xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37 
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135 
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 	struct intel_engine_cs base;
139 	struct intel_context context;
140 };
141 
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 		   unsigned long flags);
145 
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 		    unsigned int num_siblings,
149 		    unsigned int width);
150 
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152 
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
162 	((guc)->submission_state.num_guc_ids / 16)
163 
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
169 #define SCHED_STATE_DESTROYED				BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
171 #define SCHED_STATE_BANNED				BIT(3)
172 #define SCHED_STATE_ENABLED				BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
174 #define SCHED_STATE_REGISTERED				BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
176 #define SCHED_STATE_CLOSED				BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT			9
178 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
180 
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 	lockdep_assert_held(&ce->guc_state.lock);
184 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186 
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193 	(SCHED_STATE_BLOCKED_MASK | \
194 	 SCHED_STATE_CLOSED | \
195 	 SCHED_STATE_REGISTERED)
196 
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202 
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 	return ce->guc_state.sched_state &
207 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209 
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 	lockdep_assert_held(&ce->guc_state.lock);
214 	ce->guc_state.sched_state |=
215 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217 
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 	lockdep_assert_held(&ce->guc_state.lock);
222 	ce->guc_state.sched_state &=
223 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225 
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231 
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235 	lockdep_assert_held(&ce->guc_state.lock);
236 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238 
239 static inline bool context_pending_disable(struct intel_context *ce)
240 {
241 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
242 }
243 
244 static inline void set_context_pending_disable(struct intel_context *ce)
245 {
246 	lockdep_assert_held(&ce->guc_state.lock);
247 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
248 }
249 
250 static inline void clr_context_pending_disable(struct intel_context *ce)
251 {
252 	lockdep_assert_held(&ce->guc_state.lock);
253 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
254 }
255 
256 static inline bool context_banned(struct intel_context *ce)
257 {
258 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
259 }
260 
261 static inline void set_context_banned(struct intel_context *ce)
262 {
263 	lockdep_assert_held(&ce->guc_state.lock);
264 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
265 }
266 
267 static inline void clr_context_banned(struct intel_context *ce)
268 {
269 	lockdep_assert_held(&ce->guc_state.lock);
270 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
271 }
272 
273 static inline bool context_enabled(struct intel_context *ce)
274 {
275 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
276 }
277 
278 static inline void set_context_enabled(struct intel_context *ce)
279 {
280 	lockdep_assert_held(&ce->guc_state.lock);
281 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
282 }
283 
284 static inline void clr_context_enabled(struct intel_context *ce)
285 {
286 	lockdep_assert_held(&ce->guc_state.lock);
287 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
288 }
289 
290 static inline bool context_pending_enable(struct intel_context *ce)
291 {
292 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
293 }
294 
295 static inline void set_context_pending_enable(struct intel_context *ce)
296 {
297 	lockdep_assert_held(&ce->guc_state.lock);
298 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
299 }
300 
301 static inline void clr_context_pending_enable(struct intel_context *ce)
302 {
303 	lockdep_assert_held(&ce->guc_state.lock);
304 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
305 }
306 
307 static inline bool context_registered(struct intel_context *ce)
308 {
309 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
310 }
311 
312 static inline void set_context_registered(struct intel_context *ce)
313 {
314 	lockdep_assert_held(&ce->guc_state.lock);
315 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
316 }
317 
318 static inline void clr_context_registered(struct intel_context *ce)
319 {
320 	lockdep_assert_held(&ce->guc_state.lock);
321 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
322 }
323 
324 static inline bool context_policy_required(struct intel_context *ce)
325 {
326 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
327 }
328 
329 static inline void set_context_policy_required(struct intel_context *ce)
330 {
331 	lockdep_assert_held(&ce->guc_state.lock);
332 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
333 }
334 
335 static inline void clr_context_policy_required(struct intel_context *ce)
336 {
337 	lockdep_assert_held(&ce->guc_state.lock);
338 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
339 }
340 
341 static inline bool context_close_done(struct intel_context *ce)
342 {
343 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
344 }
345 
346 static inline void set_context_close_done(struct intel_context *ce)
347 {
348 	lockdep_assert_held(&ce->guc_state.lock);
349 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
350 }
351 
352 static inline u32 context_blocked(struct intel_context *ce)
353 {
354 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
355 		SCHED_STATE_BLOCKED_SHIFT;
356 }
357 
358 static inline void incr_context_blocked(struct intel_context *ce)
359 {
360 	lockdep_assert_held(&ce->guc_state.lock);
361 
362 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
363 
364 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
365 }
366 
367 static inline void decr_context_blocked(struct intel_context *ce)
368 {
369 	lockdep_assert_held(&ce->guc_state.lock);
370 
371 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
372 
373 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
374 }
375 
376 static struct intel_context *
377 request_to_scheduling_context(struct i915_request *rq)
378 {
379 	return intel_context_to_parent(rq->context);
380 }
381 
382 static inline bool context_guc_id_invalid(struct intel_context *ce)
383 {
384 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
385 }
386 
387 static inline void set_context_guc_id_invalid(struct intel_context *ce)
388 {
389 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
390 }
391 
392 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
393 {
394 	return &ce->engine->gt->uc.guc;
395 }
396 
397 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
398 {
399 	return rb_entry(rb, struct i915_priolist, node);
400 }
401 
402 /*
403  * When using multi-lrc submission a scratch memory area is reserved in the
404  * parent's context state for the process descriptor, work queue, and handshake
405  * between the parent + children contexts to insert safe preemption points
406  * between each of the BBs. Currently the scratch area is sized to a page.
407  *
408  * The layout of this scratch area is below:
409  * 0						guc_process_desc
410  * + sizeof(struct guc_process_desc)		child go
411  * + CACHELINE_BYTES				child join[0]
412  * ...
413  * + CACHELINE_BYTES				child join[n - 1]
414  * ...						unused
415  * PARENT_SCRATCH_SIZE / 2			work queue start
416  * ...						work queue
417  * PARENT_SCRATCH_SIZE - 1			work queue end
418  */
419 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
420 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
421 
422 struct sync_semaphore {
423 	u32 semaphore;
424 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
425 };
426 
427 struct parent_scratch {
428 	union guc_descs {
429 		struct guc_sched_wq_desc wq_desc;
430 		struct guc_process_desc_v69 pdesc;
431 	} descs;
432 
433 	struct sync_semaphore go;
434 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
435 
436 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
437 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
438 
439 	u32 wq[WQ_SIZE / sizeof(u32)];
440 };
441 
442 static u32 __get_parent_scratch_offset(struct intel_context *ce)
443 {
444 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
445 
446 	return ce->parallel.guc.parent_page * PAGE_SIZE;
447 }
448 
449 static u32 __get_wq_offset(struct intel_context *ce)
450 {
451 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
452 
453 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
454 }
455 
456 static struct parent_scratch *
457 __get_parent_scratch(struct intel_context *ce)
458 {
459 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
460 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
461 
462 	/*
463 	 * Need to subtract LRC_STATE_OFFSET here as the
464 	 * parallel.guc.parent_page is the offset into ce->state while
465 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
466 	 */
467 	return (struct parent_scratch *)
468 		(ce->lrc_reg_state +
469 		 ((__get_parent_scratch_offset(ce) -
470 		   LRC_STATE_OFFSET) / sizeof(u32)));
471 }
472 
473 static struct guc_process_desc_v69 *
474 __get_process_desc_v69(struct intel_context *ce)
475 {
476 	struct parent_scratch *ps = __get_parent_scratch(ce);
477 
478 	return &ps->descs.pdesc;
479 }
480 
481 static struct guc_sched_wq_desc *
482 __get_wq_desc_v70(struct intel_context *ce)
483 {
484 	struct parent_scratch *ps = __get_parent_scratch(ce);
485 
486 	return &ps->descs.wq_desc;
487 }
488 
489 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
490 {
491 	/*
492 	 * Check for space in work queue. Caching a value of head pointer in
493 	 * intel_context structure in order reduce the number accesses to shared
494 	 * GPU memory which may be across a PCIe bus.
495 	 */
496 #define AVAILABLE_SPACE	\
497 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
498 	if (wqi_size > AVAILABLE_SPACE) {
499 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
500 
501 		if (wqi_size > AVAILABLE_SPACE)
502 			return NULL;
503 	}
504 #undef AVAILABLE_SPACE
505 
506 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
507 }
508 
509 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
510 {
511 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
512 
513 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
514 
515 	return ce;
516 }
517 
518 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
519 {
520 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
521 
522 	if (!base)
523 		return NULL;
524 
525 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
526 
527 	return &base[index];
528 }
529 
530 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
531 {
532 	u32 size;
533 	int ret;
534 
535 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
536 			  GUC_MAX_CONTEXT_ID);
537 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
538 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
539 	if (ret)
540 		return ret;
541 
542 	return 0;
543 }
544 
545 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
546 {
547 	if (!guc->lrc_desc_pool_vaddr_v69)
548 		return;
549 
550 	guc->lrc_desc_pool_vaddr_v69 = NULL;
551 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
552 }
553 
554 static inline bool guc_submission_initialized(struct intel_guc *guc)
555 {
556 	return guc->submission_initialized;
557 }
558 
559 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
560 {
561 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
562 
563 	if (desc)
564 		memset(desc, 0, sizeof(*desc));
565 }
566 
567 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
568 {
569 	return __get_context(guc, id);
570 }
571 
572 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
573 				      struct intel_context *ce)
574 {
575 	unsigned long flags;
576 
577 	/*
578 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
579 	 * lower level functions directly.
580 	 */
581 	xa_lock_irqsave(&guc->context_lookup, flags);
582 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
583 	xa_unlock_irqrestore(&guc->context_lookup, flags);
584 }
585 
586 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
587 {
588 	unsigned long flags;
589 
590 	if (unlikely(!guc_submission_initialized(guc)))
591 		return;
592 
593 	_reset_lrc_desc_v69(guc, id);
594 
595 	/*
596 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
597 	 * the lower level functions directly.
598 	 */
599 	xa_lock_irqsave(&guc->context_lookup, flags);
600 	__xa_erase(&guc->context_lookup, id);
601 	xa_unlock_irqrestore(&guc->context_lookup, flags);
602 }
603 
604 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
605 {
606 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
607 		wake_up_all(&guc->ct.wq);
608 }
609 
610 static int guc_submission_send_busy_loop(struct intel_guc *guc,
611 					 const u32 *action,
612 					 u32 len,
613 					 u32 g2h_len_dw,
614 					 bool loop)
615 {
616 	/*
617 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
618 	 * so we don't handle the case where we don't get a reply because we
619 	 * aborted the send due to the channel being busy.
620 	 */
621 	GEM_BUG_ON(g2h_len_dw && !loop);
622 
623 	if (g2h_len_dw)
624 		atomic_inc(&guc->outstanding_submission_g2h);
625 
626 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
627 }
628 
629 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
630 				   atomic_t *wait_var,
631 				   bool interruptible,
632 				   long timeout)
633 {
634 	const int state = interruptible ?
635 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
636 	DEFINE_WAIT(wait);
637 
638 	might_sleep();
639 	GEM_BUG_ON(timeout < 0);
640 
641 	if (!atomic_read(wait_var))
642 		return 0;
643 
644 	if (!timeout)
645 		return -ETIME;
646 
647 	for (;;) {
648 		prepare_to_wait(&guc->ct.wq, &wait, state);
649 
650 		if (!atomic_read(wait_var))
651 			break;
652 
653 		if (signal_pending_state(state, current)) {
654 			timeout = -EINTR;
655 			break;
656 		}
657 
658 		if (!timeout) {
659 			timeout = -ETIME;
660 			break;
661 		}
662 
663 		timeout = io_schedule_timeout(timeout);
664 	}
665 	finish_wait(&guc->ct.wq, &wait);
666 
667 	return (timeout < 0) ? timeout : 0;
668 }
669 
670 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
671 {
672 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
673 		return 0;
674 
675 	return intel_guc_wait_for_pending_msg(guc,
676 					      &guc->outstanding_submission_g2h,
677 					      true, timeout);
678 }
679 
680 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
681 static int try_context_registration(struct intel_context *ce, bool loop);
682 
683 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
684 {
685 	int err = 0;
686 	struct intel_context *ce = request_to_scheduling_context(rq);
687 	u32 action[3];
688 	int len = 0;
689 	u32 g2h_len_dw = 0;
690 	bool enabled;
691 
692 	lockdep_assert_held(&rq->engine->sched_engine->lock);
693 
694 	/*
695 	 * Corner case where requests were sitting in the priority list or a
696 	 * request resubmitted after the context was banned.
697 	 */
698 	if (unlikely(!intel_context_is_schedulable(ce))) {
699 		i915_request_put(i915_request_mark_eio(rq));
700 		intel_engine_signal_breadcrumbs(ce->engine);
701 		return 0;
702 	}
703 
704 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
705 	GEM_BUG_ON(context_guc_id_invalid(ce));
706 
707 	if (context_policy_required(ce)) {
708 		err = guc_context_policy_init_v70(ce, false);
709 		if (err)
710 			return err;
711 	}
712 
713 	spin_lock(&ce->guc_state.lock);
714 
715 	/*
716 	 * The request / context will be run on the hardware when scheduling
717 	 * gets enabled in the unblock. For multi-lrc we still submit the
718 	 * context to move the LRC tails.
719 	 */
720 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
721 		goto out;
722 
723 	enabled = context_enabled(ce) || context_blocked(ce);
724 
725 	if (!enabled) {
726 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
727 		action[len++] = ce->guc_id.id;
728 		action[len++] = GUC_CONTEXT_ENABLE;
729 		set_context_pending_enable(ce);
730 		intel_context_get(ce);
731 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
732 	} else {
733 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
734 		action[len++] = ce->guc_id.id;
735 	}
736 
737 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
738 	if (!enabled && !err) {
739 		trace_intel_context_sched_enable(ce);
740 		atomic_inc(&guc->outstanding_submission_g2h);
741 		set_context_enabled(ce);
742 
743 		/*
744 		 * Without multi-lrc KMD does the submission step (moving the
745 		 * lrc tail) so enabling scheduling is sufficient to submit the
746 		 * context. This isn't the case in multi-lrc submission as the
747 		 * GuC needs to move the tails, hence the need for another H2G
748 		 * to submit a multi-lrc context after enabling scheduling.
749 		 */
750 		if (intel_context_is_parent(ce)) {
751 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
752 			err = intel_guc_send_nb(guc, action, len - 1, 0);
753 		}
754 	} else if (!enabled) {
755 		clr_context_pending_enable(ce);
756 		intel_context_put(ce);
757 	}
758 	if (likely(!err))
759 		trace_i915_request_guc_submit(rq);
760 
761 out:
762 	spin_unlock(&ce->guc_state.lock);
763 	return err;
764 }
765 
766 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
767 {
768 	int ret = __guc_add_request(guc, rq);
769 
770 	if (unlikely(ret == -EBUSY)) {
771 		guc->stalled_request = rq;
772 		guc->submission_stall_reason = STALL_ADD_REQUEST;
773 	}
774 
775 	return ret;
776 }
777 
778 static inline void guc_set_lrc_tail(struct i915_request *rq)
779 {
780 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
781 		intel_ring_set_tail(rq->ring, rq->tail);
782 }
783 
784 static inline int rq_prio(const struct i915_request *rq)
785 {
786 	return rq->sched.attr.priority;
787 }
788 
789 static bool is_multi_lrc_rq(struct i915_request *rq)
790 {
791 	return intel_context_is_parallel(rq->context);
792 }
793 
794 static bool can_merge_rq(struct i915_request *rq,
795 			 struct i915_request *last)
796 {
797 	return request_to_scheduling_context(rq) ==
798 		request_to_scheduling_context(last);
799 }
800 
801 static u32 wq_space_until_wrap(struct intel_context *ce)
802 {
803 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
804 }
805 
806 static void write_wqi(struct intel_context *ce, u32 wqi_size)
807 {
808 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
809 
810 	/*
811 	 * Ensure WQI are visible before updating tail
812 	 */
813 	intel_guc_write_barrier(ce_to_guc(ce));
814 
815 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
816 		(WQ_SIZE - 1);
817 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
818 }
819 
820 static int guc_wq_noop_append(struct intel_context *ce)
821 {
822 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
823 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
824 
825 	if (!wqi)
826 		return -EBUSY;
827 
828 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
829 
830 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
831 		FIELD_PREP(WQ_LEN_MASK, len_dw);
832 	ce->parallel.guc.wqi_tail = 0;
833 
834 	return 0;
835 }
836 
837 static int __guc_wq_item_append(struct i915_request *rq)
838 {
839 	struct intel_context *ce = request_to_scheduling_context(rq);
840 	struct intel_context *child;
841 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
842 		sizeof(u32);
843 	u32 *wqi;
844 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
845 	int ret;
846 
847 	/* Ensure context is in correct state updating work queue */
848 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
849 	GEM_BUG_ON(context_guc_id_invalid(ce));
850 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
851 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
852 
853 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
854 	if (wqi_size > wq_space_until_wrap(ce)) {
855 		ret = guc_wq_noop_append(ce);
856 		if (ret)
857 			return ret;
858 	}
859 
860 	wqi = get_wq_pointer(ce, wqi_size);
861 	if (!wqi)
862 		return -EBUSY;
863 
864 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
865 
866 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
867 		FIELD_PREP(WQ_LEN_MASK, len_dw);
868 	*wqi++ = ce->lrc.lrca;
869 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
870 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
871 	*wqi++ = 0;	/* fence_id */
872 	for_each_child(ce, child)
873 		*wqi++ = child->ring->tail / sizeof(u64);
874 
875 	write_wqi(ce, wqi_size);
876 
877 	return 0;
878 }
879 
880 static int guc_wq_item_append(struct intel_guc *guc,
881 			      struct i915_request *rq)
882 {
883 	struct intel_context *ce = request_to_scheduling_context(rq);
884 	int ret;
885 
886 	if (unlikely(!intel_context_is_schedulable(ce)))
887 		return 0;
888 
889 	ret = __guc_wq_item_append(rq);
890 	if (unlikely(ret == -EBUSY)) {
891 		guc->stalled_request = rq;
892 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
893 	}
894 
895 	return ret;
896 }
897 
898 static bool multi_lrc_submit(struct i915_request *rq)
899 {
900 	struct intel_context *ce = request_to_scheduling_context(rq);
901 
902 	intel_ring_set_tail(rq->ring, rq->tail);
903 
904 	/*
905 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
906 	 * request generated from a multi-BB submission. This indicates to the
907 	 * backend (GuC interface) that we should submit this context thus
908 	 * submitting all the requests generated in parallel.
909 	 */
910 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
911 	       !intel_context_is_schedulable(ce);
912 }
913 
914 static int guc_dequeue_one_context(struct intel_guc *guc)
915 {
916 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
917 	struct i915_request *last = NULL;
918 	bool submit = false;
919 	struct rb_node *rb;
920 	int ret;
921 
922 	lockdep_assert_held(&sched_engine->lock);
923 
924 	if (guc->stalled_request) {
925 		submit = true;
926 		last = guc->stalled_request;
927 
928 		switch (guc->submission_stall_reason) {
929 		case STALL_REGISTER_CONTEXT:
930 			goto register_context;
931 		case STALL_MOVE_LRC_TAIL:
932 			goto move_lrc_tail;
933 		case STALL_ADD_REQUEST:
934 			goto add_request;
935 		default:
936 			MISSING_CASE(guc->submission_stall_reason);
937 		}
938 	}
939 
940 	while ((rb = rb_first_cached(&sched_engine->queue))) {
941 		struct i915_priolist *p = to_priolist(rb);
942 		struct i915_request *rq, *rn;
943 
944 		priolist_for_each_request_consume(rq, rn, p) {
945 			if (last && !can_merge_rq(rq, last))
946 				goto register_context;
947 
948 			list_del_init(&rq->sched.link);
949 
950 			__i915_request_submit(rq);
951 
952 			trace_i915_request_in(rq, 0);
953 			last = rq;
954 
955 			if (is_multi_lrc_rq(rq)) {
956 				/*
957 				 * We need to coalesce all multi-lrc requests in
958 				 * a relationship into a single H2G. We are
959 				 * guaranteed that all of these requests will be
960 				 * submitted sequentially.
961 				 */
962 				if (multi_lrc_submit(rq)) {
963 					submit = true;
964 					goto register_context;
965 				}
966 			} else {
967 				submit = true;
968 			}
969 		}
970 
971 		rb_erase_cached(&p->node, &sched_engine->queue);
972 		i915_priolist_free(p);
973 	}
974 
975 register_context:
976 	if (submit) {
977 		struct intel_context *ce = request_to_scheduling_context(last);
978 
979 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
980 			     intel_context_is_schedulable(ce))) {
981 			ret = try_context_registration(ce, false);
982 			if (unlikely(ret == -EPIPE)) {
983 				goto deadlk;
984 			} else if (ret == -EBUSY) {
985 				guc->stalled_request = last;
986 				guc->submission_stall_reason =
987 					STALL_REGISTER_CONTEXT;
988 				goto schedule_tasklet;
989 			} else if (ret != 0) {
990 				GEM_WARN_ON(ret);	/* Unexpected */
991 				goto deadlk;
992 			}
993 		}
994 
995 move_lrc_tail:
996 		if (is_multi_lrc_rq(last)) {
997 			ret = guc_wq_item_append(guc, last);
998 			if (ret == -EBUSY) {
999 				goto schedule_tasklet;
1000 			} else if (ret != 0) {
1001 				GEM_WARN_ON(ret);	/* Unexpected */
1002 				goto deadlk;
1003 			}
1004 		} else {
1005 			guc_set_lrc_tail(last);
1006 		}
1007 
1008 add_request:
1009 		ret = guc_add_request(guc, last);
1010 		if (unlikely(ret == -EPIPE)) {
1011 			goto deadlk;
1012 		} else if (ret == -EBUSY) {
1013 			goto schedule_tasklet;
1014 		} else if (ret != 0) {
1015 			GEM_WARN_ON(ret);	/* Unexpected */
1016 			goto deadlk;
1017 		}
1018 	}
1019 
1020 	guc->stalled_request = NULL;
1021 	guc->submission_stall_reason = STALL_NONE;
1022 	return submit;
1023 
1024 deadlk:
1025 	sched_engine->tasklet.callback = NULL;
1026 	tasklet_disable_nosync(&sched_engine->tasklet);
1027 	return false;
1028 
1029 schedule_tasklet:
1030 	tasklet_schedule(&sched_engine->tasklet);
1031 	return false;
1032 }
1033 
1034 static void guc_submission_tasklet(struct tasklet_struct *t)
1035 {
1036 	struct i915_sched_engine *sched_engine =
1037 		from_tasklet(sched_engine, t, tasklet);
1038 	unsigned long flags;
1039 	bool loop;
1040 
1041 	spin_lock_irqsave(&sched_engine->lock, flags);
1042 
1043 	do {
1044 		loop = guc_dequeue_one_context(sched_engine->private_data);
1045 	} while (loop);
1046 
1047 	i915_sched_engine_reset_on_empty(sched_engine);
1048 
1049 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1050 }
1051 
1052 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1053 {
1054 	if (iir & GT_RENDER_USER_INTERRUPT)
1055 		intel_engine_signal_breadcrumbs(engine);
1056 }
1057 
1058 static void __guc_context_destroy(struct intel_context *ce);
1059 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1060 static void guc_signal_context_fence(struct intel_context *ce);
1061 static void guc_cancel_context_requests(struct intel_context *ce);
1062 static void guc_blocked_fence_complete(struct intel_context *ce);
1063 
1064 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1065 {
1066 	struct intel_context *ce;
1067 	unsigned long index, flags;
1068 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1069 
1070 	xa_lock_irqsave(&guc->context_lookup, flags);
1071 	xa_for_each(&guc->context_lookup, index, ce) {
1072 		/*
1073 		 * Corner case where the ref count on the object is zero but and
1074 		 * deregister G2H was lost. In this case we don't touch the ref
1075 		 * count and finish the destroy of the context.
1076 		 */
1077 		bool do_put = kref_get_unless_zero(&ce->ref);
1078 
1079 		xa_unlock(&guc->context_lookup);
1080 
1081 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1082 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1083 			/* successful cancel so jump straight to close it */
1084 			intel_context_sched_disable_unpin(ce);
1085 		}
1086 
1087 		spin_lock(&ce->guc_state.lock);
1088 
1089 		/*
1090 		 * Once we are at this point submission_disabled() is guaranteed
1091 		 * to be visible to all callers who set the below flags (see above
1092 		 * flush and flushes in reset_prepare). If submission_disabled()
1093 		 * is set, the caller shouldn't set these flags.
1094 		 */
1095 
1096 		destroyed = context_destroyed(ce);
1097 		pending_enable = context_pending_enable(ce);
1098 		pending_disable = context_pending_disable(ce);
1099 		deregister = context_wait_for_deregister_to_register(ce);
1100 		banned = context_banned(ce);
1101 		init_sched_state(ce);
1102 
1103 		spin_unlock(&ce->guc_state.lock);
1104 
1105 		if (pending_enable || destroyed || deregister) {
1106 			decr_outstanding_submission_g2h(guc);
1107 			if (deregister)
1108 				guc_signal_context_fence(ce);
1109 			if (destroyed) {
1110 				intel_gt_pm_put_async(guc_to_gt(guc));
1111 				release_guc_id(guc, ce);
1112 				__guc_context_destroy(ce);
1113 			}
1114 			if (pending_enable || deregister)
1115 				intel_context_put(ce);
1116 		}
1117 
1118 		/* Not mutualy exclusive with above if statement. */
1119 		if (pending_disable) {
1120 			guc_signal_context_fence(ce);
1121 			if (banned) {
1122 				guc_cancel_context_requests(ce);
1123 				intel_engine_signal_breadcrumbs(ce->engine);
1124 			}
1125 			intel_context_sched_disable_unpin(ce);
1126 			decr_outstanding_submission_g2h(guc);
1127 
1128 			spin_lock(&ce->guc_state.lock);
1129 			guc_blocked_fence_complete(ce);
1130 			spin_unlock(&ce->guc_state.lock);
1131 
1132 			intel_context_put(ce);
1133 		}
1134 
1135 		if (do_put)
1136 			intel_context_put(ce);
1137 		xa_lock(&guc->context_lookup);
1138 	}
1139 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1140 }
1141 
1142 /*
1143  * GuC stores busyness stats for each engine at context in/out boundaries. A
1144  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1145  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1146  * GuC.
1147  *
1148  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1149  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1150  * active. For an active engine total busyness = total + (now - start), where
1151  * 'now' is the time at which the busyness is sampled. For inactive engine,
1152  * total busyness = total.
1153  *
1154  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1155  *
1156  * The start and total values provided by GuC are 32 bits and wrap around in a
1157  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1158  * increasing ns values, there is a need for this implementation to account for
1159  * overflows and extend the GuC provided values to 64 bits before returning
1160  * busyness to the user. In order to do that, a worker runs periodically at
1161  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1162  * 27 seconds for a gt clock frequency of 19.2 MHz).
1163  */
1164 
1165 #define WRAP_TIME_CLKS U32_MAX
1166 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1167 
1168 static void
1169 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1170 {
1171 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1172 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1173 
1174 	if (new_start == lower_32_bits(*prev_start))
1175 		return;
1176 
1177 	/*
1178 	 * When gt is unparked, we update the gt timestamp and start the ping
1179 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1180 	 * is unparked, all switched in contexts will have a start time that is
1181 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1182 	 *
1183 	 * If neither gt_stamp nor new_start has rolled over, then the
1184 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1185 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1186 	 *
1187 	 * The below conditions address the cases of new_start rollover and
1188 	 * gt_stamp_last rollover respectively.
1189 	 */
1190 	if (new_start < gt_stamp_last &&
1191 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1192 		gt_stamp_hi++;
1193 
1194 	if (new_start > gt_stamp_last &&
1195 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1196 		gt_stamp_hi--;
1197 
1198 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1199 }
1200 
1201 #define record_read(map_, field_) \
1202 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1203 
1204 /*
1205  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1206  * we run into a race where the value read is inconsistent. Sometimes the
1207  * inconsistency is in reading the upper MSB bytes of the last_in value when
1208  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1209  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1210  * determine validity of these values. Instead we read the values multiple times
1211  * until they are consistent. In test runs, 3 attempts results in consistent
1212  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1213  * any new occurences.
1214  */
1215 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1216 				      u32 *last_in, u32 *id, u32 *total)
1217 {
1218 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1219 	int i = 0;
1220 
1221 	do {
1222 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1223 		*id = record_read(&rec_map, current_context_index);
1224 		*total = record_read(&rec_map, total_runtime);
1225 
1226 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1227 		    record_read(&rec_map, current_context_index) == *id &&
1228 		    record_read(&rec_map, total_runtime) == *total)
1229 			break;
1230 	} while (++i < 6);
1231 }
1232 
1233 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1234 {
1235 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1236 	struct intel_guc *guc = &engine->gt->uc.guc;
1237 	u32 last_switch, ctx_id, total;
1238 
1239 	lockdep_assert_held(&guc->timestamp.lock);
1240 
1241 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1242 
1243 	stats->running = ctx_id != ~0U && last_switch;
1244 	if (stats->running)
1245 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1246 
1247 	/*
1248 	 * Instead of adjusting the total for overflow, just add the
1249 	 * difference from previous sample stats->total_gt_clks
1250 	 */
1251 	if (total && total != ~0U) {
1252 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1253 		stats->prev_total = total;
1254 	}
1255 }
1256 
1257 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1258 {
1259 	intel_wakeref_t wakeref;
1260 	u32 reg, shift;
1261 
1262 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1263 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1264 
1265 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1266 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1267 
1268 	return 3 - shift;
1269 }
1270 
1271 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1272 {
1273 	struct intel_gt *gt = guc_to_gt(guc);
1274 	u32 gt_stamp_lo, gt_stamp_hi;
1275 	u64 gpm_ts;
1276 
1277 	lockdep_assert_held(&guc->timestamp.lock);
1278 
1279 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1280 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1281 					  MISC_STATUS1) >> guc->timestamp.shift;
1282 	gt_stamp_lo = lower_32_bits(gpm_ts);
1283 	*now = ktime_get();
1284 
1285 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1286 		gt_stamp_hi++;
1287 
1288 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1289 }
1290 
1291 /*
1292  * Unlike the execlist mode of submission total and active times are in terms of
1293  * gt clocks. The *now parameter is retained to return the cpu time at which the
1294  * busyness was sampled.
1295  */
1296 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1297 {
1298 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1299 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1300 	struct intel_gt *gt = engine->gt;
1301 	struct intel_guc *guc = &gt->uc.guc;
1302 	u64 total, gt_stamp_saved;
1303 	unsigned long flags;
1304 	u32 reset_count;
1305 	bool in_reset;
1306 
1307 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1308 
1309 	/*
1310 	 * If a reset happened, we risk reading partially updated engine
1311 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1312 	 * Synchronize with gt reset using reset_count and the
1313 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1314 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1315 	 * usable by checking the flag afterwards.
1316 	 */
1317 	reset_count = i915_reset_count(gpu_error);
1318 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1319 
1320 	*now = ktime_get();
1321 
1322 	/*
1323 	 * The active busyness depends on start_gt_clk and gt_stamp.
1324 	 * gt_stamp is updated by i915 only when gt is awake and the
1325 	 * start_gt_clk is derived from GuC state. To get a consistent
1326 	 * view of activity, we query the GuC state only if gt is awake.
1327 	 */
1328 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1329 		stats_saved = *stats;
1330 		gt_stamp_saved = guc->timestamp.gt_stamp;
1331 		/*
1332 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1333 		 * start_gt_clk' calculation below for active engines.
1334 		 */
1335 		guc_update_engine_gt_clks(engine);
1336 		guc_update_pm_timestamp(guc, now);
1337 		intel_gt_pm_put_async(gt);
1338 		if (i915_reset_count(gpu_error) != reset_count) {
1339 			*stats = stats_saved;
1340 			guc->timestamp.gt_stamp = gt_stamp_saved;
1341 		}
1342 	}
1343 
1344 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1345 	if (stats->running) {
1346 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1347 
1348 		total += intel_gt_clock_interval_to_ns(gt, clk);
1349 	}
1350 
1351 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1352 
1353 	return ns_to_ktime(total);
1354 }
1355 
1356 static void guc_enable_busyness_worker(struct intel_guc *guc)
1357 {
1358 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1359 }
1360 
1361 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1362 {
1363 	cancel_delayed_work_sync(&guc->timestamp.work);
1364 }
1365 
1366 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1367 {
1368 	struct intel_gt *gt = guc_to_gt(guc);
1369 	struct intel_engine_cs *engine;
1370 	enum intel_engine_id id;
1371 	unsigned long flags;
1372 	ktime_t unused;
1373 
1374 	guc_cancel_busyness_worker(guc);
1375 
1376 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1377 
1378 	guc_update_pm_timestamp(guc, &unused);
1379 	for_each_engine(engine, gt, id) {
1380 		guc_update_engine_gt_clks(engine);
1381 		engine->stats.guc.prev_total = 0;
1382 	}
1383 
1384 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1385 }
1386 
1387 static void __update_guc_busyness_stats(struct intel_guc *guc)
1388 {
1389 	struct intel_gt *gt = guc_to_gt(guc);
1390 	struct intel_engine_cs *engine;
1391 	enum intel_engine_id id;
1392 	unsigned long flags;
1393 	ktime_t unused;
1394 
1395 	guc->timestamp.last_stat_jiffies = jiffies;
1396 
1397 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1398 
1399 	guc_update_pm_timestamp(guc, &unused);
1400 	for_each_engine(engine, gt, id)
1401 		guc_update_engine_gt_clks(engine);
1402 
1403 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1404 }
1405 
1406 static void __guc_context_update_stats(struct intel_context *ce)
1407 {
1408 	struct intel_guc *guc = ce_to_guc(ce);
1409 	unsigned long flags;
1410 
1411 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1412 	lrc_update_runtime(ce);
1413 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1414 }
1415 
1416 static void guc_context_update_stats(struct intel_context *ce)
1417 {
1418 	if (!intel_context_pin_if_active(ce))
1419 		return;
1420 
1421 	__guc_context_update_stats(ce);
1422 	intel_context_unpin(ce);
1423 }
1424 
1425 static void guc_timestamp_ping(struct work_struct *wrk)
1426 {
1427 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1428 					     timestamp.work.work);
1429 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1430 	struct intel_gt *gt = guc_to_gt(guc);
1431 	struct intel_context *ce;
1432 	intel_wakeref_t wakeref;
1433 	unsigned long index;
1434 	int srcu, ret;
1435 
1436 	/*
1437 	 * Ideally the busyness worker should take a gt pm wakeref because the
1438 	 * worker only needs to be active while gt is awake. However, the
1439 	 * gt_park path cancels the worker synchronously and this complicates
1440 	 * the flow if the worker is also running at the same time. The cancel
1441 	 * waits for the worker and when the worker releases the wakeref, that
1442 	 * would call gt_park and would lead to a deadlock.
1443 	 *
1444 	 * The resolution is to take the global pm wakeref if runtime pm is
1445 	 * already active. If not, we don't need to update the busyness stats as
1446 	 * the stats would already be updated when the gt was parked.
1447 	 *
1448 	 * Note:
1449 	 * - We do not requeue the worker if we cannot take a reference to runtime
1450 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1451 	 *   resume path.
1452 	 *
1453 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1454 	 *   over, we ignore those rollovers since we don't care about tracking
1455 	 *   the exact GT time. We only care about roll overs when the gt is
1456 	 *   active and running workloads.
1457 	 *
1458 	 * - There is a window of time between gt_park and runtime suspend,
1459 	 *   where the worker may run. This is acceptable since the worker will
1460 	 *   not find any new data to update busyness.
1461 	 */
1462 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1463 	if (!wakeref)
1464 		return;
1465 
1466 	/*
1467 	 * Synchronize with gt reset to make sure the worker does not
1468 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1469 	 * for a reset to complete as the reset requires flushing out
1470 	 * this worker thread if started. So waiting would deadlock.
1471 	 */
1472 	ret = intel_gt_reset_trylock(gt, &srcu);
1473 	if (ret)
1474 		goto err_trylock;
1475 
1476 	__update_guc_busyness_stats(guc);
1477 
1478 	/* adjust context stats for overflow */
1479 	xa_for_each(&guc->context_lookup, index, ce)
1480 		guc_context_update_stats(ce);
1481 
1482 	intel_gt_reset_unlock(gt, srcu);
1483 
1484 	guc_enable_busyness_worker(guc);
1485 
1486 err_trylock:
1487 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1488 }
1489 
1490 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1491 {
1492 	u32 offset = intel_guc_engine_usage_offset(guc);
1493 	u32 action[] = {
1494 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1495 		offset,
1496 		0,
1497 	};
1498 
1499 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1500 }
1501 
1502 static int guc_init_engine_stats(struct intel_guc *guc)
1503 {
1504 	struct intel_gt *gt = guc_to_gt(guc);
1505 	intel_wakeref_t wakeref;
1506 	int ret;
1507 
1508 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1509 		ret = guc_action_enable_usage_stats(guc);
1510 
1511 	if (ret)
1512 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1513 	else
1514 		guc_enable_busyness_worker(guc);
1515 
1516 	return ret;
1517 }
1518 
1519 static void guc_fini_engine_stats(struct intel_guc *guc)
1520 {
1521 	guc_cancel_busyness_worker(guc);
1522 }
1523 
1524 void intel_guc_busyness_park(struct intel_gt *gt)
1525 {
1526 	struct intel_guc *guc = &gt->uc.guc;
1527 
1528 	if (!guc_submission_initialized(guc))
1529 		return;
1530 
1531 	/*
1532 	 * There is a race with suspend flow where the worker runs after suspend
1533 	 * and causes an unclaimed register access warning. Cancel the worker
1534 	 * synchronously here.
1535 	 */
1536 	guc_cancel_busyness_worker(guc);
1537 
1538 	/*
1539 	 * Before parking, we should sample engine busyness stats if we need to.
1540 	 * We can skip it if we are less than half a ping from the last time we
1541 	 * sampled the busyness stats.
1542 	 */
1543 	if (guc->timestamp.last_stat_jiffies &&
1544 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1545 			(guc->timestamp.ping_delay / 2)))
1546 		return;
1547 
1548 	__update_guc_busyness_stats(guc);
1549 }
1550 
1551 void intel_guc_busyness_unpark(struct intel_gt *gt)
1552 {
1553 	struct intel_guc *guc = &gt->uc.guc;
1554 	unsigned long flags;
1555 	ktime_t unused;
1556 
1557 	if (!guc_submission_initialized(guc))
1558 		return;
1559 
1560 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1561 	guc_update_pm_timestamp(guc, &unused);
1562 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1563 	guc_enable_busyness_worker(guc);
1564 }
1565 
1566 static inline bool
1567 submission_disabled(struct intel_guc *guc)
1568 {
1569 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1570 
1571 	return unlikely(!sched_engine ||
1572 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1573 			intel_gt_is_wedged(guc_to_gt(guc)));
1574 }
1575 
1576 static void disable_submission(struct intel_guc *guc)
1577 {
1578 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1579 
1580 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1581 		GEM_BUG_ON(!guc->ct.enabled);
1582 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1583 		sched_engine->tasklet.callback = NULL;
1584 	}
1585 }
1586 
1587 static void enable_submission(struct intel_guc *guc)
1588 {
1589 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1590 	unsigned long flags;
1591 
1592 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1593 	sched_engine->tasklet.callback = guc_submission_tasklet;
1594 	wmb();	/* Make sure callback visible */
1595 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1596 	    __tasklet_enable(&sched_engine->tasklet)) {
1597 		GEM_BUG_ON(!guc->ct.enabled);
1598 
1599 		/* And kick in case we missed a new request submission. */
1600 		tasklet_hi_schedule(&sched_engine->tasklet);
1601 	}
1602 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1603 }
1604 
1605 static void guc_flush_submissions(struct intel_guc *guc)
1606 {
1607 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1608 	unsigned long flags;
1609 
1610 	spin_lock_irqsave(&sched_engine->lock, flags);
1611 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1612 }
1613 
1614 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1615 
1616 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1617 {
1618 	if (unlikely(!guc_submission_initialized(guc))) {
1619 		/* Reset called during driver load? GuC not yet initialised! */
1620 		return;
1621 	}
1622 
1623 	intel_gt_park_heartbeats(guc_to_gt(guc));
1624 	disable_submission(guc);
1625 	guc->interrupts.disable(guc);
1626 	__reset_guc_busyness_stats(guc);
1627 
1628 	/* Flush IRQ handler */
1629 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1630 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1631 
1632 	guc_flush_submissions(guc);
1633 	guc_flush_destroyed_contexts(guc);
1634 	flush_work(&guc->ct.requests.worker);
1635 
1636 	scrub_guc_desc_for_outstanding_g2h(guc);
1637 }
1638 
1639 static struct intel_engine_cs *
1640 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1641 {
1642 	struct intel_engine_cs *engine;
1643 	intel_engine_mask_t tmp, mask = ve->mask;
1644 	unsigned int num_siblings = 0;
1645 
1646 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1647 		if (num_siblings++ == sibling)
1648 			return engine;
1649 
1650 	return NULL;
1651 }
1652 
1653 static inline struct intel_engine_cs *
1654 __context_to_physical_engine(struct intel_context *ce)
1655 {
1656 	struct intel_engine_cs *engine = ce->engine;
1657 
1658 	if (intel_engine_is_virtual(engine))
1659 		engine = guc_virtual_get_sibling(engine, 0);
1660 
1661 	return engine;
1662 }
1663 
1664 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1665 {
1666 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1667 
1668 	if (!intel_context_is_schedulable(ce))
1669 		return;
1670 
1671 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1672 
1673 	/*
1674 	 * We want a simple context + ring to execute the breadcrumb update.
1675 	 * We cannot rely on the context being intact across the GPU hang,
1676 	 * so clear it and rebuild just what we need for the breadcrumb.
1677 	 * All pending requests for this context will be zapped, and any
1678 	 * future request will be after userspace has had the opportunity
1679 	 * to recreate its own state.
1680 	 */
1681 	if (scrub)
1682 		lrc_init_regs(ce, engine, true);
1683 
1684 	/* Rerun the request; its payload has been neutered (if guilty). */
1685 	lrc_update_regs(ce, engine, head);
1686 }
1687 
1688 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1689 {
1690 	/*
1691 	 * Wa_22011802037: In addition to stopping the cs, we need
1692 	 * to wait for any pending mi force wakeups
1693 	 */
1694 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1695 		intel_engine_stop_cs(engine);
1696 		intel_engine_wait_for_pending_mi_fw(engine);
1697 	}
1698 }
1699 
1700 static void guc_reset_nop(struct intel_engine_cs *engine)
1701 {
1702 }
1703 
1704 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1705 {
1706 }
1707 
1708 static void
1709 __unwind_incomplete_requests(struct intel_context *ce)
1710 {
1711 	struct i915_request *rq, *rn;
1712 	struct list_head *pl;
1713 	int prio = I915_PRIORITY_INVALID;
1714 	struct i915_sched_engine * const sched_engine =
1715 		ce->engine->sched_engine;
1716 	unsigned long flags;
1717 
1718 	spin_lock_irqsave(&sched_engine->lock, flags);
1719 	spin_lock(&ce->guc_state.lock);
1720 	list_for_each_entry_safe_reverse(rq, rn,
1721 					 &ce->guc_state.requests,
1722 					 sched.link) {
1723 		if (i915_request_completed(rq))
1724 			continue;
1725 
1726 		list_del_init(&rq->sched.link);
1727 		__i915_request_unsubmit(rq);
1728 
1729 		/* Push the request back into the queue for later resubmission. */
1730 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1731 		if (rq_prio(rq) != prio) {
1732 			prio = rq_prio(rq);
1733 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1734 		}
1735 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1736 
1737 		list_add(&rq->sched.link, pl);
1738 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1739 	}
1740 	spin_unlock(&ce->guc_state.lock);
1741 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1742 }
1743 
1744 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1745 {
1746 	bool guilty;
1747 	struct i915_request *rq;
1748 	unsigned long flags;
1749 	u32 head;
1750 	int i, number_children = ce->parallel.number_children;
1751 	struct intel_context *parent = ce;
1752 
1753 	GEM_BUG_ON(intel_context_is_child(ce));
1754 
1755 	intel_context_get(ce);
1756 
1757 	/*
1758 	 * GuC will implicitly mark the context as non-schedulable when it sends
1759 	 * the reset notification. Make sure our state reflects this change. The
1760 	 * context will be marked enabled on resubmission.
1761 	 */
1762 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1763 	clr_context_enabled(ce);
1764 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1765 
1766 	/*
1767 	 * For each context in the relationship find the hanging request
1768 	 * resetting each context / request as needed
1769 	 */
1770 	for (i = 0; i < number_children + 1; ++i) {
1771 		if (!intel_context_is_pinned(ce))
1772 			goto next_context;
1773 
1774 		guilty = false;
1775 		rq = intel_context_get_active_request(ce);
1776 		if (!rq) {
1777 			head = ce->ring->tail;
1778 			goto out_replay;
1779 		}
1780 
1781 		if (i915_request_started(rq))
1782 			guilty = stalled & ce->engine->mask;
1783 
1784 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1785 		head = intel_ring_wrap(ce->ring, rq->head);
1786 
1787 		__i915_request_reset(rq, guilty);
1788 		i915_request_put(rq);
1789 out_replay:
1790 		guc_reset_state(ce, head, guilty);
1791 next_context:
1792 		if (i != number_children)
1793 			ce = list_next_entry(ce, parallel.child_link);
1794 	}
1795 
1796 	__unwind_incomplete_requests(parent);
1797 	intel_context_put(parent);
1798 }
1799 
1800 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1801 {
1802 	struct intel_guc_tlb_wait *wait;
1803 	unsigned long i;
1804 
1805 	if (!intel_guc_tlb_invalidation_is_available(guc))
1806 		return;
1807 
1808 	xa_lock_irq(&guc->tlb_lookup);
1809 	xa_for_each(&guc->tlb_lookup, i, wait)
1810 		wake_up(&wait->wq);
1811 	xa_unlock_irq(&guc->tlb_lookup);
1812 }
1813 
1814 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1815 {
1816 	struct intel_context *ce;
1817 	unsigned long index;
1818 	unsigned long flags;
1819 
1820 	if (unlikely(!guc_submission_initialized(guc))) {
1821 		/* Reset called during driver load? GuC not yet initialised! */
1822 		return;
1823 	}
1824 
1825 	xa_lock_irqsave(&guc->context_lookup, flags);
1826 	xa_for_each(&guc->context_lookup, index, ce) {
1827 		if (!kref_get_unless_zero(&ce->ref))
1828 			continue;
1829 
1830 		xa_unlock(&guc->context_lookup);
1831 
1832 		if (intel_context_is_pinned(ce) &&
1833 		    !intel_context_is_child(ce))
1834 			__guc_reset_context(ce, stalled);
1835 
1836 		intel_context_put(ce);
1837 
1838 		xa_lock(&guc->context_lookup);
1839 	}
1840 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1841 
1842 	/* GuC is blown away, drop all references to contexts */
1843 	xa_destroy(&guc->context_lookup);
1844 }
1845 
1846 static void guc_cancel_context_requests(struct intel_context *ce)
1847 {
1848 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1849 	struct i915_request *rq;
1850 	unsigned long flags;
1851 
1852 	/* Mark all executing requests as skipped. */
1853 	spin_lock_irqsave(&sched_engine->lock, flags);
1854 	spin_lock(&ce->guc_state.lock);
1855 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1856 		i915_request_put(i915_request_mark_eio(rq));
1857 	spin_unlock(&ce->guc_state.lock);
1858 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1859 }
1860 
1861 static void
1862 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1863 {
1864 	struct i915_request *rq, *rn;
1865 	struct rb_node *rb;
1866 	unsigned long flags;
1867 
1868 	/* Can be called during boot if GuC fails to load */
1869 	if (!sched_engine)
1870 		return;
1871 
1872 	/*
1873 	 * Before we call engine->cancel_requests(), we should have exclusive
1874 	 * access to the submission state. This is arranged for us by the
1875 	 * caller disabling the interrupt generation, the tasklet and other
1876 	 * threads that may then access the same state, giving us a free hand
1877 	 * to reset state. However, we still need to let lockdep be aware that
1878 	 * we know this state may be accessed in hardirq context, so we
1879 	 * disable the irq around this manipulation and we want to keep
1880 	 * the spinlock focused on its duties and not accidentally conflate
1881 	 * coverage to the submission's irq state. (Similarly, although we
1882 	 * shouldn't need to disable irq around the manipulation of the
1883 	 * submission's irq state, we also wish to remind ourselves that
1884 	 * it is irq state.)
1885 	 */
1886 	spin_lock_irqsave(&sched_engine->lock, flags);
1887 
1888 	/* Flush the queued requests to the timeline list (for retiring). */
1889 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1890 		struct i915_priolist *p = to_priolist(rb);
1891 
1892 		priolist_for_each_request_consume(rq, rn, p) {
1893 			list_del_init(&rq->sched.link);
1894 
1895 			__i915_request_submit(rq);
1896 
1897 			i915_request_put(i915_request_mark_eio(rq));
1898 		}
1899 
1900 		rb_erase_cached(&p->node, &sched_engine->queue);
1901 		i915_priolist_free(p);
1902 	}
1903 
1904 	/* Remaining _unready_ requests will be nop'ed when submitted */
1905 
1906 	sched_engine->queue_priority_hint = INT_MIN;
1907 	sched_engine->queue = RB_ROOT_CACHED;
1908 
1909 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1910 }
1911 
1912 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1913 {
1914 	struct intel_context *ce;
1915 	unsigned long index;
1916 	unsigned long flags;
1917 
1918 	xa_lock_irqsave(&guc->context_lookup, flags);
1919 	xa_for_each(&guc->context_lookup, index, ce) {
1920 		if (!kref_get_unless_zero(&ce->ref))
1921 			continue;
1922 
1923 		xa_unlock(&guc->context_lookup);
1924 
1925 		if (intel_context_is_pinned(ce) &&
1926 		    !intel_context_is_child(ce))
1927 			guc_cancel_context_requests(ce);
1928 
1929 		intel_context_put(ce);
1930 
1931 		xa_lock(&guc->context_lookup);
1932 	}
1933 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1934 
1935 	guc_cancel_sched_engine_requests(guc->sched_engine);
1936 
1937 	/* GuC is blown away, drop all references to contexts */
1938 	xa_destroy(&guc->context_lookup);
1939 
1940 	/*
1941 	 * Wedged GT won't respond to any TLB invalidation request. Simply
1942 	 * release all the blocked waiters.
1943 	 */
1944 	wake_up_all_tlb_invalidate(guc);
1945 }
1946 
1947 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1948 {
1949 	/* Reset called during driver load or during wedge? */
1950 	if (unlikely(!guc_submission_initialized(guc) ||
1951 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1952 		return;
1953 	}
1954 
1955 	/*
1956 	 * Technically possible for either of these values to be non-zero here,
1957 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1958 	 * see in CI if this happens frequently / a precursor to taking down the
1959 	 * machine.
1960 	 */
1961 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1962 	atomic_set(&guc->outstanding_submission_g2h, 0);
1963 
1964 	intel_guc_global_policies_update(guc);
1965 	enable_submission(guc);
1966 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1967 
1968 	/*
1969 	 * The full GT reset will have cleared the TLB caches and flushed the
1970 	 * G2H message queue; we can release all the blocked waiters.
1971 	 */
1972 	wake_up_all_tlb_invalidate(guc);
1973 }
1974 
1975 static void destroyed_worker_func(struct work_struct *w);
1976 static void reset_fail_worker_func(struct work_struct *w);
1977 
1978 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
1979 {
1980 	return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
1981 		intel_guc_is_ready(guc);
1982 }
1983 
1984 static int init_tlb_lookup(struct intel_guc *guc)
1985 {
1986 	struct intel_guc_tlb_wait *wait;
1987 	int err;
1988 
1989 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
1990 		return 0;
1991 
1992 	xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
1993 
1994 	wait = kzalloc(sizeof(*wait), GFP_KERNEL);
1995 	if (!wait)
1996 		return -ENOMEM;
1997 
1998 	init_waitqueue_head(&wait->wq);
1999 
2000 	/* Preallocate a shared id for use under memory pressure. */
2001 	err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2002 				  xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2003 	if (err < 0) {
2004 		kfree(wait);
2005 		return err;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void fini_tlb_lookup(struct intel_guc *guc)
2012 {
2013 	struct intel_guc_tlb_wait *wait;
2014 
2015 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2016 		return;
2017 
2018 	wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2019 	if (wait && wait->busy)
2020 		guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2021 	kfree(wait);
2022 
2023 	xa_destroy(&guc->tlb_lookup);
2024 }
2025 
2026 /*
2027  * Set up the memory resources to be shared with the GuC (via the GGTT)
2028  * at firmware loading time.
2029  */
2030 int intel_guc_submission_init(struct intel_guc *guc)
2031 {
2032 	struct intel_gt *gt = guc_to_gt(guc);
2033 	int ret;
2034 
2035 	if (guc->submission_initialized)
2036 		return 0;
2037 
2038 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2039 		ret = guc_lrc_desc_pool_create_v69(guc);
2040 		if (ret)
2041 			return ret;
2042 	}
2043 
2044 	ret = init_tlb_lookup(guc);
2045 	if (ret)
2046 		goto destroy_pool;
2047 
2048 	guc->submission_state.guc_ids_bitmap =
2049 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2050 	if (!guc->submission_state.guc_ids_bitmap) {
2051 		ret = -ENOMEM;
2052 		goto destroy_tlb;
2053 	}
2054 
2055 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2056 	guc->timestamp.shift = gpm_timestamp_shift(gt);
2057 	guc->submission_initialized = true;
2058 
2059 	return 0;
2060 
2061 destroy_tlb:
2062 	fini_tlb_lookup(guc);
2063 destroy_pool:
2064 	guc_lrc_desc_pool_destroy_v69(guc);
2065 	return ret;
2066 }
2067 
2068 void intel_guc_submission_fini(struct intel_guc *guc)
2069 {
2070 	if (!guc->submission_initialized)
2071 		return;
2072 
2073 	guc_flush_destroyed_contexts(guc);
2074 	guc_lrc_desc_pool_destroy_v69(guc);
2075 	i915_sched_engine_put(guc->sched_engine);
2076 	bitmap_free(guc->submission_state.guc_ids_bitmap);
2077 	fini_tlb_lookup(guc);
2078 	guc->submission_initialized = false;
2079 }
2080 
2081 static inline void queue_request(struct i915_sched_engine *sched_engine,
2082 				 struct i915_request *rq,
2083 				 int prio)
2084 {
2085 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2086 	list_add_tail(&rq->sched.link,
2087 		      i915_sched_lookup_priolist(sched_engine, prio));
2088 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2089 	tasklet_hi_schedule(&sched_engine->tasklet);
2090 }
2091 
2092 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2093 				     struct i915_request *rq)
2094 {
2095 	int ret = 0;
2096 
2097 	__i915_request_submit(rq);
2098 
2099 	trace_i915_request_in(rq, 0);
2100 
2101 	if (is_multi_lrc_rq(rq)) {
2102 		if (multi_lrc_submit(rq)) {
2103 			ret = guc_wq_item_append(guc, rq);
2104 			if (!ret)
2105 				ret = guc_add_request(guc, rq);
2106 		}
2107 	} else {
2108 		guc_set_lrc_tail(rq);
2109 		ret = guc_add_request(guc, rq);
2110 	}
2111 
2112 	if (unlikely(ret == -EPIPE))
2113 		disable_submission(guc);
2114 
2115 	return ret;
2116 }
2117 
2118 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2119 {
2120 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2121 	struct intel_context *ce = request_to_scheduling_context(rq);
2122 
2123 	return submission_disabled(guc) || guc->stalled_request ||
2124 		!i915_sched_engine_is_empty(sched_engine) ||
2125 		!ctx_id_mapped(guc, ce->guc_id.id);
2126 }
2127 
2128 static void guc_submit_request(struct i915_request *rq)
2129 {
2130 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2131 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
2132 	unsigned long flags;
2133 
2134 	/* Will be called from irq-context when using foreign fences. */
2135 	spin_lock_irqsave(&sched_engine->lock, flags);
2136 
2137 	if (need_tasklet(guc, rq))
2138 		queue_request(sched_engine, rq, rq_prio(rq));
2139 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2140 		tasklet_hi_schedule(&sched_engine->tasklet);
2141 
2142 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2143 }
2144 
2145 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2146 {
2147 	int ret;
2148 
2149 	GEM_BUG_ON(intel_context_is_child(ce));
2150 
2151 	if (intel_context_is_parent(ce))
2152 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2153 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2154 					      order_base_2(ce->parallel.number_children
2155 							   + 1));
2156 	else
2157 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2158 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2159 				     guc->submission_state.num_guc_ids,
2160 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2161 				     __GFP_NOWARN);
2162 	if (unlikely(ret < 0))
2163 		return ret;
2164 
2165 	if (!intel_context_is_parent(ce))
2166 		++guc->submission_state.guc_ids_in_use;
2167 
2168 	ce->guc_id.id = ret;
2169 	return 0;
2170 }
2171 
2172 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2173 {
2174 	GEM_BUG_ON(intel_context_is_child(ce));
2175 
2176 	if (!context_guc_id_invalid(ce)) {
2177 		if (intel_context_is_parent(ce)) {
2178 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2179 					      ce->guc_id.id,
2180 					      order_base_2(ce->parallel.number_children
2181 							   + 1));
2182 		} else {
2183 			--guc->submission_state.guc_ids_in_use;
2184 			ida_simple_remove(&guc->submission_state.guc_ids,
2185 					  ce->guc_id.id);
2186 		}
2187 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2188 		set_context_guc_id_invalid(ce);
2189 	}
2190 	if (!list_empty(&ce->guc_id.link))
2191 		list_del_init(&ce->guc_id.link);
2192 }
2193 
2194 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2195 {
2196 	unsigned long flags;
2197 
2198 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2199 	__release_guc_id(guc, ce);
2200 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2201 }
2202 
2203 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2204 {
2205 	struct intel_context *cn;
2206 
2207 	lockdep_assert_held(&guc->submission_state.lock);
2208 	GEM_BUG_ON(intel_context_is_child(ce));
2209 	GEM_BUG_ON(intel_context_is_parent(ce));
2210 
2211 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2212 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2213 				      struct intel_context,
2214 				      guc_id.link);
2215 
2216 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2217 		GEM_BUG_ON(context_guc_id_invalid(cn));
2218 		GEM_BUG_ON(intel_context_is_child(cn));
2219 		GEM_BUG_ON(intel_context_is_parent(cn));
2220 
2221 		list_del_init(&cn->guc_id.link);
2222 		ce->guc_id.id = cn->guc_id.id;
2223 
2224 		spin_lock(&cn->guc_state.lock);
2225 		clr_context_registered(cn);
2226 		spin_unlock(&cn->guc_state.lock);
2227 
2228 		set_context_guc_id_invalid(cn);
2229 
2230 #ifdef CONFIG_DRM_I915_SELFTEST
2231 		guc->number_guc_id_stolen++;
2232 #endif
2233 
2234 		return 0;
2235 	} else {
2236 		return -EAGAIN;
2237 	}
2238 }
2239 
2240 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2241 {
2242 	int ret;
2243 
2244 	lockdep_assert_held(&guc->submission_state.lock);
2245 	GEM_BUG_ON(intel_context_is_child(ce));
2246 
2247 	ret = new_guc_id(guc, ce);
2248 	if (unlikely(ret < 0)) {
2249 		if (intel_context_is_parent(ce))
2250 			return -ENOSPC;
2251 
2252 		ret = steal_guc_id(guc, ce);
2253 		if (ret < 0)
2254 			return ret;
2255 	}
2256 
2257 	if (intel_context_is_parent(ce)) {
2258 		struct intel_context *child;
2259 		int i = 1;
2260 
2261 		for_each_child(ce, child)
2262 			child->guc_id.id = ce->guc_id.id + i++;
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 #define PIN_GUC_ID_TRIES	4
2269 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2270 {
2271 	int ret = 0;
2272 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2273 
2274 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2275 
2276 try_again:
2277 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2278 
2279 	might_lock(&ce->guc_state.lock);
2280 
2281 	if (context_guc_id_invalid(ce)) {
2282 		ret = assign_guc_id(guc, ce);
2283 		if (ret)
2284 			goto out_unlock;
2285 		ret = 1;	/* Indidcates newly assigned guc_id */
2286 	}
2287 	if (!list_empty(&ce->guc_id.link))
2288 		list_del_init(&ce->guc_id.link);
2289 	atomic_inc(&ce->guc_id.ref);
2290 
2291 out_unlock:
2292 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2293 
2294 	/*
2295 	 * -EAGAIN indicates no guc_id are available, let's retire any
2296 	 * outstanding requests to see if that frees up a guc_id. If the first
2297 	 * retire didn't help, insert a sleep with the timeslice duration before
2298 	 * attempting to retire more requests. Double the sleep period each
2299 	 * subsequent pass before finally giving up. The sleep period has max of
2300 	 * 100ms and minimum of 1ms.
2301 	 */
2302 	if (ret == -EAGAIN && --tries) {
2303 		if (PIN_GUC_ID_TRIES - tries > 1) {
2304 			unsigned int timeslice_shifted =
2305 				ce->engine->props.timeslice_duration_ms <<
2306 				(PIN_GUC_ID_TRIES - tries - 2);
2307 			unsigned int max = min_t(unsigned int, 100,
2308 						 timeslice_shifted);
2309 
2310 			msleep(max_t(unsigned int, max, 1));
2311 		}
2312 		intel_gt_retire_requests(guc_to_gt(guc));
2313 		goto try_again;
2314 	}
2315 
2316 	return ret;
2317 }
2318 
2319 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2320 {
2321 	unsigned long flags;
2322 
2323 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2324 	GEM_BUG_ON(intel_context_is_child(ce));
2325 
2326 	if (unlikely(context_guc_id_invalid(ce) ||
2327 		     intel_context_is_parent(ce)))
2328 		return;
2329 
2330 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2331 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2332 	    !atomic_read(&ce->guc_id.ref))
2333 		list_add_tail(&ce->guc_id.link,
2334 			      &guc->submission_state.guc_id_list);
2335 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2336 }
2337 
2338 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2339 					       struct intel_context *ce,
2340 					       u32 guc_id,
2341 					       u32 offset,
2342 					       bool loop)
2343 {
2344 	struct intel_context *child;
2345 	u32 action[4 + MAX_ENGINE_INSTANCE];
2346 	int len = 0;
2347 
2348 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2349 
2350 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2351 	action[len++] = guc_id;
2352 	action[len++] = ce->parallel.number_children + 1;
2353 	action[len++] = offset;
2354 	for_each_child(ce, child) {
2355 		offset += sizeof(struct guc_lrc_desc_v69);
2356 		action[len++] = offset;
2357 	}
2358 
2359 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2360 }
2361 
2362 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2363 					       struct intel_context *ce,
2364 					       struct guc_ctxt_registration_info *info,
2365 					       bool loop)
2366 {
2367 	struct intel_context *child;
2368 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2369 	int len = 0;
2370 	u32 next_id;
2371 
2372 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2373 
2374 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2375 	action[len++] = info->flags;
2376 	action[len++] = info->context_idx;
2377 	action[len++] = info->engine_class;
2378 	action[len++] = info->engine_submit_mask;
2379 	action[len++] = info->wq_desc_lo;
2380 	action[len++] = info->wq_desc_hi;
2381 	action[len++] = info->wq_base_lo;
2382 	action[len++] = info->wq_base_hi;
2383 	action[len++] = info->wq_size;
2384 	action[len++] = ce->parallel.number_children + 1;
2385 	action[len++] = info->hwlrca_lo;
2386 	action[len++] = info->hwlrca_hi;
2387 
2388 	next_id = info->context_idx + 1;
2389 	for_each_child(ce, child) {
2390 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2391 
2392 		/*
2393 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2394 		 * only supports 32 bit currently.
2395 		 */
2396 		action[len++] = lower_32_bits(child->lrc.lrca);
2397 		action[len++] = upper_32_bits(child->lrc.lrca);
2398 	}
2399 
2400 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2401 
2402 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2403 }
2404 
2405 static int __guc_action_register_context_v69(struct intel_guc *guc,
2406 					     u32 guc_id,
2407 					     u32 offset,
2408 					     bool loop)
2409 {
2410 	u32 action[] = {
2411 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2412 		guc_id,
2413 		offset,
2414 	};
2415 
2416 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2417 					     0, loop);
2418 }
2419 
2420 static int __guc_action_register_context_v70(struct intel_guc *guc,
2421 					     struct guc_ctxt_registration_info *info,
2422 					     bool loop)
2423 {
2424 	u32 action[] = {
2425 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2426 		info->flags,
2427 		info->context_idx,
2428 		info->engine_class,
2429 		info->engine_submit_mask,
2430 		info->wq_desc_lo,
2431 		info->wq_desc_hi,
2432 		info->wq_base_lo,
2433 		info->wq_base_hi,
2434 		info->wq_size,
2435 		info->hwlrca_lo,
2436 		info->hwlrca_hi,
2437 	};
2438 
2439 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2440 					     0, loop);
2441 }
2442 
2443 static void prepare_context_registration_info_v69(struct intel_context *ce);
2444 static void prepare_context_registration_info_v70(struct intel_context *ce,
2445 						  struct guc_ctxt_registration_info *info);
2446 
2447 static int
2448 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2449 {
2450 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2451 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2452 
2453 	prepare_context_registration_info_v69(ce);
2454 
2455 	if (intel_context_is_parent(ce))
2456 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2457 							   offset, loop);
2458 	else
2459 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2460 							 offset, loop);
2461 }
2462 
2463 static int
2464 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2465 {
2466 	struct guc_ctxt_registration_info info;
2467 
2468 	prepare_context_registration_info_v70(ce, &info);
2469 
2470 	if (intel_context_is_parent(ce))
2471 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2472 	else
2473 		return __guc_action_register_context_v70(guc, &info, loop);
2474 }
2475 
2476 static int register_context(struct intel_context *ce, bool loop)
2477 {
2478 	struct intel_guc *guc = ce_to_guc(ce);
2479 	int ret;
2480 
2481 	GEM_BUG_ON(intel_context_is_child(ce));
2482 	trace_intel_context_register(ce);
2483 
2484 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2485 		ret = register_context_v70(guc, ce, loop);
2486 	else
2487 		ret = register_context_v69(guc, ce, loop);
2488 
2489 	if (likely(!ret)) {
2490 		unsigned long flags;
2491 
2492 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2493 		set_context_registered(ce);
2494 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2495 
2496 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2497 			guc_context_policy_init_v70(ce, loop);
2498 	}
2499 
2500 	return ret;
2501 }
2502 
2503 static int __guc_action_deregister_context(struct intel_guc *guc,
2504 					   u32 guc_id)
2505 {
2506 	u32 action[] = {
2507 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2508 		guc_id,
2509 	};
2510 
2511 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2512 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2513 					     true);
2514 }
2515 
2516 static int deregister_context(struct intel_context *ce, u32 guc_id)
2517 {
2518 	struct intel_guc *guc = ce_to_guc(ce);
2519 
2520 	GEM_BUG_ON(intel_context_is_child(ce));
2521 	trace_intel_context_deregister(ce);
2522 
2523 	return __guc_action_deregister_context(guc, guc_id);
2524 }
2525 
2526 static inline void clear_children_join_go_memory(struct intel_context *ce)
2527 {
2528 	struct parent_scratch *ps = __get_parent_scratch(ce);
2529 	int i;
2530 
2531 	ps->go.semaphore = 0;
2532 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2533 		ps->join[i].semaphore = 0;
2534 }
2535 
2536 static inline u32 get_children_go_value(struct intel_context *ce)
2537 {
2538 	return __get_parent_scratch(ce)->go.semaphore;
2539 }
2540 
2541 static inline u32 get_children_join_value(struct intel_context *ce,
2542 					  u8 child_index)
2543 {
2544 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2545 }
2546 
2547 struct context_policy {
2548 	u32 count;
2549 	struct guc_update_context_policy h2g;
2550 };
2551 
2552 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2553 {
2554 	size_t bytes = sizeof(policy->h2g.header) +
2555 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2556 
2557 	return bytes / sizeof(u32);
2558 }
2559 
2560 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2561 {
2562 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2563 	policy->h2g.header.ctx_id = guc_id;
2564 	policy->count = 0;
2565 }
2566 
2567 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2568 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2569 { \
2570 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2571 	policy->h2g.klv[policy->count].kl = \
2572 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2573 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2574 	policy->h2g.klv[policy->count].value = data; \
2575 	policy->count++; \
2576 }
2577 
2578 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2579 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2580 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2581 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2582 
2583 #undef MAKE_CONTEXT_POLICY_ADD
2584 
2585 static int __guc_context_set_context_policies(struct intel_guc *guc,
2586 					      struct context_policy *policy,
2587 					      bool loop)
2588 {
2589 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2590 					__guc_context_policy_action_size(policy),
2591 					0, loop);
2592 }
2593 
2594 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2595 {
2596 	struct intel_engine_cs *engine = ce->engine;
2597 	struct intel_guc *guc = &engine->gt->uc.guc;
2598 	struct context_policy policy;
2599 	u32 execution_quantum;
2600 	u32 preemption_timeout;
2601 	unsigned long flags;
2602 	int ret;
2603 
2604 	/* NB: For both of these, zero means disabled. */
2605 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2606 				  execution_quantum));
2607 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2608 				  preemption_timeout));
2609 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2610 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2611 
2612 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2613 
2614 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2615 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2616 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2617 
2618 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2619 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2620 
2621 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2622 
2623 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2624 	if (ret != 0)
2625 		set_context_policy_required(ce);
2626 	else
2627 		clr_context_policy_required(ce);
2628 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2629 
2630 	return ret;
2631 }
2632 
2633 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2634 					struct guc_lrc_desc_v69 *desc)
2635 {
2636 	desc->policy_flags = 0;
2637 
2638 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2639 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2640 
2641 	/* NB: For both of these, zero means disabled. */
2642 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2643 				  desc->execution_quantum));
2644 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2645 				  desc->preemption_timeout));
2646 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2647 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2648 }
2649 
2650 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2651 {
2652 	/*
2653 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2654 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2655 	 */
2656 	switch (prio) {
2657 	default:
2658 		MISSING_CASE(prio);
2659 		fallthrough;
2660 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2661 		return GEN12_CTX_PRIORITY_NORMAL;
2662 	case GUC_CLIENT_PRIORITY_NORMAL:
2663 		return GEN12_CTX_PRIORITY_LOW;
2664 	case GUC_CLIENT_PRIORITY_HIGH:
2665 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2666 		return GEN12_CTX_PRIORITY_HIGH;
2667 	}
2668 }
2669 
2670 static void prepare_context_registration_info_v69(struct intel_context *ce)
2671 {
2672 	struct intel_engine_cs *engine = ce->engine;
2673 	struct intel_guc *guc = &engine->gt->uc.guc;
2674 	u32 ctx_id = ce->guc_id.id;
2675 	struct guc_lrc_desc_v69 *desc;
2676 	struct intel_context *child;
2677 
2678 	GEM_BUG_ON(!engine->mask);
2679 
2680 	/*
2681 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2682 	 * based on CT vma region.
2683 	 */
2684 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2685 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2686 
2687 	desc = __get_lrc_desc_v69(guc, ctx_id);
2688 	GEM_BUG_ON(!desc);
2689 	desc->engine_class = engine_class_to_guc_class(engine->class);
2690 	desc->engine_submit_mask = engine->logical_mask;
2691 	desc->hw_context_desc = ce->lrc.lrca;
2692 	desc->priority = ce->guc_state.prio;
2693 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2694 	guc_context_policy_init_v69(engine, desc);
2695 
2696 	/*
2697 	 * If context is a parent, we need to register a process descriptor
2698 	 * describing a work queue and register all child contexts.
2699 	 */
2700 	if (intel_context_is_parent(ce)) {
2701 		struct guc_process_desc_v69 *pdesc;
2702 
2703 		ce->parallel.guc.wqi_tail = 0;
2704 		ce->parallel.guc.wqi_head = 0;
2705 
2706 		desc->process_desc = i915_ggtt_offset(ce->state) +
2707 			__get_parent_scratch_offset(ce);
2708 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2709 			__get_wq_offset(ce);
2710 		desc->wq_size = WQ_SIZE;
2711 
2712 		pdesc = __get_process_desc_v69(ce);
2713 		memset(pdesc, 0, sizeof(*(pdesc)));
2714 		pdesc->stage_id = ce->guc_id.id;
2715 		pdesc->wq_base_addr = desc->wq_addr;
2716 		pdesc->wq_size_bytes = desc->wq_size;
2717 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2718 
2719 		ce->parallel.guc.wq_head = &pdesc->head;
2720 		ce->parallel.guc.wq_tail = &pdesc->tail;
2721 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2722 
2723 		for_each_child(ce, child) {
2724 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2725 
2726 			desc->engine_class =
2727 				engine_class_to_guc_class(engine->class);
2728 			desc->hw_context_desc = child->lrc.lrca;
2729 			desc->priority = ce->guc_state.prio;
2730 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2731 			guc_context_policy_init_v69(engine, desc);
2732 		}
2733 
2734 		clear_children_join_go_memory(ce);
2735 	}
2736 }
2737 
2738 static void prepare_context_registration_info_v70(struct intel_context *ce,
2739 						  struct guc_ctxt_registration_info *info)
2740 {
2741 	struct intel_engine_cs *engine = ce->engine;
2742 	struct intel_guc *guc = &engine->gt->uc.guc;
2743 	u32 ctx_id = ce->guc_id.id;
2744 
2745 	GEM_BUG_ON(!engine->mask);
2746 
2747 	/*
2748 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2749 	 * based on CT vma region.
2750 	 */
2751 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2752 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2753 
2754 	memset(info, 0, sizeof(*info));
2755 	info->context_idx = ctx_id;
2756 	info->engine_class = engine_class_to_guc_class(engine->class);
2757 	info->engine_submit_mask = engine->logical_mask;
2758 	/*
2759 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2760 	 * only supports 32 bit currently.
2761 	 */
2762 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2763 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2764 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2765 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2766 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2767 
2768 	/*
2769 	 * If context is a parent, we need to register a process descriptor
2770 	 * describing a work queue and register all child contexts.
2771 	 */
2772 	if (intel_context_is_parent(ce)) {
2773 		struct guc_sched_wq_desc *wq_desc;
2774 		u64 wq_desc_offset, wq_base_offset;
2775 
2776 		ce->parallel.guc.wqi_tail = 0;
2777 		ce->parallel.guc.wqi_head = 0;
2778 
2779 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2780 				 __get_parent_scratch_offset(ce);
2781 		wq_base_offset = i915_ggtt_offset(ce->state) +
2782 				 __get_wq_offset(ce);
2783 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2784 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2785 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2786 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2787 		info->wq_size = WQ_SIZE;
2788 
2789 		wq_desc = __get_wq_desc_v70(ce);
2790 		memset(wq_desc, 0, sizeof(*wq_desc));
2791 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2792 
2793 		ce->parallel.guc.wq_head = &wq_desc->head;
2794 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2795 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2796 
2797 		clear_children_join_go_memory(ce);
2798 	}
2799 }
2800 
2801 static int try_context_registration(struct intel_context *ce, bool loop)
2802 {
2803 	struct intel_engine_cs *engine = ce->engine;
2804 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2805 	struct intel_guc *guc = &engine->gt->uc.guc;
2806 	intel_wakeref_t wakeref;
2807 	u32 ctx_id = ce->guc_id.id;
2808 	bool context_registered;
2809 	int ret = 0;
2810 
2811 	GEM_BUG_ON(!sched_state_is_init(ce));
2812 
2813 	context_registered = ctx_id_mapped(guc, ctx_id);
2814 
2815 	clr_ctx_id_mapping(guc, ctx_id);
2816 	set_ctx_id_mapping(guc, ctx_id, ce);
2817 
2818 	/*
2819 	 * The context_lookup xarray is used to determine if the hardware
2820 	 * context is currently registered. There are two cases in which it
2821 	 * could be registered either the guc_id has been stolen from another
2822 	 * context or the lrc descriptor address of this context has changed. In
2823 	 * either case the context needs to be deregistered with the GuC before
2824 	 * registering this context.
2825 	 */
2826 	if (context_registered) {
2827 		bool disabled;
2828 		unsigned long flags;
2829 
2830 		trace_intel_context_steal_guc_id(ce);
2831 		GEM_BUG_ON(!loop);
2832 
2833 		/* Seal race with Reset */
2834 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2835 		disabled = submission_disabled(guc);
2836 		if (likely(!disabled)) {
2837 			set_context_wait_for_deregister_to_register(ce);
2838 			intel_context_get(ce);
2839 		}
2840 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2841 		if (unlikely(disabled)) {
2842 			clr_ctx_id_mapping(guc, ctx_id);
2843 			return 0;	/* Will get registered later */
2844 		}
2845 
2846 		/*
2847 		 * If stealing the guc_id, this ce has the same guc_id as the
2848 		 * context whose guc_id was stolen.
2849 		 */
2850 		with_intel_runtime_pm(runtime_pm, wakeref)
2851 			ret = deregister_context(ce, ce->guc_id.id);
2852 		if (unlikely(ret == -ENODEV))
2853 			ret = 0;	/* Will get registered later */
2854 	} else {
2855 		with_intel_runtime_pm(runtime_pm, wakeref)
2856 			ret = register_context(ce, loop);
2857 		if (unlikely(ret == -EBUSY)) {
2858 			clr_ctx_id_mapping(guc, ctx_id);
2859 		} else if (unlikely(ret == -ENODEV)) {
2860 			clr_ctx_id_mapping(guc, ctx_id);
2861 			ret = 0;	/* Will get registered later */
2862 		}
2863 	}
2864 
2865 	return ret;
2866 }
2867 
2868 static int __guc_context_pre_pin(struct intel_context *ce,
2869 				 struct intel_engine_cs *engine,
2870 				 struct i915_gem_ww_ctx *ww,
2871 				 void **vaddr)
2872 {
2873 	return lrc_pre_pin(ce, engine, ww, vaddr);
2874 }
2875 
2876 static int __guc_context_pin(struct intel_context *ce,
2877 			     struct intel_engine_cs *engine,
2878 			     void *vaddr)
2879 {
2880 	if (i915_ggtt_offset(ce->state) !=
2881 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2882 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2883 
2884 	/*
2885 	 * GuC context gets pinned in guc_request_alloc. See that function for
2886 	 * explaination of why.
2887 	 */
2888 
2889 	return lrc_pin(ce, engine, vaddr);
2890 }
2891 
2892 static int guc_context_pre_pin(struct intel_context *ce,
2893 			       struct i915_gem_ww_ctx *ww,
2894 			       void **vaddr)
2895 {
2896 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2897 }
2898 
2899 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2900 {
2901 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2902 
2903 	if (likely(!ret && !intel_context_is_barrier(ce)))
2904 		intel_engine_pm_get(ce->engine);
2905 
2906 	return ret;
2907 }
2908 
2909 static void guc_context_unpin(struct intel_context *ce)
2910 {
2911 	struct intel_guc *guc = ce_to_guc(ce);
2912 
2913 	__guc_context_update_stats(ce);
2914 	unpin_guc_id(guc, ce);
2915 	lrc_unpin(ce);
2916 
2917 	if (likely(!intel_context_is_barrier(ce)))
2918 		intel_engine_pm_put_async(ce->engine);
2919 }
2920 
2921 static void guc_context_post_unpin(struct intel_context *ce)
2922 {
2923 	lrc_post_unpin(ce);
2924 }
2925 
2926 static void __guc_context_sched_enable(struct intel_guc *guc,
2927 				       struct intel_context *ce)
2928 {
2929 	u32 action[] = {
2930 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2931 		ce->guc_id.id,
2932 		GUC_CONTEXT_ENABLE
2933 	};
2934 
2935 	trace_intel_context_sched_enable(ce);
2936 
2937 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2938 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2939 }
2940 
2941 static void __guc_context_sched_disable(struct intel_guc *guc,
2942 					struct intel_context *ce,
2943 					u16 guc_id)
2944 {
2945 	u32 action[] = {
2946 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2947 		guc_id,	/* ce->guc_id.id not stable */
2948 		GUC_CONTEXT_DISABLE
2949 	};
2950 
2951 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2952 
2953 	GEM_BUG_ON(intel_context_is_child(ce));
2954 	trace_intel_context_sched_disable(ce);
2955 
2956 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2957 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2958 }
2959 
2960 static void guc_blocked_fence_complete(struct intel_context *ce)
2961 {
2962 	lockdep_assert_held(&ce->guc_state.lock);
2963 
2964 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2965 		i915_sw_fence_complete(&ce->guc_state.blocked);
2966 }
2967 
2968 static void guc_blocked_fence_reinit(struct intel_context *ce)
2969 {
2970 	lockdep_assert_held(&ce->guc_state.lock);
2971 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2972 
2973 	/*
2974 	 * This fence is always complete unless a pending schedule disable is
2975 	 * outstanding. We arm the fence here and complete it when we receive
2976 	 * the pending schedule disable complete message.
2977 	 */
2978 	i915_sw_fence_fini(&ce->guc_state.blocked);
2979 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2980 	i915_sw_fence_await(&ce->guc_state.blocked);
2981 	i915_sw_fence_commit(&ce->guc_state.blocked);
2982 }
2983 
2984 static u16 prep_context_pending_disable(struct intel_context *ce)
2985 {
2986 	lockdep_assert_held(&ce->guc_state.lock);
2987 
2988 	set_context_pending_disable(ce);
2989 	clr_context_enabled(ce);
2990 	guc_blocked_fence_reinit(ce);
2991 	intel_context_get(ce);
2992 
2993 	return ce->guc_id.id;
2994 }
2995 
2996 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2997 {
2998 	struct intel_guc *guc = ce_to_guc(ce);
2999 	unsigned long flags;
3000 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3001 	intel_wakeref_t wakeref;
3002 	u16 guc_id;
3003 	bool enabled;
3004 
3005 	GEM_BUG_ON(intel_context_is_child(ce));
3006 
3007 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3008 
3009 	incr_context_blocked(ce);
3010 
3011 	enabled = context_enabled(ce);
3012 	if (unlikely(!enabled || submission_disabled(guc))) {
3013 		if (enabled)
3014 			clr_context_enabled(ce);
3015 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3016 		return &ce->guc_state.blocked;
3017 	}
3018 
3019 	/*
3020 	 * We add +2 here as the schedule disable complete CTB handler calls
3021 	 * intel_context_sched_disable_unpin (-2 to pin_count).
3022 	 */
3023 	atomic_add(2, &ce->pin_count);
3024 
3025 	guc_id = prep_context_pending_disable(ce);
3026 
3027 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3028 
3029 	with_intel_runtime_pm(runtime_pm, wakeref)
3030 		__guc_context_sched_disable(guc, ce, guc_id);
3031 
3032 	return &ce->guc_state.blocked;
3033 }
3034 
3035 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3036 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3037 #define SCHED_STATE_NO_UNBLOCK \
3038 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
3039 	 SCHED_STATE_PENDING_DISABLE | \
3040 	 SCHED_STATE_BANNED)
3041 
3042 static bool context_cant_unblock(struct intel_context *ce)
3043 {
3044 	lockdep_assert_held(&ce->guc_state.lock);
3045 
3046 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3047 		context_guc_id_invalid(ce) ||
3048 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3049 		!intel_context_is_pinned(ce);
3050 }
3051 
3052 static void guc_context_unblock(struct intel_context *ce)
3053 {
3054 	struct intel_guc *guc = ce_to_guc(ce);
3055 	unsigned long flags;
3056 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3057 	intel_wakeref_t wakeref;
3058 	bool enable;
3059 
3060 	GEM_BUG_ON(context_enabled(ce));
3061 	GEM_BUG_ON(intel_context_is_child(ce));
3062 
3063 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3064 
3065 	if (unlikely(submission_disabled(guc) ||
3066 		     context_cant_unblock(ce))) {
3067 		enable = false;
3068 	} else {
3069 		enable = true;
3070 		set_context_pending_enable(ce);
3071 		set_context_enabled(ce);
3072 		intel_context_get(ce);
3073 	}
3074 
3075 	decr_context_blocked(ce);
3076 
3077 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3078 
3079 	if (enable) {
3080 		with_intel_runtime_pm(runtime_pm, wakeref)
3081 			__guc_context_sched_enable(guc, ce);
3082 	}
3083 }
3084 
3085 static void guc_context_cancel_request(struct intel_context *ce,
3086 				       struct i915_request *rq)
3087 {
3088 	struct intel_context *block_context =
3089 		request_to_scheduling_context(rq);
3090 
3091 	if (i915_sw_fence_signaled(&rq->submit)) {
3092 		struct i915_sw_fence *fence;
3093 
3094 		intel_context_get(ce);
3095 		fence = guc_context_block(block_context);
3096 		i915_sw_fence_wait(fence);
3097 		if (!i915_request_completed(rq)) {
3098 			__i915_request_skip(rq);
3099 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3100 					true);
3101 		}
3102 
3103 		guc_context_unblock(block_context);
3104 		intel_context_put(ce);
3105 	}
3106 }
3107 
3108 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3109 						 u16 guc_id,
3110 						 u32 preemption_timeout)
3111 {
3112 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3113 		struct context_policy policy;
3114 
3115 		__guc_context_policy_start_klv(&policy, guc_id);
3116 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3117 		__guc_context_set_context_policies(guc, &policy, true);
3118 	} else {
3119 		u32 action[] = {
3120 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3121 			guc_id,
3122 			preemption_timeout
3123 		};
3124 
3125 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3126 	}
3127 }
3128 
3129 static void
3130 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3131 		   unsigned int preempt_timeout_ms)
3132 {
3133 	struct intel_guc *guc = ce_to_guc(ce);
3134 	struct intel_runtime_pm *runtime_pm =
3135 		&ce->engine->gt->i915->runtime_pm;
3136 	intel_wakeref_t wakeref;
3137 	unsigned long flags;
3138 
3139 	GEM_BUG_ON(intel_context_is_child(ce));
3140 
3141 	guc_flush_submissions(guc);
3142 
3143 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3144 	set_context_banned(ce);
3145 
3146 	if (submission_disabled(guc) ||
3147 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3148 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3149 
3150 		guc_cancel_context_requests(ce);
3151 		intel_engine_signal_breadcrumbs(ce->engine);
3152 	} else if (!context_pending_disable(ce)) {
3153 		u16 guc_id;
3154 
3155 		/*
3156 		 * We add +2 here as the schedule disable complete CTB handler
3157 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3158 		 */
3159 		atomic_add(2, &ce->pin_count);
3160 
3161 		guc_id = prep_context_pending_disable(ce);
3162 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3163 
3164 		/*
3165 		 * In addition to disabling scheduling, set the preemption
3166 		 * timeout to the minimum value (1 us) so the banned context
3167 		 * gets kicked off the HW ASAP.
3168 		 */
3169 		with_intel_runtime_pm(runtime_pm, wakeref) {
3170 			__guc_context_set_preemption_timeout(guc, guc_id,
3171 							     preempt_timeout_ms);
3172 			__guc_context_sched_disable(guc, ce, guc_id);
3173 		}
3174 	} else {
3175 		if (!context_guc_id_invalid(ce))
3176 			with_intel_runtime_pm(runtime_pm, wakeref)
3177 				__guc_context_set_preemption_timeout(guc,
3178 								     ce->guc_id.id,
3179 								     preempt_timeout_ms);
3180 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3181 	}
3182 }
3183 
3184 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3185 			     unsigned long flags)
3186 	__releases(ce->guc_state.lock)
3187 {
3188 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3189 	intel_wakeref_t wakeref;
3190 	u16 guc_id;
3191 
3192 	lockdep_assert_held(&ce->guc_state.lock);
3193 	guc_id = prep_context_pending_disable(ce);
3194 
3195 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3196 
3197 	with_intel_runtime_pm(runtime_pm, wakeref)
3198 		__guc_context_sched_disable(guc, ce, guc_id);
3199 }
3200 
3201 static bool bypass_sched_disable(struct intel_guc *guc,
3202 				 struct intel_context *ce)
3203 {
3204 	lockdep_assert_held(&ce->guc_state.lock);
3205 	GEM_BUG_ON(intel_context_is_child(ce));
3206 
3207 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3208 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3209 		clr_context_enabled(ce);
3210 		return true;
3211 	}
3212 
3213 	return !context_enabled(ce);
3214 }
3215 
3216 static void __delay_sched_disable(struct work_struct *wrk)
3217 {
3218 	struct intel_context *ce =
3219 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3220 	struct intel_guc *guc = ce_to_guc(ce);
3221 	unsigned long flags;
3222 
3223 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3224 
3225 	if (bypass_sched_disable(guc, ce)) {
3226 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3227 		intel_context_sched_disable_unpin(ce);
3228 	} else {
3229 		do_sched_disable(guc, ce, flags);
3230 	}
3231 }
3232 
3233 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3234 {
3235 	/*
3236 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3237 	 * disable immediately.
3238 	 */
3239 	if (intel_context_is_parent(ce))
3240 		return true;
3241 
3242 	/*
3243 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3244 	 */
3245 	return guc->submission_state.guc_ids_in_use >
3246 		guc->submission_state.sched_disable_gucid_threshold;
3247 }
3248 
3249 static void guc_context_sched_disable(struct intel_context *ce)
3250 {
3251 	struct intel_guc *guc = ce_to_guc(ce);
3252 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3253 	unsigned long flags;
3254 
3255 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3256 
3257 	if (bypass_sched_disable(guc, ce)) {
3258 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3259 		intel_context_sched_disable_unpin(ce);
3260 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3261 		   delay) {
3262 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3263 		mod_delayed_work(system_unbound_wq,
3264 				 &ce->guc_state.sched_disable_delay_work,
3265 				 msecs_to_jiffies(delay));
3266 	} else {
3267 		do_sched_disable(guc, ce, flags);
3268 	}
3269 }
3270 
3271 static void guc_context_close(struct intel_context *ce)
3272 {
3273 	unsigned long flags;
3274 
3275 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3276 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3277 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3278 
3279 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3280 	set_context_close_done(ce);
3281 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3282 }
3283 
3284 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3285 {
3286 	struct intel_guc *guc = ce_to_guc(ce);
3287 	struct intel_gt *gt = guc_to_gt(guc);
3288 	unsigned long flags;
3289 	bool disabled;
3290 
3291 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3292 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3293 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3294 	GEM_BUG_ON(context_enabled(ce));
3295 
3296 	/* Seal race with Reset */
3297 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3298 	disabled = submission_disabled(guc);
3299 	if (likely(!disabled)) {
3300 		__intel_gt_pm_get(gt);
3301 		set_context_destroyed(ce);
3302 		clr_context_registered(ce);
3303 	}
3304 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3305 	if (unlikely(disabled)) {
3306 		release_guc_id(guc, ce);
3307 		__guc_context_destroy(ce);
3308 		return;
3309 	}
3310 
3311 	deregister_context(ce, ce->guc_id.id);
3312 }
3313 
3314 static void __guc_context_destroy(struct intel_context *ce)
3315 {
3316 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3317 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3318 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3319 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3320 
3321 	lrc_fini(ce);
3322 	intel_context_fini(ce);
3323 
3324 	if (intel_engine_is_virtual(ce->engine)) {
3325 		struct guc_virtual_engine *ve =
3326 			container_of(ce, typeof(*ve), context);
3327 
3328 		if (ve->base.breadcrumbs)
3329 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3330 
3331 		kfree(ve);
3332 	} else {
3333 		intel_context_free(ce);
3334 	}
3335 }
3336 
3337 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3338 {
3339 	struct intel_context *ce;
3340 	unsigned long flags;
3341 
3342 	GEM_BUG_ON(!submission_disabled(guc) &&
3343 		   guc_submission_initialized(guc));
3344 
3345 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3346 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3347 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3348 					      struct intel_context,
3349 					      destroyed_link);
3350 		if (ce)
3351 			list_del_init(&ce->destroyed_link);
3352 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3353 
3354 		if (!ce)
3355 			break;
3356 
3357 		release_guc_id(guc, ce);
3358 		__guc_context_destroy(ce);
3359 	}
3360 }
3361 
3362 static void deregister_destroyed_contexts(struct intel_guc *guc)
3363 {
3364 	struct intel_context *ce;
3365 	unsigned long flags;
3366 
3367 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3368 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3369 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3370 					      struct intel_context,
3371 					      destroyed_link);
3372 		if (ce)
3373 			list_del_init(&ce->destroyed_link);
3374 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3375 
3376 		if (!ce)
3377 			break;
3378 
3379 		guc_lrc_desc_unpin(ce);
3380 	}
3381 }
3382 
3383 static void destroyed_worker_func(struct work_struct *w)
3384 {
3385 	struct intel_guc *guc = container_of(w, struct intel_guc,
3386 					     submission_state.destroyed_worker);
3387 	struct intel_gt *gt = guc_to_gt(guc);
3388 	int tmp;
3389 
3390 	with_intel_gt_pm(gt, tmp)
3391 		deregister_destroyed_contexts(guc);
3392 }
3393 
3394 static void guc_context_destroy(struct kref *kref)
3395 {
3396 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3397 	struct intel_guc *guc = ce_to_guc(ce);
3398 	unsigned long flags;
3399 	bool destroy;
3400 
3401 	/*
3402 	 * If the guc_id is invalid this context has been stolen and we can free
3403 	 * it immediately. Also can be freed immediately if the context is not
3404 	 * registered with the GuC or the GuC is in the middle of a reset.
3405 	 */
3406 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3407 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3408 		!ctx_id_mapped(guc, ce->guc_id.id);
3409 	if (likely(!destroy)) {
3410 		if (!list_empty(&ce->guc_id.link))
3411 			list_del_init(&ce->guc_id.link);
3412 		list_add_tail(&ce->destroyed_link,
3413 			      &guc->submission_state.destroyed_contexts);
3414 	} else {
3415 		__release_guc_id(guc, ce);
3416 	}
3417 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3418 	if (unlikely(destroy)) {
3419 		__guc_context_destroy(ce);
3420 		return;
3421 	}
3422 
3423 	/*
3424 	 * We use a worker to issue the H2G to deregister the context as we can
3425 	 * take the GT PM for the first time which isn't allowed from an atomic
3426 	 * context.
3427 	 */
3428 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3429 }
3430 
3431 static int guc_context_alloc(struct intel_context *ce)
3432 {
3433 	return lrc_alloc(ce, ce->engine);
3434 }
3435 
3436 static void __guc_context_set_prio(struct intel_guc *guc,
3437 				   struct intel_context *ce)
3438 {
3439 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3440 		struct context_policy policy;
3441 
3442 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3443 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3444 		__guc_context_set_context_policies(guc, &policy, true);
3445 	} else {
3446 		u32 action[] = {
3447 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3448 			ce->guc_id.id,
3449 			ce->guc_state.prio,
3450 		};
3451 
3452 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3453 	}
3454 }
3455 
3456 static void guc_context_set_prio(struct intel_guc *guc,
3457 				 struct intel_context *ce,
3458 				 u8 prio)
3459 {
3460 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3461 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3462 	lockdep_assert_held(&ce->guc_state.lock);
3463 
3464 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3465 	    !context_registered(ce)) {
3466 		ce->guc_state.prio = prio;
3467 		return;
3468 	}
3469 
3470 	ce->guc_state.prio = prio;
3471 	__guc_context_set_prio(guc, ce);
3472 
3473 	trace_intel_context_set_prio(ce);
3474 }
3475 
3476 static inline u8 map_i915_prio_to_guc_prio(int prio)
3477 {
3478 	if (prio == I915_PRIORITY_NORMAL)
3479 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3480 	else if (prio < I915_PRIORITY_NORMAL)
3481 		return GUC_CLIENT_PRIORITY_NORMAL;
3482 	else if (prio < I915_PRIORITY_DISPLAY)
3483 		return GUC_CLIENT_PRIORITY_HIGH;
3484 	else
3485 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3486 }
3487 
3488 static inline void add_context_inflight_prio(struct intel_context *ce,
3489 					     u8 guc_prio)
3490 {
3491 	lockdep_assert_held(&ce->guc_state.lock);
3492 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3493 
3494 	++ce->guc_state.prio_count[guc_prio];
3495 
3496 	/* Overflow protection */
3497 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3498 }
3499 
3500 static inline void sub_context_inflight_prio(struct intel_context *ce,
3501 					     u8 guc_prio)
3502 {
3503 	lockdep_assert_held(&ce->guc_state.lock);
3504 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3505 
3506 	/* Underflow protection */
3507 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3508 
3509 	--ce->guc_state.prio_count[guc_prio];
3510 }
3511 
3512 static inline void update_context_prio(struct intel_context *ce)
3513 {
3514 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3515 	int i;
3516 
3517 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3518 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3519 
3520 	lockdep_assert_held(&ce->guc_state.lock);
3521 
3522 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3523 		if (ce->guc_state.prio_count[i]) {
3524 			guc_context_set_prio(guc, ce, i);
3525 			break;
3526 		}
3527 	}
3528 }
3529 
3530 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3531 {
3532 	/* Lower value is higher priority */
3533 	return new_guc_prio < old_guc_prio;
3534 }
3535 
3536 static void add_to_context(struct i915_request *rq)
3537 {
3538 	struct intel_context *ce = request_to_scheduling_context(rq);
3539 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3540 
3541 	GEM_BUG_ON(intel_context_is_child(ce));
3542 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3543 
3544 	spin_lock(&ce->guc_state.lock);
3545 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3546 
3547 	if (rq->guc_prio == GUC_PRIO_INIT) {
3548 		rq->guc_prio = new_guc_prio;
3549 		add_context_inflight_prio(ce, rq->guc_prio);
3550 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3551 		sub_context_inflight_prio(ce, rq->guc_prio);
3552 		rq->guc_prio = new_guc_prio;
3553 		add_context_inflight_prio(ce, rq->guc_prio);
3554 	}
3555 	update_context_prio(ce);
3556 
3557 	spin_unlock(&ce->guc_state.lock);
3558 }
3559 
3560 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3561 {
3562 	lockdep_assert_held(&ce->guc_state.lock);
3563 
3564 	if (rq->guc_prio != GUC_PRIO_INIT &&
3565 	    rq->guc_prio != GUC_PRIO_FINI) {
3566 		sub_context_inflight_prio(ce, rq->guc_prio);
3567 		update_context_prio(ce);
3568 	}
3569 	rq->guc_prio = GUC_PRIO_FINI;
3570 }
3571 
3572 static void remove_from_context(struct i915_request *rq)
3573 {
3574 	struct intel_context *ce = request_to_scheduling_context(rq);
3575 
3576 	GEM_BUG_ON(intel_context_is_child(ce));
3577 
3578 	spin_lock_irq(&ce->guc_state.lock);
3579 
3580 	list_del_init(&rq->sched.link);
3581 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3582 
3583 	/* Prevent further __await_execution() registering a cb, then flush */
3584 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3585 
3586 	guc_prio_fini(rq, ce);
3587 
3588 	spin_unlock_irq(&ce->guc_state.lock);
3589 
3590 	atomic_dec(&ce->guc_id.ref);
3591 	i915_request_notify_execute_cb_imm(rq);
3592 }
3593 
3594 static const struct intel_context_ops guc_context_ops = {
3595 	.flags = COPS_RUNTIME_CYCLES,
3596 	.alloc = guc_context_alloc,
3597 
3598 	.close = guc_context_close,
3599 
3600 	.pre_pin = guc_context_pre_pin,
3601 	.pin = guc_context_pin,
3602 	.unpin = guc_context_unpin,
3603 	.post_unpin = guc_context_post_unpin,
3604 
3605 	.revoke = guc_context_revoke,
3606 
3607 	.cancel_request = guc_context_cancel_request,
3608 
3609 	.enter = intel_context_enter_engine,
3610 	.exit = intel_context_exit_engine,
3611 
3612 	.sched_disable = guc_context_sched_disable,
3613 
3614 	.update_stats = guc_context_update_stats,
3615 
3616 	.reset = lrc_reset,
3617 	.destroy = guc_context_destroy,
3618 
3619 	.create_virtual = guc_create_virtual,
3620 	.create_parallel = guc_create_parallel,
3621 };
3622 
3623 static void submit_work_cb(struct irq_work *wrk)
3624 {
3625 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3626 
3627 	might_lock(&rq->engine->sched_engine->lock);
3628 	i915_sw_fence_complete(&rq->submit);
3629 }
3630 
3631 static void __guc_signal_context_fence(struct intel_context *ce)
3632 {
3633 	struct i915_request *rq, *rn;
3634 
3635 	lockdep_assert_held(&ce->guc_state.lock);
3636 
3637 	if (!list_empty(&ce->guc_state.fences))
3638 		trace_intel_context_fence_release(ce);
3639 
3640 	/*
3641 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3642 	 * ce->guc_state.lock is preserved.
3643 	 */
3644 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3645 				 guc_fence_link) {
3646 		list_del(&rq->guc_fence_link);
3647 		irq_work_queue(&rq->submit_work);
3648 	}
3649 
3650 	INIT_LIST_HEAD(&ce->guc_state.fences);
3651 }
3652 
3653 static void guc_signal_context_fence(struct intel_context *ce)
3654 {
3655 	unsigned long flags;
3656 
3657 	GEM_BUG_ON(intel_context_is_child(ce));
3658 
3659 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3660 	clr_context_wait_for_deregister_to_register(ce);
3661 	__guc_signal_context_fence(ce);
3662 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3663 }
3664 
3665 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3666 {
3667 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3668 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3669 		!submission_disabled(ce_to_guc(ce));
3670 }
3671 
3672 static void guc_context_init(struct intel_context *ce)
3673 {
3674 	const struct i915_gem_context *ctx;
3675 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3676 
3677 	rcu_read_lock();
3678 	ctx = rcu_dereference(ce->gem_context);
3679 	if (ctx)
3680 		prio = ctx->sched.priority;
3681 	rcu_read_unlock();
3682 
3683 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3684 
3685 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3686 			  __delay_sched_disable);
3687 
3688 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3689 }
3690 
3691 static int guc_request_alloc(struct i915_request *rq)
3692 {
3693 	struct intel_context *ce = request_to_scheduling_context(rq);
3694 	struct intel_guc *guc = ce_to_guc(ce);
3695 	unsigned long flags;
3696 	int ret;
3697 
3698 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3699 
3700 	/*
3701 	 * Flush enough space to reduce the likelihood of waiting after
3702 	 * we start building the request - in which case we will just
3703 	 * have to repeat work.
3704 	 */
3705 	rq->reserved_space += GUC_REQUEST_SIZE;
3706 
3707 	/*
3708 	 * Note that after this point, we have committed to using
3709 	 * this request as it is being used to both track the
3710 	 * state of engine initialisation and liveness of the
3711 	 * golden renderstate above. Think twice before you try
3712 	 * to cancel/unwind this request now.
3713 	 */
3714 
3715 	/* Unconditionally invalidate GPU caches and TLBs. */
3716 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3717 	if (ret)
3718 		return ret;
3719 
3720 	rq->reserved_space -= GUC_REQUEST_SIZE;
3721 
3722 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3723 		guc_context_init(ce);
3724 
3725 	/*
3726 	 * If the context gets closed while the execbuf is ongoing, the context
3727 	 * close code will race with the below code to cancel the delayed work.
3728 	 * If the context close wins the race and cancels the work, it will
3729 	 * immediately call the sched disable (see guc_context_close), so there
3730 	 * is a chance we can get past this check while the sched_disable code
3731 	 * is being executed. To make sure that code completes before we check
3732 	 * the status further down, we wait for the close process to complete.
3733 	 * Else, this code path could send a request down thinking that the
3734 	 * context is still in a schedule-enable mode while the GuC ends up
3735 	 * dropping the request completely because the disable did go from the
3736 	 * context_close path right to GuC just prior. In the event the CT is
3737 	 * full, we could potentially need to wait up to 1.5 seconds.
3738 	 */
3739 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3740 		intel_context_sched_disable_unpin(ce);
3741 	else if (intel_context_is_closed(ce))
3742 		if (wait_for(context_close_done(ce), 1500))
3743 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3744 	/*
3745 	 * Call pin_guc_id here rather than in the pinning step as with
3746 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3747 	 * guc_id and creating horrible race conditions. This is especially bad
3748 	 * when guc_id are being stolen due to over subscription. By the time
3749 	 * this function is reached, it is guaranteed that the guc_id will be
3750 	 * persistent until the generated request is retired. Thus, sealing these
3751 	 * race conditions. It is still safe to fail here if guc_id are
3752 	 * exhausted and return -EAGAIN to the user indicating that they can try
3753 	 * again in the future.
3754 	 *
3755 	 * There is no need for a lock here as the timeline mutex ensures at
3756 	 * most one context can be executing this code path at once. The
3757 	 * guc_id_ref is incremented once for every request in flight and
3758 	 * decremented on each retire. When it is zero, a lock around the
3759 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3760 	 */
3761 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3762 		goto out;
3763 
3764 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3765 	if (unlikely(ret < 0))
3766 		return ret;
3767 	if (context_needs_register(ce, !!ret)) {
3768 		ret = try_context_registration(ce, true);
3769 		if (unlikely(ret)) {	/* unwind */
3770 			if (ret == -EPIPE) {
3771 				disable_submission(guc);
3772 				goto out;	/* GPU will be reset */
3773 			}
3774 			atomic_dec(&ce->guc_id.ref);
3775 			unpin_guc_id(guc, ce);
3776 			return ret;
3777 		}
3778 	}
3779 
3780 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3781 
3782 out:
3783 	/*
3784 	 * We block all requests on this context if a G2H is pending for a
3785 	 * schedule disable or context deregistration as the GuC will fail a
3786 	 * schedule enable or context registration if either G2H is pending
3787 	 * respectfully. Once a G2H returns, the fence is released that is
3788 	 * blocking these requests (see guc_signal_context_fence).
3789 	 */
3790 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3791 	if (context_wait_for_deregister_to_register(ce) ||
3792 	    context_pending_disable(ce)) {
3793 		init_irq_work(&rq->submit_work, submit_work_cb);
3794 		i915_sw_fence_await(&rq->submit);
3795 
3796 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3797 	}
3798 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3799 
3800 	return 0;
3801 }
3802 
3803 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3804 				       struct i915_gem_ww_ctx *ww,
3805 				       void **vaddr)
3806 {
3807 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3808 
3809 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3810 }
3811 
3812 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3813 {
3814 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3815 	int ret = __guc_context_pin(ce, engine, vaddr);
3816 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3817 
3818 	if (likely(!ret))
3819 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3820 			intel_engine_pm_get(engine);
3821 
3822 	return ret;
3823 }
3824 
3825 static void guc_virtual_context_unpin(struct intel_context *ce)
3826 {
3827 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3828 	struct intel_engine_cs *engine;
3829 	struct intel_guc *guc = ce_to_guc(ce);
3830 
3831 	GEM_BUG_ON(context_enabled(ce));
3832 	GEM_BUG_ON(intel_context_is_barrier(ce));
3833 
3834 	unpin_guc_id(guc, ce);
3835 	lrc_unpin(ce);
3836 
3837 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3838 		intel_engine_pm_put_async(engine);
3839 }
3840 
3841 static void guc_virtual_context_enter(struct intel_context *ce)
3842 {
3843 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3844 	struct intel_engine_cs *engine;
3845 
3846 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3847 		intel_engine_pm_get(engine);
3848 
3849 	intel_timeline_enter(ce->timeline);
3850 }
3851 
3852 static void guc_virtual_context_exit(struct intel_context *ce)
3853 {
3854 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3855 	struct intel_engine_cs *engine;
3856 
3857 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3858 		intel_engine_pm_put(engine);
3859 
3860 	intel_timeline_exit(ce->timeline);
3861 }
3862 
3863 static int guc_virtual_context_alloc(struct intel_context *ce)
3864 {
3865 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3866 
3867 	return lrc_alloc(ce, engine);
3868 }
3869 
3870 static const struct intel_context_ops virtual_guc_context_ops = {
3871 	.flags = COPS_RUNTIME_CYCLES,
3872 	.alloc = guc_virtual_context_alloc,
3873 
3874 	.close = guc_context_close,
3875 
3876 	.pre_pin = guc_virtual_context_pre_pin,
3877 	.pin = guc_virtual_context_pin,
3878 	.unpin = guc_virtual_context_unpin,
3879 	.post_unpin = guc_context_post_unpin,
3880 
3881 	.revoke = guc_context_revoke,
3882 
3883 	.cancel_request = guc_context_cancel_request,
3884 
3885 	.enter = guc_virtual_context_enter,
3886 	.exit = guc_virtual_context_exit,
3887 
3888 	.sched_disable = guc_context_sched_disable,
3889 	.update_stats = guc_context_update_stats,
3890 
3891 	.destroy = guc_context_destroy,
3892 
3893 	.get_sibling = guc_virtual_get_sibling,
3894 };
3895 
3896 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3897 {
3898 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3899 	struct intel_guc *guc = ce_to_guc(ce);
3900 	int ret;
3901 
3902 	GEM_BUG_ON(!intel_context_is_parent(ce));
3903 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3904 
3905 	ret = pin_guc_id(guc, ce);
3906 	if (unlikely(ret < 0))
3907 		return ret;
3908 
3909 	return __guc_context_pin(ce, engine, vaddr);
3910 }
3911 
3912 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3913 {
3914 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3915 
3916 	GEM_BUG_ON(!intel_context_is_child(ce));
3917 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3918 
3919 	__intel_context_pin(ce->parallel.parent);
3920 	return __guc_context_pin(ce, engine, vaddr);
3921 }
3922 
3923 static void guc_parent_context_unpin(struct intel_context *ce)
3924 {
3925 	struct intel_guc *guc = ce_to_guc(ce);
3926 
3927 	GEM_BUG_ON(context_enabled(ce));
3928 	GEM_BUG_ON(intel_context_is_barrier(ce));
3929 	GEM_BUG_ON(!intel_context_is_parent(ce));
3930 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3931 
3932 	unpin_guc_id(guc, ce);
3933 	lrc_unpin(ce);
3934 }
3935 
3936 static void guc_child_context_unpin(struct intel_context *ce)
3937 {
3938 	GEM_BUG_ON(context_enabled(ce));
3939 	GEM_BUG_ON(intel_context_is_barrier(ce));
3940 	GEM_BUG_ON(!intel_context_is_child(ce));
3941 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3942 
3943 	lrc_unpin(ce);
3944 }
3945 
3946 static void guc_child_context_post_unpin(struct intel_context *ce)
3947 {
3948 	GEM_BUG_ON(!intel_context_is_child(ce));
3949 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3950 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3951 
3952 	lrc_post_unpin(ce);
3953 	intel_context_unpin(ce->parallel.parent);
3954 }
3955 
3956 static void guc_child_context_destroy(struct kref *kref)
3957 {
3958 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3959 
3960 	__guc_context_destroy(ce);
3961 }
3962 
3963 static const struct intel_context_ops virtual_parent_context_ops = {
3964 	.alloc = guc_virtual_context_alloc,
3965 
3966 	.close = guc_context_close,
3967 
3968 	.pre_pin = guc_context_pre_pin,
3969 	.pin = guc_parent_context_pin,
3970 	.unpin = guc_parent_context_unpin,
3971 	.post_unpin = guc_context_post_unpin,
3972 
3973 	.revoke = guc_context_revoke,
3974 
3975 	.cancel_request = guc_context_cancel_request,
3976 
3977 	.enter = guc_virtual_context_enter,
3978 	.exit = guc_virtual_context_exit,
3979 
3980 	.sched_disable = guc_context_sched_disable,
3981 
3982 	.destroy = guc_context_destroy,
3983 
3984 	.get_sibling = guc_virtual_get_sibling,
3985 };
3986 
3987 static const struct intel_context_ops virtual_child_context_ops = {
3988 	.alloc = guc_virtual_context_alloc,
3989 
3990 	.pre_pin = guc_context_pre_pin,
3991 	.pin = guc_child_context_pin,
3992 	.unpin = guc_child_context_unpin,
3993 	.post_unpin = guc_child_context_post_unpin,
3994 
3995 	.cancel_request = guc_context_cancel_request,
3996 
3997 	.enter = guc_virtual_context_enter,
3998 	.exit = guc_virtual_context_exit,
3999 
4000 	.destroy = guc_child_context_destroy,
4001 
4002 	.get_sibling = guc_virtual_get_sibling,
4003 };
4004 
4005 /*
4006  * The below override of the breadcrumbs is enabled when the user configures a
4007  * context for parallel submission (multi-lrc, parent-child).
4008  *
4009  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4010  * safely preempt all the hw contexts configured for parallel submission
4011  * between each BB. The contract between the i915 and GuC is if the parent
4012  * context can be preempted, all the children can be preempted, and the GuC will
4013  * always try to preempt the parent before the children. A handshake between the
4014  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4015  * creating a window to preempt between each set of BBs.
4016  */
4017 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4018 						     u64 offset, u32 len,
4019 						     const unsigned int flags);
4020 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4021 						    u64 offset, u32 len,
4022 						    const unsigned int flags);
4023 static u32 *
4024 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4025 						 u32 *cs);
4026 static u32 *
4027 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4028 						u32 *cs);
4029 
4030 static struct intel_context *
4031 guc_create_parallel(struct intel_engine_cs **engines,
4032 		    unsigned int num_siblings,
4033 		    unsigned int width)
4034 {
4035 	struct intel_engine_cs **siblings = NULL;
4036 	struct intel_context *parent = NULL, *ce, *err;
4037 	int i, j;
4038 
4039 	siblings = kmalloc_array(num_siblings,
4040 				 sizeof(*siblings),
4041 				 GFP_KERNEL);
4042 	if (!siblings)
4043 		return ERR_PTR(-ENOMEM);
4044 
4045 	for (i = 0; i < width; ++i) {
4046 		for (j = 0; j < num_siblings; ++j)
4047 			siblings[j] = engines[i * num_siblings + j];
4048 
4049 		ce = intel_engine_create_virtual(siblings, num_siblings,
4050 						 FORCE_VIRTUAL);
4051 		if (IS_ERR(ce)) {
4052 			err = ERR_CAST(ce);
4053 			goto unwind;
4054 		}
4055 
4056 		if (i == 0) {
4057 			parent = ce;
4058 			parent->ops = &virtual_parent_context_ops;
4059 		} else {
4060 			ce->ops = &virtual_child_context_ops;
4061 			intel_context_bind_parent_child(parent, ce);
4062 		}
4063 	}
4064 
4065 	parent->parallel.fence_context = dma_fence_context_alloc(1);
4066 
4067 	parent->engine->emit_bb_start =
4068 		emit_bb_start_parent_no_preempt_mid_batch;
4069 	parent->engine->emit_fini_breadcrumb =
4070 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4071 	parent->engine->emit_fini_breadcrumb_dw =
4072 		12 + 4 * parent->parallel.number_children;
4073 	for_each_child(parent, ce) {
4074 		ce->engine->emit_bb_start =
4075 			emit_bb_start_child_no_preempt_mid_batch;
4076 		ce->engine->emit_fini_breadcrumb =
4077 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
4078 		ce->engine->emit_fini_breadcrumb_dw = 16;
4079 	}
4080 
4081 	kfree(siblings);
4082 	return parent;
4083 
4084 unwind:
4085 	if (parent)
4086 		intel_context_put(parent);
4087 	kfree(siblings);
4088 	return err;
4089 }
4090 
4091 static bool
4092 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4093 {
4094 	struct intel_engine_cs *sibling;
4095 	intel_engine_mask_t tmp, mask = b->engine_mask;
4096 	bool result = false;
4097 
4098 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4099 		result |= intel_engine_irq_enable(sibling);
4100 
4101 	return result;
4102 }
4103 
4104 static void
4105 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4106 {
4107 	struct intel_engine_cs *sibling;
4108 	intel_engine_mask_t tmp, mask = b->engine_mask;
4109 
4110 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4111 		intel_engine_irq_disable(sibling);
4112 }
4113 
4114 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4115 {
4116 	int i;
4117 
4118 	/*
4119 	 * In GuC submission mode we do not know which physical engine a request
4120 	 * will be scheduled on, this creates a problem because the breadcrumb
4121 	 * interrupt is per physical engine. To work around this we attach
4122 	 * requests and direct all breadcrumb interrupts to the first instance
4123 	 * of an engine per class. In addition all breadcrumb interrupts are
4124 	 * enabled / disabled across an engine class in unison.
4125 	 */
4126 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4127 		struct intel_engine_cs *sibling =
4128 			engine->gt->engine_class[engine->class][i];
4129 
4130 		if (sibling) {
4131 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4132 				intel_breadcrumbs_put(engine->breadcrumbs);
4133 				engine->breadcrumbs =
4134 					intel_breadcrumbs_get(sibling->breadcrumbs);
4135 			}
4136 			break;
4137 		}
4138 	}
4139 
4140 	if (engine->breadcrumbs) {
4141 		engine->breadcrumbs->engine_mask |= engine->mask;
4142 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4143 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4144 	}
4145 }
4146 
4147 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4148 					   int prio)
4149 {
4150 	struct intel_context *ce = request_to_scheduling_context(rq);
4151 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4152 
4153 	/* Short circuit function */
4154 	if (prio < I915_PRIORITY_NORMAL ||
4155 	    rq->guc_prio == GUC_PRIO_FINI ||
4156 	    (rq->guc_prio != GUC_PRIO_INIT &&
4157 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4158 		return;
4159 
4160 	spin_lock(&ce->guc_state.lock);
4161 	if (rq->guc_prio != GUC_PRIO_FINI) {
4162 		if (rq->guc_prio != GUC_PRIO_INIT)
4163 			sub_context_inflight_prio(ce, rq->guc_prio);
4164 		rq->guc_prio = new_guc_prio;
4165 		add_context_inflight_prio(ce, rq->guc_prio);
4166 		update_context_prio(ce);
4167 	}
4168 	spin_unlock(&ce->guc_state.lock);
4169 }
4170 
4171 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4172 {
4173 	struct intel_context *ce = request_to_scheduling_context(rq);
4174 
4175 	spin_lock(&ce->guc_state.lock);
4176 	guc_prio_fini(rq, ce);
4177 	spin_unlock(&ce->guc_state.lock);
4178 }
4179 
4180 static void sanitize_hwsp(struct intel_engine_cs *engine)
4181 {
4182 	struct intel_timeline *tl;
4183 
4184 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4185 		intel_timeline_reset_seqno(tl);
4186 }
4187 
4188 static void guc_sanitize(struct intel_engine_cs *engine)
4189 {
4190 	/*
4191 	 * Poison residual state on resume, in case the suspend didn't!
4192 	 *
4193 	 * We have to assume that across suspend/resume (or other loss
4194 	 * of control) that the contents of our pinned buffers has been
4195 	 * lost, replaced by garbage. Since this doesn't always happen,
4196 	 * let's poison such state so that we more quickly spot when
4197 	 * we falsely assume it has been preserved.
4198 	 */
4199 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4200 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4201 
4202 	/*
4203 	 * The kernel_context HWSP is stored in the status_page. As above,
4204 	 * that may be lost on resume/initialisation, and so we need to
4205 	 * reset the value in the HWSP.
4206 	 */
4207 	sanitize_hwsp(engine);
4208 
4209 	/* And scrub the dirty cachelines for the HWSP */
4210 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4211 
4212 	intel_engine_reset_pinned_contexts(engine);
4213 }
4214 
4215 static void setup_hwsp(struct intel_engine_cs *engine)
4216 {
4217 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4218 
4219 	ENGINE_WRITE_FW(engine,
4220 			RING_HWS_PGA,
4221 			i915_ggtt_offset(engine->status_page.vma));
4222 }
4223 
4224 static void start_engine(struct intel_engine_cs *engine)
4225 {
4226 	ENGINE_WRITE_FW(engine,
4227 			RING_MODE_GEN7,
4228 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4229 
4230 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4231 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4232 }
4233 
4234 static int guc_resume(struct intel_engine_cs *engine)
4235 {
4236 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4237 
4238 	intel_mocs_init_engine(engine);
4239 
4240 	intel_breadcrumbs_reset(engine->breadcrumbs);
4241 
4242 	setup_hwsp(engine);
4243 	start_engine(engine);
4244 
4245 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4246 		xehp_enable_ccs_engines(engine);
4247 
4248 	return 0;
4249 }
4250 
4251 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4252 {
4253 	return !sched_engine->tasklet.callback;
4254 }
4255 
4256 static void guc_set_default_submission(struct intel_engine_cs *engine)
4257 {
4258 	engine->submit_request = guc_submit_request;
4259 }
4260 
4261 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4262 					 struct intel_context *ce)
4263 {
4264 	int ret;
4265 
4266 	/*
4267 	 * Note: we purposefully do not check the returns below because
4268 	 * the registration can only fail if a reset is just starting.
4269 	 * This is called at the end of reset so presumably another reset
4270 	 * isn't happening and even it did this code would be run again.
4271 	 */
4272 
4273 	if (context_guc_id_invalid(ce)) {
4274 		ret = pin_guc_id(guc, ce);
4275 
4276 		if (ret < 0)
4277 			return ret;
4278 	}
4279 
4280 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4281 		guc_context_init(ce);
4282 
4283 	ret = try_context_registration(ce, true);
4284 	if (ret)
4285 		unpin_guc_id(guc, ce);
4286 
4287 	return ret;
4288 }
4289 
4290 static inline int guc_init_submission(struct intel_guc *guc)
4291 {
4292 	struct intel_gt *gt = guc_to_gt(guc);
4293 	struct intel_engine_cs *engine;
4294 	enum intel_engine_id id;
4295 
4296 	/* make sure all descriptors are clean... */
4297 	xa_destroy(&guc->context_lookup);
4298 
4299 	/*
4300 	 * A reset might have occurred while we had a pending stalled request,
4301 	 * so make sure we clean that up.
4302 	 */
4303 	guc->stalled_request = NULL;
4304 	guc->submission_stall_reason = STALL_NONE;
4305 
4306 	/*
4307 	 * Some contexts might have been pinned before we enabled GuC
4308 	 * submission, so we need to add them to the GuC bookeeping.
4309 	 * Also, after a reset the of the GuC we want to make sure that the
4310 	 * information shared with GuC is properly reset. The kernel LRCs are
4311 	 * not attached to the gem_context, so they need to be added separately.
4312 	 */
4313 	for_each_engine(engine, gt, id) {
4314 		struct intel_context *ce;
4315 
4316 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4317 				    pinned_contexts_link) {
4318 			int ret = guc_kernel_context_pin(guc, ce);
4319 
4320 			if (ret) {
4321 				/* No point in trying to clean up as i915 will wedge on failure */
4322 				return ret;
4323 			}
4324 		}
4325 	}
4326 
4327 	return 0;
4328 }
4329 
4330 static void guc_release(struct intel_engine_cs *engine)
4331 {
4332 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4333 
4334 	intel_engine_cleanup_common(engine);
4335 	lrc_fini_wa_ctx(engine);
4336 }
4337 
4338 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4339 {
4340 	struct intel_engine_cs *e;
4341 	intel_engine_mask_t tmp, mask = engine->mask;
4342 
4343 	for_each_engine_masked(e, engine->gt, mask, tmp)
4344 		e->serial++;
4345 }
4346 
4347 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4348 {
4349 	/* Default vfuncs which can be overridden by each engine. */
4350 
4351 	engine->resume = guc_resume;
4352 
4353 	engine->cops = &guc_context_ops;
4354 	engine->request_alloc = guc_request_alloc;
4355 	engine->add_active_request = add_to_context;
4356 	engine->remove_active_request = remove_from_context;
4357 
4358 	engine->sched_engine->schedule = i915_schedule;
4359 
4360 	engine->reset.prepare = guc_engine_reset_prepare;
4361 	engine->reset.rewind = guc_rewind_nop;
4362 	engine->reset.cancel = guc_reset_nop;
4363 	engine->reset.finish = guc_reset_nop;
4364 
4365 	engine->emit_flush = gen8_emit_flush_xcs;
4366 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4367 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4368 	if (GRAPHICS_VER(engine->i915) >= 12) {
4369 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4370 		engine->emit_flush = gen12_emit_flush_xcs;
4371 	}
4372 	engine->set_default_submission = guc_set_default_submission;
4373 	engine->busyness = guc_engine_busyness;
4374 
4375 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4376 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4377 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4378 
4379 	/* Wa_14014475959:dg2 */
4380 	if (engine->class == COMPUTE_CLASS)
4381 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4382 		    IS_DG2(engine->i915))
4383 			engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4384 
4385 	/*
4386 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4387 	 * handled by the firmware so some minor tweaks are required before
4388 	 * enabling.
4389 	 *
4390 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4391 	 */
4392 
4393 	engine->emit_bb_start = gen8_emit_bb_start;
4394 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4395 		engine->emit_bb_start = xehp_emit_bb_start;
4396 }
4397 
4398 static void rcs_submission_override(struct intel_engine_cs *engine)
4399 {
4400 	switch (GRAPHICS_VER(engine->i915)) {
4401 	case 12:
4402 		engine->emit_flush = gen12_emit_flush_rcs;
4403 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4404 		break;
4405 	case 11:
4406 		engine->emit_flush = gen11_emit_flush_rcs;
4407 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4408 		break;
4409 	default:
4410 		engine->emit_flush = gen8_emit_flush_rcs;
4411 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4412 		break;
4413 	}
4414 }
4415 
4416 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4417 {
4418 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4419 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4420 }
4421 
4422 static void guc_sched_engine_destroy(struct kref *kref)
4423 {
4424 	struct i915_sched_engine *sched_engine =
4425 		container_of(kref, typeof(*sched_engine), ref);
4426 	struct intel_guc *guc = sched_engine->private_data;
4427 
4428 	guc->sched_engine = NULL;
4429 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4430 	kfree(sched_engine);
4431 }
4432 
4433 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4434 {
4435 	struct drm_i915_private *i915 = engine->i915;
4436 	struct intel_guc *guc = &engine->gt->uc.guc;
4437 
4438 	/*
4439 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4440 	 * that are only valid on gen11+
4441 	 */
4442 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4443 
4444 	if (!guc->sched_engine) {
4445 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4446 		if (!guc->sched_engine)
4447 			return -ENOMEM;
4448 
4449 		guc->sched_engine->schedule = i915_schedule;
4450 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4451 		guc->sched_engine->private_data = guc;
4452 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4453 		guc->sched_engine->bump_inflight_request_prio =
4454 			guc_bump_inflight_request_prio;
4455 		guc->sched_engine->retire_inflight_request_prio =
4456 			guc_retire_inflight_request_prio;
4457 		tasklet_setup(&guc->sched_engine->tasklet,
4458 			      guc_submission_tasklet);
4459 	}
4460 	i915_sched_engine_put(engine->sched_engine);
4461 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4462 
4463 	guc_default_vfuncs(engine);
4464 	guc_default_irqs(engine);
4465 	guc_init_breadcrumbs(engine);
4466 
4467 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4468 		rcs_submission_override(engine);
4469 
4470 	lrc_init_wa_ctx(engine);
4471 
4472 	/* Finally, take ownership and responsibility for cleanup! */
4473 	engine->sanitize = guc_sanitize;
4474 	engine->release = guc_release;
4475 
4476 	return 0;
4477 }
4478 
4479 struct scheduling_policy {
4480 	/* internal data */
4481 	u32 max_words, num_words;
4482 	u32 count;
4483 	/* API data */
4484 	struct guc_update_scheduling_policy h2g;
4485 };
4486 
4487 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4488 {
4489 	u32 *start = (void *)&policy->h2g;
4490 	u32 *end = policy->h2g.data + policy->num_words;
4491 	size_t delta = end - start;
4492 
4493 	return delta;
4494 }
4495 
4496 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4497 {
4498 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4499 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4500 	policy->num_words = 0;
4501 	policy->count = 0;
4502 
4503 	return policy;
4504 }
4505 
4506 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4507 					    u32 action, u32 *data, u32 len)
4508 {
4509 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4510 
4511 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4512 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4513 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4514 	memcpy(klv_ptr, data, sizeof(u32) * len);
4515 	policy->num_words += 1 + len;
4516 	policy->count++;
4517 }
4518 
4519 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4520 						struct scheduling_policy *policy)
4521 {
4522 	int ret;
4523 
4524 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4525 			     __guc_scheduling_policy_action_size(policy));
4526 	if (ret < 0) {
4527 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4528 				ERR_PTR(ret));
4529 		return ret;
4530 	}
4531 
4532 	if (ret != policy->count) {
4533 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4534 			 ret, policy->count);
4535 		if (ret > policy->count)
4536 			return -EPROTO;
4537 	}
4538 
4539 	return 0;
4540 }
4541 
4542 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4543 {
4544 	struct scheduling_policy policy;
4545 	struct intel_gt *gt = guc_to_gt(guc);
4546 	intel_wakeref_t wakeref;
4547 	int ret;
4548 
4549 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4550 		return 0;
4551 
4552 	__guc_scheduling_policy_start_klv(&policy);
4553 
4554 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4555 		u32 yield[] = {
4556 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4557 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4558 		};
4559 
4560 		__guc_scheduling_policy_add_klv(&policy,
4561 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4562 						yield, ARRAY_SIZE(yield));
4563 
4564 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4565 	}
4566 
4567 	return ret;
4568 }
4569 
4570 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4571 {
4572 	struct intel_gt *gt = guc_to_gt(guc);
4573 	u32 val;
4574 
4575 	if (GRAPHICS_VER(gt->i915) < 12)
4576 		return;
4577 
4578 	if (to_guc)
4579 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4580 	else
4581 		val = 0;
4582 
4583 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4584 }
4585 
4586 int intel_guc_submission_enable(struct intel_guc *guc)
4587 {
4588 	int ret;
4589 
4590 	/* Semaphore interrupt enable and route to GuC */
4591 	guc_route_semaphores(guc, true);
4592 
4593 	ret = guc_init_submission(guc);
4594 	if (ret)
4595 		goto fail_sem;
4596 
4597 	ret = guc_init_engine_stats(guc);
4598 	if (ret)
4599 		goto fail_sem;
4600 
4601 	ret = guc_init_global_schedule_policy(guc);
4602 	if (ret)
4603 		goto fail_stats;
4604 
4605 	return 0;
4606 
4607 fail_stats:
4608 	guc_fini_engine_stats(guc);
4609 fail_sem:
4610 	guc_route_semaphores(guc, false);
4611 	return ret;
4612 }
4613 
4614 /* Note: By the time we're here, GuC may have already been reset */
4615 void intel_guc_submission_disable(struct intel_guc *guc)
4616 {
4617 	guc_cancel_busyness_worker(guc);
4618 
4619 	/* Semaphore interrupt disable and route to host */
4620 	guc_route_semaphores(guc, false);
4621 }
4622 
4623 static bool __guc_submission_supported(struct intel_guc *guc)
4624 {
4625 	/* GuC submission is unavailable for pre-Gen11 */
4626 	return intel_guc_is_supported(guc) &&
4627 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4628 }
4629 
4630 static bool __guc_submission_selected(struct intel_guc *guc)
4631 {
4632 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4633 
4634 	if (!intel_guc_submission_is_supported(guc))
4635 		return false;
4636 
4637 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4638 }
4639 
4640 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4641 {
4642 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4643 }
4644 
4645 /*
4646  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4647  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4648  * operation. This matches the 30fps game-render + encode (real world) workload this
4649  * knob was tested against.
4650  */
4651 #define SCHED_DISABLE_DELAY_MS	34
4652 
4653 /*
4654  * A threshold of 75% is a reasonable starting point considering that real world apps
4655  * generally don't get anywhere near this.
4656  */
4657 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4658 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4659 
4660 void intel_guc_submission_init_early(struct intel_guc *guc)
4661 {
4662 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4663 
4664 	spin_lock_init(&guc->submission_state.lock);
4665 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4666 	ida_init(&guc->submission_state.guc_ids);
4667 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4668 	INIT_WORK(&guc->submission_state.destroyed_worker,
4669 		  destroyed_worker_func);
4670 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4671 		  reset_fail_worker_func);
4672 
4673 	spin_lock_init(&guc->timestamp.lock);
4674 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4675 
4676 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4677 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4678 	guc->submission_state.sched_disable_gucid_threshold =
4679 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4680 	guc->submission_supported = __guc_submission_supported(guc);
4681 	guc->submission_selected = __guc_submission_selected(guc);
4682 }
4683 
4684 static inline struct intel_context *
4685 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4686 {
4687 	struct intel_context *ce;
4688 
4689 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4690 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4691 		return NULL;
4692 	}
4693 
4694 	ce = __get_context(guc, ctx_id);
4695 	if (unlikely(!ce)) {
4696 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4697 		return NULL;
4698 	}
4699 
4700 	if (unlikely(intel_context_is_child(ce))) {
4701 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4702 		return NULL;
4703 	}
4704 
4705 	return ce;
4706 }
4707 
4708 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4709 {
4710 	struct intel_guc_tlb_wait *wait;
4711 	unsigned long flags;
4712 
4713 	xa_lock_irqsave(&guc->tlb_lookup, flags);
4714 	wait = xa_load(&guc->tlb_lookup, seqno);
4715 
4716 	if (wait)
4717 		wake_up(&wait->wq);
4718 	else
4719 		guc_dbg(guc,
4720 			"Stale TLB invalidation response with seqno %d\n", seqno);
4721 
4722 	xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4723 }
4724 
4725 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4726 				    const u32 *payload, u32 len)
4727 {
4728 	if (len < 1)
4729 		return -EPROTO;
4730 
4731 	wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4732 	return 0;
4733 }
4734 
4735 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4736 {
4737 	/*
4738 	 * This is equivalent to wait_woken() with the exception that
4739 	 * we do not wake up early if the kthread task has been completed.
4740 	 * As we are called from page reclaim in any task context,
4741 	 * we may be invoked from stopped kthreads, but we *must*
4742 	 * complete the wait from the HW.
4743 	 */
4744 	do {
4745 		set_current_state(TASK_UNINTERRUPTIBLE);
4746 		if (wq_entry->flags & WQ_FLAG_WOKEN)
4747 			break;
4748 
4749 		timeout = schedule_timeout(timeout);
4750 	} while (timeout);
4751 
4752 	/* See wait_woken() and woken_wake_function() */
4753 	__set_current_state(TASK_RUNNING);
4754 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4755 
4756 	return timeout;
4757 }
4758 
4759 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4760 {
4761 	/* Check if GT is wedged or suspended */
4762 	if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4763 		return false;
4764 	return true;
4765 }
4766 
4767 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4768 				   enum intel_guc_tlb_invalidation_type type)
4769 {
4770 	struct intel_guc_tlb_wait _wq, *wq = &_wq;
4771 	struct intel_gt *gt = guc_to_gt(guc);
4772 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
4773 	int err;
4774 	u32 seqno;
4775 	u32 action[] = {
4776 		INTEL_GUC_ACTION_TLB_INVALIDATION,
4777 		0,
4778 		REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4779 			REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4780 				       INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4781 			INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4782 	};
4783 	u32 size = ARRAY_SIZE(action);
4784 
4785 	/*
4786 	 * Early guard against GT enablement.  TLB invalidation should not be
4787 	 * attempted if the GT is disabled due to suspend/wedge.
4788 	 */
4789 	if (!intel_gt_is_enabled(gt))
4790 		return -EINVAL;
4791 
4792 	init_waitqueue_head(&_wq.wq);
4793 
4794 	if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4795 				xa_limit_32b, &guc->next_seqno,
4796 				GFP_ATOMIC | __GFP_NOWARN) < 0) {
4797 		/* Under severe memory pressure? Serialise TLB allocations */
4798 		xa_lock_irq(&guc->tlb_lookup);
4799 		wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4800 		wait_event_lock_irq(wq->wq,
4801 				    !READ_ONCE(wq->busy),
4802 				    guc->tlb_lookup.xa_lock);
4803 		/*
4804 		 * Update wq->busy under lock to ensure only one waiter can
4805 		 * issue the TLB invalidation command using the serial slot at a
4806 		 * time. The condition is set to true before releasing the lock
4807 		 * so that other caller continue to wait until woken up again.
4808 		 */
4809 		wq->busy = true;
4810 		xa_unlock_irq(&guc->tlb_lookup);
4811 
4812 		seqno = guc->serial_slot;
4813 	}
4814 
4815 	action[1] = seqno;
4816 
4817 	add_wait_queue(&wq->wq, &wait);
4818 
4819 	/* This is a critical reclaim path and thus we must loop here. */
4820 	err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4821 	if (err)
4822 		goto out;
4823 
4824 	/*
4825 	 * Late guard against GT enablement.  It is not an error for the TLB
4826 	 * invalidation to time out if the GT is disabled during the process
4827 	 * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
4828 	 * in this case.
4829 	 */
4830 	if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4831 	    intel_gt_is_enabled(gt)) {
4832 		guc_err(guc,
4833 			"TLB invalidation response timed out for seqno %u\n", seqno);
4834 		err = -ETIME;
4835 	}
4836 out:
4837 	remove_wait_queue(&wq->wq, &wait);
4838 	if (seqno != guc->serial_slot)
4839 		xa_erase_irq(&guc->tlb_lookup, seqno);
4840 
4841 	return err;
4842 }
4843 
4844 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
4845 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
4846 {
4847 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
4848 }
4849 
4850 /* Send a H2G command to invalidate the GuC's internal TLB. */
4851 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
4852 {
4853 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
4854 }
4855 
4856 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4857 					  const u32 *msg,
4858 					  u32 len)
4859 {
4860 	struct intel_context *ce;
4861 	u32 ctx_id;
4862 
4863 	if (unlikely(len < 1)) {
4864 		guc_err(guc, "Invalid length %u\n", len);
4865 		return -EPROTO;
4866 	}
4867 	ctx_id = msg[0];
4868 
4869 	ce = g2h_context_lookup(guc, ctx_id);
4870 	if (unlikely(!ce))
4871 		return -EPROTO;
4872 
4873 	trace_intel_context_deregister_done(ce);
4874 
4875 #ifdef CONFIG_DRM_I915_SELFTEST
4876 	if (unlikely(ce->drop_deregister)) {
4877 		ce->drop_deregister = false;
4878 		return 0;
4879 	}
4880 #endif
4881 
4882 	if (context_wait_for_deregister_to_register(ce)) {
4883 		struct intel_runtime_pm *runtime_pm =
4884 			&ce->engine->gt->i915->runtime_pm;
4885 		intel_wakeref_t wakeref;
4886 
4887 		/*
4888 		 * Previous owner of this guc_id has been deregistered, now safe
4889 		 * register this context.
4890 		 */
4891 		with_intel_runtime_pm(runtime_pm, wakeref)
4892 			register_context(ce, true);
4893 		guc_signal_context_fence(ce);
4894 		intel_context_put(ce);
4895 	} else if (context_destroyed(ce)) {
4896 		/* Context has been destroyed */
4897 		intel_gt_pm_put_async(guc_to_gt(guc));
4898 		release_guc_id(guc, ce);
4899 		__guc_context_destroy(ce);
4900 	}
4901 
4902 	decr_outstanding_submission_g2h(guc);
4903 
4904 	return 0;
4905 }
4906 
4907 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4908 				     const u32 *msg,
4909 				     u32 len)
4910 {
4911 	struct intel_context *ce;
4912 	unsigned long flags;
4913 	u32 ctx_id;
4914 
4915 	if (unlikely(len < 2)) {
4916 		guc_err(guc, "Invalid length %u\n", len);
4917 		return -EPROTO;
4918 	}
4919 	ctx_id = msg[0];
4920 
4921 	ce = g2h_context_lookup(guc, ctx_id);
4922 	if (unlikely(!ce))
4923 		return -EPROTO;
4924 
4925 	if (unlikely(context_destroyed(ce) ||
4926 		     (!context_pending_enable(ce) &&
4927 		     !context_pending_disable(ce)))) {
4928 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4929 			ce->guc_state.sched_state, ctx_id);
4930 		return -EPROTO;
4931 	}
4932 
4933 	trace_intel_context_sched_done(ce);
4934 
4935 	if (context_pending_enable(ce)) {
4936 #ifdef CONFIG_DRM_I915_SELFTEST
4937 		if (unlikely(ce->drop_schedule_enable)) {
4938 			ce->drop_schedule_enable = false;
4939 			return 0;
4940 		}
4941 #endif
4942 
4943 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4944 		clr_context_pending_enable(ce);
4945 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4946 	} else if (context_pending_disable(ce)) {
4947 		bool banned;
4948 
4949 #ifdef CONFIG_DRM_I915_SELFTEST
4950 		if (unlikely(ce->drop_schedule_disable)) {
4951 			ce->drop_schedule_disable = false;
4952 			return 0;
4953 		}
4954 #endif
4955 
4956 		/*
4957 		 * Unpin must be done before __guc_signal_context_fence,
4958 		 * otherwise a race exists between the requests getting
4959 		 * submitted + retired before this unpin completes resulting in
4960 		 * the pin_count going to zero and the context still being
4961 		 * enabled.
4962 		 */
4963 		intel_context_sched_disable_unpin(ce);
4964 
4965 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4966 		banned = context_banned(ce);
4967 		clr_context_banned(ce);
4968 		clr_context_pending_disable(ce);
4969 		__guc_signal_context_fence(ce);
4970 		guc_blocked_fence_complete(ce);
4971 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4972 
4973 		if (banned) {
4974 			guc_cancel_context_requests(ce);
4975 			intel_engine_signal_breadcrumbs(ce->engine);
4976 		}
4977 	}
4978 
4979 	decr_outstanding_submission_g2h(guc);
4980 	intel_context_put(ce);
4981 
4982 	return 0;
4983 }
4984 
4985 static void capture_error_state(struct intel_guc *guc,
4986 				struct intel_context *ce)
4987 {
4988 	struct intel_gt *gt = guc_to_gt(guc);
4989 	struct drm_i915_private *i915 = gt->i915;
4990 	intel_wakeref_t wakeref;
4991 	intel_engine_mask_t engine_mask;
4992 
4993 	if (intel_engine_is_virtual(ce->engine)) {
4994 		struct intel_engine_cs *e;
4995 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
4996 
4997 		engine_mask = 0;
4998 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
4999 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5000 
5001 			if (match) {
5002 				intel_engine_set_hung_context(e, ce);
5003 				engine_mask |= e->mask;
5004 				atomic_inc(&i915->gpu_error.reset_engine_count[e->uabi_class]);
5005 			}
5006 		}
5007 
5008 		if (!engine_mask) {
5009 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5010 				 ce->guc_id.id, ce->engine->name);
5011 			engine_mask = ~0U;
5012 		}
5013 	} else {
5014 		intel_engine_set_hung_context(ce->engine, ce);
5015 		engine_mask = ce->engine->mask;
5016 		atomic_inc(&i915->gpu_error.reset_engine_count[ce->engine->uabi_class]);
5017 	}
5018 
5019 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5020 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5021 }
5022 
5023 static void guc_context_replay(struct intel_context *ce)
5024 {
5025 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5026 
5027 	__guc_reset_context(ce, ce->engine->mask);
5028 	tasklet_hi_schedule(&sched_engine->tasklet);
5029 }
5030 
5031 static void guc_handle_context_reset(struct intel_guc *guc,
5032 				     struct intel_context *ce)
5033 {
5034 	bool capture = intel_context_is_schedulable(ce);
5035 
5036 	trace_intel_context_reset(ce);
5037 
5038 	guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5039 		capture ? "Got" : "Ignoring",
5040 		ce->guc_id.id, ce->engine->name,
5041 		str_yes_no(intel_context_is_exiting(ce)),
5042 		str_yes_no(intel_context_is_banned(ce)));
5043 
5044 	if (capture) {
5045 		capture_error_state(guc, ce);
5046 		guc_context_replay(ce);
5047 	}
5048 }
5049 
5050 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5051 					const u32 *msg, u32 len)
5052 {
5053 	struct intel_context *ce;
5054 	unsigned long flags;
5055 	int ctx_id;
5056 
5057 	if (unlikely(len != 1)) {
5058 		guc_err(guc, "Invalid length %u", len);
5059 		return -EPROTO;
5060 	}
5061 
5062 	ctx_id = msg[0];
5063 
5064 	/*
5065 	 * The context lookup uses the xarray but lookups only require an RCU lock
5066 	 * not the full spinlock. So take the lock explicitly and keep it until the
5067 	 * context has been reference count locked to ensure it can't be destroyed
5068 	 * asynchronously until the reset is done.
5069 	 */
5070 	xa_lock_irqsave(&guc->context_lookup, flags);
5071 	ce = g2h_context_lookup(guc, ctx_id);
5072 	if (ce)
5073 		intel_context_get(ce);
5074 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5075 
5076 	if (unlikely(!ce))
5077 		return -EPROTO;
5078 
5079 	guc_handle_context_reset(guc, ce);
5080 	intel_context_put(ce);
5081 
5082 	return 0;
5083 }
5084 
5085 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5086 					const u32 *msg, u32 len)
5087 {
5088 	u32 status;
5089 
5090 	if (unlikely(len != 1)) {
5091 		guc_dbg(guc, "Invalid length %u", len);
5092 		return -EPROTO;
5093 	}
5094 
5095 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5096 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5097 		guc_warn(guc, "No space for error capture");
5098 
5099 	intel_guc_capture_process(guc);
5100 
5101 	return 0;
5102 }
5103 
5104 struct intel_engine_cs *
5105 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5106 {
5107 	struct intel_gt *gt = guc_to_gt(guc);
5108 	u8 engine_class = guc_class_to_engine_class(guc_class);
5109 
5110 	/* Class index is checked in class converter */
5111 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5112 
5113 	return gt->engine_class[engine_class][instance];
5114 }
5115 
5116 static void reset_fail_worker_func(struct work_struct *w)
5117 {
5118 	struct intel_guc *guc = container_of(w, struct intel_guc,
5119 					     submission_state.reset_fail_worker);
5120 	struct intel_gt *gt = guc_to_gt(guc);
5121 	intel_engine_mask_t reset_fail_mask;
5122 	unsigned long flags;
5123 
5124 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5125 	reset_fail_mask = guc->submission_state.reset_fail_mask;
5126 	guc->submission_state.reset_fail_mask = 0;
5127 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5128 
5129 	if (likely(reset_fail_mask)) {
5130 		struct intel_engine_cs *engine;
5131 		enum intel_engine_id id;
5132 
5133 		/*
5134 		 * GuC is toast at this point - it dead loops after sending the failed
5135 		 * reset notification. So need to manually determine the guilty context.
5136 		 * Note that it should be reliable to do this here because the GuC is
5137 		 * toast and will not be scheduling behind the KMD's back.
5138 		 */
5139 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
5140 			intel_guc_find_hung_context(engine);
5141 
5142 		intel_gt_handle_error(gt, reset_fail_mask,
5143 				      I915_ERROR_CAPTURE,
5144 				      "GuC failed to reset engine mask=0x%x",
5145 				      reset_fail_mask);
5146 	}
5147 }
5148 
5149 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5150 					 const u32 *msg, u32 len)
5151 {
5152 	struct intel_engine_cs *engine;
5153 	u8 guc_class, instance;
5154 	u32 reason;
5155 	unsigned long flags;
5156 
5157 	if (unlikely(len != 3)) {
5158 		guc_err(guc, "Invalid length %u", len);
5159 		return -EPROTO;
5160 	}
5161 
5162 	guc_class = msg[0];
5163 	instance = msg[1];
5164 	reason = msg[2];
5165 
5166 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
5167 	if (unlikely(!engine)) {
5168 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5169 		return -EPROTO;
5170 	}
5171 
5172 	/*
5173 	 * This is an unexpected failure of a hardware feature. So, log a real
5174 	 * error message not just the informational that comes with the reset.
5175 	 */
5176 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5177 		guc_class, instance, engine->name, reason);
5178 
5179 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5180 	guc->submission_state.reset_fail_mask |= engine->mask;
5181 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5182 
5183 	/*
5184 	 * A GT reset flushes this worker queue (G2H handler) so we must use
5185 	 * another worker to trigger a GT reset.
5186 	 */
5187 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5188 
5189 	return 0;
5190 }
5191 
5192 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5193 {
5194 	struct intel_guc *guc = &engine->gt->uc.guc;
5195 	struct intel_context *ce;
5196 	struct i915_request *rq;
5197 	unsigned long index;
5198 	unsigned long flags;
5199 
5200 	/* Reset called during driver load? GuC not yet initialised! */
5201 	if (unlikely(!guc_submission_initialized(guc)))
5202 		return;
5203 
5204 	xa_lock_irqsave(&guc->context_lookup, flags);
5205 	xa_for_each(&guc->context_lookup, index, ce) {
5206 		bool found;
5207 
5208 		if (!kref_get_unless_zero(&ce->ref))
5209 			continue;
5210 
5211 		xa_unlock(&guc->context_lookup);
5212 
5213 		if (!intel_context_is_pinned(ce))
5214 			goto next;
5215 
5216 		if (intel_engine_is_virtual(ce->engine)) {
5217 			if (!(ce->engine->mask & engine->mask))
5218 				goto next;
5219 		} else {
5220 			if (ce->engine != engine)
5221 				goto next;
5222 		}
5223 
5224 		found = false;
5225 		spin_lock(&ce->guc_state.lock);
5226 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5227 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5228 				continue;
5229 
5230 			found = true;
5231 			break;
5232 		}
5233 		spin_unlock(&ce->guc_state.lock);
5234 
5235 		if (found) {
5236 			intel_engine_set_hung_context(engine, ce);
5237 
5238 			/* Can only cope with one hang at a time... */
5239 			intel_context_put(ce);
5240 			xa_lock(&guc->context_lookup);
5241 			goto done;
5242 		}
5243 
5244 next:
5245 		intel_context_put(ce);
5246 		xa_lock(&guc->context_lookup);
5247 	}
5248 done:
5249 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5250 }
5251 
5252 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5253 				    struct i915_request *hung_rq,
5254 				    struct drm_printer *m)
5255 {
5256 	struct intel_guc *guc = &engine->gt->uc.guc;
5257 	struct intel_context *ce;
5258 	unsigned long index;
5259 	unsigned long flags;
5260 
5261 	/* Reset called during driver load? GuC not yet initialised! */
5262 	if (unlikely(!guc_submission_initialized(guc)))
5263 		return;
5264 
5265 	xa_lock_irqsave(&guc->context_lookup, flags);
5266 	xa_for_each(&guc->context_lookup, index, ce) {
5267 		if (!kref_get_unless_zero(&ce->ref))
5268 			continue;
5269 
5270 		xa_unlock(&guc->context_lookup);
5271 
5272 		if (!intel_context_is_pinned(ce))
5273 			goto next;
5274 
5275 		if (intel_engine_is_virtual(ce->engine)) {
5276 			if (!(ce->engine->mask & engine->mask))
5277 				goto next;
5278 		} else {
5279 			if (ce->engine != engine)
5280 				goto next;
5281 		}
5282 
5283 		spin_lock(&ce->guc_state.lock);
5284 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5285 						  hung_rq, m);
5286 		spin_unlock(&ce->guc_state.lock);
5287 
5288 next:
5289 		intel_context_put(ce);
5290 		xa_lock(&guc->context_lookup);
5291 	}
5292 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5293 }
5294 
5295 void intel_guc_submission_print_info(struct intel_guc *guc,
5296 				     struct drm_printer *p)
5297 {
5298 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5299 	struct rb_node *rb;
5300 	unsigned long flags;
5301 
5302 	if (!sched_engine)
5303 		return;
5304 
5305 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5306 		   guc->submission_version.major, guc->submission_version.minor,
5307 		   guc->submission_version.patch);
5308 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5309 		   atomic_read(&guc->outstanding_submission_g2h));
5310 	drm_printf(p, "GuC tasklet count: %u\n",
5311 		   atomic_read(&sched_engine->tasklet.count));
5312 
5313 	spin_lock_irqsave(&sched_engine->lock, flags);
5314 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5315 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5316 		struct i915_priolist *pl = to_priolist(rb);
5317 		struct i915_request *rq;
5318 
5319 		priolist_for_each_request(rq, pl)
5320 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5321 				   rq->context->guc_id.id,
5322 				   rq->fence.seqno);
5323 	}
5324 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5325 	drm_printf(p, "\n");
5326 }
5327 
5328 static inline void guc_log_context_priority(struct drm_printer *p,
5329 					    struct intel_context *ce)
5330 {
5331 	int i;
5332 
5333 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5334 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5335 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5336 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5337 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5338 			   i, ce->guc_state.prio_count[i]);
5339 	}
5340 	drm_printf(p, "\n");
5341 }
5342 
5343 static inline void guc_log_context(struct drm_printer *p,
5344 				   struct intel_context *ce)
5345 {
5346 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5347 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5348 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5349 		   ce->ring->head,
5350 		   ce->lrc_reg_state[CTX_RING_HEAD]);
5351 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5352 		   ce->ring->tail,
5353 		   ce->lrc_reg_state[CTX_RING_TAIL]);
5354 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5355 		   atomic_read(&ce->pin_count));
5356 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5357 		   atomic_read(&ce->guc_id.ref));
5358 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5359 		   ce->guc_state.sched_state);
5360 }
5361 
5362 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5363 					     struct drm_printer *p)
5364 {
5365 	struct intel_context *ce;
5366 	unsigned long index;
5367 	unsigned long flags;
5368 
5369 	xa_lock_irqsave(&guc->context_lookup, flags);
5370 	xa_for_each(&guc->context_lookup, index, ce) {
5371 		GEM_BUG_ON(intel_context_is_child(ce));
5372 
5373 		guc_log_context(p, ce);
5374 		guc_log_context_priority(p, ce);
5375 
5376 		if (intel_context_is_parent(ce)) {
5377 			struct intel_context *child;
5378 
5379 			drm_printf(p, "\t\tNumber children: %u\n",
5380 				   ce->parallel.number_children);
5381 
5382 			if (ce->parallel.guc.wq_status) {
5383 				drm_printf(p, "\t\tWQI Head: %u\n",
5384 					   READ_ONCE(*ce->parallel.guc.wq_head));
5385 				drm_printf(p, "\t\tWQI Tail: %u\n",
5386 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5387 				drm_printf(p, "\t\tWQI Status: %u\n",
5388 					   READ_ONCE(*ce->parallel.guc.wq_status));
5389 			}
5390 
5391 			if (ce->engine->emit_bb_start ==
5392 			    emit_bb_start_parent_no_preempt_mid_batch) {
5393 				u8 i;
5394 
5395 				drm_printf(p, "\t\tChildren Go: %u\n",
5396 					   get_children_go_value(ce));
5397 				for (i = 0; i < ce->parallel.number_children; ++i)
5398 					drm_printf(p, "\t\tChildren Join: %u\n",
5399 						   get_children_join_value(ce, i));
5400 			}
5401 
5402 			for_each_child(ce, child)
5403 				guc_log_context(p, child);
5404 		}
5405 	}
5406 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5407 }
5408 
5409 static inline u32 get_children_go_addr(struct intel_context *ce)
5410 {
5411 	GEM_BUG_ON(!intel_context_is_parent(ce));
5412 
5413 	return i915_ggtt_offset(ce->state) +
5414 		__get_parent_scratch_offset(ce) +
5415 		offsetof(struct parent_scratch, go.semaphore);
5416 }
5417 
5418 static inline u32 get_children_join_addr(struct intel_context *ce,
5419 					 u8 child_index)
5420 {
5421 	GEM_BUG_ON(!intel_context_is_parent(ce));
5422 
5423 	return i915_ggtt_offset(ce->state) +
5424 		__get_parent_scratch_offset(ce) +
5425 		offsetof(struct parent_scratch, join[child_index].semaphore);
5426 }
5427 
5428 #define PARENT_GO_BB			1
5429 #define PARENT_GO_FINI_BREADCRUMB	0
5430 #define CHILD_GO_BB			1
5431 #define CHILD_GO_FINI_BREADCRUMB	0
5432 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5433 						     u64 offset, u32 len,
5434 						     const unsigned int flags)
5435 {
5436 	struct intel_context *ce = rq->context;
5437 	u32 *cs;
5438 	u8 i;
5439 
5440 	GEM_BUG_ON(!intel_context_is_parent(ce));
5441 
5442 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5443 	if (IS_ERR(cs))
5444 		return PTR_ERR(cs);
5445 
5446 	/* Wait on children */
5447 	for (i = 0; i < ce->parallel.number_children; ++i) {
5448 		*cs++ = (MI_SEMAPHORE_WAIT |
5449 			 MI_SEMAPHORE_GLOBAL_GTT |
5450 			 MI_SEMAPHORE_POLL |
5451 			 MI_SEMAPHORE_SAD_EQ_SDD);
5452 		*cs++ = PARENT_GO_BB;
5453 		*cs++ = get_children_join_addr(ce, i);
5454 		*cs++ = 0;
5455 	}
5456 
5457 	/* Turn off preemption */
5458 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5459 	*cs++ = MI_NOOP;
5460 
5461 	/* Tell children go */
5462 	cs = gen8_emit_ggtt_write(cs,
5463 				  CHILD_GO_BB,
5464 				  get_children_go_addr(ce),
5465 				  0);
5466 
5467 	/* Jump to batch */
5468 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5469 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5470 	*cs++ = lower_32_bits(offset);
5471 	*cs++ = upper_32_bits(offset);
5472 	*cs++ = MI_NOOP;
5473 
5474 	intel_ring_advance(rq, cs);
5475 
5476 	return 0;
5477 }
5478 
5479 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5480 						    u64 offset, u32 len,
5481 						    const unsigned int flags)
5482 {
5483 	struct intel_context *ce = rq->context;
5484 	struct intel_context *parent = intel_context_to_parent(ce);
5485 	u32 *cs;
5486 
5487 	GEM_BUG_ON(!intel_context_is_child(ce));
5488 
5489 	cs = intel_ring_begin(rq, 12);
5490 	if (IS_ERR(cs))
5491 		return PTR_ERR(cs);
5492 
5493 	/* Signal parent */
5494 	cs = gen8_emit_ggtt_write(cs,
5495 				  PARENT_GO_BB,
5496 				  get_children_join_addr(parent,
5497 							 ce->parallel.child_index),
5498 				  0);
5499 
5500 	/* Wait on parent for go */
5501 	*cs++ = (MI_SEMAPHORE_WAIT |
5502 		 MI_SEMAPHORE_GLOBAL_GTT |
5503 		 MI_SEMAPHORE_POLL |
5504 		 MI_SEMAPHORE_SAD_EQ_SDD);
5505 	*cs++ = CHILD_GO_BB;
5506 	*cs++ = get_children_go_addr(parent);
5507 	*cs++ = 0;
5508 
5509 	/* Turn off preemption */
5510 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5511 
5512 	/* Jump to batch */
5513 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5514 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5515 	*cs++ = lower_32_bits(offset);
5516 	*cs++ = upper_32_bits(offset);
5517 
5518 	intel_ring_advance(rq, cs);
5519 
5520 	return 0;
5521 }
5522 
5523 static u32 *
5524 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5525 						   u32 *cs)
5526 {
5527 	struct intel_context *ce = rq->context;
5528 	u8 i;
5529 
5530 	GEM_BUG_ON(!intel_context_is_parent(ce));
5531 
5532 	/* Wait on children */
5533 	for (i = 0; i < ce->parallel.number_children; ++i) {
5534 		*cs++ = (MI_SEMAPHORE_WAIT |
5535 			 MI_SEMAPHORE_GLOBAL_GTT |
5536 			 MI_SEMAPHORE_POLL |
5537 			 MI_SEMAPHORE_SAD_EQ_SDD);
5538 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5539 		*cs++ = get_children_join_addr(ce, i);
5540 		*cs++ = 0;
5541 	}
5542 
5543 	/* Turn on preemption */
5544 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5545 	*cs++ = MI_NOOP;
5546 
5547 	/* Tell children go */
5548 	cs = gen8_emit_ggtt_write(cs,
5549 				  CHILD_GO_FINI_BREADCRUMB,
5550 				  get_children_go_addr(ce),
5551 				  0);
5552 
5553 	return cs;
5554 }
5555 
5556 /*
5557  * If this true, a submission of multi-lrc requests had an error and the
5558  * requests need to be skipped. The front end (execuf IOCTL) should've called
5559  * i915_request_skip which squashes the BB but we still need to emit the fini
5560  * breadrcrumbs seqno write. At this point we don't know how many of the
5561  * requests in the multi-lrc submission were generated so we can't do the
5562  * handshake between the parent and children (e.g. if 4 requests should be
5563  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5564  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5565  * has occurred on any of the requests in submission / relationship.
5566  */
5567 static inline bool skip_handshake(struct i915_request *rq)
5568 {
5569 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5570 }
5571 
5572 #define NON_SKIP_LEN	6
5573 static u32 *
5574 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5575 						 u32 *cs)
5576 {
5577 	struct intel_context *ce = rq->context;
5578 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5579 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5580 
5581 	GEM_BUG_ON(!intel_context_is_parent(ce));
5582 
5583 	if (unlikely(skip_handshake(rq))) {
5584 		/*
5585 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5586 		 * the NON_SKIP_LEN comes from the length of the emits below.
5587 		 */
5588 		memset(cs, 0, sizeof(u32) *
5589 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5590 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5591 	} else {
5592 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5593 	}
5594 
5595 	/* Emit fini breadcrumb */
5596 	before_fini_breadcrumb_user_interrupt_cs = cs;
5597 	cs = gen8_emit_ggtt_write(cs,
5598 				  rq->fence.seqno,
5599 				  i915_request_active_timeline(rq)->hwsp_offset,
5600 				  0);
5601 
5602 	/* User interrupt */
5603 	*cs++ = MI_USER_INTERRUPT;
5604 	*cs++ = MI_NOOP;
5605 
5606 	/* Ensure our math for skip + emit is correct */
5607 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5608 		   cs);
5609 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5610 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5611 
5612 	rq->tail = intel_ring_offset(rq, cs);
5613 
5614 	return cs;
5615 }
5616 
5617 static u32 *
5618 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5619 						  u32 *cs)
5620 {
5621 	struct intel_context *ce = rq->context;
5622 	struct intel_context *parent = intel_context_to_parent(ce);
5623 
5624 	GEM_BUG_ON(!intel_context_is_child(ce));
5625 
5626 	/* Turn on preemption */
5627 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5628 	*cs++ = MI_NOOP;
5629 
5630 	/* Signal parent */
5631 	cs = gen8_emit_ggtt_write(cs,
5632 				  PARENT_GO_FINI_BREADCRUMB,
5633 				  get_children_join_addr(parent,
5634 							 ce->parallel.child_index),
5635 				  0);
5636 
5637 	/* Wait parent on for go */
5638 	*cs++ = (MI_SEMAPHORE_WAIT |
5639 		 MI_SEMAPHORE_GLOBAL_GTT |
5640 		 MI_SEMAPHORE_POLL |
5641 		 MI_SEMAPHORE_SAD_EQ_SDD);
5642 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5643 	*cs++ = get_children_go_addr(parent);
5644 	*cs++ = 0;
5645 
5646 	return cs;
5647 }
5648 
5649 static u32 *
5650 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5651 						u32 *cs)
5652 {
5653 	struct intel_context *ce = rq->context;
5654 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5655 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5656 
5657 	GEM_BUG_ON(!intel_context_is_child(ce));
5658 
5659 	if (unlikely(skip_handshake(rq))) {
5660 		/*
5661 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5662 		 * the NON_SKIP_LEN comes from the length of the emits below.
5663 		 */
5664 		memset(cs, 0, sizeof(u32) *
5665 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5666 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5667 	} else {
5668 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5669 	}
5670 
5671 	/* Emit fini breadcrumb */
5672 	before_fini_breadcrumb_user_interrupt_cs = cs;
5673 	cs = gen8_emit_ggtt_write(cs,
5674 				  rq->fence.seqno,
5675 				  i915_request_active_timeline(rq)->hwsp_offset,
5676 				  0);
5677 
5678 	/* User interrupt */
5679 	*cs++ = MI_USER_INTERRUPT;
5680 	*cs++ = MI_NOOP;
5681 
5682 	/* Ensure our math for skip + emit is correct */
5683 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5684 		   cs);
5685 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5686 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5687 
5688 	rq->tail = intel_ring_offset(rq, cs);
5689 
5690 	return cs;
5691 }
5692 
5693 #undef NON_SKIP_LEN
5694 
5695 static struct intel_context *
5696 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5697 		   unsigned long flags)
5698 {
5699 	struct guc_virtual_engine *ve;
5700 	struct intel_guc *guc;
5701 	unsigned int n;
5702 	int err;
5703 
5704 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5705 	if (!ve)
5706 		return ERR_PTR(-ENOMEM);
5707 
5708 	guc = &siblings[0]->gt->uc.guc;
5709 
5710 	ve->base.i915 = siblings[0]->i915;
5711 	ve->base.gt = siblings[0]->gt;
5712 	ve->base.uncore = siblings[0]->uncore;
5713 	ve->base.id = -1;
5714 
5715 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5716 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5717 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5718 	ve->base.saturated = ALL_ENGINES;
5719 
5720 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5721 
5722 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5723 
5724 	ve->base.cops = &virtual_guc_context_ops;
5725 	ve->base.request_alloc = guc_request_alloc;
5726 	ve->base.bump_serial = virtual_guc_bump_serial;
5727 
5728 	ve->base.submit_request = guc_submit_request;
5729 
5730 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5731 
5732 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5733 	ve->base.mask = VIRTUAL_ENGINES;
5734 
5735 	intel_context_init(&ve->context, &ve->base);
5736 
5737 	for (n = 0; n < count; n++) {
5738 		struct intel_engine_cs *sibling = siblings[n];
5739 
5740 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5741 		if (sibling->mask & ve->base.mask) {
5742 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5743 				sibling->name);
5744 			err = -EINVAL;
5745 			goto err_put;
5746 		}
5747 
5748 		ve->base.mask |= sibling->mask;
5749 		ve->base.logical_mask |= sibling->logical_mask;
5750 
5751 		if (n != 0 && ve->base.class != sibling->class) {
5752 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5753 				sibling->class, ve->base.class);
5754 			err = -EINVAL;
5755 			goto err_put;
5756 		} else if (n == 0) {
5757 			ve->base.class = sibling->class;
5758 			ve->base.uabi_class = sibling->uabi_class;
5759 			snprintf(ve->base.name, sizeof(ve->base.name),
5760 				 "v%dx%d", ve->base.class, count);
5761 			ve->base.context_size = sibling->context_size;
5762 
5763 			ve->base.add_active_request =
5764 				sibling->add_active_request;
5765 			ve->base.remove_active_request =
5766 				sibling->remove_active_request;
5767 			ve->base.emit_bb_start = sibling->emit_bb_start;
5768 			ve->base.emit_flush = sibling->emit_flush;
5769 			ve->base.emit_init_breadcrumb =
5770 				sibling->emit_init_breadcrumb;
5771 			ve->base.emit_fini_breadcrumb =
5772 				sibling->emit_fini_breadcrumb;
5773 			ve->base.emit_fini_breadcrumb_dw =
5774 				sibling->emit_fini_breadcrumb_dw;
5775 			ve->base.breadcrumbs =
5776 				intel_breadcrumbs_get(sibling->breadcrumbs);
5777 
5778 			ve->base.flags |= sibling->flags;
5779 
5780 			ve->base.props.timeslice_duration_ms =
5781 				sibling->props.timeslice_duration_ms;
5782 			ve->base.props.preempt_timeout_ms =
5783 				sibling->props.preempt_timeout_ms;
5784 		}
5785 	}
5786 
5787 	return &ve->context;
5788 
5789 err_put:
5790 	intel_context_put(&ve->context);
5791 	return ERR_PTR(err);
5792 }
5793 
5794 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5795 {
5796 	struct intel_engine_cs *engine;
5797 	intel_engine_mask_t tmp, mask = ve->mask;
5798 
5799 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5800 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5801 			return true;
5802 
5803 	return false;
5804 }
5805 
5806 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5807 #include "selftest_guc.c"
5808 #include "selftest_guc_multi_lrc.c"
5809 #include "selftest_guc_hangcheck.c"
5810 #endif
5811