	 * access to the submission state. This is arranged for us by the
1934 	 * caller disabling the interrupt generation, the tasklet and other
1935 	 * threads that may then access the same state, giving us a free hand
1936 	 * to reset state. However, we still need to let lockdep be aware that
1937 	 * we know this state may be accessed in hardirq context, so we
1938 	 * disable the irq around this manipulation and we want to keep
1939 	 * the spinlock focused on its duties and not accidentally conflate
1940 	 * coverage to the submission's irq state. (Similarly, although we
1941 	 * shouldn't need to disable irq around the manipulation of the
1942 	 * submission's irq state, we also wish to remind ourselves that
1943 	 * it is irq state.)
1944 	 */
1945 	spin_lock_irqsave(&sched_engine->lock, flags);
1946 
1947 	/* Flush the queued requests to the timeline list (for retiring). */
1948 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1949 		struct i915_priolist *p = to_priolist(rb);
1950 
1951 		priolist_for_each_request_consume(rq, rn, p) {
1952 			list_del_init(&rq->sched.link);
1953 
1954 			__i915_request_submit(rq);
1955 
1956 			i915_request_put(i915_request_mark_eio(rq));
1957 		}
1958 
1959 		rb_erase_cached(&p->node, &sched_engine->queue);
1960 		i915_priolist_free(p);
1961 	}
1962 
1963 	/* Remaining _unready_ requests will be nop'ed when submitted */
1964 
1965 	sched_engine->queue_priority_hint = INT_MIN;
1966 	sched_engine->queue = RB_ROOT_CACHED;
1967 
1968 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1969 }
1970 
1971 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1972 {
1973 	struct intel_context *ce;
1974 	unsigned long index;
1975 	unsigned long flags;
1976 
1977 	xa_lock_irqsave(&guc->context_lookup, flags);
1978 	xa_for_each(&guc->context_lookup, index, ce) {
1979 		if (!kref_get_unless_zero(&ce->ref))
1980 			continue;
1981 
1982 		xa_unlock(&guc->context_lookup);
1983 
1984 		if (intel_context_is_pinned(ce) &&
1985 		    !intel_context_is_child(ce))
1986 			guc_cancel_context_requests(ce);
1987 
1988 		intel_context_put(ce);
1989 
1990 		xa_lock(&guc->context_lookup);
1991 	}
1992 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1993 
1994 	guc_cancel_sched_engine_requests(guc->sched_engine);
1995 
1996 	/* GuC is blown away, drop all references to contexts */
1997 	xa_destroy(&guc->context_lookup);
1998 
1999 	/*
2000 	 * Wedged GT won't respond to any TLB invalidation request. Simply
2001 	 * release all the blocked waiters.
2002 	 */
2003 	wake_up_all_tlb_invalidate(guc);
2004 }
2005 
2006 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2007 {
2008 	/* Reset called during driver load or during wedge? */
2009 	if (unlikely(!guc_submission_initialized(guc) ||
2010 		     !intel_guc_is_fw_running(guc) ||
2011 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
2012 		return;
2013 	}
2014 
2015 	/*
2016 	 * Technically possible for either of these values to be non-zero here,
2017 	 * but very unlikely + harmless. Regardless let's add an error so we can
2018 	 * see in CI if this happens frequently / a precursor to taking down the
2019 	 * machine.
2020 	 */
2021 	if (atomic_read(&guc->outstanding_submission_g2h))
2022 		guc_err(guc, "Unexpected outstanding GuC to Host in reset finish\n");
2023 	atomic_set(&guc->outstanding_submission_g2h, 0);
2024 
2025 	intel_guc_global_policies_update(guc);
2026 	enable_submission(guc);
2027 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
2028 
2029 	/*
2030 	 * The full GT reset will have cleared the TLB caches and flushed the
2031 	 * G2H message queue; we can release all the blocked waiters.
2032 	 */
2033 	wake_up_all_tlb_invalidate(guc);
2034 }
2035 
2036 static void destroyed_worker_func(struct work_struct *w);
2037 static void reset_fail_worker_func(struct work_struct *w);
2038 
2039 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2040 {
2041 	return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2042 		intel_guc_is_ready(guc);
2043 }
2044 
2045 static int init_tlb_lookup(struct intel_guc *guc)
2046 {
2047 	struct intel_guc_tlb_wait *wait;
2048 	int err;
2049 
2050 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2051 		return 0;
2052 
2053 	xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2054 
2055 	wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2056 	if (!wait)
2057 		return -ENOMEM;
2058 
2059 	init_waitqueue_head(&wait->wq);
2060 
2061 	/* Preallocate a shared id for use under memory pressure. */
2062 	err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2063 				  xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2064 	if (err < 0) {
2065 		kfree(wait);
2066 		return err;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 static void fini_tlb_lookup(struct intel_guc *guc)
2073 {
2074 	struct intel_guc_tlb_wait *wait;
2075 
2076 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2077 		return;
2078 
2079 	wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2080 	if (wait && wait->busy)
2081 		guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2082 	kfree(wait);
2083 
2084 	xa_destroy(&guc->tlb_lookup);
2085 }
2086 
2087 /*
2088  * Set up the memory resources to be shared with the GuC (via the GGTT)
2089  * at firmware loading time.
2090  */
2091 int intel_guc_submission_init(struct intel_guc *guc)
2092 {
2093 	struct intel_gt *gt = guc_to_gt(guc);
2094 	int ret;
2095 
2096 	if (guc->submission_initialized)
2097 		return 0;
2098 
2099 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2100 		ret = guc_lrc_desc_pool_create_v69(guc);
2101 		if (ret)
2102 			return ret;
2103 	}
2104 
2105 	ret = init_tlb_lookup(guc);
2106 	if (ret)
2107 		goto destroy_pool;
2108 
2109 	guc->submission_state.guc_ids_bitmap =
2110 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2111 	if (!guc->submission_state.guc_ids_bitmap) {
2112 		ret = -ENOMEM;
2113 		goto destroy_tlb;
2114 	}
2115 
2116 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2117 	guc->timestamp.shift = gpm_timestamp_shift(gt);
2118 	guc->submission_initialized = true;
2119 
2120 	return 0;
2121 
2122 destroy_tlb:
2123 	fini_tlb_lookup(guc);
2124 destroy_pool:
2125 	guc_lrc_desc_pool_destroy_v69(guc);
2126 	return ret;
2127 }
2128 
2129 void intel_guc_submission_fini(struct intel_guc *guc)
2130 {
2131 	if (!guc->submission_initialized)
2132 		return;
2133 
2134 	guc_fini_engine_stats(guc);
2135 	guc_flush_destroyed_contexts(guc);
2136 	guc_lrc_desc_pool_destroy_v69(guc);
2137 	i915_sched_engine_put(guc->sched_engine);
2138 	bitmap_free(guc->submission_state.guc_ids_bitmap);
2139 	fini_tlb_lookup(guc);
2140 	guc->submission_initialized = false;
2141 }
2142 
2143 static inline void queue_request(struct i915_sched_engine *sched_engine,
2144 				 struct i915_request *rq,
2145 				 int prio)
2146 {
2147 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2148 	list_add_tail(&rq->sched.link,
2149 		      i915_sched_lookup_priolist(sched_engine, prio));
2150 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2151 	tasklet_hi_schedule(&sched_engine->tasklet);
2152 }
2153 
2154 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2155 				     struct i915_request *rq)
2156 {
2157 	int ret = 0;
2158 
2159 	__i915_request_submit(rq);
2160 
2161 	trace_i915_request_in(rq, 0);
2162 
2163 	if (is_multi_lrc_rq(rq)) {
2164 		if (multi_lrc_submit(rq)) {
2165 			ret = guc_wq_item_append(guc, rq);
2166 			if (!ret)
2167 				ret = guc_add_request(guc, rq);
2168 		}
2169 	} else {
2170 		guc_set_lrc_tail(rq);
2171 		ret = guc_add_request(guc, rq);
2172 	}
2173 
2174 	if (unlikely(ret == -EPIPE))
2175 		disable_submission(guc);
2176 
2177 	return ret;
2178 }
2179 
2180 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2181 {
2182 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2183 	struct intel_context *ce = request_to_scheduling_context(rq);
2184 
2185 	return submission_disabled(guc) || guc->stalled_request ||
2186 		!i915_sched_engine_is_empty(sched_engine) ||
2187 		!ctx_id_mapped(guc, ce->guc_id.id);
2188 }
2189 
2190 static void guc_submit_request(struct i915_request *rq)
2191 {
2192 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2193 	struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2194 	unsigned long flags;
2195 
2196 	/* Will be called from irq-context when using foreign fences. */
2197 	spin_lock_irqsave(&sched_engine->lock, flags);
2198 
2199 	if (need_tasklet(guc, rq))
2200 		queue_request(sched_engine, rq, rq_prio(rq));
2201 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2202 		tasklet_hi_schedule(&sched_engine->tasklet);
2203 
2204 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2205 }
2206 
2207 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2208 {
2209 	int ret;
2210 
2211 	GEM_BUG_ON(intel_context_is_child(ce));
2212 
2213 	if (intel_context_is_parent(ce))
2214 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2215 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2216 					      order_base_2(ce->parallel.number_children
2217 							   + 1));
2218 	else
2219 		ret = ida_alloc_range(&guc->submission_state.guc_ids,
2220 				      NUMBER_MULTI_LRC_GUC_ID(guc),
2221 				      guc->submission_state.num_guc_ids - 1,
2222 				      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2223 	if (unlikely(ret < 0))
2224 		return ret;
2225 
2226 	if (!intel_context_is_parent(ce))
2227 		++guc->submission_state.guc_ids_in_use;
2228 
2229 	ce->guc_id.id = ret;
2230 	return 0;
2231 }
2232 
2233 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2234 {
2235 	GEM_BUG_ON(intel_context_is_child(ce));
2236 
2237 	if (!context_guc_id_invalid(ce)) {
2238 		if (intel_context_is_parent(ce)) {
2239 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2240 					      ce->guc_id.id,
2241 					      order_base_2(ce->parallel.number_children
2242 							   + 1));
2243 		} else {
2244 			--guc->submission_state.guc_ids_in_use;
2245 			ida_free(&guc->submission_state.guc_ids,
2246 				 ce->guc_id.id);
2247 		}
2248 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2249 		set_context_guc_id_invalid(ce);
2250 	}
2251 	if (!list_empty(&ce->guc_id.link))
2252 		list_del_init(&ce->guc_id.link);
2253 }
2254 
2255 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2256 {
2257 	unsigned long flags;
2258 
2259 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2260 	__release_guc_id(guc, ce);
2261 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2262 }
2263 
2264 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2265 {
2266 	struct intel_context *cn;
2267 
2268 	lockdep_assert_held(&guc->submission_state.lock);
2269 	GEM_BUG_ON(intel_context_is_child(ce));
2270 	GEM_BUG_ON(intel_context_is_parent(ce));
2271 
2272 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2273 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2274 				      struct intel_context,
2275 				      guc_id.link);
2276 
2277 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2278 		GEM_BUG_ON(context_guc_id_invalid(cn));
2279 		GEM_BUG_ON(intel_context_is_child(cn));
2280 		GEM_BUG_ON(intel_context_is_parent(cn));
2281 
2282 		list_del_init(&cn->guc_id.link);
2283 		ce->guc_id.id = cn->guc_id.id;
2284 
2285 		spin_lock(&cn->guc_state.lock);
2286 		clr_context_registered(cn);
2287 		spin_unlock(&cn->guc_state.lock);
2288 
2289 		set_context_guc_id_invalid(cn);
2290 
2291 #ifdef CONFIG_DRM_I915_SELFTEST
2292 		guc->number_guc_id_stolen++;
2293 #endif
2294 
2295 		return 0;
2296 	} else {
2297 		return -EAGAIN;
2298 	}
2299 }
2300 
2301 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2302 {
2303 	int ret;
2304 
2305 	lockdep_assert_held(&guc->submission_state.lock);
2306 	GEM_BUG_ON(intel_context_is_child(ce));
2307 
2308 	ret = new_guc_id(guc, ce);
2309 	if (unlikely(ret < 0)) {
2310 		if (intel_context_is_parent(ce))
2311 			return -ENOSPC;
2312 
2313 		ret = steal_guc_id(guc, ce);
2314 		if (ret < 0)
2315 			return ret;
2316 	}
2317 
2318 	if (intel_context_is_parent(ce)) {
2319 		struct intel_context *child;
2320 		int i = 1;
2321 
2322 		for_each_child(ce, child)
2323 			child->guc_id.id = ce->guc_id.id + i++;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 #define PIN_GUC_ID_TRIES	4
2330 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2331 {
2332 	int ret = 0;
2333 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2334 
2335 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2336 
2337 try_again:
2338 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2339 
2340 	might_lock(&ce->guc_state.lock);
2341 
2342 	if (context_guc_id_invalid(ce)) {
2343 		ret = assign_guc_id(guc, ce);
2344 		if (ret)
2345 			goto out_unlock;
2346 		ret = 1;	/* Indidcates newly assigned guc_id */
2347 	}
2348 	if (!list_empty(&ce->guc_id.link))
2349 		list_del_init(&ce->guc_id.link);
2350 	atomic_inc(&ce->guc_id.ref);
2351 
2352 out_unlock:
2353 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2354 
2355 	/*
2356 	 * -EAGAIN indicates no guc_id are available, let's retire any
2357 	 * outstanding requests to see if that frees up a guc_id. If the first
2358 	 * retire didn't help, insert a sleep with the timeslice duration before
2359 	 * attempting to retire more requests. Double the sleep period each
2360 	 * subsequent pass before finally giving up. The sleep period has max of
2361 	 * 100ms and minimum of 1ms.
2362 	 */
2363 	if (ret == -EAGAIN && --tries) {
2364 		if (PIN_GUC_ID_TRIES - tries > 1) {
2365 			unsigned int timeslice_shifted =
2366 				ce->engine->props.timeslice_duration_ms <<
2367 				(PIN_GUC_ID_TRIES - tries - 2);
2368 			unsigned int max = min_t(unsigned int, 100,
2369 						 timeslice_shifted);
2370 
2371 			msleep(max_t(unsigned int, max, 1));
2372 		}
2373 		intel_gt_retire_requests(guc_to_gt(guc));
2374 		goto try_again;
2375 	}
2376 
2377 	return ret;
2378 }
2379 
2380 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2381 {
2382 	unsigned long flags;
2383 
2384 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2385 	GEM_BUG_ON(intel_context_is_child(ce));
2386 
2387 	if (unlikely(context_guc_id_invalid(ce) ||
2388 		     intel_context_is_parent(ce)))
2389 		return;
2390 
2391 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2392 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2393 	    !atomic_read(&ce->guc_id.ref))
2394 		list_add_tail(&ce->guc_id.link,
2395 			      &guc->submission_state.guc_id_list);
2396 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2397 }
2398 
2399 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2400 					       struct intel_context *ce,
2401 					       u32 guc_id,
2402 					       u32 offset,
2403 					       bool loop)
2404 {
2405 	struct intel_context *child;
2406 	u32 action[4 + MAX_ENGINE_INSTANCE];
2407 	int len = 0;
2408 
2409 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2410 
2411 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2412 	action[len++] = guc_id;
2413 	action[len++] = ce->parallel.number_children + 1;
2414 	action[len++] = offset;
2415 	for_each_child(ce, child) {
2416 		offset += sizeof(struct guc_lrc_desc_v69);
2417 		action[len++] = offset;
2418 	}
2419 
2420 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2421 }
2422 
2423 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2424 					       struct intel_context *ce,
2425 					       struct guc_ctxt_registration_info *info,
2426 					       bool loop)
2427 {
2428 	struct intel_context *child;
2429 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2430 	int len = 0;
2431 	u32 next_id;
2432 
2433 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2434 
2435 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2436 	action[len++] = info->flags;
2437 	action[len++] = info->context_idx;
2438 	action[len++] = info->engine_class;
2439 	action[len++] = info->engine_submit_mask;
2440 	action[len++] = info->wq_desc_lo;
2441 	action[len++] = info->wq_desc_hi;
2442 	action[len++] = info->wq_base_lo;
2443 	action[len++] = info->wq_base_hi;
2444 	action[len++] = info->wq_size;
2445 	action[len++] = ce->parallel.number_children + 1;
2446 	action[len++] = info->hwlrca_lo;
2447 	action[len++] = info->hwlrca_hi;
2448 
2449 	next_id = info->context_idx + 1;
2450 	for_each_child(ce, child) {
2451 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2452 
2453 		/*
2454 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2455 		 * only supports 32 bit currently.
2456 		 */
2457 		action[len++] = lower_32_bits(child->lrc.lrca);
2458 		action[len++] = upper_32_bits(child->lrc.lrca);
2459 	}
2460 
2461 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2462 
2463 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2464 }
2465 
2466 static int __guc_action_register_context_v69(struct intel_guc *guc,
2467 					     u32 guc_id,
2468 					     u32 offset,
2469 					     bool loop)
2470 {
2471 	u32 action[] = {
2472 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2473 		guc_id,
2474 		offset,
2475 	};
2476 
2477 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2478 					     0, loop);
2479 }
2480 
2481 static int __guc_action_register_context_v70(struct intel_guc *guc,
2482 					     struct guc_ctxt_registration_info *info,
2483 					     bool loop)
2484 {
2485 	u32 action[] = {
2486 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2487 		info->flags,
2488 		info->context_idx,
2489 		info->engine_class,
2490 		info->engine_submit_mask,
2491 		info->wq_desc_lo,
2492 		info->wq_desc_hi,
2493 		info->wq_base_lo,
2494 		info->wq_base_hi,
2495 		info->wq_size,
2496 		info->hwlrca_lo,
2497 		info->hwlrca_hi,
2498 	};
2499 
2500 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2501 					     0, loop);
2502 }
2503 
2504 static void prepare_context_registration_info_v69(struct intel_context *ce);
2505 static void prepare_context_registration_info_v70(struct intel_context *ce,
2506 						  struct guc_ctxt_registration_info *info);
2507 
2508 static int
2509 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2510 {
2511 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2512 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2513 
2514 	prepare_context_registration_info_v69(ce);
2515 
2516 	if (intel_context_is_parent(ce))
2517 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2518 							   offset, loop);
2519 	else
2520 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2521 							 offset, loop);
2522 }
2523 
2524 static int
2525 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2526 {
2527 	struct guc_ctxt_registration_info info;
2528 
2529 	prepare_context_registration_info_v70(ce, &info);
2530 
2531 	if (intel_context_is_parent(ce))
2532 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2533 	else
2534 		return __guc_action_register_context_v70(guc, &info, loop);
2535 }
2536 
2537 static int register_context(struct intel_context *ce, bool loop)
2538 {
2539 	struct intel_guc *guc = ce_to_guc(ce);
2540 	int ret;
2541 
2542 	GEM_BUG_ON(intel_context_is_child(ce));
2543 	trace_intel_context_register(ce);
2544 
2545 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2546 		ret = register_context_v70(guc, ce, loop);
2547 	else
2548 		ret = register_context_v69(guc, ce, loop);
2549 
2550 	if (likely(!ret)) {
2551 		unsigned long flags;
2552 
2553 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2554 		set_context_registered(ce);
2555 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2556 
2557 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2558 			guc_context_policy_init_v70(ce, loop);
2559 	}
2560 
2561 	return ret;
2562 }
2563 
2564 static int __guc_action_deregister_context(struct intel_guc *guc,
2565 					   u32 guc_id)
2566 {
2567 	u32 action[] = {
2568 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2569 		guc_id,
2570 	};
2571 
2572 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2573 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2574 					     true);
2575 }
2576 
2577 static int deregister_context(struct intel_context *ce, u32 guc_id)
2578 {
2579 	struct intel_guc *guc = ce_to_guc(ce);
2580 
2581 	GEM_BUG_ON(intel_context_is_child(ce));
2582 	trace_intel_context_deregister(ce);
2583 
2584 	return __guc_action_deregister_context(guc, guc_id);
2585 }
2586 
2587 static inline void clear_children_join_go_memory(struct intel_context *ce)
2588 {
2589 	struct parent_scratch *ps = __get_parent_scratch(ce);
2590 	int i;
2591 
2592 	ps->go.semaphore = 0;
2593 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2594 		ps->join[i].semaphore = 0;
2595 }
2596 
2597 static inline u32 get_children_go_value(struct intel_context *ce)
2598 {
2599 	return __get_parent_scratch(ce)->go.semaphore;
2600 }
2601 
2602 static inline u32 get_children_join_value(struct intel_context *ce,
2603 					  u8 child_index)
2604 {
2605 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2606 }
2607 
2608 struct context_policy {
2609 	u32 count;
2610 	struct guc_update_context_policy h2g;
2611 };
2612 
2613 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2614 {
2615 	size_t bytes = sizeof(policy->h2g.header) +
2616 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2617 
2618 	return bytes / sizeof(u32);
2619 }
2620 
2621 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2622 {
2623 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2624 	policy->h2g.header.ctx_id = guc_id;
2625 	policy->count = 0;
2626 }
2627 
2628 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2629 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2630 { \
2631 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2632 	policy->h2g.klv[policy->count].kl = \
2633 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2634 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2635 	policy->h2g.klv[policy->count].value = data; \
2636 	policy->count++; \
2637 }
2638 
2639 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2640 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2641 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2642 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2643 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2644 
2645 #undef MAKE_CONTEXT_POLICY_ADD
2646 
2647 static int __guc_context_set_context_policies(struct intel_guc *guc,
2648 					      struct context_policy *policy,
2649 					      bool loop)
2650 {
2651 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2652 					__guc_context_policy_action_size(policy),
2653 					0, loop);
2654 }
2655 
2656 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2657 {
2658 	struct intel_engine_cs *engine = ce->engine;
2659 	struct intel_guc *guc = gt_to_guc(engine->gt);
2660 	struct context_policy policy;
2661 	u32 execution_quantum;
2662 	u32 preemption_timeout;
2663 	u32 slpc_ctx_freq_req = 0;
2664 	unsigned long flags;
2665 	int ret;
2666 
2667 	/* NB: For both of these, zero means disabled. */
2668 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2669 				  execution_quantum));
2670 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2671 				  preemption_timeout));
2672 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2673 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2674 
2675 	if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2676 		slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2677 
2678 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2679 
2680 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2681 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2682 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2683 	__guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2684 
2685 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2686 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2687 
2688 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2689 
2690 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2691 	if (ret != 0)
2692 		set_context_policy_required(ce);
2693 	else
2694 		clr_context_policy_required(ce);
2695 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2696 
2697 	return ret;
2698 }
2699 
2700 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2701 					struct guc_lrc_desc_v69 *desc)
2702 {
2703 	desc->policy_flags = 0;
2704 
2705 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2706 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2707 
2708 	/* NB: For both of these, zero means disabled. */
2709 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2710 				  desc->execution_quantum));
2711 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2712 				  desc->preemption_timeout));
2713 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2714 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2715 }
2716 
2717 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2718 {
2719 	/*
2720 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2721 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2722 	 */
2723 	switch (prio) {
2724 	default:
2725 		MISSING_CASE(prio);
2726 		fallthrough;
2727 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2728 		return GEN12_CTX_PRIORITY_NORMAL;
2729 	case GUC_CLIENT_PRIORITY_NORMAL:
2730 		return GEN12_CTX_PRIORITY_LOW;
2731 	case GUC_CLIENT_PRIORITY_HIGH:
2732 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2733 		return GEN12_CTX_PRIORITY_HIGH;
2734 	}
2735 }
2736 
2737 static void prepare_context_registration_info_v69(struct intel_context *ce)
2738 {
2739 	struct intel_engine_cs *engine = ce->engine;
2740 	struct intel_guc *guc = gt_to_guc(engine->gt);
2741 	u32 ctx_id = ce->guc_id.id;
2742 	struct guc_lrc_desc_v69 *desc;
2743 	struct intel_context *child;
2744 
2745 	GEM_BUG_ON(!engine->mask);
2746 
2747 	/*
2748 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2749 	 * based on CT vma region.
2750 	 */
2751 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2752 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2753 
2754 	desc = __get_lrc_desc_v69(guc, ctx_id);
2755 	GEM_BUG_ON(!desc);
2756 	desc->engine_class = engine_class_to_guc_class(engine->class);
2757 	desc->engine_submit_mask = engine->logical_mask;
2758 	desc->hw_context_desc = ce->lrc.lrca;
2759 	desc->priority = ce->guc_state.prio;
2760 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2761 	guc_context_policy_init_v69(engine, desc);
2762 
2763 	/*
2764 	 * If context is a parent, we need to register a process descriptor
2765 	 * describing a work queue and register all child contexts.
2766 	 */
2767 	if (intel_context_is_parent(ce)) {
2768 		struct guc_process_desc_v69 *pdesc;
2769 
2770 		ce->parallel.guc.wqi_tail = 0;
2771 		ce->parallel.guc.wqi_head = 0;
2772 
2773 		desc->process_desc = i915_ggtt_offset(ce->state) +
2774 			__get_parent_scratch_offset(ce);
2775 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2776 			__get_wq_offset(ce);
2777 		desc->wq_size = WQ_SIZE;
2778 
2779 		pdesc = __get_process_desc_v69(ce);
2780 		memset(pdesc, 0, sizeof(*(pdesc)));
2781 		pdesc->stage_id = ce->guc_id.id;
2782 		pdesc->wq_base_addr = desc->wq_addr;
2783 		pdesc->wq_size_bytes = desc->wq_size;
2784 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2785 
2786 		ce->parallel.guc.wq_head = &pdesc->head;
2787 		ce->parallel.guc.wq_tail = &pdesc->tail;
2788 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2789 
2790 		for_each_child(ce, child) {
2791 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2792 
2793 			desc->engine_class =
2794 				engine_class_to_guc_class(engine->class);
2795 			desc->hw_context_desc = child->lrc.lrca;
2796 			desc->priority = ce->guc_state.prio;
2797 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2798 			guc_context_policy_init_v69(engine, desc);
2799 		}
2800 
2801 		clear_children_join_go_memory(ce);
2802 	}
2803 }
2804 
2805 static void prepare_context_registration_info_v70(struct intel_context *ce,
2806 						  struct guc_ctxt_registration_info *info)
2807 {
2808 	struct intel_engine_cs *engine = ce->engine;
2809 	struct intel_guc *guc = gt_to_guc(engine->gt);
2810 	u32 ctx_id = ce->guc_id.id;
2811 
2812 	GEM_BUG_ON(!engine->mask);
2813 
2814 	/*
2815 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2816 	 * based on CT vma region.
2817 	 */
2818 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2819 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2820 
2821 	memset(info, 0, sizeof(*info));
2822 	info->context_idx = ctx_id;
2823 	info->engine_class = engine_class_to_guc_class(engine->class);
2824 	info->engine_submit_mask = engine->logical_mask;
2825 	/*
2826 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2827 	 * only supports 32 bit currently.
2828 	 */
2829 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2830 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2831 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2832 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2833 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2834 
2835 	/*
2836 	 * If context is a parent, we need to register a process descriptor
2837 	 * describing a work queue and register all child contexts.
2838 	 */
2839 	if (intel_context_is_parent(ce)) {
2840 		struct guc_sched_wq_desc *wq_desc;
2841 		u64 wq_desc_offset, wq_base_offset;
2842 
2843 		ce->parallel.guc.wqi_tail = 0;
2844 		ce->parallel.guc.wqi_head = 0;
2845 
2846 		wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2847 				 __get_parent_scratch_offset(ce);
2848 		wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2849 				 __get_wq_offset(ce);
2850 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2851 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2852 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2853 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2854 		info->wq_size = WQ_SIZE;
2855 
2856 		wq_desc = __get_wq_desc_v70(ce);
2857 		memset(wq_desc, 0, sizeof(*wq_desc));
2858 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2859 
2860 		ce->parallel.guc.wq_head = &wq_desc->head;
2861 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2862 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2863 
2864 		clear_children_join_go_memory(ce);
2865 	}
2866 }
2867 
2868 static int try_context_registration(struct intel_context *ce, bool loop)
2869 {
2870 	struct intel_engine_cs *engine = ce->engine;
2871 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2872 	struct intel_guc *guc = gt_to_guc(engine->gt);
2873 	intel_wakeref_t wakeref;
2874 	u32 ctx_id = ce->guc_id.id;
2875 	bool context_registered;
2876 	int ret = 0;
2877 
2878 	GEM_BUG_ON(!sched_state_is_init(ce));
2879 
2880 	context_registered = ctx_id_mapped(guc, ctx_id);
2881 
2882 	clr_ctx_id_mapping(guc, ctx_id);
2883 	set_ctx_id_mapping(guc, ctx_id, ce);
2884 
2885 	/*
2886 	 * The context_lookup xarray is used to determine if the hardware
2887 	 * context is currently registered. There are two cases in which it
2888 	 * could be registered either the guc_id has been stolen from another
2889 	 * context or the lrc descriptor address of this context has changed. In
2890 	 * either case the context needs to be deregistered with the GuC before
2891 	 * registering this context.
2892 	 */
2893 	if (context_registered) {
2894 		bool disabled;
2895 		unsigned long flags;
2896 
2897 		trace_intel_context_steal_guc_id(ce);
2898 		GEM_BUG_ON(!loop);
2899 
2900 		/* Seal race with Reset */
2901 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2902 		disabled = submission_disabled(guc);
2903 		if (likely(!disabled)) {
2904 			set_context_wait_for_deregister_to_register(ce);
2905 			intel_context_get(ce);
2906 		}
2907 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2908 		if (unlikely(disabled)) {
2909 			clr_ctx_id_mapping(guc, ctx_id);
2910 			return 0;	/* Will get registered later */
2911 		}
2912 
2913 		/*
2914 		 * If stealing the guc_id, this ce has the same guc_id as the
2915 		 * context whose guc_id was stolen.
2916 		 */
2917 		with_intel_runtime_pm(runtime_pm, wakeref)
2918 			ret = deregister_context(ce, ce->guc_id.id);
2919 		if (unlikely(ret == -ENODEV))
2920 			ret = 0;	/* Will get registered later */
2921 	} else {
2922 		with_intel_runtime_pm(runtime_pm, wakeref)
2923 			ret = register_context(ce, loop);
2924 		if (unlikely(ret == -EBUSY)) {
2925 			clr_ctx_id_mapping(guc, ctx_id);
2926 		} else if (unlikely(ret == -ENODEV)) {
2927 			clr_ctx_id_mapping(guc, ctx_id);
2928 			ret = 0;	/* Will get registered later */
2929 		}
2930 	}
2931 
2932 	return ret;
2933 }
2934 
2935 static int __guc_context_pre_pin(struct intel_context *ce,
2936 				 struct intel_engine_cs *engine,
2937 				 struct i915_gem_ww_ctx *ww,
2938 				 void **vaddr)
2939 {
2940 	return lrc_pre_pin(ce, engine, ww, vaddr);
2941 }
2942 
2943 static int __guc_context_pin(struct intel_context *ce,
2944 			     struct intel_engine_cs *engine,
2945 			     void *vaddr)
2946 {
2947 	if (i915_ggtt_offset(ce->state) !=
2948 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2949 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2950 
2951 	/*
2952 	 * GuC context gets pinned in guc_request_alloc. See that function for
2953 	 * explaination of why.
2954 	 */
2955 
2956 	return lrc_pin(ce, engine, vaddr);
2957 }
2958 
2959 static int guc_context_pre_pin(struct intel_context *ce,
2960 			       struct i915_gem_ww_ctx *ww,
2961 			       void **vaddr)
2962 {
2963 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2964 }
2965 
2966 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2967 {
2968 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2969 
2970 	if (likely(!ret && !intel_context_is_barrier(ce)))
2971 		intel_engine_pm_get(ce->engine);
2972 
2973 	return ret;
2974 }
2975 
2976 static void guc_context_unpin(struct intel_context *ce)
2977 {
2978 	struct intel_guc *guc = ce_to_guc(ce);
2979 
2980 	__guc_context_update_stats(ce);
2981 	unpin_guc_id(guc, ce);
2982 	lrc_unpin(ce);
2983 
2984 	if (likely(!intel_context_is_barrier(ce)))
2985 		intel_engine_pm_put_async(ce->engine);
2986 }
2987 
2988 static void guc_context_post_unpin(struct intel_context *ce)
2989 {
2990 	lrc_post_unpin(ce);
2991 }
2992 
2993 static void __guc_context_sched_enable(struct intel_guc *guc,
2994 				       struct intel_context *ce)
2995 {
2996 	u32 action[] = {
2997 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2998 		ce->guc_id.id,
2999 		GUC_CONTEXT_ENABLE
3000 	};
3001 
3002 	trace_intel_context_sched_enable(ce);
3003 
3004 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3005 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3006 }
3007 
3008 static void __guc_context_sched_disable(struct intel_guc *guc,
3009 					struct intel_context *ce,
3010 					u16 guc_id)
3011 {
3012 	u32 action[] = {
3013 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3014 		guc_id,	/* ce->guc_id.id not stable */
3015 		GUC_CONTEXT_DISABLE
3016 	};
3017 
3018 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3019 
3020 	GEM_BUG_ON(intel_context_is_child(ce));
3021 	trace_intel_context_sched_disable(ce);
3022 
3023 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3024 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3025 }
3026 
3027 static void guc_blocked_fence_complete(struct intel_context *ce)
3028 {
3029 	lockdep_assert_held(&ce->guc_state.lock);
3030 
3031 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
3032 		i915_sw_fence_complete(&ce->guc_state.blocked);
3033 }
3034 
3035 static void guc_blocked_fence_reinit(struct intel_context *ce)
3036 {
3037 	lockdep_assert_held(&ce->guc_state.lock);
3038 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3039 
3040 	/*
3041 	 * This fence is always complete unless a pending schedule disable is
3042 	 * outstanding. We arm the fence here and complete it when we receive
3043 	 * the pending schedule disable complete message.
3044 	 */
3045 	i915_sw_fence_fini(&ce->guc_state.blocked);
3046 	i915_sw_fence_reinit(&ce->guc_state.blocked);
3047 	i915_sw_fence_await(&ce->guc_state.blocked);
3048 	i915_sw_fence_commit(&ce->guc_state.blocked);
3049 }
3050 
3051 static u16 prep_context_pending_disable(struct intel_context *ce)
3052 {
3053 	lockdep_assert_held(&ce->guc_state.lock);
3054 
3055 	set_context_pending_disable(ce);
3056 	clr_context_enabled(ce);
3057 	guc_blocked_fence_reinit(ce);
3058 	intel_context_get(ce);
3059 
3060 	return ce->guc_id.id;
3061 }
3062 
3063 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3064 {
3065 	struct intel_guc *guc = ce_to_guc(ce);
3066 	unsigned long flags;
3067 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3068 	intel_wakeref_t wakeref;
3069 	u16 guc_id;
3070 	bool enabled;
3071 
3072 	GEM_BUG_ON(intel_context_is_child(ce));
3073 
3074 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3075 
3076 	incr_context_blocked(ce);
3077 
3078 	enabled = context_enabled(ce);
3079 	if (unlikely(!enabled || submission_disabled(guc))) {
3080 		if (enabled)
3081 			clr_context_enabled(ce);
3082 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3083 		return &ce->guc_state.blocked;
3084 	}
3085 
3086 	/*
3087 	 * We add +2 here as the schedule disable complete CTB handler calls
3088 	 * intel_context_sched_disable_unpin (-2 to pin_count).
3089 	 */
3090 	atomic_add(2, &ce->pin_count);
3091 
3092 	guc_id = prep_context_pending_disable(ce);
3093 
3094 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3095 
3096 	with_intel_runtime_pm(runtime_pm, wakeref)
3097 		__guc_context_sched_disable(guc, ce, guc_id);
3098 
3099 	return &ce->guc_state.blocked;
3100 }
3101 
3102 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3103 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3104 #define SCHED_STATE_NO_UNBLOCK \
3105 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
3106 	 SCHED_STATE_PENDING_DISABLE | \
3107 	 SCHED_STATE_BANNED)
3108 
3109 static bool context_cant_unblock(struct intel_context *ce)
3110 {
3111 	lockdep_assert_held(&ce->guc_state.lock);
3112 
3113 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3114 		context_guc_id_invalid(ce) ||
3115 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3116 		!intel_context_is_pinned(ce);
3117 }
3118 
3119 static void guc_context_unblock(struct intel_context *ce)
3120 {
3121 	struct intel_guc *guc = ce_to_guc(ce);
3122 	unsigned long flags;
3123 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3124 	intel_wakeref_t wakeref;
3125 	bool enable;
3126 
3127 	GEM_BUG_ON(context_enabled(ce));
3128 	GEM_BUG_ON(intel_context_is_child(ce));
3129 
3130 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3131 
3132 	if (unlikely(submission_disabled(guc) ||
3133 		     context_cant_unblock(ce))) {
3134 		enable = false;
3135 	} else {
3136 		enable = true;
3137 		set_context_pending_enable(ce);
3138 		set_context_enabled(ce);
3139 		intel_context_get(ce);
3140 	}
3141 
3142 	decr_context_blocked(ce);
3143 
3144 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3145 
3146 	if (enable) {
3147 		with_intel_runtime_pm(runtime_pm, wakeref)
3148 			__guc_context_sched_enable(guc, ce);
3149 	}
3150 }
3151 
3152 static void guc_context_cancel_request(struct intel_context *ce,
3153 				       struct i915_request *rq)
3154 {
3155 	struct intel_context *block_context =
3156 		request_to_scheduling_context(rq);
3157 
3158 	if (i915_sw_fence_signaled(&rq->submit)) {
3159 		struct i915_sw_fence *fence;
3160 
3161 		intel_context_get(ce);
3162 		fence = guc_context_block(block_context);
3163 		i915_sw_fence_wait(fence);
3164 		if (!i915_request_completed(rq)) {
3165 			__i915_request_skip(rq);
3166 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3167 					true);
3168 		}
3169 
3170 		guc_context_unblock(block_context);
3171 		intel_context_put(ce);
3172 	}
3173 }
3174 
3175 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3176 						 u16 guc_id,
3177 						 u32 preemption_timeout)
3178 {
3179 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3180 		struct context_policy policy;
3181 
3182 		__guc_context_policy_start_klv(&policy, guc_id);
3183 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3184 		__guc_context_set_context_policies(guc, &policy, true);
3185 	} else {
3186 		u32 action[] = {
3187 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3188 			guc_id,
3189 			preemption_timeout
3190 		};
3191 
3192 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3193 	}
3194 }
3195 
3196 static void
3197 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3198 		   unsigned int preempt_timeout_ms)
3199 {
3200 	struct intel_guc *guc = ce_to_guc(ce);
3201 	struct intel_runtime_pm *runtime_pm =
3202 		&ce->engine->gt->i915->runtime_pm;
3203 	intel_wakeref_t wakeref;
3204 	unsigned long flags;
3205 
3206 	GEM_BUG_ON(intel_context_is_child(ce));
3207 
3208 	guc_flush_submissions(guc);
3209 
3210 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3211 	set_context_banned(ce);
3212 
3213 	if (submission_disabled(guc) ||
3214 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3215 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3216 
3217 		guc_cancel_context_requests(ce);
3218 		intel_engine_signal_breadcrumbs(ce->engine);
3219 	} else if (!context_pending_disable(ce)) {
3220 		u16 guc_id;
3221 
3222 		/*
3223 		 * We add +2 here as the schedule disable complete CTB handler
3224 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3225 		 */
3226 		atomic_add(2, &ce->pin_count);
3227 
3228 		guc_id = prep_context_pending_disable(ce);
3229 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3230 
3231 		/*
3232 		 * In addition to disabling scheduling, set the preemption
3233 		 * timeout to the minimum value (1 us) so the banned context
3234 		 * gets kicked off the HW ASAP.
3235 		 */
3236 		with_intel_runtime_pm(runtime_pm, wakeref) {
3237 			__guc_context_set_preemption_timeout(guc, guc_id,
3238 							     preempt_timeout_ms);
3239 			__guc_context_sched_disable(guc, ce, guc_id);
3240 		}
3241 	} else {
3242 		if (!context_guc_id_invalid(ce))
3243 			with_intel_runtime_pm(runtime_pm, wakeref)
3244 				__guc_context_set_preemption_timeout(guc,
3245 								     ce->guc_id.id,
3246 								     preempt_timeout_ms);
3247 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3248 	}
3249 }
3250 
3251 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3252 			     unsigned long flags)
3253 	__releases(ce->guc_state.lock)
3254 {
3255 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3256 	intel_wakeref_t wakeref;
3257 	u16 guc_id;
3258 
3259 	lockdep_assert_held(&ce->guc_state.lock);
3260 	guc_id = prep_context_pending_disable(ce);
3261 
3262 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3263 
3264 	with_intel_runtime_pm(runtime_pm, wakeref)
3265 		__guc_context_sched_disable(guc, ce, guc_id);
3266 }
3267 
3268 static bool bypass_sched_disable(struct intel_guc *guc,
3269 				 struct intel_context *ce)
3270 {
3271 	lockdep_assert_held(&ce->guc_state.lock);
3272 	GEM_BUG_ON(intel_context_is_child(ce));
3273 
3274 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3275 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3276 		clr_context_enabled(ce);
3277 		return true;
3278 	}
3279 
3280 	return !context_enabled(ce);
3281 }
3282 
3283 static void __delay_sched_disable(struct work_struct *wrk)
3284 {
3285 	struct intel_context *ce =
3286 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3287 	struct intel_guc *guc = ce_to_guc(ce);
3288 	unsigned long flags;
3289 
3290 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3291 
3292 	if (bypass_sched_disable(guc, ce)) {
3293 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3294 		intel_context_sched_disable_unpin(ce);
3295 	} else {
3296 		do_sched_disable(guc, ce, flags);
3297 	}
3298 }
3299 
3300 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3301 {
3302 	/*
3303 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3304 	 * disable immediately.
3305 	 */
3306 	if (intel_context_is_parent(ce))
3307 		return true;
3308 
3309 	/*
3310 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3311 	 */
3312 	return guc->submission_state.guc_ids_in_use >
3313 		guc->submission_state.sched_disable_gucid_threshold;
3314 }
3315 
3316 static void guc_context_sched_disable(struct intel_context *ce)
3317 {
3318 	struct intel_guc *guc = ce_to_guc(ce);
3319 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3320 	unsigned long flags;
3321 
3322 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3323 
3324 	if (bypass_sched_disable(guc, ce)) {
3325 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3326 		intel_context_sched_disable_unpin(ce);
3327 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3328 		   delay) {
3329 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3330 		mod_delayed_work(system_unbound_wq,
3331 				 &ce->guc_state.sched_disable_delay_work,
3332 				 msecs_to_jiffies(delay));
3333 	} else {
3334 		do_sched_disable(guc, ce, flags);
3335 	}
3336 }
3337 
3338 static void guc_context_close(struct intel_context *ce)
3339 {
3340 	unsigned long flags;
3341 
3342 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3343 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3344 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3345 
3346 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3347 	set_context_close_done(ce);
3348 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3349 }
3350 
3351 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3352 {
3353 	struct intel_guc *guc = ce_to_guc(ce);
3354 	struct intel_gt *gt = guc_to_gt(guc);
3355 	unsigned long flags;
3356 	bool disabled;
3357 	int ret;
3358 
3359 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3360 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3361 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3362 	GEM_BUG_ON(context_enabled(ce));
3363 
3364 	/* Seal race with Reset */
3365 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3366 	disabled = submission_disabled(guc);
3367 	if (likely(!disabled)) {
3368 		/*
3369 		 * Take a gt-pm ref and change context state to be destroyed.
3370 		 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3371 		 */
3372 		__intel_gt_pm_get(gt);
3373 		set_context_destroyed(ce);
3374 		clr_context_registered(ce);
3375 	}
3376 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3377 
3378 	if (unlikely(disabled)) {
3379 		release_guc_id(guc, ce);
3380 		__guc_context_destroy(ce);
3381 		return 0;
3382 	}
3383 
3384 	/*
3385 	 * GuC is active, lets destroy this context, but at this point we can still be racing
3386 	 * with suspend, so we undo everything if the H2G fails in deregister_context so
3387 	 * that GuC reset will find this context during clean up.
3388 	 */
3389 	ret = deregister_context(ce, ce->guc_id.id);
3390 	if (ret) {
3391 		spin_lock(&ce->guc_state.lock);
3392 		set_context_registered(ce);
3393 		clr_context_destroyed(ce);
3394 		spin_unlock(&ce->guc_state.lock);
3395 		/*
3396 		 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3397 		 * the wakeref immediately but per function spec usage call this after unlock.
3398 		 */
3399 		intel_wakeref_put_async(&gt->wakeref);
3400 	}
3401 
3402 	return ret;
3403 }
3404 
3405 static void __guc_context_destroy(struct intel_context *ce)
3406 {
3407 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3408 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3409 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3410 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3411 
3412 	lrc_fini(ce);
3413 	intel_context_fini(ce);
3414 
3415 	if (intel_engine_is_virtual(ce->engine)) {
3416 		struct guc_virtual_engine *ve =
3417 			container_of(ce, typeof(*ve), context);
3418 
3419 		if (ve->base.breadcrumbs)
3420 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3421 
3422 		kfree(ve);
3423 	} else {
3424 		intel_context_free(ce);
3425 	}
3426 }
3427 
3428 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3429 {
3430 	struct intel_context *ce;
3431 	unsigned long flags;
3432 
3433 	GEM_BUG_ON(!submission_disabled(guc) &&
3434 		   guc_submission_initialized(guc));
3435 
3436 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3437 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3438 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3439 					      struct intel_context,
3440 					      destroyed_link);
3441 		if (ce)
3442 			list_del_init(&ce->destroyed_link);
3443 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3444 
3445 		if (!ce)
3446 			break;
3447 
3448 		release_guc_id(guc, ce);
3449 		__guc_context_destroy(ce);
3450 	}
3451 }
3452 
3453 static void deregister_destroyed_contexts(struct intel_guc *guc)
3454 {
3455 	struct intel_context *ce;
3456 	unsigned long flags;
3457 
3458 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3459 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3460 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3461 					      struct intel_context,
3462 					      destroyed_link);
3463 		if (ce)
3464 			list_del_init(&ce->destroyed_link);
3465 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3466 
3467 		if (!ce)
3468 			break;
3469 
3470 		if (guc_lrc_desc_unpin(ce)) {
3471 			/*
3472 			 * This means GuC's CT link severed mid-way which could happen
3473 			 * in suspend-resume corner cases. In this case, put the
3474 			 * context back into the destroyed_contexts list which will
3475 			 * get picked up on the next context deregistration event or
3476 			 * purged in a GuC sanitization event (reset/unload/wedged/...).
3477 			 */
3478 			spin_lock_irqsave(&guc->submission_state.lock, flags);
3479 			list_add_tail(&ce->destroyed_link,
3480 				      &guc->submission_state.destroyed_contexts);
3481 			spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3482 			/* Bail now since the list might never be emptied if h2gs fail */
3483 			break;
3484 		}
3485 
3486 	}
3487 }
3488 
3489 static void destroyed_worker_func(struct work_struct *w)
3490 {
3491 	struct intel_guc *guc = container_of(w, struct intel_guc,
3492 					     submission_state.destroyed_worker);
3493 	struct intel_gt *gt = guc_to_gt(guc);
3494 	intel_wakeref_t wakeref;
3495 
3496 	/*
3497 	 * In rare cases we can get here via async context-free fence-signals that
3498 	 * come very late in suspend flow or very early in resume flows. In these
3499 	 * cases, GuC won't be ready but just skipping it here is fine as these
3500 	 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3501 	 * end of suspend.. OR.. this worker can be picked up later on the next
3502 	 * context destruction trigger after resume-completes
3503 	 */
3504 	if (!intel_guc_is_ready(guc))
3505 		return;
3506 
3507 	with_intel_gt_pm(gt, wakeref)
3508 		deregister_destroyed_contexts(guc);
3509 }
3510 
3511 static void guc_context_destroy(struct kref *kref)
3512 {
3513 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3514 	struct intel_guc *guc = ce_to_guc(ce);
3515 	unsigned long flags;
3516 	bool destroy;
3517 
3518 	/*
3519 	 * If the guc_id is invalid this context has been stolen and we can free
3520 	 * it immediately. Also can be freed immediately if the context is not
3521 	 * registered with the GuC or the GuC is in the middle of a reset.
3522 	 */
3523 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3524 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3525 		!ctx_id_mapped(guc, ce->guc_id.id);
3526 	if (likely(!destroy)) {
3527 		if (!list_empty(&ce->guc_id.link))
3528 			list_del_init(&ce->guc_id.link);
3529 		list_add_tail(&ce->destroyed_link,
3530 			      &guc->submission_state.destroyed_contexts);
3531 	} else {
3532 		__release_guc_id(guc, ce);
3533 	}
3534 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3535 	if (unlikely(destroy)) {
3536 		__guc_context_destroy(ce);
3537 		return;
3538 	}
3539 
3540 	/*
3541 	 * We use a worker to issue the H2G to deregister the context as we can
3542 	 * take the GT PM for the first time which isn't allowed from an atomic
3543 	 * context.
3544 	 */
3545 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3546 }
3547 
3548 static int guc_context_alloc(struct intel_context *ce)
3549 {
3550 	return lrc_alloc(ce, ce->engine);
3551 }
3552 
3553 static void __guc_context_set_prio(struct intel_guc *guc,
3554 				   struct intel_context *ce)
3555 {
3556 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3557 		struct context_policy policy;
3558 
3559 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3560 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3561 		__guc_context_set_context_policies(guc, &policy, true);
3562 	} else {
3563 		u32 action[] = {
3564 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3565 			ce->guc_id.id,
3566 			ce->guc_state.prio,
3567 		};
3568 
3569 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3570 	}
3571 }
3572 
3573 static void guc_context_set_prio(struct intel_guc *guc,
3574 				 struct intel_context *ce,
3575 				 u8 prio)
3576 {
3577 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3578 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3579 	lockdep_assert_held(&ce->guc_state.lock);
3580 
3581 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3582 	    !context_registered(ce)) {
3583 		ce->guc_state.prio = prio;
3584 		return;
3585 	}
3586 
3587 	ce->guc_state.prio = prio;
3588 	__guc_context_set_prio(guc, ce);
3589 
3590 	trace_intel_context_set_prio(ce);
3591 }
3592 
3593 static inline u8 map_i915_prio_to_guc_prio(int prio)
3594 {
3595 	if (prio == I915_PRIORITY_NORMAL)
3596 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3597 	else if (prio < I915_PRIORITY_NORMAL)
3598 		return GUC_CLIENT_PRIORITY_NORMAL;
3599 	else if (prio < I915_PRIORITY_DISPLAY)
3600 		return GUC_CLIENT_PRIORITY_HIGH;
3601 	else
3602 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3603 }
3604 
3605 static inline void add_context_inflight_prio(struct intel_context *ce,
3606 					     u8 guc_prio)
3607 {
3608 	lockdep_assert_held(&ce->guc_state.lock);
3609 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3610 
3611 	++ce->guc_state.prio_count[guc_prio];
3612 
3613 	/* Overflow protection */
3614 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3615 }
3616 
3617 static inline void sub_context_inflight_prio(struct intel_context *ce,
3618 					     u8 guc_prio)
3619 {
3620 	lockdep_assert_held(&ce->guc_state.lock);
3621 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3622 
3623 	/* Underflow protection */
3624 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3625 
3626 	--ce->guc_state.prio_count[guc_prio];
3627 }
3628 
3629 static inline void update_context_prio(struct intel_context *ce)
3630 {
3631 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3632 	int i;
3633 
3634 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3635 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3636 
3637 	lockdep_assert_held(&ce->guc_state.lock);
3638 
3639 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3640 		if (ce->guc_state.prio_count[i]) {
3641 			guc_context_set_prio(guc, ce, i);
3642 			break;
3643 		}
3644 	}
3645 }
3646 
3647 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3648 {
3649 	/* Lower value is higher priority */
3650 	return new_guc_prio < old_guc_prio;
3651 }
3652 
3653 static void add_to_context(struct i915_request *rq)
3654 {
3655 	struct intel_context *ce = request_to_scheduling_context(rq);
3656 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3657 
3658 	GEM_BUG_ON(intel_context_is_child(ce));
3659 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3660 
3661 	spin_lock(&ce->guc_state.lock);
3662 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3663 
3664 	if (rq->guc_prio == GUC_PRIO_INIT) {
3665 		rq->guc_prio = new_guc_prio;
3666 		add_context_inflight_prio(ce, rq->guc_prio);
3667 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3668 		sub_context_inflight_prio(ce, rq->guc_prio);
3669 		rq->guc_prio = new_guc_prio;
3670 		add_context_inflight_prio(ce, rq->guc_prio);
3671 	}
3672 	update_context_prio(ce);
3673 
3674 	spin_unlock(&ce->guc_state.lock);
3675 }
3676 
3677 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3678 {
3679 	lockdep_assert_held(&ce->guc_state.lock);
3680 
3681 	if (rq->guc_prio != GUC_PRIO_INIT &&
3682 	    rq->guc_prio != GUC_PRIO_FINI) {
3683 		sub_context_inflight_prio(ce, rq->guc_prio);
3684 		update_context_prio(ce);
3685 	}
3686 	rq->guc_prio = GUC_PRIO_FINI;
3687 }
3688 
3689 static void remove_from_context(struct i915_request *rq)
3690 {
3691 	struct intel_context *ce = request_to_scheduling_context(rq);
3692 
3693 	GEM_BUG_ON(intel_context_is_child(ce));
3694 
3695 	spin_lock_irq(&ce->guc_state.lock);
3696 
3697 	list_del_init(&rq->sched.link);
3698 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3699 
3700 	/* Prevent further __await_execution() registering a cb, then flush */
3701 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3702 
3703 	guc_prio_fini(rq, ce);
3704 
3705 	spin_unlock_irq(&ce->guc_state.lock);
3706 
3707 	atomic_dec(&ce->guc_id.ref);
3708 	i915_request_notify_execute_cb_imm(rq);
3709 }
3710 
3711 static const struct intel_context_ops guc_context_ops = {
3712 	.flags = COPS_RUNTIME_CYCLES,
3713 	.alloc = guc_context_alloc,
3714 
3715 	.close = guc_context_close,
3716 
3717 	.pre_pin = guc_context_pre_pin,
3718 	.pin = guc_context_pin,
3719 	.unpin = guc_context_unpin,
3720 	.post_unpin = guc_context_post_unpin,
3721 
3722 	.revoke = guc_context_revoke,
3723 
3724 	.cancel_request = guc_context_cancel_request,
3725 
3726 	.enter = intel_context_enter_engine,
3727 	.exit = intel_context_exit_engine,
3728 
3729 	.sched_disable = guc_context_sched_disable,
3730 
3731 	.update_stats = guc_context_update_stats,
3732 
3733 	.reset = lrc_reset,
3734 	.destroy = guc_context_destroy,
3735 
3736 	.create_virtual = guc_create_virtual,
3737 	.create_parallel = guc_create_parallel,
3738 };
3739 
3740 static void submit_work_cb(struct irq_work *wrk)
3741 {
3742 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3743 
3744 	might_lock(&rq->engine->sched_engine->lock);
3745 	i915_sw_fence_complete(&rq->submit);
3746 }
3747 
3748 static void __guc_signal_context_fence(struct intel_context *ce)
3749 {
3750 	struct i915_request *rq, *rn;
3751 
3752 	lockdep_assert_held(&ce->guc_state.lock);
3753 
3754 	if (!list_empty(&ce->guc_state.fences))
3755 		trace_intel_context_fence_release(ce);
3756 
3757 	/*
3758 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3759 	 * ce->guc_state.lock is preserved.
3760 	 */
3761 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3762 				 guc_fence_link) {
3763 		list_del(&rq->guc_fence_link);
3764 		irq_work_queue(&rq->submit_work);
3765 	}
3766 
3767 	INIT_LIST_HEAD(&ce->guc_state.fences);
3768 }
3769 
3770 static void guc_signal_context_fence(struct intel_context *ce)
3771 {
3772 	unsigned long flags;
3773 
3774 	GEM_BUG_ON(intel_context_is_child(ce));
3775 
3776 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3777 	clr_context_wait_for_deregister_to_register(ce);
3778 	__guc_signal_context_fence(ce);
3779 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3780 }
3781 
3782 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3783 {
3784 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3785 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3786 		!submission_disabled(ce_to_guc(ce));
3787 }
3788 
3789 static void guc_context_init(struct intel_context *ce)
3790 {
3791 	const struct i915_gem_context *ctx;
3792 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3793 
3794 	rcu_read_lock();
3795 	ctx = rcu_dereference(ce->gem_context);
3796 	if (ctx)
3797 		prio = ctx->sched.priority;
3798 	rcu_read_unlock();
3799 
3800 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3801 
3802 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3803 			  __delay_sched_disable);
3804 
3805 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3806 }
3807 
3808 static int guc_request_alloc(struct i915_request *rq)
3809 {
3810 	struct intel_context *ce = request_to_scheduling_context(rq);
3811 	struct intel_guc *guc = ce_to_guc(ce);
3812 	unsigned long flags;
3813 	int ret;
3814 
3815 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3816 
3817 	/*
3818 	 * Flush enough space to reduce the likelihood of waiting after
3819 	 * we start building the request - in which case we will just
3820 	 * have to repeat work.
3821 	 */
3822 	rq->reserved_space += GUC_REQUEST_SIZE;
3823 
3824 	/*
3825 	 * Note that after this point, we have committed to using
3826 	 * this request as it is being used to both track the
3827 	 * state of engine initialisation and liveness of the
3828 	 * golden renderstate above. Think twice before you try
3829 	 * to cancel/unwind this request now.
3830 	 */
3831 
3832 	/* Unconditionally invalidate GPU caches and TLBs. */
3833 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3834 	if (ret)
3835 		return ret;
3836 
3837 	rq->reserved_space -= GUC_REQUEST_SIZE;
3838 
3839 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3840 		guc_context_init(ce);
3841 
3842 	/*
3843 	 * If the context gets closed while the execbuf is ongoing, the context
3844 	 * close code will race with the below code to cancel the delayed work.
3845 	 * If the context close wins the race and cancels the work, it will
3846 	 * immediately call the sched disable (see guc_context_close), so there
3847 	 * is a chance we can get past this check while the sched_disable code
3848 	 * is being executed. To make sure that code completes before we check
3849 	 * the status further down, we wait for the close process to complete.
3850 	 * Else, this code path could send a request down thinking that the
3851 	 * context is still in a schedule-enable mode while the GuC ends up
3852 	 * dropping the request completely because the disable did go from the
3853 	 * context_close path right to GuC just prior. In the event the CT is
3854 	 * full, we could potentially need to wait up to 1.5 seconds.
3855 	 */
3856 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3857 		intel_context_sched_disable_unpin(ce);
3858 	else if (intel_context_is_closed(ce))
3859 		if (wait_for(context_close_done(ce), 1500))
3860 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3861 	/*
3862 	 * Call pin_guc_id here rather than in the pinning step as with
3863 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3864 	 * guc_id and creating horrible race conditions. This is especially bad
3865 	 * when guc_id are being stolen due to over subscription. By the time
3866 	 * this function is reached, it is guaranteed that the guc_id will be
3867 	 * persistent until the generated request is retired. Thus, sealing these
3868 	 * race conditions. It is still safe to fail here if guc_id are
3869 	 * exhausted and return -EAGAIN to the user indicating that they can try
3870 	 * again in the future.
3871 	 *
3872 	 * There is no need for a lock here as the timeline mutex ensures at
3873 	 * most one context can be executing this code path at once. The
3874 	 * guc_id_ref is incremented once for every request in flight and
3875 	 * decremented on each retire. When it is zero, a lock around the
3876 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3877 	 */
3878 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3879 		goto out;
3880 
3881 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3882 	if (unlikely(ret < 0))
3883 		return ret;
3884 	if (context_needs_register(ce, !!ret)) {
3885 		ret = try_context_registration(ce, true);
3886 		if (unlikely(ret)) {	/* unwind */
3887 			if (ret == -EPIPE) {
3888 				disable_submission(guc);
3889 				goto out;	/* GPU will be reset */
3890 			}
3891 			atomic_dec(&ce->guc_id.ref);
3892 			unpin_guc_id(guc, ce);
3893 			return ret;
3894 		}
3895 	}
3896 
3897 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3898 
3899 out:
3900 	/*
3901 	 * We block all requests on this context if a G2H is pending for a
3902 	 * schedule disable or context deregistration as the GuC will fail a
3903 	 * schedule enable or context registration if either G2H is pending
3904 	 * respectfully. Once a G2H returns, the fence is released that is
3905 	 * blocking these requests (see guc_signal_context_fence).
3906 	 */
3907 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3908 	if (context_wait_for_deregister_to_register(ce) ||
3909 	    context_pending_disable(ce)) {
3910 		init_irq_work(&rq->submit_work, submit_work_cb);
3911 		i915_sw_fence_await(&rq->submit);
3912 
3913 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3914 	}
3915 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3916 
3917 	return 0;
3918 }
3919 
3920 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3921 				       struct i915_gem_ww_ctx *ww,
3922 				       void **vaddr)
3923 {
3924 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3925 
3926 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3927 }
3928 
3929 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3930 {
3931 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3932 	int ret = __guc_context_pin(ce, engine, vaddr);
3933 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3934 
3935 	if (likely(!ret))
3936 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3937 			intel_engine_pm_get(engine);
3938 
3939 	return ret;
3940 }
3941 
3942 static void guc_virtual_context_unpin(struct intel_context *ce)
3943 {
3944 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3945 	struct intel_engine_cs *engine;
3946 	struct intel_guc *guc = ce_to_guc(ce);
3947 
3948 	GEM_BUG_ON(context_enabled(ce));
3949 	GEM_BUG_ON(intel_context_is_barrier(ce));
3950 
3951 	unpin_guc_id(guc, ce);
3952 	lrc_unpin(ce);
3953 
3954 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3955 		intel_engine_pm_put_async(engine);
3956 }
3957 
3958 static void guc_virtual_context_enter(struct intel_context *ce)
3959 {
3960 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3961 	struct intel_engine_cs *engine;
3962 
3963 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3964 		intel_engine_pm_get(engine);
3965 
3966 	intel_timeline_enter(ce->timeline);
3967 }
3968 
3969 static void guc_virtual_context_exit(struct intel_context *ce)
3970 {
3971 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3972 	struct intel_engine_cs *engine;
3973 
3974 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3975 		intel_engine_pm_put(engine);
3976 
3977 	intel_timeline_exit(ce->timeline);
3978 }
3979 
3980 static int guc_virtual_context_alloc(struct intel_context *ce)
3981 {
3982 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3983 
3984 	return lrc_alloc(ce, engine);
3985 }
3986 
3987 static const struct intel_context_ops virtual_guc_context_ops = {
3988 	.flags = COPS_RUNTIME_CYCLES,
3989 	.alloc = guc_virtual_context_alloc,
3990 
3991 	.close = guc_context_close,
3992 
3993 	.pre_pin = guc_virtual_context_pre_pin,
3994 	.pin = guc_virtual_context_pin,
3995 	.unpin = guc_virtual_context_unpin,
3996 	.post_unpin = guc_context_post_unpin,
3997 
3998 	.revoke = guc_context_revoke,
3999 
4000 	.cancel_request = guc_context_cancel_request,
4001 
4002 	.enter = guc_virtual_context_enter,
4003 	.exit = guc_virtual_context_exit,
4004 
4005 	.sched_disable = guc_context_sched_disable,
4006 	.update_stats = guc_context_update_stats,
4007 
4008 	.destroy = guc_context_destroy,
4009 
4010 	.get_sibling = guc_virtual_get_sibling,
4011 };
4012 
4013 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4014 {
4015 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4016 	struct intel_guc *guc = ce_to_guc(ce);
4017 	int ret;
4018 
4019 	GEM_BUG_ON(!intel_context_is_parent(ce));
4020 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4021 
4022 	ret = pin_guc_id(guc, ce);
4023 	if (unlikely(ret < 0))
4024 		return ret;
4025 
4026 	return __guc_context_pin(ce, engine, vaddr);
4027 }
4028 
4029 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4030 {
4031 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4032 
4033 	GEM_BUG_ON(!intel_context_is_child(ce));
4034 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4035 
4036 	__intel_context_pin(ce->parallel.parent);
4037 	return __guc_context_pin(ce, engine, vaddr);
4038 }
4039 
4040 static void guc_parent_context_unpin(struct intel_context *ce)
4041 {
4042 	struct intel_guc *guc = ce_to_guc(ce);
4043 
4044 	GEM_BUG_ON(context_enabled(ce));
4045 	GEM_BUG_ON(intel_context_is_barrier(ce));
4046 	GEM_BUG_ON(!intel_context_is_parent(ce));
4047 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4048 
4049 	unpin_guc_id(guc, ce);
4050 	lrc_unpin(ce);
4051 }
4052 
4053 static void guc_child_context_unpin(struct intel_context *ce)
4054 {
4055 	GEM_BUG_ON(context_enabled(ce));
4056 	GEM_BUG_ON(intel_context_is_barrier(ce));
4057 	GEM_BUG_ON(!intel_context_is_child(ce));
4058 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4059 
4060 	lrc_unpin(ce);
4061 }
4062 
4063 static void guc_child_context_post_unpin(struct intel_context *ce)
4064 {
4065 	GEM_BUG_ON(!intel_context_is_child(ce));
4066 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4067 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4068 
4069 	lrc_post_unpin(ce);
4070 	intel_context_unpin(ce->parallel.parent);
4071 }
4072 
4073 static void guc_child_context_destroy(struct kref *kref)
4074 {
4075 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4076 
4077 	__guc_context_destroy(ce);
4078 }
4079 
4080 static const struct intel_context_ops virtual_parent_context_ops = {
4081 	.alloc = guc_virtual_context_alloc,
4082 
4083 	.close = guc_context_close,
4084 
4085 	.pre_pin = guc_context_pre_pin,
4086 	.pin = guc_parent_context_pin,
4087 	.unpin = guc_parent_context_unpin,
4088 	.post_unpin = guc_context_post_unpin,
4089 
4090 	.revoke = guc_context_revoke,
4091 
4092 	.cancel_request = guc_context_cancel_request,
4093 
4094 	.enter = guc_virtual_context_enter,
4095 	.exit = guc_virtual_context_exit,
4096 
4097 	.sched_disable = guc_context_sched_disable,
4098 
4099 	.destroy = guc_context_destroy,
4100 
4101 	.get_sibling = guc_virtual_get_sibling,
4102 };
4103 
4104 static const struct intel_context_ops virtual_child_context_ops = {
4105 	.alloc = guc_virtual_context_alloc,
4106 
4107 	.pre_pin = guc_context_pre_pin,
4108 	.pin = guc_child_context_pin,
4109 	.unpin = guc_child_context_unpin,
4110 	.post_unpin = guc_child_context_post_unpin,
4111 
4112 	.cancel_request = guc_context_cancel_request,
4113 
4114 	.enter = guc_virtual_context_enter,
4115 	.exit = guc_virtual_context_exit,
4116 
4117 	.destroy = guc_child_context_destroy,
4118 
4119 	.get_sibling = guc_virtual_get_sibling,
4120 };
4121 
4122 /*
4123  * The below override of the breadcrumbs is enabled when the user configures a
4124  * context for parallel submission (multi-lrc, parent-child).
4125  *
4126  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4127  * safely preempt all the hw contexts configured for parallel submission
4128  * between each BB. The contract between the i915 and GuC is if the parent
4129  * context can be preempted, all the children can be preempted, and the GuC will
4130  * always try to preempt the parent before the children. A handshake between the
4131  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4132  * creating a window to preempt between each set of BBs.
4133  */
4134 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4135 						     u64 offset, u32 len,
4136 						     const unsigned int flags);
4137 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4138 						    u64 offset, u32 len,
4139 						    const unsigned int flags);
4140 static u32 *
4141 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4142 						 u32 *cs);
4143 static u32 *
4144 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4145 						u32 *cs);
4146 
4147 static struct intel_context *
4148 guc_create_parallel(struct intel_engine_cs **engines,
4149 		    unsigned int num_siblings,
4150 		    unsigned int width)
4151 {
4152 	struct intel_engine_cs **siblings = NULL;
4153 	struct intel_context *parent = NULL, *ce, *err;
4154 	int i, j;
4155 
4156 	siblings = kmalloc_array(num_siblings,
4157 				 sizeof(*siblings),
4158 				 GFP_KERNEL);
4159 	if (!siblings)
4160 		return ERR_PTR(-ENOMEM);
4161 
4162 	for (i = 0; i < width; ++i) {
4163 		for (j = 0; j < num_siblings; ++j)
4164 			siblings[j] = engines[i * num_siblings + j];
4165 
4166 		ce = intel_engine_create_virtual(siblings, num_siblings,
4167 						 FORCE_VIRTUAL);
4168 		if (IS_ERR(ce)) {
4169 			err = ERR_CAST(ce);
4170 			goto unwind;
4171 		}
4172 
4173 		if (i == 0) {
4174 			parent = ce;
4175 			parent->ops = &virtual_parent_context_ops;
4176 		} else {
4177 			ce->ops = &virtual_child_context_ops;
4178 			intel_context_bind_parent_child(parent, ce);
4179 		}
4180 	}
4181 
4182 	parent->parallel.fence_context = dma_fence_context_alloc(1);
4183 
4184 	parent->engine->emit_bb_start =
4185 		emit_bb_start_parent_no_preempt_mid_batch;
4186 	parent->engine->emit_fini_breadcrumb =
4187 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4188 	parent->engine->emit_fini_breadcrumb_dw =
4189 		12 + 4 * parent->parallel.number_children;
4190 	for_each_child(parent, ce) {
4191 		ce->engine->emit_bb_start =
4192 			emit_bb_start_child_no_preempt_mid_batch;
4193 		ce->engine->emit_fini_breadcrumb =
4194 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
4195 		ce->engine->emit_fini_breadcrumb_dw = 16;
4196 	}
4197 
4198 	kfree(siblings);
4199 	return parent;
4200 
4201 unwind:
4202 	if (parent)
4203 		intel_context_put(parent);
4204 	kfree(siblings);
4205 	return err;
4206 }
4207 
4208 static bool
4209 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4210 {
4211 	struct intel_engine_cs *sibling;
4212 	intel_engine_mask_t tmp, mask = b->engine_mask;
4213 	bool result = false;
4214 
4215 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4216 		result |= intel_engine_irq_enable(sibling);
4217 
4218 	return result;
4219 }
4220 
4221 static void
4222 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4223 {
4224 	struct intel_engine_cs *sibling;
4225 	intel_engine_mask_t tmp, mask = b->engine_mask;
4226 
4227 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4228 		intel_engine_irq_disable(sibling);
4229 }
4230 
4231 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4232 {
4233 	int i;
4234 
4235 	/*
4236 	 * In GuC submission mode we do not know which physical engine a request
4237 	 * will be scheduled on, this creates a problem because the breadcrumb
4238 	 * interrupt is per physical engine. To work around this we attach
4239 	 * requests and direct all breadcrumb interrupts to the first instance
4240 	 * of an engine per class. In addition all breadcrumb interrupts are
4241 	 * enabled / disabled across an engine class in unison.
4242 	 */
4243 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4244 		struct intel_engine_cs *sibling =
4245 			engine->gt->engine_class[engine->class][i];
4246 
4247 		if (sibling) {
4248 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4249 				intel_breadcrumbs_put(engine->breadcrumbs);
4250 				engine->breadcrumbs =
4251 					intel_breadcrumbs_get(sibling->breadcrumbs);
4252 			}
4253 			break;
4254 		}
4255 	}
4256 
4257 	if (engine->breadcrumbs) {
4258 		engine->breadcrumbs->engine_mask |= engine->mask;
4259 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4260 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4261 	}
4262 }
4263 
4264 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4265 					   int prio)
4266 {
4267 	struct intel_context *ce = request_to_scheduling_context(rq);
4268 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4269 
4270 	/* Short circuit function */
4271 	if (prio < I915_PRIORITY_NORMAL)
4272 		return;
4273 
4274 	spin_lock(&ce->guc_state.lock);
4275 
4276 	if (rq->guc_prio == GUC_PRIO_FINI)
4277 		goto exit;
4278 
4279 	if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4280 		goto exit;
4281 
4282 	if (rq->guc_prio != GUC_PRIO_INIT)
4283 		sub_context_inflight_prio(ce, rq->guc_prio);
4284 
4285 	rq->guc_prio = new_guc_prio;
4286 	add_context_inflight_prio(ce, rq->guc_prio);
4287 	update_context_prio(ce);
4288 
4289 exit:
4290 	spin_unlock(&ce->guc_state.lock);
4291 }
4292 
4293 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4294 {
4295 	struct intel_context *ce = request_to_scheduling_context(rq);
4296 
4297 	spin_lock(&ce->guc_state.lock);
4298 	guc_prio_fini(rq, ce);
4299 	spin_unlock(&ce->guc_state.lock);
4300 }
4301 
4302 static void sanitize_hwsp(struct intel_engine_cs *engine)
4303 {
4304 	struct intel_timeline *tl;
4305 
4306 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4307 		intel_timeline_reset_seqno(tl);
4308 }
4309 
4310 static void guc_sanitize(struct intel_engine_cs *engine)
4311 {
4312 	/*
4313 	 * Poison residual state on resume, in case the suspend didn't!
4314 	 *
4315 	 * We have to assume that across suspend/resume (or other loss
4316 	 * of control) that the contents of our pinned buffers has been
4317 	 * lost, replaced by garbage. Since this doesn't always happen,
4318 	 * let's poison such state so that we more quickly spot when
4319 	 * we falsely assume it has been preserved.
4320 	 */
4321 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4322 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4323 
4324 	/*
4325 	 * The kernel_context HWSP is stored in the status_page. As above,
4326 	 * that may be lost on resume/initialisation, and so we need to
4327 	 * reset the value in the HWSP.
4328 	 */
4329 	sanitize_hwsp(engine);
4330 
4331 	/* And scrub the dirty cachelines for the HWSP */
4332 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4333 
4334 	intel_engine_reset_pinned_contexts(engine);
4335 }
4336 
4337 static void setup_hwsp(struct intel_engine_cs *engine)
4338 {
4339 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4340 
4341 	ENGINE_WRITE_FW(engine,
4342 			RING_HWS_PGA,
4343 			i915_ggtt_offset(engine->status_page.vma));
4344 }
4345 
4346 static void start_engine(struct intel_engine_cs *engine)
4347 {
4348 	ENGINE_WRITE_FW(engine,
4349 			RING_MODE_GEN7,
4350 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4351 
4352 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4353 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4354 }
4355 
4356 static int guc_resume(struct intel_engine_cs *engine)
4357 {
4358 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4359 
4360 	intel_mocs_init_engine(engine);
4361 
4362 	intel_breadcrumbs_reset(engine->breadcrumbs);
4363 
4364 	setup_hwsp(engine);
4365 	start_engine(engine);
4366 
4367 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4368 		xehp_enable_ccs_engines(engine);
4369 
4370 	return 0;
4371 }
4372 
4373 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4374 {
4375 	return !sched_engine->tasklet.callback;
4376 }
4377 
4378 static void guc_set_default_submission(struct intel_engine_cs *engine)
4379 {
4380 	engine->submit_request = guc_submit_request;
4381 }
4382 
4383 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4384 					 struct intel_context *ce)
4385 {
4386 	int ret;
4387 
4388 	/*
4389 	 * Note: we purposefully do not check the returns below because
4390 	 * the registration can only fail if a reset is just starting.
4391 	 * This is called at the end of reset so presumably another reset
4392 	 * isn't happening and even it did this code would be run again.
4393 	 */
4394 
4395 	if (context_guc_id_invalid(ce)) {
4396 		ret = pin_guc_id(guc, ce);
4397 
4398 		if (ret < 0)
4399 			return ret;
4400 	}
4401 
4402 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4403 		guc_context_init(ce);
4404 
4405 	ret = try_context_registration(ce, true);
4406 	if (ret)
4407 		unpin_guc_id(guc, ce);
4408 
4409 	return ret;
4410 }
4411 
4412 static inline int guc_init_submission(struct intel_guc *guc)
4413 {
4414 	struct intel_gt *gt = guc_to_gt(guc);
4415 	struct intel_engine_cs *engine;
4416 	enum intel_engine_id id;
4417 
4418 	/* make sure all descriptors are clean... */
4419 	xa_destroy(&guc->context_lookup);
4420 
4421 	/*
4422 	 * A reset might have occurred while we had a pending stalled request,
4423 	 * so make sure we clean that up.
4424 	 */
4425 	guc->stalled_request = NULL;
4426 	guc->submission_stall_reason = STALL_NONE;
4427 
4428 	/*
4429 	 * Some contexts might have been pinned before we enabled GuC
4430 	 * submission, so we need to add them to the GuC bookeeping.
4431 	 * Also, after a reset the of the GuC we want to make sure that the
4432 	 * information shared with GuC is properly reset. The kernel LRCs are
4433 	 * not attached to the gem_context, so they need to be added separately.
4434 	 */
4435 	for_each_engine(engine, gt, id) {
4436 		struct intel_context *ce;
4437 
4438 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4439 				    pinned_contexts_link) {
4440 			int ret = guc_kernel_context_pin(guc, ce);
4441 
4442 			if (ret) {
4443 				/* No point in trying to clean up as i915 will wedge on failure */
4444 				return ret;
4445 			}
4446 		}
4447 	}
4448 
4449 	return 0;
4450 }
4451 
4452 static void guc_release(struct intel_engine_cs *engine)
4453 {
4454 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4455 
4456 	intel_engine_cleanup_common(engine);
4457 	lrc_fini_wa_ctx(engine);
4458 }
4459 
4460 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4461 {
4462 	struct intel_engine_cs *e;
4463 	intel_engine_mask_t tmp, mask = engine->mask;
4464 
4465 	for_each_engine_masked(e, engine->gt, mask, tmp)
4466 		e->serial++;
4467 }
4468 
4469 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4470 {
4471 	/* Default vfuncs which can be overridden by each engine. */
4472 
4473 	engine->resume = guc_resume;
4474 
4475 	engine->cops = &guc_context_ops;
4476 	engine->request_alloc = guc_request_alloc;
4477 	engine->add_active_request = add_to_context;
4478 	engine->remove_active_request = remove_from_context;
4479 
4480 	engine->sched_engine->schedule = i915_schedule;
4481 
4482 	engine->reset.prepare = guc_engine_reset_prepare;
4483 	engine->reset.rewind = guc_rewind_nop;
4484 	engine->reset.cancel = guc_reset_nop;
4485 	engine->reset.finish = guc_reset_nop;
4486 
4487 	engine->emit_flush = gen8_emit_flush_xcs;
4488 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4489 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4490 	if (GRAPHICS_VER(engine->i915) >= 12) {
4491 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4492 		engine->emit_flush = gen12_emit_flush_xcs;
4493 	}
4494 	engine->set_default_submission = guc_set_default_submission;
4495 	engine->busyness = guc_engine_busyness;
4496 
4497 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4498 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4499 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4500 
4501 	/* Wa_14014475959:dg2 */
4502 	if (engine->class == COMPUTE_CLASS)
4503 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4504 		    IS_DG2(engine->i915))
4505 			engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4506 
4507 	/* Wa_16019325821 */
4508 	/* Wa_14019159160 */
4509 	if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4510 	    IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4511 		engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4512 
4513 	/*
4514 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4515 	 * handled by the firmware so some minor tweaks are required before
4516 	 * enabling.
4517 	 *
4518 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4519 	 */
4520 
4521 	engine->emit_bb_start = gen8_emit_bb_start;
4522 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4523 		engine->emit_bb_start = xehp_emit_bb_start;
4524 }
4525 
4526 static void rcs_submission_override(struct intel_engine_cs *engine)
4527 {
4528 	switch (GRAPHICS_VER(engine->i915)) {
4529 	case 12:
4530 		engine->emit_flush = gen12_emit_flush_rcs;
4531 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4532 		break;
4533 	case 11:
4534 		engine->emit_flush = gen11_emit_flush_rcs;
4535 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4536 		break;
4537 	default:
4538 		engine->emit_flush = gen8_emit_flush_rcs;
4539 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4540 		break;
4541 	}
4542 }
4543 
4544 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4545 {
4546 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4547 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4548 }
4549 
4550 static void guc_sched_engine_destroy(struct kref *kref)
4551 {
4552 	struct i915_sched_engine *sched_engine =
4553 		container_of(kref, typeof(*sched_engine), ref);
4554 	struct intel_guc *guc = sched_engine->private_data;
4555 
4556 	guc->sched_engine = NULL;
4557 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4558 	kfree(sched_engine);
4559 }
4560 
4561 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4562 {
4563 	struct drm_i915_private *i915 = engine->i915;
4564 	struct intel_guc *guc = gt_to_guc(engine->gt);
4565 
4566 	/*
4567 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4568 	 * that are only valid on gen11+
4569 	 */
4570 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4571 
4572 	if (!guc->sched_engine) {
4573 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4574 		if (!guc->sched_engine)
4575 			return -ENOMEM;
4576 
4577 		guc->sched_engine->schedule = i915_schedule;
4578 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4579 		guc->sched_engine->private_data = guc;
4580 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4581 		guc->sched_engine->bump_inflight_request_prio =
4582 			guc_bump_inflight_request_prio;
4583 		guc->sched_engine->retire_inflight_request_prio =
4584 			guc_retire_inflight_request_prio;
4585 		tasklet_setup(&guc->sched_engine->tasklet,
4586 			      guc_submission_tasklet);
4587 	}
4588 	i915_sched_engine_put(engine->sched_engine);
4589 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4590 
4591 	guc_default_vfuncs(engine);
4592 	guc_default_irqs(engine);
4593 	guc_init_breadcrumbs(engine);
4594 
4595 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4596 		rcs_submission_override(engine);
4597 
4598 	lrc_init_wa_ctx(engine);
4599 
4600 	/* Finally, take ownership and responsibility for cleanup! */
4601 	engine->sanitize = guc_sanitize;
4602 	engine->release = guc_release;
4603 
4604 	return 0;
4605 }
4606 
4607 struct scheduling_policy {
4608 	/* internal data */
4609 	u32 max_words, num_words;
4610 	u32 count;
4611 	/* API data */
4612 	struct guc_update_scheduling_policy h2g;
4613 };
4614 
4615 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4616 {
4617 	u32 *start = (void *)&policy->h2g;
4618 	u32 *end = policy->h2g.data + policy->num_words;
4619 	size_t delta = end - start;
4620 
4621 	return delta;
4622 }
4623 
4624 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4625 {
4626 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4627 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4628 	policy->num_words = 0;
4629 	policy->count = 0;
4630 
4631 	return policy;
4632 }
4633 
4634 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4635 					    u32 action, u32 *data, u32 len)
4636 {
4637 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4638 
4639 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4640 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4641 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4642 	memcpy(klv_ptr, data, sizeof(u32) * len);
4643 	policy->num_words += 1 + len;
4644 	policy->count++;
4645 }
4646 
4647 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4648 						struct scheduling_policy *policy)
4649 {
4650 	int ret;
4651 
4652 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4653 			     __guc_scheduling_policy_action_size(policy));
4654 	if (ret < 0) {
4655 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4656 				ERR_PTR(ret));
4657 		return ret;
4658 	}
4659 
4660 	if (ret != policy->count) {
4661 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4662 			 ret, policy->count);
4663 		if (ret > policy->count)
4664 			return -EPROTO;
4665 	}
4666 
4667 	return 0;
4668 }
4669 
4670 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4671 {
4672 	struct scheduling_policy policy;
4673 	struct intel_gt *gt = guc_to_gt(guc);
4674 	intel_wakeref_t wakeref;
4675 	int ret;
4676 
4677 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4678 		return 0;
4679 
4680 	__guc_scheduling_policy_start_klv(&policy);
4681 
4682 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4683 		u32 yield[] = {
4684 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4685 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4686 		};
4687 
4688 		__guc_scheduling_policy_add_klv(&policy,
4689 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4690 						yield, ARRAY_SIZE(yield));
4691 
4692 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4693 	}
4694 
4695 	return ret;
4696 }
4697 
4698 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4699 {
4700 	struct intel_gt *gt = guc_to_gt(guc);
4701 	u32 val;
4702 
4703 	if (GRAPHICS_VER(gt->i915) < 12)
4704 		return;
4705 
4706 	if (to_guc)
4707 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4708 	else
4709 		val = 0;
4710 
4711 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4712 }
4713 
4714 int intel_guc_submission_enable(struct intel_guc *guc)
4715 {
4716 	int ret;
4717 
4718 	/* Semaphore interrupt enable and route to GuC */
4719 	guc_route_semaphores(guc, true);
4720 
4721 	ret = guc_init_submission(guc);
4722 	if (ret)
4723 		goto fail_sem;
4724 
4725 	ret = guc_init_engine_stats(guc);
4726 	if (ret)
4727 		goto fail_sem;
4728 
4729 	ret = guc_init_global_schedule_policy(guc);
4730 	if (ret)
4731 		goto fail_stats;
4732 
4733 	return 0;
4734 
4735 fail_stats:
4736 	guc_fini_engine_stats(guc);
4737 fail_sem:
4738 	guc_route_semaphores(guc, false);
4739 	return ret;
4740 }
4741 
4742 /* Note: By the time we're here, GuC may have already been reset */
4743 void intel_guc_submission_disable(struct intel_guc *guc)
4744 {
4745 	guc_cancel_busyness_worker(guc);
4746 
4747 	/* Semaphore interrupt disable and route to host */
4748 	guc_route_semaphores(guc, false);
4749 }
4750 
4751 static bool __guc_submission_supported(struct intel_guc *guc)
4752 {
4753 	/* GuC submission is unavailable for pre-Gen11 */
4754 	return intel_guc_is_supported(guc) &&
4755 	       GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4756 }
4757 
4758 static bool __guc_submission_selected(struct intel_guc *guc)
4759 {
4760 	struct drm_i915_private *i915 = guc_to_i915(guc);
4761 
4762 	if (!intel_guc_submission_is_supported(guc))
4763 		return false;
4764 
4765 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4766 }
4767 
4768 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4769 {
4770 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4771 }
4772 
4773 /*
4774  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4775  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4776  * operation. This matches the 30fps game-render + encode (real world) workload this
4777  * knob was tested against.
4778  */
4779 #define SCHED_DISABLE_DELAY_MS	34
4780 
4781 /*
4782  * A threshold of 75% is a reasonable starting point considering that real world apps
4783  * generally don't get anywhere near this.
4784  */
4785 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4786 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4787 
4788 void intel_guc_submission_init_early(struct intel_guc *guc)
4789 {
4790 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4791 
4792 	spin_lock_init(&guc->submission_state.lock);
4793 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4794 	ida_init(&guc->submission_state.guc_ids);
4795 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4796 	INIT_WORK(&guc->submission_state.destroyed_worker,
4797 		  destroyed_worker_func);
4798 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4799 		  reset_fail_worker_func);
4800 
4801 	spin_lock_init(&guc->timestamp.lock);
4802 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4803 
4804 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4805 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4806 	guc->submission_state.sched_disable_gucid_threshold =
4807 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4808 	guc->submission_supported = __guc_submission_supported(guc);
4809 	guc->submission_selected = __guc_submission_selected(guc);
4810 }
4811 
4812 static inline struct intel_context *
4813 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4814 {
4815 	struct intel_context *ce;
4816 
4817 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4818 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4819 		return NULL;
4820 	}
4821 
4822 	ce = __get_context(guc, ctx_id);
4823 	if (unlikely(!ce)) {
4824 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4825 		return NULL;
4826 	}
4827 
4828 	if (unlikely(intel_context_is_child(ce))) {
4829 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4830 		return NULL;
4831 	}
4832 
4833 	return ce;
4834 }
4835 
4836 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4837 {
4838 	struct intel_guc_tlb_wait *wait;
4839 	unsigned long flags;
4840 
4841 	xa_lock_irqsave(&guc->tlb_lookup, flags);
4842 	wait = xa_load(&guc->tlb_lookup, seqno);
4843 
4844 	if (wait)
4845 		wake_up(&wait->wq);
4846 	else
4847 		guc_dbg(guc,
4848 			"Stale TLB invalidation response with seqno %d\n", seqno);
4849 
4850 	xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4851 }
4852 
4853 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4854 				    const u32 *payload, u32 len)
4855 {
4856 	if (len < 1)
4857 		return -EPROTO;
4858 
4859 	wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4860 	return 0;
4861 }
4862 
4863 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4864 {
4865 	/*
4866 	 * This is equivalent to wait_woken() with the exception that
4867 	 * we do not wake up early if the kthread task has been completed.
4868 	 * As we are called from page reclaim in any task context,
4869 	 * we may be invoked from stopped kthreads, but we *must*
4870 	 * complete the wait from the HW.
4871 	 */
4872 	do {
4873 		set_current_state(TASK_UNINTERRUPTIBLE);
4874 		if (wq_entry->flags & WQ_FLAG_WOKEN)
4875 			break;
4876 
4877 		timeout = schedule_timeout(timeout);
4878 	} while (timeout);
4879 
4880 	/* See wait_woken() and woken_wake_function() */
4881 	__set_current_state(TASK_RUNNING);
4882 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4883 
4884 	return timeout;
4885 }
4886 
4887 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4888 {
4889 	/* Check if GT is wedged or suspended */
4890 	if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4891 		return false;
4892 	return true;
4893 }
4894 
4895 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4896 				   enum intel_guc_tlb_invalidation_type type)
4897 {
4898 	struct intel_guc_tlb_wait _wq, *wq = &_wq;
4899 	struct intel_gt *gt = guc_to_gt(guc);
4900 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
4901 	int err;
4902 	u32 seqno;
4903 	u32 action[] = {
4904 		INTEL_GUC_ACTION_TLB_INVALIDATION,
4905 		0,
4906 		REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4907 			REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4908 				       INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4909 			INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4910 	};
4911 	u32 size = ARRAY_SIZE(action);
4912 
4913 	/*
4914 	 * Early guard against GT enablement.  TLB invalidation should not be
4915 	 * attempted if the GT is disabled due to suspend/wedge.
4916 	 */
4917 	if (!intel_gt_is_enabled(gt))
4918 		return -EINVAL;
4919 
4920 	init_waitqueue_head(&_wq.wq);
4921 
4922 	if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4923 				xa_limit_32b, &guc->next_seqno,
4924 				GFP_ATOMIC | __GFP_NOWARN) < 0) {
4925 		/* Under severe memory pressure? Serialise TLB allocations */
4926 		xa_lock_irq(&guc->tlb_lookup);
4927 		wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4928 		wait_event_lock_irq(wq->wq,
4929 				    !READ_ONCE(wq->busy),
4930 				    guc->tlb_lookup.xa_lock);
4931 		/*
4932 		 * Update wq->busy under lock to ensure only one waiter can
4933 		 * issue the TLB invalidation command using the serial slot at a
4934 		 * time. The condition is set to true before releasing the lock
4935 		 * so that other caller continue to wait until woken up again.
4936 		 */
4937 		wq->busy = true;
4938 		xa_unlock_irq(&guc->tlb_lookup);
4939 
4940 		seqno = guc->serial_slot;
4941 	}
4942 
4943 	action[1] = seqno;
4944 
4945 	add_wait_queue(&wq->wq, &wait);
4946 
4947 	/* This is a critical reclaim path and thus we must loop here. */
4948 	err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4949 	if (err)
4950 		goto out;
4951 
4952 	/*
4953 	 * Late guard against GT enablement.  It is not an error for the TLB
4954 	 * invalidation to time out if the GT is disabled during the process
4955 	 * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
4956 	 * in this case.
4957 	 */
4958 	if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4959 	    intel_gt_is_enabled(gt)) {
4960 		guc_err(guc,
4961 			"TLB invalidation response timed out for seqno %u\n", seqno);
4962 		err = -ETIME;
4963 	}
4964 out:
4965 	remove_wait_queue(&wq->wq, &wait);
4966 	if (seqno != guc->serial_slot)
4967 		xa_erase_irq(&guc->tlb_lookup, seqno);
4968 
4969 	return err;
4970 }
4971 
4972 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
4973 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
4974 {
4975 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
4976 }
4977 
4978 /* Send a H2G command to invalidate the GuC's internal TLB. */
4979 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
4980 {
4981 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
4982 }
4983 
4984 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4985 					  const u32 *msg,
4986 					  u32 len)
4987 {
4988 	struct intel_context *ce;
4989 	u32 ctx_id;
4990 
4991 	if (unlikely(len < 1)) {
4992 		guc_err(guc, "Invalid length %u\n", len);
4993 		return -EPROTO;
4994 	}
4995 	ctx_id = msg[0];
4996 
4997 	ce = g2h_context_lookup(guc, ctx_id);
4998 	if (unlikely(!ce))
4999 		return -EPROTO;
5000 
5001 	trace_intel_context_deregister_done(ce);
5002 
5003 #ifdef CONFIG_DRM_I915_SELFTEST
5004 	if (unlikely(ce->drop_deregister)) {
5005 		ce->drop_deregister = false;
5006 		return 0;
5007 	}
5008 #endif
5009 
5010 	if (context_wait_for_deregister_to_register(ce)) {
5011 		struct intel_runtime_pm *runtime_pm =
5012 			&ce->engine->gt->i915->runtime_pm;
5013 		intel_wakeref_t wakeref;
5014 
5015 		/*
5016 		 * Previous owner of this guc_id has been deregistered, now safe
5017 		 * register this context.
5018 		 */
5019 		with_intel_runtime_pm(runtime_pm, wakeref)
5020 			register_context(ce, true);
5021 		guc_signal_context_fence(ce);
5022 		intel_context_put(ce);
5023 	} else if (context_destroyed(ce)) {
5024 		/* Context has been destroyed */
5025 		intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5026 		release_guc_id(guc, ce);
5027 		__guc_context_destroy(ce);
5028 	}
5029 
5030 	decr_outstanding_submission_g2h(guc);
5031 
5032 	return 0;
5033 }
5034 
5035 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5036 				     const u32 *msg,
5037 				     u32 len)
5038 {
5039 	struct intel_context *ce;
5040 	unsigned long flags;
5041 	u32 ctx_id;
5042 
5043 	if (unlikely(len < 2)) {
5044 		guc_err(guc, "Invalid length %u\n", len);
5045 		return -EPROTO;
5046 	}
5047 	ctx_id = msg[0];
5048 
5049 	ce = g2h_context_lookup(guc, ctx_id);
5050 	if (unlikely(!ce))
5051 		return -EPROTO;
5052 
5053 	if (unlikely(context_destroyed(ce) ||
5054 		     (!context_pending_enable(ce) &&
5055 		     !context_pending_disable(ce)))) {
5056 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5057 			ce->guc_state.sched_state, ctx_id);
5058 		return -EPROTO;
5059 	}
5060 
5061 	trace_intel_context_sched_done(ce);
5062 
5063 	if (context_pending_enable(ce)) {
5064 #ifdef CONFIG_DRM_I915_SELFTEST
5065 		if (unlikely(ce->drop_schedule_enable)) {
5066 			ce->drop_schedule_enable = false;
5067 			return 0;
5068 		}
5069 #endif
5070 
5071 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5072 		clr_context_pending_enable(ce);
5073 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5074 	} else if (context_pending_disable(ce)) {
5075 		bool banned;
5076 
5077 #ifdef CONFIG_DRM_I915_SELFTEST
5078 		if (unlikely(ce->drop_schedule_disable)) {
5079 			ce->drop_schedule_disable = false;
5080 			return 0;
5081 		}
5082 #endif
5083 
5084 		/*
5085 		 * Unpin must be done before __guc_signal_context_fence,
5086 		 * otherwise a race exists between the requests getting
5087 		 * submitted + retired before this unpin completes resulting in
5088 		 * the pin_count going to zero and the context still being
5089 		 * enabled.
5090 		 */
5091 		intel_context_sched_disable_unpin(ce);
5092 
5093 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5094 		banned = context_banned(ce);
5095 		clr_context_banned(ce);
5096 		clr_context_pending_disable(ce);
5097 		__guc_signal_context_fence(ce);
5098 		guc_blocked_fence_complete(ce);
5099 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5100 
5101 		if (banned) {
5102 			guc_cancel_context_requests(ce);
5103 			intel_engine_signal_breadcrumbs(ce->engine);
5104 		}
5105 	}
5106 
5107 	decr_outstanding_submission_g2h(guc);
5108 	intel_context_put(ce);
5109 
5110 	return 0;
5111 }
5112 
5113 static void capture_error_state(struct intel_guc *guc,
5114 				struct intel_context *ce)
5115 {
5116 	struct intel_gt *gt = guc_to_gt(guc);
5117 	struct drm_i915_private *i915 = gt->i915;
5118 	intel_wakeref_t wakeref;
5119 	intel_engine_mask_t engine_mask;
5120 
5121 	if (intel_engine_is_virtual(ce->engine)) {
5122 		struct intel_engine_cs *e;
5123 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5124 
5125 		engine_mask = 0;
5126 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5127 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5128 
5129 			if (match) {
5130 				intel_engine_set_hung_context(e, ce);
5131 				engine_mask |= e->mask;
5132 				i915_increase_reset_engine_count(&i915->gpu_error,
5133 								 e);
5134 			}
5135 		}
5136 
5137 		if (!engine_mask) {
5138 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5139 				 ce->guc_id.id, ce->engine->name);
5140 			engine_mask = ~0U;
5141 		}
5142 	} else {
5143 		intel_engine_set_hung_context(ce->engine, ce);
5144 		engine_mask = ce->engine->mask;
5145 		i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5146 	}
5147 
5148 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5149 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5150 }
5151 
5152 static void guc_context_replay(struct intel_context *ce)
5153 {
5154 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5155 
5156 	__guc_reset_context(ce, ce->engine->mask);
5157 	tasklet_hi_schedule(&sched_engine->tasklet);
5158 }
5159 
5160 static void guc_handle_context_reset(struct intel_guc *guc,
5161 				     struct intel_context *ce)
5162 {
5163 	bool capture = intel_context_is_schedulable(ce);
5164 
5165 	trace_intel_context_reset(ce);
5166 
5167 	guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5168 		capture ? "Got" : "Ignoring",
5169 		ce->guc_id.id, ce->engine->name,
5170 		str_yes_no(intel_context_is_exiting(ce)),
5171 		str_yes_no(intel_context_is_banned(ce)));
5172 
5173 	if (capture) {
5174 		capture_error_state(guc, ce);
5175 		guc_context_replay(ce);
5176 	}
5177 }
5178 
5179 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5180 					const u32 *msg, u32 len)
5181 {
5182 	struct intel_context *ce;
5183 	unsigned long flags;
5184 	int ctx_id;
5185 
5186 	if (unlikely(len != 1)) {
5187 		guc_err(guc, "Invalid length %u", len);
5188 		return -EPROTO;
5189 	}
5190 
5191 	ctx_id = msg[0];
5192 
5193 	/*
5194 	 * The context lookup uses the xarray but lookups only require an RCU lock
5195 	 * not the full spinlock. So take the lock explicitly and keep it until the
5196 	 * context has been reference count locked to ensure it can't be destroyed
5197 	 * asynchronously until the reset is done.
5198 	 */
5199 	xa_lock_irqsave(&guc->context_lookup, flags);
5200 	ce = g2h_context_lookup(guc, ctx_id);
5201 	if (ce)
5202 		intel_context_get(ce);
5203 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5204 
5205 	if (unlikely(!ce))
5206 		return -EPROTO;
5207 
5208 	guc_handle_context_reset(guc, ce);
5209 	intel_context_put(ce);
5210 
5211 	return 0;
5212 }
5213 
5214 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5215 					const u32 *msg, u32 len)
5216 {
5217 	u32 status;
5218 
5219 	if (unlikely(len != 1)) {
5220 		guc_dbg(guc, "Invalid length %u", len);
5221 		return -EPROTO;
5222 	}
5223 
5224 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5225 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5226 		guc_warn(guc, "No space for error capture");
5227 
5228 	intel_guc_capture_process(guc);
5229 
5230 	return 0;
5231 }
5232 
5233 struct intel_engine_cs *
5234 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5235 {
5236 	struct intel_gt *gt = guc_to_gt(guc);
5237 	u8 engine_class = guc_class_to_engine_class(guc_class);
5238 
5239 	/* Class index is checked in class converter */
5240 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5241 
5242 	return gt->engine_class[engine_class][instance];
5243 }
5244 
5245 static void reset_fail_worker_func(struct work_struct *w)
5246 {
5247 	struct intel_guc *guc = container_of(w, struct intel_guc,
5248 					     submission_state.reset_fail_worker);
5249 	struct intel_gt *gt = guc_to_gt(guc);
5250 	intel_engine_mask_t reset_fail_mask;
5251 	unsigned long flags;
5252 
5253 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5254 	reset_fail_mask = guc->submission_state.reset_fail_mask;
5255 	guc->submission_state.reset_fail_mask = 0;
5256 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5257 
5258 	if (likely(reset_fail_mask)) {
5259 		struct intel_engine_cs *engine;
5260 		enum intel_engine_id id;
5261 
5262 		/*
5263 		 * GuC is toast at this point - it dead loops after sending the failed
5264 		 * reset notification. So need to manually determine the guilty context.
5265 		 * Note that it should be reliable to do this here because the GuC is
5266 		 * toast and will not be scheduling behind the KMD's back.
5267 		 */
5268 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
5269 			intel_guc_find_hung_context(engine);
5270 
5271 		intel_gt_handle_error(gt, reset_fail_mask,
5272 				      I915_ERROR_CAPTURE,
5273 				      "GuC failed to reset engine mask=0x%x",
5274 				      reset_fail_mask);
5275 	}
5276 }
5277 
5278 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5279 					 const u32 *msg, u32 len)
5280 {
5281 	struct intel_engine_cs *engine;
5282 	u8 guc_class, instance;
5283 	u32 reason;
5284 	unsigned long flags;
5285 
5286 	if (unlikely(len != 3)) {
5287 		guc_err(guc, "Invalid length %u", len);
5288 		return -EPROTO;
5289 	}
5290 
5291 	guc_class = msg[0];
5292 	instance = msg[1];
5293 	reason = msg[2];
5294 
5295 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
5296 	if (unlikely(!engine)) {
5297 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5298 		return -EPROTO;
5299 	}
5300 
5301 	/*
5302 	 * This is an unexpected failure of a hardware feature. So, log a real
5303 	 * error message not just the informational that comes with the reset.
5304 	 */
5305 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5306 		guc_class, instance, engine->name, reason);
5307 
5308 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5309 	guc->submission_state.reset_fail_mask |= engine->mask;
5310 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5311 
5312 	/*
5313 	 * A GT reset flushes this worker queue (G2H handler) so we must use
5314 	 * another worker to trigger a GT reset.
5315 	 */
5316 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5317 
5318 	return 0;
5319 }
5320 
5321 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5322 {
5323 	struct intel_guc *guc = gt_to_guc(engine->gt);
5324 	struct intel_context *ce;
5325 	struct i915_request *rq;
5326 	unsigned long index;
5327 	unsigned long flags;
5328 
5329 	/* Reset called during driver load? GuC not yet initialised! */
5330 	if (unlikely(!guc_submission_initialized(guc)))
5331 		return;
5332 
5333 	xa_lock_irqsave(&guc->context_lookup, flags);
5334 	xa_for_each(&guc->context_lookup, index, ce) {
5335 		bool found;
5336 
5337 		if (!kref_get_unless_zero(&ce->ref))
5338 			continue;
5339 
5340 		xa_unlock(&guc->context_lookup);
5341 
5342 		if (!intel_context_is_pinned(ce))
5343 			goto next;
5344 
5345 		if (intel_engine_is_virtual(ce->engine)) {
5346 			if (!(ce->engine->mask & engine->mask))
5347 				goto next;
5348 		} else {
5349 			if (ce->engine != engine)
5350 				goto next;
5351 		}
5352 
5353 		found = false;
5354 		spin_lock(&ce->guc_state.lock);
5355 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5356 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5357 				continue;
5358 
5359 			found = true;
5360 			break;
5361 		}
5362 		spin_unlock(&ce->guc_state.lock);
5363 
5364 		if (found) {
5365 			intel_engine_set_hung_context(engine, ce);
5366 
5367 			/* Can only cope with one hang at a time... */
5368 			intel_context_put(ce);
5369 			xa_lock(&guc->context_lookup);
5370 			goto done;
5371 		}
5372 
5373 next:
5374 		intel_context_put(ce);
5375 		xa_lock(&guc->context_lookup);
5376 	}
5377 done:
5378 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5379 }
5380 
5381 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5382 				    struct i915_request *hung_rq,
5383 				    struct drm_printer *m)
5384 {
5385 	struct intel_guc *guc = gt_to_guc(engine->gt);
5386 	struct intel_context *ce;
5387 	unsigned long index;
5388 	unsigned long flags;
5389 
5390 	/* Reset called during driver load? GuC not yet initialised! */
5391 	if (unlikely(!guc_submission_initialized(guc)))
5392 		return;
5393 
5394 	xa_lock_irqsave(&guc->context_lookup, flags);
5395 	xa_for_each(&guc->context_lookup, index, ce) {
5396 		if (!kref_get_unless_zero(&ce->ref))
5397 			continue;
5398 
5399 		xa_unlock(&guc->context_lookup);
5400 
5401 		if (!intel_context_is_pinned(ce))
5402 			goto next;
5403 
5404 		if (intel_engine_is_virtual(ce->engine)) {
5405 			if (!(ce->engine->mask & engine->mask))
5406 				goto next;
5407 		} else {
5408 			if (ce->engine != engine)
5409 				goto next;
5410 		}
5411 
5412 		spin_lock(&ce->guc_state.lock);
5413 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5414 						  hung_rq, m);
5415 		spin_unlock(&ce->guc_state.lock);
5416 
5417 next:
5418 		intel_context_put(ce);
5419 		xa_lock(&guc->context_lookup);
5420 	}
5421 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5422 }
5423 
5424 void intel_guc_submission_print_info(struct intel_guc *guc,
5425 				     struct drm_printer *p)
5426 {
5427 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5428 	struct rb_node *rb;
5429 	unsigned long flags;
5430 
5431 	if (!sched_engine)
5432 		return;
5433 
5434 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5435 		   guc->submission_version.major, guc->submission_version.minor,
5436 		   guc->submission_version.patch);
5437 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5438 		   atomic_read(&guc->outstanding_submission_g2h));
5439 	drm_printf(p, "GuC tasklet count: %u\n",
5440 		   atomic_read(&sched_engine->tasklet.count));
5441 
5442 	spin_lock_irqsave(&sched_engine->lock, flags);
5443 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5444 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5445 		struct i915_priolist *pl = to_priolist(rb);
5446 		struct i915_request *rq;
5447 
5448 		priolist_for_each_request(rq, pl)
5449 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5450 				   rq->context->guc_id.id,
5451 				   rq->fence.seqno);
5452 	}
5453 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5454 	drm_printf(p, "\n");
5455 }
5456 
5457 static inline void guc_log_context_priority(struct drm_printer *p,
5458 					    struct intel_context *ce)
5459 {
5460 	int i;
5461 
5462 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5463 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5464 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5465 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5466 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5467 			   i, ce->guc_state.prio_count[i]);
5468 	}
5469 	drm_printf(p, "\n");
5470 }
5471 
5472 static inline void guc_log_context(struct drm_printer *p,
5473 				   struct intel_context *ce)
5474 {
5475 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5476 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5477 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5478 		   ce->ring->head,
5479 		   ce->lrc_reg_state[CTX_RING_HEAD]);
5480 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5481 		   ce->ring->tail,
5482 		   ce->lrc_reg_state[CTX_RING_TAIL]);
5483 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5484 		   atomic_read(&ce->pin_count));
5485 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5486 		   atomic_read(&ce->guc_id.ref));
5487 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5488 		   ce->guc_state.sched_state);
5489 }
5490 
5491 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5492 					     struct drm_printer *p)
5493 {
5494 	struct intel_context *ce;
5495 	unsigned long index;
5496 	unsigned long flags;
5497 
5498 	xa_lock_irqsave(&guc->context_lookup, flags);
5499 	xa_for_each(&guc->context_lookup, index, ce) {
5500 		GEM_BUG_ON(intel_context_is_child(ce));
5501 
5502 		guc_log_context(p, ce);
5503 		guc_log_context_priority(p, ce);
5504 
5505 		if (intel_context_is_parent(ce)) {
5506 			struct intel_context *child;
5507 
5508 			drm_printf(p, "\t\tNumber children: %u\n",
5509 				   ce->parallel.number_children);
5510 
5511 			if (ce->parallel.guc.wq_status) {
5512 				drm_printf(p, "\t\tWQI Head: %u\n",
5513 					   READ_ONCE(*ce->parallel.guc.wq_head));
5514 				drm_printf(p, "\t\tWQI Tail: %u\n",
5515 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5516 				drm_printf(p, "\t\tWQI Status: %u\n",
5517 					   READ_ONCE(*ce->parallel.guc.wq_status));
5518 			}
5519 
5520 			if (ce->engine->emit_bb_start ==
5521 			    emit_bb_start_parent_no_preempt_mid_batch) {
5522 				u8 i;
5523 
5524 				drm_printf(p, "\t\tChildren Go: %u\n",
5525 					   get_children_go_value(ce));
5526 				for (i = 0; i < ce->parallel.number_children; ++i)
5527 					drm_printf(p, "\t\tChildren Join: %u\n",
5528 						   get_children_join_value(ce, i));
5529 			}
5530 
5531 			for_each_child(ce, child)
5532 				guc_log_context(p, child);
5533 		}
5534 	}
5535 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5536 }
5537 
5538 static inline u32 get_children_go_addr(struct intel_context *ce)
5539 {
5540 	GEM_BUG_ON(!intel_context_is_parent(ce));
5541 
5542 	return i915_ggtt_offset(ce->state) +
5543 		__get_parent_scratch_offset(ce) +
5544 		offsetof(struct parent_scratch, go.semaphore);
5545 }
5546 
5547 static inline u32 get_children_join_addr(struct intel_context *ce,
5548 					 u8 child_index)
5549 {
5550 	GEM_BUG_ON(!intel_context_is_parent(ce));
5551 
5552 	return i915_ggtt_offset(ce->state) +
5553 		__get_parent_scratch_offset(ce) +
5554 		offsetof(struct parent_scratch, join[child_index].semaphore);
5555 }
5556 
5557 #define PARENT_GO_BB			1
5558 #define PARENT_GO_FINI_BREADCRUMB	0
5559 #define CHILD_GO_BB			1
5560 #define CHILD_GO_FINI_BREADCRUMB	0
5561 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5562 						     u64 offset, u32 len,
5563 						     const unsigned int flags)
5564 {
5565 	struct intel_context *ce = rq->context;
5566 	u32 *cs;
5567 	u8 i;
5568 
5569 	GEM_BUG_ON(!intel_context_is_parent(ce));
5570 
5571 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5572 	if (IS_ERR(cs))
5573 		return PTR_ERR(cs);
5574 
5575 	/* Wait on children */
5576 	for (i = 0; i < ce->parallel.number_children; ++i) {
5577 		*cs++ = (MI_SEMAPHORE_WAIT |
5578 			 MI_SEMAPHORE_GLOBAL_GTT |
5579 			 MI_SEMAPHORE_POLL |
5580 			 MI_SEMAPHORE_SAD_EQ_SDD);
5581 		*cs++ = PARENT_GO_BB;
5582 		*cs++ = get_children_join_addr(ce, i);
5583 		*cs++ = 0;
5584 	}
5585 
5586 	/* Turn off preemption */
5587 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5588 	*cs++ = MI_NOOP;
5589 
5590 	/* Tell children go */
5591 	cs = gen8_emit_ggtt_write(cs,
5592 				  CHILD_GO_BB,
5593 				  get_children_go_addr(ce),
5594 				  0);
5595 
5596 	/* Jump to batch */
5597 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5598 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5599 	*cs++ = lower_32_bits(offset);
5600 	*cs++ = upper_32_bits(offset);
5601 	*cs++ = MI_NOOP;
5602 
5603 	intel_ring_advance(rq, cs);
5604 
5605 	return 0;
5606 }
5607 
5608 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5609 						    u64 offset, u32 len,
5610 						    const unsigned int flags)
5611 {
5612 	struct intel_context *ce = rq->context;
5613 	struct intel_context *parent = intel_context_to_parent(ce);
5614 	u32 *cs;
5615 
5616 	GEM_BUG_ON(!intel_context_is_child(ce));
5617 
5618 	cs = intel_ring_begin(rq, 12);
5619 	if (IS_ERR(cs))
5620 		return PTR_ERR(cs);
5621 
5622 	/* Signal parent */
5623 	cs = gen8_emit_ggtt_write(cs,
5624 				  PARENT_GO_BB,
5625 				  get_children_join_addr(parent,
5626 							 ce->parallel.child_index),
5627 				  0);
5628 
5629 	/* Wait on parent for go */
5630 	*cs++ = (MI_SEMAPHORE_WAIT |
5631 		 MI_SEMAPHORE_GLOBAL_GTT |
5632 		 MI_SEMAPHORE_POLL |
5633 		 MI_SEMAPHORE_SAD_EQ_SDD);
5634 	*cs++ = CHILD_GO_BB;
5635 	*cs++ = get_children_go_addr(parent);
5636 	*cs++ = 0;
5637 
5638 	/* Turn off preemption */
5639 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5640 
5641 	/* Jump to batch */
5642 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5643 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5644 	*cs++ = lower_32_bits(offset);
5645 	*cs++ = upper_32_bits(offset);
5646 
5647 	intel_ring_advance(rq, cs);
5648 
5649 	return 0;
5650 }
5651 
5652 static u32 *
5653 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5654 						   u32 *cs)
5655 {
5656 	struct intel_context *ce = rq->context;
5657 	u8 i;
5658 
5659 	GEM_BUG_ON(!intel_context_is_parent(ce));
5660 
5661 	/* Wait on children */
5662 	for (i = 0; i < ce->parallel.number_children; ++i) {
5663 		*cs++ = (MI_SEMAPHORE_WAIT |
5664 			 MI_SEMAPHORE_GLOBAL_GTT |
5665 			 MI_SEMAPHORE_POLL |
5666 			 MI_SEMAPHORE_SAD_EQ_SDD);
5667 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5668 		*cs++ = get_children_join_addr(ce, i);
5669 		*cs++ = 0;
5670 	}
5671 
5672 	/* Turn on preemption */
5673 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5674 	*cs++ = MI_NOOP;
5675 
5676 	/* Tell children go */
5677 	cs = gen8_emit_ggtt_write(cs,
5678 				  CHILD_GO_FINI_BREADCRUMB,
5679 				  get_children_go_addr(ce),
5680 				  0);
5681 
5682 	return cs;
5683 }
5684 
5685 /*
5686  * If this true, a submission of multi-lrc requests had an error and the
5687  * requests need to be skipped. The front end (execuf IOCTL) should've called
5688  * i915_request_skip which squashes the BB but we still need to emit the fini
5689  * breadrcrumbs seqno write. At this point we don't know how many of the
5690  * requests in the multi-lrc submission were generated so we can't do the
5691  * handshake between the parent and children (e.g. if 4 requests should be
5692  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5693  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5694  * has occurred on any of the requests in submission / relationship.
5695  */
5696 static inline bool skip_handshake(struct i915_request *rq)
5697 {
5698 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5699 }
5700 
5701 #define NON_SKIP_LEN	6
5702 static u32 *
5703 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5704 						 u32 *cs)
5705 {
5706 	struct intel_context *ce = rq->context;
5707 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5708 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5709 
5710 	GEM_BUG_ON(!intel_context_is_parent(ce));
5711 
5712 	if (unlikely(skip_handshake(rq))) {
5713 		/*
5714 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5715 		 * the NON_SKIP_LEN comes from the length of the emits below.
5716 		 */
5717 		memset(cs, 0, sizeof(u32) *
5718 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5719 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5720 	} else {
5721 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5722 	}
5723 
5724 	/* Emit fini breadcrumb */
5725 	before_fini_breadcrumb_user_interrupt_cs = cs;
5726 	cs = gen8_emit_ggtt_write(cs,
5727 				  rq->fence.seqno,
5728 				  i915_request_active_timeline(rq)->hwsp_offset,
5729 				  0);
5730 
5731 	/* User interrupt */
5732 	*cs++ = MI_USER_INTERRUPT;
5733 	*cs++ = MI_NOOP;
5734 
5735 	/* Ensure our math for skip + emit is correct */
5736 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5737 		   cs);
5738 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5739 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5740 
5741 	rq->tail = intel_ring_offset(rq, cs);
5742 
5743 	return cs;
5744 }
5745 
5746 static u32 *
5747 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5748 						  u32 *cs)
5749 {
5750 	struct intel_context *ce = rq->context;
5751 	struct intel_context *parent = intel_context_to_parent(ce);
5752 
5753 	GEM_BUG_ON(!intel_context_is_child(ce));
5754 
5755 	/* Turn on preemption */
5756 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5757 	*cs++ = MI_NOOP;
5758 
5759 	/* Signal parent */
5760 	cs = gen8_emit_ggtt_write(cs,
5761 				  PARENT_GO_FINI_BREADCRUMB,
5762 				  get_children_join_addr(parent,
5763 							 ce->parallel.child_index),
5764 				  0);
5765 
5766 	/* Wait parent on for go */
5767 	*cs++ = (MI_SEMAPHORE_WAIT |
5768 		 MI_SEMAPHORE_GLOBAL_GTT |
5769 		 MI_SEMAPHORE_POLL |
5770 		 MI_SEMAPHORE_SAD_EQ_SDD);
5771 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5772 	*cs++ = get_children_go_addr(parent);
5773 	*cs++ = 0;
5774 
5775 	return cs;
5776 }
5777 
5778 static u32 *
5779 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5780 						u32 *cs)
5781 {
5782 	struct intel_context *ce = rq->context;
5783 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5784 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5785 
5786 	GEM_BUG_ON(!intel_context_is_child(ce));
5787 
5788 	if (unlikely(skip_handshake(rq))) {
5789 		/*
5790 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5791 		 * the NON_SKIP_LEN comes from the length of the emits below.
5792 		 */
5793 		memset(cs, 0, sizeof(u32) *
5794 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5795 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5796 	} else {
5797 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5798 	}
5799 
5800 	/* Emit fini breadcrumb */
5801 	before_fini_breadcrumb_user_interrupt_cs = cs;
5802 	cs = gen8_emit_ggtt_write(cs,
5803 				  rq->fence.seqno,
5804 				  i915_request_active_timeline(rq)->hwsp_offset,
5805 				  0);
5806 
5807 	/* User interrupt */
5808 	*cs++ = MI_USER_INTERRUPT;
5809 	*cs++ = MI_NOOP;
5810 
5811 	/* Ensure our math for skip + emit is correct */
5812 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5813 		   cs);
5814 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5815 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5816 
5817 	rq->tail = intel_ring_offset(rq, cs);
5818 
5819 	return cs;
5820 }
5821 
5822 #undef NON_SKIP_LEN
5823 
5824 static struct intel_context *
5825 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5826 		   unsigned long flags)
5827 {
5828 	struct guc_virtual_engine *ve;
5829 	struct intel_guc *guc;
5830 	unsigned int n;
5831 	int err;
5832 
5833 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5834 	if (!ve)
5835 		return ERR_PTR(-ENOMEM);
5836 
5837 	guc = gt_to_guc(siblings[0]->gt);
5838 
5839 	ve->base.i915 = siblings[0]->i915;
5840 	ve->base.gt = siblings[0]->gt;
5841 	ve->base.uncore = siblings[0]->uncore;
5842 	ve->base.id = -1;
5843 
5844 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5845 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5846 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5847 	ve->base.saturated = ALL_ENGINES;
5848 
5849 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5850 
5851 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5852 
5853 	ve->base.cops = &virtual_guc_context_ops;
5854 	ve->base.request_alloc = guc_request_alloc;
5855 	ve->base.bump_serial = virtual_guc_bump_serial;
5856 
5857 	ve->base.submit_request = guc_submit_request;
5858 
5859 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5860 
5861 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5862 	ve->base.mask = VIRTUAL_ENGINES;
5863 
5864 	intel_context_init(&ve->context, &ve->base);
5865 
5866 	for (n = 0; n < count; n++) {
5867 		struct intel_engine_cs *sibling = siblings[n];
5868 
5869 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5870 		if (sibling->mask & ve->base.mask) {
5871 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5872 				sibling->name);
5873 			err = -EINVAL;
5874 			goto err_put;
5875 		}
5876 
5877 		ve->base.mask |= sibling->mask;
5878 		ve->base.logical_mask |= sibling->logical_mask;
5879 
5880 		if (n != 0 && ve->base.class != sibling->class) {
5881 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5882 				sibling->class, ve->base.class);
5883 			err = -EINVAL;
5884 			goto err_put;
5885 		} else if (n == 0) {
5886 			ve->base.class = sibling->class;
5887 			ve->base.uabi_class = sibling->uabi_class;
5888 			snprintf(ve->base.name, sizeof(ve->base.name),
5889 				 "v%dx%d", ve->base.class, count);
5890 			ve->base.context_size = sibling->context_size;
5891 
5892 			ve->base.add_active_request =
5893 				sibling->add_active_request;
5894 			ve->base.remove_active_request =
5895 				sibling->remove_active_request;
5896 			ve->base.emit_bb_start = sibling->emit_bb_start;
5897 			ve->base.emit_flush = sibling->emit_flush;
5898 			ve->base.emit_init_breadcrumb =
5899 				sibling->emit_init_breadcrumb;
5900 			ve->base.emit_fini_breadcrumb =
5901 				sibling->emit_fini_breadcrumb;
5902 			ve->base.emit_fini_breadcrumb_dw =
5903 				sibling->emit_fini_breadcrumb_dw;
5904 			ve->base.breadcrumbs =
5905 				intel_breadcrumbs_get(sibling->breadcrumbs);
5906 
5907 			ve->base.flags |= sibling->flags;
5908 
5909 			ve->base.props.timeslice_duration_ms =
5910 				sibling->props.timeslice_duration_ms;
5911 			ve->base.props.preempt_timeout_ms =
5912 				sibling->props.preempt_timeout_ms;
5913 		}
5914 	}
5915 
5916 	return &ve->context;
5917 
5918 err_put:
5919 	intel_context_put(&ve->context);
5920 	return ERR_PTR(err);
5921 }
5922 
5923 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5924 {
5925 	struct intel_engine_cs *engine;
5926 	intel_engine_mask_t tmp, mask = ve->mask;
5927 
5928 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5929 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5930 			return true;
5931 
5932 	return false;
5933 }
5934 
5935 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5936 #include "selftest_guc.c"
5937 #include "selftest_guc_multi_lrc.c"
5938 #include "selftest_guc_hangcheck.c"
5939 #endif
5940