xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gt/gen8_engine_cs.h"
10 #include "gt/intel_breadcrumbs.h"
11 #include "gt/intel_context.h"
12 #include "gt/intel_engine_heartbeat.h"
13 #include "gt/intel_engine_pm.h"
14 #include "gt/intel_engine_regs.h"
15 #include "gt/intel_gpu_commands.h"
16 #include "gt/intel_gt.h"
17 #include "gt/intel_gt_clock_utils.h"
18 #include "gt/intel_gt_irq.h"
19 #include "gt/intel_gt_pm.h"
20 #include "gt/intel_gt_regs.h"
21 #include "gt/intel_gt_requests.h"
22 #include "gt/intel_lrc.h"
23 #include "gt/intel_lrc_reg.h"
24 #include "gt/intel_mocs.h"
25 #include "gt/intel_ring.h"
26 
27 #include "intel_guc_ads.h"
28 #include "intel_guc_capture.h"
29 #include "intel_guc_submission.h"
30 
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 
34 /**
35  * DOC: GuC-based command submission
36  *
37  * The Scratch registers:
38  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
39  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
40  * triggers an interrupt on the GuC via another register write (0xC4C8).
41  * Firmware writes a success/fail code back to the action register after
42  * processes the request. The kernel driver polls waiting for this update and
43  * then proceeds.
44  *
45  * Command Transport buffers (CTBs):
46  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
47  * - G2H) are a message interface between the i915 and GuC.
48  *
49  * Context registration:
50  * Before a context can be submitted it must be registered with the GuC via a
51  * H2G. A unique guc_id is associated with each context. The context is either
52  * registered at request creation time (normal operation) or at submission time
53  * (abnormal operation, e.g. after a reset).
54  *
55  * Context submission:
56  * The i915 updates the LRC tail value in memory. The i915 must enable the
57  * scheduling of the context within the GuC for the GuC to actually consider it.
58  * Therefore, the first time a disabled context is submitted we use a schedule
59  * enable H2G, while follow up submissions are done via the context submit H2G,
60  * which informs the GuC that a previously enabled context has new work
61  * available.
62  *
63  * Context unpin:
64  * To unpin a context a H2G is used to disable scheduling. When the
65  * corresponding G2H returns indicating the scheduling disable operation has
66  * completed it is safe to unpin the context. While a disable is in flight it
67  * isn't safe to resubmit the context so a fence is used to stall all future
68  * requests of that context until the G2H is returned.
69  *
70  * Context deregistration:
71  * Before a context can be destroyed or if we steal its guc_id we must
72  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
73  * safe to submit anything to this guc_id until the deregister completes so a
74  * fence is used to stall all requests associated with this guc_id until the
75  * corresponding G2H returns indicating the guc_id has been deregistered.
76  *
77  * submission_state.guc_ids:
78  * Unique number associated with private GuC context data passed in during
79  * context registration / submission / deregistration. 64k available. Simple ida
80  * is used for allocation.
81  *
82  * Stealing guc_ids:
83  * If no guc_ids are available they can be stolen from another context at
84  * request creation time if that context is unpinned. If a guc_id can't be found
85  * we punt this problem to the user as we believe this is near impossible to hit
86  * during normal use cases.
87  *
88  * Locking:
89  * In the GuC submission code we have 3 basic spin locks which protect
90  * everything. Details about each below.
91  *
92  * sched_engine->lock
93  * This is the submission lock for all contexts that share an i915 schedule
94  * engine (sched_engine), thus only one of the contexts which share a
95  * sched_engine can be submitting at a time. Currently only one sched_engine is
96  * used for all of GuC submission but that could change in the future.
97  *
98  * guc->submission_state.lock
99  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
100  * list.
101  *
102  * ce->guc_state.lock
103  * Protects everything under ce->guc_state. Ensures that a context is in the
104  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
105  * on a disabled context (bad idea), we don't issue a schedule enable when a
106  * schedule disable is in flight, etc... Also protects list of inflight requests
107  * on the context and the priority management state. Lock is individual to each
108  * context.
109  *
110  * Lock ordering rules:
111  * sched_engine->lock -> ce->guc_state.lock
112  * guc->submission_state.lock -> ce->guc_state.lock
113  *
114  * Reset races:
115  * When a full GT reset is triggered it is assumed that some G2H responses to
116  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
117  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
118  * contexts, release guc_ids, etc...). When this occurs we can scrub the
119  * context state and cleanup appropriately, however this is quite racey.
120  * To avoid races, the reset code must disable submission before scrubbing for
121  * the missing G2H, while the submission code must check for submission being
122  * disabled and skip sending H2Gs and updating context states when it is. Both
123  * sides must also make sure to hold the relevant locks.
124  */
125 
126 /* GuC Virtual Engine */
127 struct guc_virtual_engine {
128 	struct intel_engine_cs base;
129 	struct intel_context context;
130 };
131 
132 static struct intel_context *
133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
134 		   unsigned long flags);
135 
136 static struct intel_context *
137 guc_create_parallel(struct intel_engine_cs **engines,
138 		    unsigned int num_siblings,
139 		    unsigned int width);
140 
141 #define GUC_REQUEST_SIZE 64 /* bytes */
142 
143 /*
144  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
145  * per the GuC submission interface. A different allocation algorithm is used
146  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
147  * partition the guc_id space. We believe the number of multi-lrc contexts in
148  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
149  * multi-lrc.
150  */
151 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
152 	((guc)->submission_state.num_guc_ids / 16)
153 
154 /*
155  * Below is a set of functions which control the GuC scheduling state which
156  * require a lock.
157  */
158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
159 #define SCHED_STATE_DESTROYED				BIT(1)
160 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
161 #define SCHED_STATE_BANNED				BIT(3)
162 #define SCHED_STATE_ENABLED				BIT(4)
163 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
164 #define SCHED_STATE_REGISTERED				BIT(6)
165 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
166 #define SCHED_STATE_BLOCKED_SHIFT			8
167 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
168 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
169 
170 static inline void init_sched_state(struct intel_context *ce)
171 {
172 	lockdep_assert_held(&ce->guc_state.lock);
173 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
174 }
175 
176 __maybe_unused
177 static bool sched_state_is_init(struct intel_context *ce)
178 {
179 	/* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
180 	return !(ce->guc_state.sched_state &
181 		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
182 }
183 
184 static inline bool
185 context_wait_for_deregister_to_register(struct intel_context *ce)
186 {
187 	return ce->guc_state.sched_state &
188 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
189 }
190 
191 static inline void
192 set_context_wait_for_deregister_to_register(struct intel_context *ce)
193 {
194 	lockdep_assert_held(&ce->guc_state.lock);
195 	ce->guc_state.sched_state |=
196 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
197 }
198 
199 static inline void
200 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
201 {
202 	lockdep_assert_held(&ce->guc_state.lock);
203 	ce->guc_state.sched_state &=
204 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
205 }
206 
207 static inline bool
208 context_destroyed(struct intel_context *ce)
209 {
210 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
211 }
212 
213 static inline void
214 set_context_destroyed(struct intel_context *ce)
215 {
216 	lockdep_assert_held(&ce->guc_state.lock);
217 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
218 }
219 
220 static inline bool context_pending_disable(struct intel_context *ce)
221 {
222 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
223 }
224 
225 static inline void set_context_pending_disable(struct intel_context *ce)
226 {
227 	lockdep_assert_held(&ce->guc_state.lock);
228 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
229 }
230 
231 static inline void clr_context_pending_disable(struct intel_context *ce)
232 {
233 	lockdep_assert_held(&ce->guc_state.lock);
234 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
235 }
236 
237 static inline bool context_banned(struct intel_context *ce)
238 {
239 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
240 }
241 
242 static inline void set_context_banned(struct intel_context *ce)
243 {
244 	lockdep_assert_held(&ce->guc_state.lock);
245 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
246 }
247 
248 static inline void clr_context_banned(struct intel_context *ce)
249 {
250 	lockdep_assert_held(&ce->guc_state.lock);
251 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
252 }
253 
254 static inline bool context_enabled(struct intel_context *ce)
255 {
256 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
257 }
258 
259 static inline void set_context_enabled(struct intel_context *ce)
260 {
261 	lockdep_assert_held(&ce->guc_state.lock);
262 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
263 }
264 
265 static inline void clr_context_enabled(struct intel_context *ce)
266 {
267 	lockdep_assert_held(&ce->guc_state.lock);
268 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
269 }
270 
271 static inline bool context_pending_enable(struct intel_context *ce)
272 {
273 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
274 }
275 
276 static inline void set_context_pending_enable(struct intel_context *ce)
277 {
278 	lockdep_assert_held(&ce->guc_state.lock);
279 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
280 }
281 
282 static inline void clr_context_pending_enable(struct intel_context *ce)
283 {
284 	lockdep_assert_held(&ce->guc_state.lock);
285 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
286 }
287 
288 static inline bool context_registered(struct intel_context *ce)
289 {
290 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
291 }
292 
293 static inline void set_context_registered(struct intel_context *ce)
294 {
295 	lockdep_assert_held(&ce->guc_state.lock);
296 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
297 }
298 
299 static inline void clr_context_registered(struct intel_context *ce)
300 {
301 	lockdep_assert_held(&ce->guc_state.lock);
302 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
303 }
304 
305 static inline bool context_policy_required(struct intel_context *ce)
306 {
307 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
308 }
309 
310 static inline void set_context_policy_required(struct intel_context *ce)
311 {
312 	lockdep_assert_held(&ce->guc_state.lock);
313 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
314 }
315 
316 static inline void clr_context_policy_required(struct intel_context *ce)
317 {
318 	lockdep_assert_held(&ce->guc_state.lock);
319 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
320 }
321 
322 static inline u32 context_blocked(struct intel_context *ce)
323 {
324 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
325 		SCHED_STATE_BLOCKED_SHIFT;
326 }
327 
328 static inline void incr_context_blocked(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 
332 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
333 
334 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
335 }
336 
337 static inline void decr_context_blocked(struct intel_context *ce)
338 {
339 	lockdep_assert_held(&ce->guc_state.lock);
340 
341 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
342 
343 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
344 }
345 
346 static inline bool context_has_committed_requests(struct intel_context *ce)
347 {
348 	return !!ce->guc_state.number_committed_requests;
349 }
350 
351 static inline void incr_context_committed_requests(struct intel_context *ce)
352 {
353 	lockdep_assert_held(&ce->guc_state.lock);
354 	++ce->guc_state.number_committed_requests;
355 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
356 }
357 
358 static inline void decr_context_committed_requests(struct intel_context *ce)
359 {
360 	lockdep_assert_held(&ce->guc_state.lock);
361 	--ce->guc_state.number_committed_requests;
362 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
363 }
364 
365 static struct intel_context *
366 request_to_scheduling_context(struct i915_request *rq)
367 {
368 	return intel_context_to_parent(rq->context);
369 }
370 
371 static inline bool context_guc_id_invalid(struct intel_context *ce)
372 {
373 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
374 }
375 
376 static inline void set_context_guc_id_invalid(struct intel_context *ce)
377 {
378 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
379 }
380 
381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
382 {
383 	return &ce->engine->gt->uc.guc;
384 }
385 
386 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
387 {
388 	return rb_entry(rb, struct i915_priolist, node);
389 }
390 
391 /*
392  * When using multi-lrc submission a scratch memory area is reserved in the
393  * parent's context state for the process descriptor, work queue, and handshake
394  * between the parent + children contexts to insert safe preemption points
395  * between each of the BBs. Currently the scratch area is sized to a page.
396  *
397  * The layout of this scratch area is below:
398  * 0						guc_process_desc
399  * + sizeof(struct guc_process_desc)		child go
400  * + CACHELINE_BYTES				child join[0]
401  * ...
402  * + CACHELINE_BYTES				child join[n - 1]
403  * ...						unused
404  * PARENT_SCRATCH_SIZE / 2			work queue start
405  * ...						work queue
406  * PARENT_SCRATCH_SIZE - 1			work queue end
407  */
408 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
409 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
410 
411 struct sync_semaphore {
412 	u32 semaphore;
413 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
414 };
415 
416 struct parent_scratch {
417 	struct guc_sched_wq_desc wq_desc;
418 
419 	struct sync_semaphore go;
420 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
421 
422 	u8 unused[WQ_OFFSET - sizeof(struct guc_sched_wq_desc) -
423 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
424 
425 	u32 wq[WQ_SIZE / sizeof(u32)];
426 };
427 
428 static u32 __get_parent_scratch_offset(struct intel_context *ce)
429 {
430 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
431 
432 	return ce->parallel.guc.parent_page * PAGE_SIZE;
433 }
434 
435 static u32 __get_wq_offset(struct intel_context *ce)
436 {
437 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
438 
439 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
440 }
441 
442 static struct parent_scratch *
443 __get_parent_scratch(struct intel_context *ce)
444 {
445 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
446 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
447 
448 	/*
449 	 * Need to subtract LRC_STATE_OFFSET here as the
450 	 * parallel.guc.parent_page is the offset into ce->state while
451 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
452 	 */
453 	return (struct parent_scratch *)
454 		(ce->lrc_reg_state +
455 		 ((__get_parent_scratch_offset(ce) -
456 		   LRC_STATE_OFFSET) / sizeof(u32)));
457 }
458 
459 static struct guc_sched_wq_desc *
460 __get_wq_desc(struct intel_context *ce)
461 {
462 	struct parent_scratch *ps = __get_parent_scratch(ce);
463 
464 	return &ps->wq_desc;
465 }
466 
467 static u32 *get_wq_pointer(struct guc_sched_wq_desc *wq_desc,
468 			   struct intel_context *ce,
469 			   u32 wqi_size)
470 {
471 	/*
472 	 * Check for space in work queue. Caching a value of head pointer in
473 	 * intel_context structure in order reduce the number accesses to shared
474 	 * GPU memory which may be across a PCIe bus.
475 	 */
476 #define AVAILABLE_SPACE	\
477 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
478 	if (wqi_size > AVAILABLE_SPACE) {
479 		ce->parallel.guc.wqi_head = READ_ONCE(wq_desc->head);
480 
481 		if (wqi_size > AVAILABLE_SPACE)
482 			return NULL;
483 	}
484 #undef AVAILABLE_SPACE
485 
486 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
487 }
488 
489 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
490 {
491 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
492 
493 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
494 
495 	return ce;
496 }
497 
498 static inline bool guc_submission_initialized(struct intel_guc *guc)
499 {
500 	return guc->submission_initialized;
501 }
502 
503 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
504 {
505 	return __get_context(guc, id);
506 }
507 
508 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
509 				      struct intel_context *ce)
510 {
511 	unsigned long flags;
512 
513 	/*
514 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
515 	 * lower level functions directly.
516 	 */
517 	xa_lock_irqsave(&guc->context_lookup, flags);
518 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
519 	xa_unlock_irqrestore(&guc->context_lookup, flags);
520 }
521 
522 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
523 {
524 	unsigned long flags;
525 
526 	if (unlikely(!guc_submission_initialized(guc)))
527 		return;
528 
529 	/*
530 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
531 	 * the lower level functions directly.
532 	 */
533 	xa_lock_irqsave(&guc->context_lookup, flags);
534 	__xa_erase(&guc->context_lookup, id);
535 	xa_unlock_irqrestore(&guc->context_lookup, flags);
536 }
537 
538 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
539 {
540 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
541 		wake_up_all(&guc->ct.wq);
542 }
543 
544 static int guc_submission_send_busy_loop(struct intel_guc *guc,
545 					 const u32 *action,
546 					 u32 len,
547 					 u32 g2h_len_dw,
548 					 bool loop)
549 {
550 	/*
551 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
552 	 * so we don't handle the case where we don't get a reply because we
553 	 * aborted the send due to the channel being busy.
554 	 */
555 	GEM_BUG_ON(g2h_len_dw && !loop);
556 
557 	if (g2h_len_dw)
558 		atomic_inc(&guc->outstanding_submission_g2h);
559 
560 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
561 }
562 
563 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
564 				   atomic_t *wait_var,
565 				   bool interruptible,
566 				   long timeout)
567 {
568 	const int state = interruptible ?
569 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
570 	DEFINE_WAIT(wait);
571 
572 	might_sleep();
573 	GEM_BUG_ON(timeout < 0);
574 
575 	if (!atomic_read(wait_var))
576 		return 0;
577 
578 	if (!timeout)
579 		return -ETIME;
580 
581 	for (;;) {
582 		prepare_to_wait(&guc->ct.wq, &wait, state);
583 
584 		if (!atomic_read(wait_var))
585 			break;
586 
587 		if (signal_pending_state(state, current)) {
588 			timeout = -EINTR;
589 			break;
590 		}
591 
592 		if (!timeout) {
593 			timeout = -ETIME;
594 			break;
595 		}
596 
597 		timeout = io_schedule_timeout(timeout);
598 	}
599 	finish_wait(&guc->ct.wq, &wait);
600 
601 	return (timeout < 0) ? timeout : 0;
602 }
603 
604 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
605 {
606 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
607 		return 0;
608 
609 	return intel_guc_wait_for_pending_msg(guc,
610 					      &guc->outstanding_submission_g2h,
611 					      true, timeout);
612 }
613 
614 static int guc_context_policy_init(struct intel_context *ce, bool loop);
615 static int try_context_registration(struct intel_context *ce, bool loop);
616 
617 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
618 {
619 	int err = 0;
620 	struct intel_context *ce = request_to_scheduling_context(rq);
621 	u32 action[3];
622 	int len = 0;
623 	u32 g2h_len_dw = 0;
624 	bool enabled;
625 
626 	lockdep_assert_held(&rq->engine->sched_engine->lock);
627 
628 	/*
629 	 * Corner case where requests were sitting in the priority list or a
630 	 * request resubmitted after the context was banned.
631 	 */
632 	if (unlikely(intel_context_is_banned(ce))) {
633 		i915_request_put(i915_request_mark_eio(rq));
634 		intel_engine_signal_breadcrumbs(ce->engine);
635 		return 0;
636 	}
637 
638 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
639 	GEM_BUG_ON(context_guc_id_invalid(ce));
640 
641 	if (context_policy_required(ce)) {
642 		err = guc_context_policy_init(ce, false);
643 		if (err)
644 			return err;
645 	}
646 
647 	spin_lock(&ce->guc_state.lock);
648 
649 	/*
650 	 * The request / context will be run on the hardware when scheduling
651 	 * gets enabled in the unblock. For multi-lrc we still submit the
652 	 * context to move the LRC tails.
653 	 */
654 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
655 		goto out;
656 
657 	enabled = context_enabled(ce) || context_blocked(ce);
658 
659 	if (!enabled) {
660 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
661 		action[len++] = ce->guc_id.id;
662 		action[len++] = GUC_CONTEXT_ENABLE;
663 		set_context_pending_enable(ce);
664 		intel_context_get(ce);
665 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
666 	} else {
667 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
668 		action[len++] = ce->guc_id.id;
669 	}
670 
671 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
672 	if (!enabled && !err) {
673 		trace_intel_context_sched_enable(ce);
674 		atomic_inc(&guc->outstanding_submission_g2h);
675 		set_context_enabled(ce);
676 
677 		/*
678 		 * Without multi-lrc KMD does the submission step (moving the
679 		 * lrc tail) so enabling scheduling is sufficient to submit the
680 		 * context. This isn't the case in multi-lrc submission as the
681 		 * GuC needs to move the tails, hence the need for another H2G
682 		 * to submit a multi-lrc context after enabling scheduling.
683 		 */
684 		if (intel_context_is_parent(ce)) {
685 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
686 			err = intel_guc_send_nb(guc, action, len - 1, 0);
687 		}
688 	} else if (!enabled) {
689 		clr_context_pending_enable(ce);
690 		intel_context_put(ce);
691 	}
692 	if (likely(!err))
693 		trace_i915_request_guc_submit(rq);
694 
695 out:
696 	spin_unlock(&ce->guc_state.lock);
697 	return err;
698 }
699 
700 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
701 {
702 	int ret = __guc_add_request(guc, rq);
703 
704 	if (unlikely(ret == -EBUSY)) {
705 		guc->stalled_request = rq;
706 		guc->submission_stall_reason = STALL_ADD_REQUEST;
707 	}
708 
709 	return ret;
710 }
711 
712 static inline void guc_set_lrc_tail(struct i915_request *rq)
713 {
714 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
715 		intel_ring_set_tail(rq->ring, rq->tail);
716 }
717 
718 static inline int rq_prio(const struct i915_request *rq)
719 {
720 	return rq->sched.attr.priority;
721 }
722 
723 static bool is_multi_lrc_rq(struct i915_request *rq)
724 {
725 	return intel_context_is_parallel(rq->context);
726 }
727 
728 static bool can_merge_rq(struct i915_request *rq,
729 			 struct i915_request *last)
730 {
731 	return request_to_scheduling_context(rq) ==
732 		request_to_scheduling_context(last);
733 }
734 
735 static u32 wq_space_until_wrap(struct intel_context *ce)
736 {
737 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
738 }
739 
740 static void write_wqi(struct guc_sched_wq_desc *wq_desc,
741 		      struct intel_context *ce,
742 		      u32 wqi_size)
743 {
744 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
745 
746 	/*
747 	 * Ensure WQI are visible before updating tail
748 	 */
749 	intel_guc_write_barrier(ce_to_guc(ce));
750 
751 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
752 		(WQ_SIZE - 1);
753 	WRITE_ONCE(wq_desc->tail, ce->parallel.guc.wqi_tail);
754 }
755 
756 static int guc_wq_noop_append(struct intel_context *ce)
757 {
758 	struct guc_sched_wq_desc *wq_desc = __get_wq_desc(ce);
759 	u32 *wqi = get_wq_pointer(wq_desc, ce, wq_space_until_wrap(ce));
760 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
761 
762 	if (!wqi)
763 		return -EBUSY;
764 
765 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
766 
767 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
768 		FIELD_PREP(WQ_LEN_MASK, len_dw);
769 	ce->parallel.guc.wqi_tail = 0;
770 
771 	return 0;
772 }
773 
774 static int __guc_wq_item_append(struct i915_request *rq)
775 {
776 	struct intel_context *ce = request_to_scheduling_context(rq);
777 	struct intel_context *child;
778 	struct guc_sched_wq_desc *wq_desc = __get_wq_desc(ce);
779 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
780 		sizeof(u32);
781 	u32 *wqi;
782 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
783 	int ret;
784 
785 	/* Ensure context is in correct state updating work queue */
786 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
787 	GEM_BUG_ON(context_guc_id_invalid(ce));
788 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
789 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
790 
791 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
792 	if (wqi_size > wq_space_until_wrap(ce)) {
793 		ret = guc_wq_noop_append(ce);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	wqi = get_wq_pointer(wq_desc, ce, wqi_size);
799 	if (!wqi)
800 		return -EBUSY;
801 
802 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
803 
804 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
805 		FIELD_PREP(WQ_LEN_MASK, len_dw);
806 	*wqi++ = ce->lrc.lrca;
807 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
808 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
809 	*wqi++ = 0;	/* fence_id */
810 	for_each_child(ce, child)
811 		*wqi++ = child->ring->tail / sizeof(u64);
812 
813 	write_wqi(wq_desc, ce, wqi_size);
814 
815 	return 0;
816 }
817 
818 static int guc_wq_item_append(struct intel_guc *guc,
819 			      struct i915_request *rq)
820 {
821 	struct intel_context *ce = request_to_scheduling_context(rq);
822 	int ret = 0;
823 
824 	if (likely(!intel_context_is_banned(ce))) {
825 		ret = __guc_wq_item_append(rq);
826 
827 		if (unlikely(ret == -EBUSY)) {
828 			guc->stalled_request = rq;
829 			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
830 		}
831 	}
832 
833 	return ret;
834 }
835 
836 static bool multi_lrc_submit(struct i915_request *rq)
837 {
838 	struct intel_context *ce = request_to_scheduling_context(rq);
839 
840 	intel_ring_set_tail(rq->ring, rq->tail);
841 
842 	/*
843 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
844 	 * request generated from a multi-BB submission. This indicates to the
845 	 * backend (GuC interface) that we should submit this context thus
846 	 * submitting all the requests generated in parallel.
847 	 */
848 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
849 		intel_context_is_banned(ce);
850 }
851 
852 static int guc_dequeue_one_context(struct intel_guc *guc)
853 {
854 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
855 	struct i915_request *last = NULL;
856 	bool submit = false;
857 	struct rb_node *rb;
858 	int ret;
859 
860 	lockdep_assert_held(&sched_engine->lock);
861 
862 	if (guc->stalled_request) {
863 		submit = true;
864 		last = guc->stalled_request;
865 
866 		switch (guc->submission_stall_reason) {
867 		case STALL_REGISTER_CONTEXT:
868 			goto register_context;
869 		case STALL_MOVE_LRC_TAIL:
870 			goto move_lrc_tail;
871 		case STALL_ADD_REQUEST:
872 			goto add_request;
873 		default:
874 			MISSING_CASE(guc->submission_stall_reason);
875 		}
876 	}
877 
878 	while ((rb = rb_first_cached(&sched_engine->queue))) {
879 		struct i915_priolist *p = to_priolist(rb);
880 		struct i915_request *rq, *rn;
881 
882 		priolist_for_each_request_consume(rq, rn, p) {
883 			if (last && !can_merge_rq(rq, last))
884 				goto register_context;
885 
886 			list_del_init(&rq->sched.link);
887 
888 			__i915_request_submit(rq);
889 
890 			trace_i915_request_in(rq, 0);
891 			last = rq;
892 
893 			if (is_multi_lrc_rq(rq)) {
894 				/*
895 				 * We need to coalesce all multi-lrc requests in
896 				 * a relationship into a single H2G. We are
897 				 * guaranteed that all of these requests will be
898 				 * submitted sequentially.
899 				 */
900 				if (multi_lrc_submit(rq)) {
901 					submit = true;
902 					goto register_context;
903 				}
904 			} else {
905 				submit = true;
906 			}
907 		}
908 
909 		rb_erase_cached(&p->node, &sched_engine->queue);
910 		i915_priolist_free(p);
911 	}
912 
913 register_context:
914 	if (submit) {
915 		struct intel_context *ce = request_to_scheduling_context(last);
916 
917 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
918 			     !intel_context_is_banned(ce))) {
919 			ret = try_context_registration(ce, false);
920 			if (unlikely(ret == -EPIPE)) {
921 				goto deadlk;
922 			} else if (ret == -EBUSY) {
923 				guc->stalled_request = last;
924 				guc->submission_stall_reason =
925 					STALL_REGISTER_CONTEXT;
926 				goto schedule_tasklet;
927 			} else if (ret != 0) {
928 				GEM_WARN_ON(ret);	/* Unexpected */
929 				goto deadlk;
930 			}
931 		}
932 
933 move_lrc_tail:
934 		if (is_multi_lrc_rq(last)) {
935 			ret = guc_wq_item_append(guc, last);
936 			if (ret == -EBUSY) {
937 				goto schedule_tasklet;
938 			} else if (ret != 0) {
939 				GEM_WARN_ON(ret);	/* Unexpected */
940 				goto deadlk;
941 			}
942 		} else {
943 			guc_set_lrc_tail(last);
944 		}
945 
946 add_request:
947 		ret = guc_add_request(guc, last);
948 		if (unlikely(ret == -EPIPE)) {
949 			goto deadlk;
950 		} else if (ret == -EBUSY) {
951 			goto schedule_tasklet;
952 		} else if (ret != 0) {
953 			GEM_WARN_ON(ret);	/* Unexpected */
954 			goto deadlk;
955 		}
956 	}
957 
958 	guc->stalled_request = NULL;
959 	guc->submission_stall_reason = STALL_NONE;
960 	return submit;
961 
962 deadlk:
963 	sched_engine->tasklet.callback = NULL;
964 	tasklet_disable_nosync(&sched_engine->tasklet);
965 	return false;
966 
967 schedule_tasklet:
968 	tasklet_schedule(&sched_engine->tasklet);
969 	return false;
970 }
971 
972 static void guc_submission_tasklet(struct tasklet_struct *t)
973 {
974 	struct i915_sched_engine *sched_engine =
975 		from_tasklet(sched_engine, t, tasklet);
976 	unsigned long flags;
977 	bool loop;
978 
979 	spin_lock_irqsave(&sched_engine->lock, flags);
980 
981 	do {
982 		loop = guc_dequeue_one_context(sched_engine->private_data);
983 	} while (loop);
984 
985 	i915_sched_engine_reset_on_empty(sched_engine);
986 
987 	spin_unlock_irqrestore(&sched_engine->lock, flags);
988 }
989 
990 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
991 {
992 	if (iir & GT_RENDER_USER_INTERRUPT)
993 		intel_engine_signal_breadcrumbs(engine);
994 }
995 
996 static void __guc_context_destroy(struct intel_context *ce);
997 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
998 static void guc_signal_context_fence(struct intel_context *ce);
999 static void guc_cancel_context_requests(struct intel_context *ce);
1000 static void guc_blocked_fence_complete(struct intel_context *ce);
1001 
1002 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1003 {
1004 	struct intel_context *ce;
1005 	unsigned long index, flags;
1006 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1007 
1008 	xa_lock_irqsave(&guc->context_lookup, flags);
1009 	xa_for_each(&guc->context_lookup, index, ce) {
1010 		/*
1011 		 * Corner case where the ref count on the object is zero but and
1012 		 * deregister G2H was lost. In this case we don't touch the ref
1013 		 * count and finish the destroy of the context.
1014 		 */
1015 		bool do_put = kref_get_unless_zero(&ce->ref);
1016 
1017 		xa_unlock(&guc->context_lookup);
1018 
1019 		spin_lock(&ce->guc_state.lock);
1020 
1021 		/*
1022 		 * Once we are at this point submission_disabled() is guaranteed
1023 		 * to be visible to all callers who set the below flags (see above
1024 		 * flush and flushes in reset_prepare). If submission_disabled()
1025 		 * is set, the caller shouldn't set these flags.
1026 		 */
1027 
1028 		destroyed = context_destroyed(ce);
1029 		pending_enable = context_pending_enable(ce);
1030 		pending_disable = context_pending_disable(ce);
1031 		deregister = context_wait_for_deregister_to_register(ce);
1032 		banned = context_banned(ce);
1033 		init_sched_state(ce);
1034 
1035 		spin_unlock(&ce->guc_state.lock);
1036 
1037 		if (pending_enable || destroyed || deregister) {
1038 			decr_outstanding_submission_g2h(guc);
1039 			if (deregister)
1040 				guc_signal_context_fence(ce);
1041 			if (destroyed) {
1042 				intel_gt_pm_put_async(guc_to_gt(guc));
1043 				release_guc_id(guc, ce);
1044 				__guc_context_destroy(ce);
1045 			}
1046 			if (pending_enable || deregister)
1047 				intel_context_put(ce);
1048 		}
1049 
1050 		/* Not mutualy exclusive with above if statement. */
1051 		if (pending_disable) {
1052 			guc_signal_context_fence(ce);
1053 			if (banned) {
1054 				guc_cancel_context_requests(ce);
1055 				intel_engine_signal_breadcrumbs(ce->engine);
1056 			}
1057 			intel_context_sched_disable_unpin(ce);
1058 			decr_outstanding_submission_g2h(guc);
1059 
1060 			spin_lock(&ce->guc_state.lock);
1061 			guc_blocked_fence_complete(ce);
1062 			spin_unlock(&ce->guc_state.lock);
1063 
1064 			intel_context_put(ce);
1065 		}
1066 
1067 		if (do_put)
1068 			intel_context_put(ce);
1069 		xa_lock(&guc->context_lookup);
1070 	}
1071 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1072 }
1073 
1074 /*
1075  * GuC stores busyness stats for each engine at context in/out boundaries. A
1076  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1077  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1078  * GuC.
1079  *
1080  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1081  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1082  * active. For an active engine total busyness = total + (now - start), where
1083  * 'now' is the time at which the busyness is sampled. For inactive engine,
1084  * total busyness = total.
1085  *
1086  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1087  *
1088  * The start and total values provided by GuC are 32 bits and wrap around in a
1089  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1090  * increasing ns values, there is a need for this implementation to account for
1091  * overflows and extend the GuC provided values to 64 bits before returning
1092  * busyness to the user. In order to do that, a worker runs periodically at
1093  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1094  * 27 seconds for a gt clock frequency of 19.2 MHz).
1095  */
1096 
1097 #define WRAP_TIME_CLKS U32_MAX
1098 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1099 
1100 static void
1101 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1102 {
1103 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1104 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1105 
1106 	if (new_start == lower_32_bits(*prev_start))
1107 		return;
1108 
1109 	/*
1110 	 * When gt is unparked, we update the gt timestamp and start the ping
1111 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1112 	 * is unparked, all switched in contexts will have a start time that is
1113 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1114 	 *
1115 	 * If neither gt_stamp nor new_start has rolled over, then the
1116 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1117 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1118 	 *
1119 	 * The below conditions address the cases of new_start rollover and
1120 	 * gt_stamp_last rollover respectively.
1121 	 */
1122 	if (new_start < gt_stamp_last &&
1123 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1124 		gt_stamp_hi++;
1125 
1126 	if (new_start > gt_stamp_last &&
1127 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1128 		gt_stamp_hi--;
1129 
1130 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1131 }
1132 
1133 #define record_read(map_, field_) \
1134 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1135 
1136 /*
1137  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1138  * we run into a race where the value read is inconsistent. Sometimes the
1139  * inconsistency is in reading the upper MSB bytes of the last_in value when
1140  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1141  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1142  * determine validity of these values. Instead we read the values multiple times
1143  * until they are consistent. In test runs, 3 attempts results in consistent
1144  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1145  * any new occurences.
1146  */
1147 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1148 				      u32 *last_in, u32 *id, u32 *total)
1149 {
1150 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1151 	int i = 0;
1152 
1153 	do {
1154 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1155 		*id = record_read(&rec_map, current_context_index);
1156 		*total = record_read(&rec_map, total_runtime);
1157 
1158 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1159 		    record_read(&rec_map, current_context_index) == *id &&
1160 		    record_read(&rec_map, total_runtime) == *total)
1161 			break;
1162 	} while (++i < 6);
1163 }
1164 
1165 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1166 {
1167 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1168 	struct intel_guc *guc = &engine->gt->uc.guc;
1169 	u32 last_switch, ctx_id, total;
1170 
1171 	lockdep_assert_held(&guc->timestamp.lock);
1172 
1173 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1174 
1175 	stats->running = ctx_id != ~0U && last_switch;
1176 	if (stats->running)
1177 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1178 
1179 	/*
1180 	 * Instead of adjusting the total for overflow, just add the
1181 	 * difference from previous sample stats->total_gt_clks
1182 	 */
1183 	if (total && total != ~0U) {
1184 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1185 		stats->prev_total = total;
1186 	}
1187 }
1188 
1189 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1190 {
1191 	intel_wakeref_t wakeref;
1192 	u32 reg, shift;
1193 
1194 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1195 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1196 
1197 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1198 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1199 
1200 	return 3 - shift;
1201 }
1202 
1203 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1204 {
1205 	struct intel_gt *gt = guc_to_gt(guc);
1206 	u32 gt_stamp_lo, gt_stamp_hi;
1207 	u64 gpm_ts;
1208 
1209 	lockdep_assert_held(&guc->timestamp.lock);
1210 
1211 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1212 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1213 					  MISC_STATUS1) >> guc->timestamp.shift;
1214 	gt_stamp_lo = lower_32_bits(gpm_ts);
1215 	*now = ktime_get();
1216 
1217 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1218 		gt_stamp_hi++;
1219 
1220 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1221 }
1222 
1223 /*
1224  * Unlike the execlist mode of submission total and active times are in terms of
1225  * gt clocks. The *now parameter is retained to return the cpu time at which the
1226  * busyness was sampled.
1227  */
1228 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1229 {
1230 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1231 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1232 	struct intel_gt *gt = engine->gt;
1233 	struct intel_guc *guc = &gt->uc.guc;
1234 	u64 total, gt_stamp_saved;
1235 	unsigned long flags;
1236 	u32 reset_count;
1237 	bool in_reset;
1238 
1239 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1240 
1241 	/*
1242 	 * If a reset happened, we risk reading partially updated engine
1243 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1244 	 * Synchronize with gt reset using reset_count and the
1245 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1246 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1247 	 * usable by checking the flag afterwards.
1248 	 */
1249 	reset_count = i915_reset_count(gpu_error);
1250 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1251 
1252 	*now = ktime_get();
1253 
1254 	/*
1255 	 * The active busyness depends on start_gt_clk and gt_stamp.
1256 	 * gt_stamp is updated by i915 only when gt is awake and the
1257 	 * start_gt_clk is derived from GuC state. To get a consistent
1258 	 * view of activity, we query the GuC state only if gt is awake.
1259 	 */
1260 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1261 		stats_saved = *stats;
1262 		gt_stamp_saved = guc->timestamp.gt_stamp;
1263 		/*
1264 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1265 		 * start_gt_clk' calculation below for active engines.
1266 		 */
1267 		guc_update_engine_gt_clks(engine);
1268 		guc_update_pm_timestamp(guc, now);
1269 		intel_gt_pm_put_async(gt);
1270 		if (i915_reset_count(gpu_error) != reset_count) {
1271 			*stats = stats_saved;
1272 			guc->timestamp.gt_stamp = gt_stamp_saved;
1273 		}
1274 	}
1275 
1276 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1277 	if (stats->running) {
1278 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1279 
1280 		total += intel_gt_clock_interval_to_ns(gt, clk);
1281 	}
1282 
1283 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1284 
1285 	return ns_to_ktime(total);
1286 }
1287 
1288 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1289 {
1290 	struct intel_gt *gt = guc_to_gt(guc);
1291 	struct intel_engine_cs *engine;
1292 	enum intel_engine_id id;
1293 	unsigned long flags;
1294 	ktime_t unused;
1295 
1296 	cancel_delayed_work_sync(&guc->timestamp.work);
1297 
1298 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1299 
1300 	guc_update_pm_timestamp(guc, &unused);
1301 	for_each_engine(engine, gt, id) {
1302 		guc_update_engine_gt_clks(engine);
1303 		engine->stats.guc.prev_total = 0;
1304 	}
1305 
1306 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1307 }
1308 
1309 static void __update_guc_busyness_stats(struct intel_guc *guc)
1310 {
1311 	struct intel_gt *gt = guc_to_gt(guc);
1312 	struct intel_engine_cs *engine;
1313 	enum intel_engine_id id;
1314 	unsigned long flags;
1315 	ktime_t unused;
1316 
1317 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1318 
1319 	guc_update_pm_timestamp(guc, &unused);
1320 	for_each_engine(engine, gt, id)
1321 		guc_update_engine_gt_clks(engine);
1322 
1323 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1324 }
1325 
1326 static void guc_timestamp_ping(struct work_struct *wrk)
1327 {
1328 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1329 					     timestamp.work.work);
1330 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1331 	struct intel_gt *gt = guc_to_gt(guc);
1332 	intel_wakeref_t wakeref;
1333 	int srcu, ret;
1334 
1335 	/*
1336 	 * Synchronize with gt reset to make sure the worker does not
1337 	 * corrupt the engine/guc stats.
1338 	 */
1339 	ret = intel_gt_reset_trylock(gt, &srcu);
1340 	if (ret)
1341 		return;
1342 
1343 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1344 		__update_guc_busyness_stats(guc);
1345 
1346 	intel_gt_reset_unlock(gt, srcu);
1347 
1348 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1349 			 guc->timestamp.ping_delay);
1350 }
1351 
1352 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1353 {
1354 	u32 offset = intel_guc_engine_usage_offset(guc);
1355 	u32 action[] = {
1356 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1357 		offset,
1358 		0,
1359 	};
1360 
1361 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1362 }
1363 
1364 static void guc_init_engine_stats(struct intel_guc *guc)
1365 {
1366 	struct intel_gt *gt = guc_to_gt(guc);
1367 	intel_wakeref_t wakeref;
1368 
1369 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1370 			 guc->timestamp.ping_delay);
1371 
1372 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
1373 		int ret = guc_action_enable_usage_stats(guc);
1374 
1375 		if (ret)
1376 			drm_err(&gt->i915->drm,
1377 				"Failed to enable usage stats: %d!\n", ret);
1378 	}
1379 }
1380 
1381 void intel_guc_busyness_park(struct intel_gt *gt)
1382 {
1383 	struct intel_guc *guc = &gt->uc.guc;
1384 
1385 	if (!guc_submission_initialized(guc))
1386 		return;
1387 
1388 	cancel_delayed_work(&guc->timestamp.work);
1389 	__update_guc_busyness_stats(guc);
1390 }
1391 
1392 void intel_guc_busyness_unpark(struct intel_gt *gt)
1393 {
1394 	struct intel_guc *guc = &gt->uc.guc;
1395 	unsigned long flags;
1396 	ktime_t unused;
1397 
1398 	if (!guc_submission_initialized(guc))
1399 		return;
1400 
1401 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1402 	guc_update_pm_timestamp(guc, &unused);
1403 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1404 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1405 			 guc->timestamp.ping_delay);
1406 }
1407 
1408 static inline bool
1409 submission_disabled(struct intel_guc *guc)
1410 {
1411 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1412 
1413 	return unlikely(!sched_engine ||
1414 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1415 			intel_gt_is_wedged(guc_to_gt(guc)));
1416 }
1417 
1418 static void disable_submission(struct intel_guc *guc)
1419 {
1420 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1421 
1422 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1423 		GEM_BUG_ON(!guc->ct.enabled);
1424 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1425 		sched_engine->tasklet.callback = NULL;
1426 	}
1427 }
1428 
1429 static void enable_submission(struct intel_guc *guc)
1430 {
1431 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1432 	unsigned long flags;
1433 
1434 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1435 	sched_engine->tasklet.callback = guc_submission_tasklet;
1436 	wmb();	/* Make sure callback visible */
1437 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1438 	    __tasklet_enable(&sched_engine->tasklet)) {
1439 		GEM_BUG_ON(!guc->ct.enabled);
1440 
1441 		/* And kick in case we missed a new request submission. */
1442 		tasklet_hi_schedule(&sched_engine->tasklet);
1443 	}
1444 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1445 }
1446 
1447 static void guc_flush_submissions(struct intel_guc *guc)
1448 {
1449 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1450 	unsigned long flags;
1451 
1452 	spin_lock_irqsave(&sched_engine->lock, flags);
1453 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1454 }
1455 
1456 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1457 
1458 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1459 {
1460 	if (unlikely(!guc_submission_initialized(guc))) {
1461 		/* Reset called during driver load? GuC not yet initialised! */
1462 		return;
1463 	}
1464 
1465 	intel_gt_park_heartbeats(guc_to_gt(guc));
1466 	disable_submission(guc);
1467 	guc->interrupts.disable(guc);
1468 	__reset_guc_busyness_stats(guc);
1469 
1470 	/* Flush IRQ handler */
1471 	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
1472 	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);
1473 
1474 	guc_flush_submissions(guc);
1475 	guc_flush_destroyed_contexts(guc);
1476 	flush_work(&guc->ct.requests.worker);
1477 
1478 	scrub_guc_desc_for_outstanding_g2h(guc);
1479 }
1480 
1481 static struct intel_engine_cs *
1482 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1483 {
1484 	struct intel_engine_cs *engine;
1485 	intel_engine_mask_t tmp, mask = ve->mask;
1486 	unsigned int num_siblings = 0;
1487 
1488 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1489 		if (num_siblings++ == sibling)
1490 			return engine;
1491 
1492 	return NULL;
1493 }
1494 
1495 static inline struct intel_engine_cs *
1496 __context_to_physical_engine(struct intel_context *ce)
1497 {
1498 	struct intel_engine_cs *engine = ce->engine;
1499 
1500 	if (intel_engine_is_virtual(engine))
1501 		engine = guc_virtual_get_sibling(engine, 0);
1502 
1503 	return engine;
1504 }
1505 
1506 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1507 {
1508 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1509 
1510 	if (intel_context_is_banned(ce))
1511 		return;
1512 
1513 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1514 
1515 	/*
1516 	 * We want a simple context + ring to execute the breadcrumb update.
1517 	 * We cannot rely on the context being intact across the GPU hang,
1518 	 * so clear it and rebuild just what we need for the breadcrumb.
1519 	 * All pending requests for this context will be zapped, and any
1520 	 * future request will be after userspace has had the opportunity
1521 	 * to recreate its own state.
1522 	 */
1523 	if (scrub)
1524 		lrc_init_regs(ce, engine, true);
1525 
1526 	/* Rerun the request; its payload has been neutered (if guilty). */
1527 	lrc_update_regs(ce, engine, head);
1528 }
1529 
1530 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1531 {
1532 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1533 		[RCS0] = MSG_IDLE_CS,
1534 		[BCS0] = MSG_IDLE_BCS,
1535 		[VCS0] = MSG_IDLE_VCS0,
1536 		[VCS1] = MSG_IDLE_VCS1,
1537 		[VCS2] = MSG_IDLE_VCS2,
1538 		[VCS3] = MSG_IDLE_VCS3,
1539 		[VCS4] = MSG_IDLE_VCS4,
1540 		[VCS5] = MSG_IDLE_VCS5,
1541 		[VCS6] = MSG_IDLE_VCS6,
1542 		[VCS7] = MSG_IDLE_VCS7,
1543 		[VECS0] = MSG_IDLE_VECS0,
1544 		[VECS1] = MSG_IDLE_VECS1,
1545 		[VECS2] = MSG_IDLE_VECS2,
1546 		[VECS3] = MSG_IDLE_VECS3,
1547 		[CCS0] = MSG_IDLE_CS,
1548 		[CCS1] = MSG_IDLE_CS,
1549 		[CCS2] = MSG_IDLE_CS,
1550 		[CCS3] = MSG_IDLE_CS,
1551 	};
1552 	u32 val;
1553 
1554 	if (!_reg[engine->id].reg)
1555 		return 0;
1556 
1557 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1558 
1559 	/* bits[29:25] & bits[13:9] >> shift */
1560 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1561 }
1562 
1563 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1564 {
1565 	int ret;
1566 
1567 	/* Ensure GPM receives fw up/down after CS is stopped */
1568 	udelay(1);
1569 
1570 	/* Wait for forcewake request to complete in GPM */
1571 	ret =  __intel_wait_for_register_fw(gt->uncore,
1572 					    GEN9_PWRGT_DOMAIN_STATUS,
1573 					    fw_mask, fw_mask, 5000, 0, NULL);
1574 
1575 	/* Ensure CS receives fw ack from GPM */
1576 	udelay(1);
1577 
1578 	if (ret)
1579 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1580 }
1581 
1582 /*
1583  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1584  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1585  * pending status is indicated by bits[13:9] (masked by bits[ 29:25]) in the
1586  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1587  * are concerned only with the gt reset here, we use a logical OR of pending
1588  * forcewakeups from all reset domains and then wait for them to complete by
1589  * querying PWRGT_DOMAIN_STATUS.
1590  */
1591 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1592 {
1593 	u32 fw_pending;
1594 
1595 	if (GRAPHICS_VER(engine->i915) != 12)
1596 		return;
1597 
1598 	/*
1599 	 * Wa_22011802037
1600 	 * TODO: Occasionally trying to stop the cs times out, but does not
1601 	 * adversely affect functionality. The timeout is set as a config
1602 	 * parameter that defaults to 100ms. Assuming that this timeout is
1603 	 * sufficient for any pending MI_FORCEWAKEs to complete, ignore the
1604 	 * timeout returned here until it is root caused.
1605 	 */
1606 	intel_engine_stop_cs(engine);
1607 
1608 	fw_pending = __cs_pending_mi_force_wakes(engine);
1609 	if (fw_pending)
1610 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1611 }
1612 
1613 static void guc_reset_nop(struct intel_engine_cs *engine)
1614 {
1615 }
1616 
1617 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1618 {
1619 }
1620 
1621 static void
1622 __unwind_incomplete_requests(struct intel_context *ce)
1623 {
1624 	struct i915_request *rq, *rn;
1625 	struct list_head *pl;
1626 	int prio = I915_PRIORITY_INVALID;
1627 	struct i915_sched_engine * const sched_engine =
1628 		ce->engine->sched_engine;
1629 	unsigned long flags;
1630 
1631 	spin_lock_irqsave(&sched_engine->lock, flags);
1632 	spin_lock(&ce->guc_state.lock);
1633 	list_for_each_entry_safe_reverse(rq, rn,
1634 					 &ce->guc_state.requests,
1635 					 sched.link) {
1636 		if (i915_request_completed(rq))
1637 			continue;
1638 
1639 		list_del_init(&rq->sched.link);
1640 		__i915_request_unsubmit(rq);
1641 
1642 		/* Push the request back into the queue for later resubmission. */
1643 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1644 		if (rq_prio(rq) != prio) {
1645 			prio = rq_prio(rq);
1646 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1647 		}
1648 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1649 
1650 		list_add(&rq->sched.link, pl);
1651 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1652 	}
1653 	spin_unlock(&ce->guc_state.lock);
1654 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1655 }
1656 
1657 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1658 {
1659 	bool guilty;
1660 	struct i915_request *rq;
1661 	unsigned long flags;
1662 	u32 head;
1663 	int i, number_children = ce->parallel.number_children;
1664 	struct intel_context *parent = ce;
1665 
1666 	GEM_BUG_ON(intel_context_is_child(ce));
1667 
1668 	intel_context_get(ce);
1669 
1670 	/*
1671 	 * GuC will implicitly mark the context as non-schedulable when it sends
1672 	 * the reset notification. Make sure our state reflects this change. The
1673 	 * context will be marked enabled on resubmission.
1674 	 */
1675 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1676 	clr_context_enabled(ce);
1677 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1678 
1679 	/*
1680 	 * For each context in the relationship find the hanging request
1681 	 * resetting each context / request as needed
1682 	 */
1683 	for (i = 0; i < number_children + 1; ++i) {
1684 		if (!intel_context_is_pinned(ce))
1685 			goto next_context;
1686 
1687 		guilty = false;
1688 		rq = intel_context_find_active_request(ce);
1689 		if (!rq) {
1690 			head = ce->ring->tail;
1691 			goto out_replay;
1692 		}
1693 
1694 		if (i915_request_started(rq))
1695 			guilty = stalled & ce->engine->mask;
1696 
1697 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1698 		head = intel_ring_wrap(ce->ring, rq->head);
1699 
1700 		__i915_request_reset(rq, guilty);
1701 out_replay:
1702 		guc_reset_state(ce, head, guilty);
1703 next_context:
1704 		if (i != number_children)
1705 			ce = list_next_entry(ce, parallel.child_link);
1706 	}
1707 
1708 	__unwind_incomplete_requests(parent);
1709 	intel_context_put(parent);
1710 }
1711 
1712 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1713 {
1714 	struct intel_context *ce;
1715 	unsigned long index;
1716 	unsigned long flags;
1717 
1718 	if (unlikely(!guc_submission_initialized(guc))) {
1719 		/* Reset called during driver load? GuC not yet initialised! */
1720 		return;
1721 	}
1722 
1723 	xa_lock_irqsave(&guc->context_lookup, flags);
1724 	xa_for_each(&guc->context_lookup, index, ce) {
1725 		if (!kref_get_unless_zero(&ce->ref))
1726 			continue;
1727 
1728 		xa_unlock(&guc->context_lookup);
1729 
1730 		if (intel_context_is_pinned(ce) &&
1731 		    !intel_context_is_child(ce))
1732 			__guc_reset_context(ce, stalled);
1733 
1734 		intel_context_put(ce);
1735 
1736 		xa_lock(&guc->context_lookup);
1737 	}
1738 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1739 
1740 	/* GuC is blown away, drop all references to contexts */
1741 	xa_destroy(&guc->context_lookup);
1742 }
1743 
1744 static void guc_cancel_context_requests(struct intel_context *ce)
1745 {
1746 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1747 	struct i915_request *rq;
1748 	unsigned long flags;
1749 
1750 	/* Mark all executing requests as skipped. */
1751 	spin_lock_irqsave(&sched_engine->lock, flags);
1752 	spin_lock(&ce->guc_state.lock);
1753 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1754 		i915_request_put(i915_request_mark_eio(rq));
1755 	spin_unlock(&ce->guc_state.lock);
1756 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1757 }
1758 
1759 static void
1760 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1761 {
1762 	struct i915_request *rq, *rn;
1763 	struct rb_node *rb;
1764 	unsigned long flags;
1765 
1766 	/* Can be called during boot if GuC fails to load */
1767 	if (!sched_engine)
1768 		return;
1769 
1770 	/*
1771 	 * Before we call engine->cancel_requests(), we should have exclusive
1772 	 * access to the submission state. This is arranged for us by the
1773 	 * caller disabling the interrupt generation, the tasklet and other
1774 	 * threads that may then access the same state, giving us a free hand
1775 	 * to reset state. However, we still need to let lockdep be aware that
1776 	 * we know this state may be accessed in hardirq context, so we
1777 	 * disable the irq around this manipulation and we want to keep
1778 	 * the spinlock focused on its duties and not accidentally conflate
1779 	 * coverage to the submission's irq state. (Similarly, although we
1780 	 * shouldn't need to disable irq around the manipulation of the
1781 	 * submission's irq state, we also wish to remind ourselves that
1782 	 * it is irq state.)
1783 	 */
1784 	spin_lock_irqsave(&sched_engine->lock, flags);
1785 
1786 	/* Flush the queued requests to the timeline list (for retiring). */
1787 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1788 		struct i915_priolist *p = to_priolist(rb);
1789 
1790 		priolist_for_each_request_consume(rq, rn, p) {
1791 			list_del_init(&rq->sched.link);
1792 
1793 			__i915_request_submit(rq);
1794 
1795 			i915_request_put(i915_request_mark_eio(rq));
1796 		}
1797 
1798 		rb_erase_cached(&p->node, &sched_engine->queue);
1799 		i915_priolist_free(p);
1800 	}
1801 
1802 	/* Remaining _unready_ requests will be nop'ed when submitted */
1803 
1804 	sched_engine->queue_priority_hint = INT_MIN;
1805 	sched_engine->queue = RB_ROOT_CACHED;
1806 
1807 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1808 }
1809 
1810 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1811 {
1812 	struct intel_context *ce;
1813 	unsigned long index;
1814 	unsigned long flags;
1815 
1816 	xa_lock_irqsave(&guc->context_lookup, flags);
1817 	xa_for_each(&guc->context_lookup, index, ce) {
1818 		if (!kref_get_unless_zero(&ce->ref))
1819 			continue;
1820 
1821 		xa_unlock(&guc->context_lookup);
1822 
1823 		if (intel_context_is_pinned(ce) &&
1824 		    !intel_context_is_child(ce))
1825 			guc_cancel_context_requests(ce);
1826 
1827 		intel_context_put(ce);
1828 
1829 		xa_lock(&guc->context_lookup);
1830 	}
1831 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1832 
1833 	guc_cancel_sched_engine_requests(guc->sched_engine);
1834 
1835 	/* GuC is blown away, drop all references to contexts */
1836 	xa_destroy(&guc->context_lookup);
1837 }
1838 
1839 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1840 {
1841 	/* Reset called during driver load or during wedge? */
1842 	if (unlikely(!guc_submission_initialized(guc) ||
1843 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1844 		return;
1845 	}
1846 
1847 	/*
1848 	 * Technically possible for either of these values to be non-zero here,
1849 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1850 	 * see in CI if this happens frequently / a precursor to taking down the
1851 	 * machine.
1852 	 */
1853 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1854 	atomic_set(&guc->outstanding_submission_g2h, 0);
1855 
1856 	intel_guc_global_policies_update(guc);
1857 	enable_submission(guc);
1858 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1859 }
1860 
1861 static void destroyed_worker_func(struct work_struct *w);
1862 static void reset_fail_worker_func(struct work_struct *w);
1863 
1864 /*
1865  * Set up the memory resources to be shared with the GuC (via the GGTT)
1866  * at firmware loading time.
1867  */
1868 int intel_guc_submission_init(struct intel_guc *guc)
1869 {
1870 	struct intel_gt *gt = guc_to_gt(guc);
1871 
1872 	if (guc->submission_initialized)
1873 		return 0;
1874 
1875 	guc->submission_state.guc_ids_bitmap =
1876 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1877 	if (!guc->submission_state.guc_ids_bitmap)
1878 		return -ENOMEM;
1879 
1880 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1881 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1882 	guc->submission_initialized = true;
1883 
1884 	return 0;
1885 }
1886 
1887 void intel_guc_submission_fini(struct intel_guc *guc)
1888 {
1889 	if (!guc->submission_initialized)
1890 		return;
1891 
1892 	guc_flush_destroyed_contexts(guc);
1893 	i915_sched_engine_put(guc->sched_engine);
1894 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1895 	guc->submission_initialized = false;
1896 }
1897 
1898 static inline void queue_request(struct i915_sched_engine *sched_engine,
1899 				 struct i915_request *rq,
1900 				 int prio)
1901 {
1902 	GEM_BUG_ON(!list_empty(&rq->sched.link));
1903 	list_add_tail(&rq->sched.link,
1904 		      i915_sched_lookup_priolist(sched_engine, prio));
1905 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1906 	tasklet_hi_schedule(&sched_engine->tasklet);
1907 }
1908 
1909 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1910 				     struct i915_request *rq)
1911 {
1912 	int ret = 0;
1913 
1914 	__i915_request_submit(rq);
1915 
1916 	trace_i915_request_in(rq, 0);
1917 
1918 	if (is_multi_lrc_rq(rq)) {
1919 		if (multi_lrc_submit(rq)) {
1920 			ret = guc_wq_item_append(guc, rq);
1921 			if (!ret)
1922 				ret = guc_add_request(guc, rq);
1923 		}
1924 	} else {
1925 		guc_set_lrc_tail(rq);
1926 		ret = guc_add_request(guc, rq);
1927 	}
1928 
1929 	if (unlikely(ret == -EPIPE))
1930 		disable_submission(guc);
1931 
1932 	return ret;
1933 }
1934 
1935 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
1936 {
1937 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1938 	struct intel_context *ce = request_to_scheduling_context(rq);
1939 
1940 	return submission_disabled(guc) || guc->stalled_request ||
1941 		!i915_sched_engine_is_empty(sched_engine) ||
1942 		!ctx_id_mapped(guc, ce->guc_id.id);
1943 }
1944 
1945 static void guc_submit_request(struct i915_request *rq)
1946 {
1947 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1948 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
1949 	unsigned long flags;
1950 
1951 	/* Will be called from irq-context when using foreign fences. */
1952 	spin_lock_irqsave(&sched_engine->lock, flags);
1953 
1954 	if (need_tasklet(guc, rq))
1955 		queue_request(sched_engine, rq, rq_prio(rq));
1956 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
1957 		tasklet_hi_schedule(&sched_engine->tasklet);
1958 
1959 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1960 }
1961 
1962 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1963 {
1964 	int ret;
1965 
1966 	GEM_BUG_ON(intel_context_is_child(ce));
1967 
1968 	if (intel_context_is_parent(ce))
1969 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1970 					      NUMBER_MULTI_LRC_GUC_ID(guc),
1971 					      order_base_2(ce->parallel.number_children
1972 							   + 1));
1973 	else
1974 		ret = ida_simple_get(&guc->submission_state.guc_ids,
1975 				     NUMBER_MULTI_LRC_GUC_ID(guc),
1976 				     guc->submission_state.num_guc_ids,
1977 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
1978 				     __GFP_NOWARN);
1979 	if (unlikely(ret < 0))
1980 		return ret;
1981 
1982 	ce->guc_id.id = ret;
1983 	return 0;
1984 }
1985 
1986 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
1987 {
1988 	GEM_BUG_ON(intel_context_is_child(ce));
1989 
1990 	if (!context_guc_id_invalid(ce)) {
1991 		if (intel_context_is_parent(ce))
1992 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
1993 					      ce->guc_id.id,
1994 					      order_base_2(ce->parallel.number_children
1995 							   + 1));
1996 		else
1997 			ida_simple_remove(&guc->submission_state.guc_ids,
1998 					  ce->guc_id.id);
1999 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2000 		set_context_guc_id_invalid(ce);
2001 	}
2002 	if (!list_empty(&ce->guc_id.link))
2003 		list_del_init(&ce->guc_id.link);
2004 }
2005 
2006 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2007 {
2008 	unsigned long flags;
2009 
2010 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2011 	__release_guc_id(guc, ce);
2012 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2013 }
2014 
2015 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2016 {
2017 	struct intel_context *cn;
2018 
2019 	lockdep_assert_held(&guc->submission_state.lock);
2020 	GEM_BUG_ON(intel_context_is_child(ce));
2021 	GEM_BUG_ON(intel_context_is_parent(ce));
2022 
2023 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2024 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2025 				      struct intel_context,
2026 				      guc_id.link);
2027 
2028 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2029 		GEM_BUG_ON(context_guc_id_invalid(cn));
2030 		GEM_BUG_ON(intel_context_is_child(cn));
2031 		GEM_BUG_ON(intel_context_is_parent(cn));
2032 
2033 		list_del_init(&cn->guc_id.link);
2034 		ce->guc_id.id = cn->guc_id.id;
2035 
2036 		spin_lock(&cn->guc_state.lock);
2037 		clr_context_registered(cn);
2038 		spin_unlock(&cn->guc_state.lock);
2039 
2040 		set_context_guc_id_invalid(cn);
2041 
2042 #ifdef CONFIG_DRM_I915_SELFTEST
2043 		guc->number_guc_id_stolen++;
2044 #endif
2045 
2046 		return 0;
2047 	} else {
2048 		return -EAGAIN;
2049 	}
2050 }
2051 
2052 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2053 {
2054 	int ret;
2055 
2056 	lockdep_assert_held(&guc->submission_state.lock);
2057 	GEM_BUG_ON(intel_context_is_child(ce));
2058 
2059 	ret = new_guc_id(guc, ce);
2060 	if (unlikely(ret < 0)) {
2061 		if (intel_context_is_parent(ce))
2062 			return -ENOSPC;
2063 
2064 		ret = steal_guc_id(guc, ce);
2065 		if (ret < 0)
2066 			return ret;
2067 	}
2068 
2069 	if (intel_context_is_parent(ce)) {
2070 		struct intel_context *child;
2071 		int i = 1;
2072 
2073 		for_each_child(ce, child)
2074 			child->guc_id.id = ce->guc_id.id + i++;
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 #define PIN_GUC_ID_TRIES	4
2081 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2082 {
2083 	int ret = 0;
2084 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2085 
2086 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2087 
2088 try_again:
2089 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2090 
2091 	might_lock(&ce->guc_state.lock);
2092 
2093 	if (context_guc_id_invalid(ce)) {
2094 		ret = assign_guc_id(guc, ce);
2095 		if (ret)
2096 			goto out_unlock;
2097 		ret = 1;	/* Indidcates newly assigned guc_id */
2098 	}
2099 	if (!list_empty(&ce->guc_id.link))
2100 		list_del_init(&ce->guc_id.link);
2101 	atomic_inc(&ce->guc_id.ref);
2102 
2103 out_unlock:
2104 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2105 
2106 	/*
2107 	 * -EAGAIN indicates no guc_id are available, let's retire any
2108 	 * outstanding requests to see if that frees up a guc_id. If the first
2109 	 * retire didn't help, insert a sleep with the timeslice duration before
2110 	 * attempting to retire more requests. Double the sleep period each
2111 	 * subsequent pass before finally giving up. The sleep period has max of
2112 	 * 100ms and minimum of 1ms.
2113 	 */
2114 	if (ret == -EAGAIN && --tries) {
2115 		if (PIN_GUC_ID_TRIES - tries > 1) {
2116 			unsigned int timeslice_shifted =
2117 				ce->engine->props.timeslice_duration_ms <<
2118 				(PIN_GUC_ID_TRIES - tries - 2);
2119 			unsigned int max = min_t(unsigned int, 100,
2120 						 timeslice_shifted);
2121 
2122 			msleep(max_t(unsigned int, max, 1));
2123 		}
2124 		intel_gt_retire_requests(guc_to_gt(guc));
2125 		goto try_again;
2126 	}
2127 
2128 	return ret;
2129 }
2130 
2131 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2132 {
2133 	unsigned long flags;
2134 
2135 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2136 	GEM_BUG_ON(intel_context_is_child(ce));
2137 
2138 	if (unlikely(context_guc_id_invalid(ce) ||
2139 		     intel_context_is_parent(ce)))
2140 		return;
2141 
2142 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2143 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2144 	    !atomic_read(&ce->guc_id.ref))
2145 		list_add_tail(&ce->guc_id.link,
2146 			      &guc->submission_state.guc_id_list);
2147 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2148 }
2149 
2150 static int __guc_action_register_multi_lrc(struct intel_guc *guc,
2151 					   struct intel_context *ce,
2152 					   struct guc_ctxt_registration_info *info,
2153 					   bool loop)
2154 {
2155 	struct intel_context *child;
2156 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2157 	int len = 0;
2158 	u32 next_id;
2159 
2160 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2161 
2162 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2163 	action[len++] = info->flags;
2164 	action[len++] = info->context_idx;
2165 	action[len++] = info->engine_class;
2166 	action[len++] = info->engine_submit_mask;
2167 	action[len++] = info->wq_desc_lo;
2168 	action[len++] = info->wq_desc_hi;
2169 	action[len++] = info->wq_base_lo;
2170 	action[len++] = info->wq_base_hi;
2171 	action[len++] = info->wq_size;
2172 	action[len++] = ce->parallel.number_children + 1;
2173 	action[len++] = info->hwlrca_lo;
2174 	action[len++] = info->hwlrca_hi;
2175 
2176 	next_id = info->context_idx + 1;
2177 	for_each_child(ce, child) {
2178 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2179 
2180 		/*
2181 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2182 		 * only supports 32 bit currently.
2183 		 */
2184 		action[len++] = lower_32_bits(child->lrc.lrca);
2185 		action[len++] = upper_32_bits(child->lrc.lrca);
2186 	}
2187 
2188 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2189 
2190 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2191 }
2192 
2193 static int __guc_action_register_context(struct intel_guc *guc,
2194 					 struct guc_ctxt_registration_info *info,
2195 					 bool loop)
2196 {
2197 	u32 action[] = {
2198 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2199 		info->flags,
2200 		info->context_idx,
2201 		info->engine_class,
2202 		info->engine_submit_mask,
2203 		info->wq_desc_lo,
2204 		info->wq_desc_hi,
2205 		info->wq_base_lo,
2206 		info->wq_base_hi,
2207 		info->wq_size,
2208 		info->hwlrca_lo,
2209 		info->hwlrca_hi,
2210 	};
2211 
2212 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2213 					     0, loop);
2214 }
2215 
2216 static void prepare_context_registration_info(struct intel_context *ce,
2217 					      struct guc_ctxt_registration_info *info);
2218 
2219 static int register_context(struct intel_context *ce, bool loop)
2220 {
2221 	struct guc_ctxt_registration_info info;
2222 	struct intel_guc *guc = ce_to_guc(ce);
2223 	int ret;
2224 
2225 	GEM_BUG_ON(intel_context_is_child(ce));
2226 	trace_intel_context_register(ce);
2227 
2228 	prepare_context_registration_info(ce, &info);
2229 
2230 	if (intel_context_is_parent(ce))
2231 		ret = __guc_action_register_multi_lrc(guc, ce, &info, loop);
2232 	else
2233 		ret = __guc_action_register_context(guc, &info, loop);
2234 	if (likely(!ret)) {
2235 		unsigned long flags;
2236 
2237 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2238 		set_context_registered(ce);
2239 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2240 
2241 		guc_context_policy_init(ce, loop);
2242 	}
2243 
2244 	return ret;
2245 }
2246 
2247 static int __guc_action_deregister_context(struct intel_guc *guc,
2248 					   u32 guc_id)
2249 {
2250 	u32 action[] = {
2251 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2252 		guc_id,
2253 	};
2254 
2255 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2256 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2257 					     true);
2258 }
2259 
2260 static int deregister_context(struct intel_context *ce, u32 guc_id)
2261 {
2262 	struct intel_guc *guc = ce_to_guc(ce);
2263 
2264 	GEM_BUG_ON(intel_context_is_child(ce));
2265 	trace_intel_context_deregister(ce);
2266 
2267 	return __guc_action_deregister_context(guc, guc_id);
2268 }
2269 
2270 static inline void clear_children_join_go_memory(struct intel_context *ce)
2271 {
2272 	struct parent_scratch *ps = __get_parent_scratch(ce);
2273 	int i;
2274 
2275 	ps->go.semaphore = 0;
2276 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2277 		ps->join[i].semaphore = 0;
2278 }
2279 
2280 static inline u32 get_children_go_value(struct intel_context *ce)
2281 {
2282 	return __get_parent_scratch(ce)->go.semaphore;
2283 }
2284 
2285 static inline u32 get_children_join_value(struct intel_context *ce,
2286 					  u8 child_index)
2287 {
2288 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2289 }
2290 
2291 struct context_policy {
2292 	u32 count;
2293 	struct guc_update_context_policy h2g;
2294 };
2295 
2296 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2297 {
2298 	size_t bytes = sizeof(policy->h2g.header) +
2299 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2300 
2301 	return bytes / sizeof(u32);
2302 }
2303 
2304 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2305 {
2306 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2307 	policy->h2g.header.ctx_id = guc_id;
2308 	policy->count = 0;
2309 }
2310 
2311 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2312 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2313 { \
2314 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2315 	policy->h2g.klv[policy->count].kl = \
2316 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2317 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2318 	policy->h2g.klv[policy->count].value = data; \
2319 	policy->count++; \
2320 }
2321 
2322 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2323 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2324 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2325 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2326 
2327 #undef MAKE_CONTEXT_POLICY_ADD
2328 
2329 static int __guc_context_set_context_policies(struct intel_guc *guc,
2330 					      struct context_policy *policy,
2331 					      bool loop)
2332 {
2333 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2334 					__guc_context_policy_action_size(policy),
2335 					0, loop);
2336 }
2337 
2338 static int guc_context_policy_init(struct intel_context *ce, bool loop)
2339 {
2340 	struct intel_engine_cs *engine = ce->engine;
2341 	struct intel_guc *guc = &engine->gt->uc.guc;
2342 	struct context_policy policy;
2343 	u32 execution_quantum;
2344 	u32 preemption_timeout;
2345 	bool missing = false;
2346 	unsigned long flags;
2347 	int ret;
2348 
2349 	/* NB: For both of these, zero means disabled. */
2350 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2351 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2352 
2353 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2354 
2355 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2356 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2357 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2358 
2359 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2360 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2361 
2362 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2363 	missing = ret != 0;
2364 
2365 	if (!missing && intel_context_is_parent(ce)) {
2366 		struct intel_context *child;
2367 
2368 		for_each_child(ce, child) {
2369 			__guc_context_policy_start_klv(&policy, child->guc_id.id);
2370 
2371 			if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2372 				__guc_context_policy_add_preempt_to_idle(&policy, 1);
2373 
2374 			child->guc_state.prio = ce->guc_state.prio;
2375 			__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2376 			__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2377 			__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2378 
2379 			ret = __guc_context_set_context_policies(guc, &policy, loop);
2380 			if (ret) {
2381 				missing = true;
2382 				break;
2383 			}
2384 		}
2385 	}
2386 
2387 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2388 	if (missing)
2389 		set_context_policy_required(ce);
2390 	else
2391 		clr_context_policy_required(ce);
2392 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2393 
2394 	return ret;
2395 }
2396 
2397 static void prepare_context_registration_info(struct intel_context *ce,
2398 					      struct guc_ctxt_registration_info *info)
2399 {
2400 	struct intel_engine_cs *engine = ce->engine;
2401 	struct intel_guc *guc = &engine->gt->uc.guc;
2402 	u32 ctx_id = ce->guc_id.id;
2403 
2404 	GEM_BUG_ON(!engine->mask);
2405 
2406 	/*
2407 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2408 	 * based on CT vma region.
2409 	 */
2410 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2411 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2412 
2413 	memset(info, 0, sizeof(*info));
2414 	info->context_idx = ctx_id;
2415 	info->engine_class = engine_class_to_guc_class(engine->class);
2416 	info->engine_submit_mask = engine->logical_mask;
2417 	/*
2418 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2419 	 * only supports 32 bit currently.
2420 	 */
2421 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2422 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2423 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2424 
2425 	/*
2426 	 * If context is a parent, we need to register a process descriptor
2427 	 * describing a work queue and register all child contexts.
2428 	 */
2429 	if (intel_context_is_parent(ce)) {
2430 		struct guc_sched_wq_desc *wq_desc;
2431 		u64 wq_desc_offset, wq_base_offset;
2432 
2433 		ce->parallel.guc.wqi_tail = 0;
2434 		ce->parallel.guc.wqi_head = 0;
2435 
2436 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2437 				 __get_parent_scratch_offset(ce);
2438 		wq_base_offset = i915_ggtt_offset(ce->state) +
2439 				 __get_wq_offset(ce);
2440 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2441 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2442 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2443 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2444 		info->wq_size = WQ_SIZE;
2445 
2446 		wq_desc = __get_wq_desc(ce);
2447 		memset(wq_desc, 0, sizeof(*wq_desc));
2448 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2449 
2450 		clear_children_join_go_memory(ce);
2451 	}
2452 }
2453 
2454 static int try_context_registration(struct intel_context *ce, bool loop)
2455 {
2456 	struct intel_engine_cs *engine = ce->engine;
2457 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2458 	struct intel_guc *guc = &engine->gt->uc.guc;
2459 	intel_wakeref_t wakeref;
2460 	u32 ctx_id = ce->guc_id.id;
2461 	bool context_registered;
2462 	int ret = 0;
2463 
2464 	GEM_BUG_ON(!sched_state_is_init(ce));
2465 
2466 	context_registered = ctx_id_mapped(guc, ctx_id);
2467 
2468 	clr_ctx_id_mapping(guc, ctx_id);
2469 	set_ctx_id_mapping(guc, ctx_id, ce);
2470 
2471 	/*
2472 	 * The context_lookup xarray is used to determine if the hardware
2473 	 * context is currently registered. There are two cases in which it
2474 	 * could be registered either the guc_id has been stolen from another
2475 	 * context or the lrc descriptor address of this context has changed. In
2476 	 * either case the context needs to be deregistered with the GuC before
2477 	 * registering this context.
2478 	 */
2479 	if (context_registered) {
2480 		bool disabled;
2481 		unsigned long flags;
2482 
2483 		trace_intel_context_steal_guc_id(ce);
2484 		GEM_BUG_ON(!loop);
2485 
2486 		/* Seal race with Reset */
2487 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2488 		disabled = submission_disabled(guc);
2489 		if (likely(!disabled)) {
2490 			set_context_wait_for_deregister_to_register(ce);
2491 			intel_context_get(ce);
2492 		}
2493 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2494 		if (unlikely(disabled)) {
2495 			clr_ctx_id_mapping(guc, ctx_id);
2496 			return 0;	/* Will get registered later */
2497 		}
2498 
2499 		/*
2500 		 * If stealing the guc_id, this ce has the same guc_id as the
2501 		 * context whose guc_id was stolen.
2502 		 */
2503 		with_intel_runtime_pm(runtime_pm, wakeref)
2504 			ret = deregister_context(ce, ce->guc_id.id);
2505 		if (unlikely(ret == -ENODEV))
2506 			ret = 0;	/* Will get registered later */
2507 	} else {
2508 		with_intel_runtime_pm(runtime_pm, wakeref)
2509 			ret = register_context(ce, loop);
2510 		if (unlikely(ret == -EBUSY)) {
2511 			clr_ctx_id_mapping(guc, ctx_id);
2512 		} else if (unlikely(ret == -ENODEV)) {
2513 			clr_ctx_id_mapping(guc, ctx_id);
2514 			ret = 0;	/* Will get registered later */
2515 		}
2516 	}
2517 
2518 	return ret;
2519 }
2520 
2521 static int __guc_context_pre_pin(struct intel_context *ce,
2522 				 struct intel_engine_cs *engine,
2523 				 struct i915_gem_ww_ctx *ww,
2524 				 void **vaddr)
2525 {
2526 	return lrc_pre_pin(ce, engine, ww, vaddr);
2527 }
2528 
2529 static int __guc_context_pin(struct intel_context *ce,
2530 			     struct intel_engine_cs *engine,
2531 			     void *vaddr)
2532 {
2533 	if (i915_ggtt_offset(ce->state) !=
2534 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2535 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2536 
2537 	/*
2538 	 * GuC context gets pinned in guc_request_alloc. See that function for
2539 	 * explaination of why.
2540 	 */
2541 
2542 	return lrc_pin(ce, engine, vaddr);
2543 }
2544 
2545 static int guc_context_pre_pin(struct intel_context *ce,
2546 			       struct i915_gem_ww_ctx *ww,
2547 			       void **vaddr)
2548 {
2549 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2550 }
2551 
2552 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2553 {
2554 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2555 
2556 	if (likely(!ret && !intel_context_is_barrier(ce)))
2557 		intel_engine_pm_get(ce->engine);
2558 
2559 	return ret;
2560 }
2561 
2562 static void guc_context_unpin(struct intel_context *ce)
2563 {
2564 	struct intel_guc *guc = ce_to_guc(ce);
2565 
2566 	unpin_guc_id(guc, ce);
2567 	lrc_unpin(ce);
2568 
2569 	if (likely(!intel_context_is_barrier(ce)))
2570 		intel_engine_pm_put_async(ce->engine);
2571 }
2572 
2573 static void guc_context_post_unpin(struct intel_context *ce)
2574 {
2575 	lrc_post_unpin(ce);
2576 }
2577 
2578 static void __guc_context_sched_enable(struct intel_guc *guc,
2579 				       struct intel_context *ce)
2580 {
2581 	u32 action[] = {
2582 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2583 		ce->guc_id.id,
2584 		GUC_CONTEXT_ENABLE
2585 	};
2586 
2587 	trace_intel_context_sched_enable(ce);
2588 
2589 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2590 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2591 }
2592 
2593 static void __guc_context_sched_disable(struct intel_guc *guc,
2594 					struct intel_context *ce,
2595 					u16 guc_id)
2596 {
2597 	u32 action[] = {
2598 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2599 		guc_id,	/* ce->guc_id.id not stable */
2600 		GUC_CONTEXT_DISABLE
2601 	};
2602 
2603 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2604 
2605 	GEM_BUG_ON(intel_context_is_child(ce));
2606 	trace_intel_context_sched_disable(ce);
2607 
2608 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2609 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2610 }
2611 
2612 static void guc_blocked_fence_complete(struct intel_context *ce)
2613 {
2614 	lockdep_assert_held(&ce->guc_state.lock);
2615 
2616 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2617 		i915_sw_fence_complete(&ce->guc_state.blocked);
2618 }
2619 
2620 static void guc_blocked_fence_reinit(struct intel_context *ce)
2621 {
2622 	lockdep_assert_held(&ce->guc_state.lock);
2623 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2624 
2625 	/*
2626 	 * This fence is always complete unless a pending schedule disable is
2627 	 * outstanding. We arm the fence here and complete it when we receive
2628 	 * the pending schedule disable complete message.
2629 	 */
2630 	i915_sw_fence_fini(&ce->guc_state.blocked);
2631 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2632 	i915_sw_fence_await(&ce->guc_state.blocked);
2633 	i915_sw_fence_commit(&ce->guc_state.blocked);
2634 }
2635 
2636 static u16 prep_context_pending_disable(struct intel_context *ce)
2637 {
2638 	lockdep_assert_held(&ce->guc_state.lock);
2639 
2640 	set_context_pending_disable(ce);
2641 	clr_context_enabled(ce);
2642 	guc_blocked_fence_reinit(ce);
2643 	intel_context_get(ce);
2644 
2645 	return ce->guc_id.id;
2646 }
2647 
2648 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2649 {
2650 	struct intel_guc *guc = ce_to_guc(ce);
2651 	unsigned long flags;
2652 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2653 	intel_wakeref_t wakeref;
2654 	u16 guc_id;
2655 	bool enabled;
2656 
2657 	GEM_BUG_ON(intel_context_is_child(ce));
2658 
2659 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2660 
2661 	incr_context_blocked(ce);
2662 
2663 	enabled = context_enabled(ce);
2664 	if (unlikely(!enabled || submission_disabled(guc))) {
2665 		if (enabled)
2666 			clr_context_enabled(ce);
2667 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2668 		return &ce->guc_state.blocked;
2669 	}
2670 
2671 	/*
2672 	 * We add +2 here as the schedule disable complete CTB handler calls
2673 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2674 	 */
2675 	atomic_add(2, &ce->pin_count);
2676 
2677 	guc_id = prep_context_pending_disable(ce);
2678 
2679 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2680 
2681 	with_intel_runtime_pm(runtime_pm, wakeref)
2682 		__guc_context_sched_disable(guc, ce, guc_id);
2683 
2684 	return &ce->guc_state.blocked;
2685 }
2686 
2687 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2688 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2689 #define SCHED_STATE_NO_UNBLOCK \
2690 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2691 	 SCHED_STATE_PENDING_DISABLE | \
2692 	 SCHED_STATE_BANNED)
2693 
2694 static bool context_cant_unblock(struct intel_context *ce)
2695 {
2696 	lockdep_assert_held(&ce->guc_state.lock);
2697 
2698 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2699 		context_guc_id_invalid(ce) ||
2700 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2701 		!intel_context_is_pinned(ce);
2702 }
2703 
2704 static void guc_context_unblock(struct intel_context *ce)
2705 {
2706 	struct intel_guc *guc = ce_to_guc(ce);
2707 	unsigned long flags;
2708 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2709 	intel_wakeref_t wakeref;
2710 	bool enable;
2711 
2712 	GEM_BUG_ON(context_enabled(ce));
2713 	GEM_BUG_ON(intel_context_is_child(ce));
2714 
2715 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2716 
2717 	if (unlikely(submission_disabled(guc) ||
2718 		     context_cant_unblock(ce))) {
2719 		enable = false;
2720 	} else {
2721 		enable = true;
2722 		set_context_pending_enable(ce);
2723 		set_context_enabled(ce);
2724 		intel_context_get(ce);
2725 	}
2726 
2727 	decr_context_blocked(ce);
2728 
2729 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2730 
2731 	if (enable) {
2732 		with_intel_runtime_pm(runtime_pm, wakeref)
2733 			__guc_context_sched_enable(guc, ce);
2734 	}
2735 }
2736 
2737 static void guc_context_cancel_request(struct intel_context *ce,
2738 				       struct i915_request *rq)
2739 {
2740 	struct intel_context *block_context =
2741 		request_to_scheduling_context(rq);
2742 
2743 	if (i915_sw_fence_signaled(&rq->submit)) {
2744 		struct i915_sw_fence *fence;
2745 
2746 		intel_context_get(ce);
2747 		fence = guc_context_block(block_context);
2748 		i915_sw_fence_wait(fence);
2749 		if (!i915_request_completed(rq)) {
2750 			__i915_request_skip(rq);
2751 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2752 					true);
2753 		}
2754 
2755 		guc_context_unblock(block_context);
2756 		intel_context_put(ce);
2757 	}
2758 }
2759 
2760 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
2761 						 u16 guc_id,
2762 						 u32 preemption_timeout)
2763 {
2764 	struct context_policy policy;
2765 
2766 	__guc_context_policy_start_klv(&policy, guc_id);
2767 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2768 	__guc_context_set_context_policies(guc, &policy, true);
2769 }
2770 
2771 static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
2772 {
2773 	struct intel_guc *guc = ce_to_guc(ce);
2774 	struct intel_runtime_pm *runtime_pm =
2775 		&ce->engine->gt->i915->runtime_pm;
2776 	intel_wakeref_t wakeref;
2777 	unsigned long flags;
2778 
2779 	GEM_BUG_ON(intel_context_is_child(ce));
2780 
2781 	guc_flush_submissions(guc);
2782 
2783 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2784 	set_context_banned(ce);
2785 
2786 	if (submission_disabled(guc) ||
2787 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
2788 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2789 
2790 		guc_cancel_context_requests(ce);
2791 		intel_engine_signal_breadcrumbs(ce->engine);
2792 	} else if (!context_pending_disable(ce)) {
2793 		u16 guc_id;
2794 
2795 		/*
2796 		 * We add +2 here as the schedule disable complete CTB handler
2797 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
2798 		 */
2799 		atomic_add(2, &ce->pin_count);
2800 
2801 		guc_id = prep_context_pending_disable(ce);
2802 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2803 
2804 		/*
2805 		 * In addition to disabling scheduling, set the preemption
2806 		 * timeout to the minimum value (1 us) so the banned context
2807 		 * gets kicked off the HW ASAP.
2808 		 */
2809 		with_intel_runtime_pm(runtime_pm, wakeref) {
2810 			__guc_context_set_preemption_timeout(guc, guc_id, 1);
2811 			__guc_context_sched_disable(guc, ce, guc_id);
2812 		}
2813 	} else {
2814 		if (!context_guc_id_invalid(ce))
2815 			with_intel_runtime_pm(runtime_pm, wakeref)
2816 				__guc_context_set_preemption_timeout(guc,
2817 								     ce->guc_id.id,
2818 								     1);
2819 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2820 	}
2821 }
2822 
2823 static void guc_context_sched_disable(struct intel_context *ce)
2824 {
2825 	struct intel_guc *guc = ce_to_guc(ce);
2826 	unsigned long flags;
2827 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
2828 	intel_wakeref_t wakeref;
2829 	u16 guc_id;
2830 
2831 	GEM_BUG_ON(intel_context_is_child(ce));
2832 
2833 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2834 
2835 	/*
2836 	 * We have to check if the context has been disabled by another thread,
2837 	 * check if submssion has been disabled to seal a race with reset and
2838 	 * finally check if any more requests have been committed to the
2839 	 * context ensursing that a request doesn't slip through the
2840 	 * 'context_pending_disable' fence.
2841 	 */
2842 	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
2843 		     context_has_committed_requests(ce))) {
2844 		clr_context_enabled(ce);
2845 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2846 		goto unpin;
2847 	}
2848 	guc_id = prep_context_pending_disable(ce);
2849 
2850 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2851 
2852 	with_intel_runtime_pm(runtime_pm, wakeref)
2853 		__guc_context_sched_disable(guc, ce, guc_id);
2854 
2855 	return;
2856 unpin:
2857 	intel_context_sched_disable_unpin(ce);
2858 }
2859 
2860 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
2861 {
2862 	struct intel_guc *guc = ce_to_guc(ce);
2863 	struct intel_gt *gt = guc_to_gt(guc);
2864 	unsigned long flags;
2865 	bool disabled;
2866 
2867 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
2868 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
2869 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
2870 	GEM_BUG_ON(context_enabled(ce));
2871 
2872 	/* Seal race with Reset */
2873 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2874 	disabled = submission_disabled(guc);
2875 	if (likely(!disabled)) {
2876 		__intel_gt_pm_get(gt);
2877 		set_context_destroyed(ce);
2878 		clr_context_registered(ce);
2879 	}
2880 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2881 	if (unlikely(disabled)) {
2882 		release_guc_id(guc, ce);
2883 		__guc_context_destroy(ce);
2884 		return;
2885 	}
2886 
2887 	deregister_context(ce, ce->guc_id.id);
2888 }
2889 
2890 static void __guc_context_destroy(struct intel_context *ce)
2891 {
2892 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
2893 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
2894 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
2895 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
2896 	GEM_BUG_ON(ce->guc_state.number_committed_requests);
2897 
2898 	lrc_fini(ce);
2899 	intel_context_fini(ce);
2900 
2901 	if (intel_engine_is_virtual(ce->engine)) {
2902 		struct guc_virtual_engine *ve =
2903 			container_of(ce, typeof(*ve), context);
2904 
2905 		if (ve->base.breadcrumbs)
2906 			intel_breadcrumbs_put(ve->base.breadcrumbs);
2907 
2908 		kfree(ve);
2909 	} else {
2910 		intel_context_free(ce);
2911 	}
2912 }
2913 
2914 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
2915 {
2916 	struct intel_context *ce;
2917 	unsigned long flags;
2918 
2919 	GEM_BUG_ON(!submission_disabled(guc) &&
2920 		   guc_submission_initialized(guc));
2921 
2922 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
2923 		spin_lock_irqsave(&guc->submission_state.lock, flags);
2924 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
2925 					      struct intel_context,
2926 					      destroyed_link);
2927 		if (ce)
2928 			list_del_init(&ce->destroyed_link);
2929 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2930 
2931 		if (!ce)
2932 			break;
2933 
2934 		release_guc_id(guc, ce);
2935 		__guc_context_destroy(ce);
2936 	}
2937 }
2938 
2939 static void deregister_destroyed_contexts(struct intel_guc *guc)
2940 {
2941 	struct intel_context *ce;
2942 	unsigned long flags;
2943 
2944 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
2945 		spin_lock_irqsave(&guc->submission_state.lock, flags);
2946 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
2947 					      struct intel_context,
2948 					      destroyed_link);
2949 		if (ce)
2950 			list_del_init(&ce->destroyed_link);
2951 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2952 
2953 		if (!ce)
2954 			break;
2955 
2956 		guc_lrc_desc_unpin(ce);
2957 	}
2958 }
2959 
2960 static void destroyed_worker_func(struct work_struct *w)
2961 {
2962 	struct intel_guc *guc = container_of(w, struct intel_guc,
2963 					     submission_state.destroyed_worker);
2964 	struct intel_gt *gt = guc_to_gt(guc);
2965 	int tmp;
2966 
2967 	with_intel_gt_pm(gt, tmp)
2968 		deregister_destroyed_contexts(guc);
2969 }
2970 
2971 static void guc_context_destroy(struct kref *kref)
2972 {
2973 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
2974 	struct intel_guc *guc = ce_to_guc(ce);
2975 	unsigned long flags;
2976 	bool destroy;
2977 
2978 	/*
2979 	 * If the guc_id is invalid this context has been stolen and we can free
2980 	 * it immediately. Also can be freed immediately if the context is not
2981 	 * registered with the GuC or the GuC is in the middle of a reset.
2982 	 */
2983 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2984 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
2985 		!ctx_id_mapped(guc, ce->guc_id.id);
2986 	if (likely(!destroy)) {
2987 		if (!list_empty(&ce->guc_id.link))
2988 			list_del_init(&ce->guc_id.link);
2989 		list_add_tail(&ce->destroyed_link,
2990 			      &guc->submission_state.destroyed_contexts);
2991 	} else {
2992 		__release_guc_id(guc, ce);
2993 	}
2994 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2995 	if (unlikely(destroy)) {
2996 		__guc_context_destroy(ce);
2997 		return;
2998 	}
2999 
3000 	/*
3001 	 * We use a worker to issue the H2G to deregister the context as we can
3002 	 * take the GT PM for the first time which isn't allowed from an atomic
3003 	 * context.
3004 	 */
3005 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3006 }
3007 
3008 static int guc_context_alloc(struct intel_context *ce)
3009 {
3010 	return lrc_alloc(ce, ce->engine);
3011 }
3012 
3013 static void __guc_context_set_prio(struct intel_guc *guc,
3014 				   struct intel_context *ce)
3015 {
3016 	struct context_policy policy;
3017 
3018 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3019 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3020 	__guc_context_set_context_policies(guc, &policy, true);
3021 }
3022 
3023 static void guc_context_set_prio(struct intel_guc *guc,
3024 				 struct intel_context *ce,
3025 				 u8 prio)
3026 {
3027 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3028 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3029 	lockdep_assert_held(&ce->guc_state.lock);
3030 
3031 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3032 	    !context_registered(ce)) {
3033 		ce->guc_state.prio = prio;
3034 		return;
3035 	}
3036 
3037 	ce->guc_state.prio = prio;
3038 	__guc_context_set_prio(guc, ce);
3039 
3040 	trace_intel_context_set_prio(ce);
3041 }
3042 
3043 static inline u8 map_i915_prio_to_guc_prio(int prio)
3044 {
3045 	if (prio == I915_PRIORITY_NORMAL)
3046 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3047 	else if (prio < I915_PRIORITY_NORMAL)
3048 		return GUC_CLIENT_PRIORITY_NORMAL;
3049 	else if (prio < I915_PRIORITY_DISPLAY)
3050 		return GUC_CLIENT_PRIORITY_HIGH;
3051 	else
3052 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3053 }
3054 
3055 static inline void add_context_inflight_prio(struct intel_context *ce,
3056 					     u8 guc_prio)
3057 {
3058 	lockdep_assert_held(&ce->guc_state.lock);
3059 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3060 
3061 	++ce->guc_state.prio_count[guc_prio];
3062 
3063 	/* Overflow protection */
3064 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3065 }
3066 
3067 static inline void sub_context_inflight_prio(struct intel_context *ce,
3068 					     u8 guc_prio)
3069 {
3070 	lockdep_assert_held(&ce->guc_state.lock);
3071 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3072 
3073 	/* Underflow protection */
3074 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3075 
3076 	--ce->guc_state.prio_count[guc_prio];
3077 }
3078 
3079 static inline void update_context_prio(struct intel_context *ce)
3080 {
3081 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3082 	int i;
3083 
3084 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3085 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3086 
3087 	lockdep_assert_held(&ce->guc_state.lock);
3088 
3089 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3090 		if (ce->guc_state.prio_count[i]) {
3091 			guc_context_set_prio(guc, ce, i);
3092 			break;
3093 		}
3094 	}
3095 }
3096 
3097 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3098 {
3099 	/* Lower value is higher priority */
3100 	return new_guc_prio < old_guc_prio;
3101 }
3102 
3103 static void add_to_context(struct i915_request *rq)
3104 {
3105 	struct intel_context *ce = request_to_scheduling_context(rq);
3106 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3107 
3108 	GEM_BUG_ON(intel_context_is_child(ce));
3109 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3110 
3111 	spin_lock(&ce->guc_state.lock);
3112 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3113 
3114 	if (rq->guc_prio == GUC_PRIO_INIT) {
3115 		rq->guc_prio = new_guc_prio;
3116 		add_context_inflight_prio(ce, rq->guc_prio);
3117 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3118 		sub_context_inflight_prio(ce, rq->guc_prio);
3119 		rq->guc_prio = new_guc_prio;
3120 		add_context_inflight_prio(ce, rq->guc_prio);
3121 	}
3122 	update_context_prio(ce);
3123 
3124 	spin_unlock(&ce->guc_state.lock);
3125 }
3126 
3127 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3128 {
3129 	lockdep_assert_held(&ce->guc_state.lock);
3130 
3131 	if (rq->guc_prio != GUC_PRIO_INIT &&
3132 	    rq->guc_prio != GUC_PRIO_FINI) {
3133 		sub_context_inflight_prio(ce, rq->guc_prio);
3134 		update_context_prio(ce);
3135 	}
3136 	rq->guc_prio = GUC_PRIO_FINI;
3137 }
3138 
3139 static void remove_from_context(struct i915_request *rq)
3140 {
3141 	struct intel_context *ce = request_to_scheduling_context(rq);
3142 
3143 	GEM_BUG_ON(intel_context_is_child(ce));
3144 
3145 	spin_lock_irq(&ce->guc_state.lock);
3146 
3147 	list_del_init(&rq->sched.link);
3148 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3149 
3150 	/* Prevent further __await_execution() registering a cb, then flush */
3151 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3152 
3153 	guc_prio_fini(rq, ce);
3154 
3155 	decr_context_committed_requests(ce);
3156 
3157 	spin_unlock_irq(&ce->guc_state.lock);
3158 
3159 	atomic_dec(&ce->guc_id.ref);
3160 	i915_request_notify_execute_cb_imm(rq);
3161 }
3162 
3163 static const struct intel_context_ops guc_context_ops = {
3164 	.alloc = guc_context_alloc,
3165 
3166 	.pre_pin = guc_context_pre_pin,
3167 	.pin = guc_context_pin,
3168 	.unpin = guc_context_unpin,
3169 	.post_unpin = guc_context_post_unpin,
3170 
3171 	.ban = guc_context_ban,
3172 
3173 	.cancel_request = guc_context_cancel_request,
3174 
3175 	.enter = intel_context_enter_engine,
3176 	.exit = intel_context_exit_engine,
3177 
3178 	.sched_disable = guc_context_sched_disable,
3179 
3180 	.reset = lrc_reset,
3181 	.destroy = guc_context_destroy,
3182 
3183 	.create_virtual = guc_create_virtual,
3184 	.create_parallel = guc_create_parallel,
3185 };
3186 
3187 static void submit_work_cb(struct irq_work *wrk)
3188 {
3189 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3190 
3191 	might_lock(&rq->engine->sched_engine->lock);
3192 	i915_sw_fence_complete(&rq->submit);
3193 }
3194 
3195 static void __guc_signal_context_fence(struct intel_context *ce)
3196 {
3197 	struct i915_request *rq, *rn;
3198 
3199 	lockdep_assert_held(&ce->guc_state.lock);
3200 
3201 	if (!list_empty(&ce->guc_state.fences))
3202 		trace_intel_context_fence_release(ce);
3203 
3204 	/*
3205 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3206 	 * ce->guc_state.lock is preserved.
3207 	 */
3208 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3209 				 guc_fence_link) {
3210 		list_del(&rq->guc_fence_link);
3211 		irq_work_queue(&rq->submit_work);
3212 	}
3213 
3214 	INIT_LIST_HEAD(&ce->guc_state.fences);
3215 }
3216 
3217 static void guc_signal_context_fence(struct intel_context *ce)
3218 {
3219 	unsigned long flags;
3220 
3221 	GEM_BUG_ON(intel_context_is_child(ce));
3222 
3223 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3224 	clr_context_wait_for_deregister_to_register(ce);
3225 	__guc_signal_context_fence(ce);
3226 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3227 }
3228 
3229 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3230 {
3231 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3232 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3233 		!submission_disabled(ce_to_guc(ce));
3234 }
3235 
3236 static void guc_context_init(struct intel_context *ce)
3237 {
3238 	const struct i915_gem_context *ctx;
3239 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3240 
3241 	rcu_read_lock();
3242 	ctx = rcu_dereference(ce->gem_context);
3243 	if (ctx)
3244 		prio = ctx->sched.priority;
3245 	rcu_read_unlock();
3246 
3247 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3248 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3249 }
3250 
3251 static int guc_request_alloc(struct i915_request *rq)
3252 {
3253 	struct intel_context *ce = request_to_scheduling_context(rq);
3254 	struct intel_guc *guc = ce_to_guc(ce);
3255 	unsigned long flags;
3256 	int ret;
3257 
3258 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3259 
3260 	/*
3261 	 * Flush enough space to reduce the likelihood of waiting after
3262 	 * we start building the request - in which case we will just
3263 	 * have to repeat work.
3264 	 */
3265 	rq->reserved_space += GUC_REQUEST_SIZE;
3266 
3267 	/*
3268 	 * Note that after this point, we have committed to using
3269 	 * this request as it is being used to both track the
3270 	 * state of engine initialisation and liveness of the
3271 	 * golden renderstate above. Think twice before you try
3272 	 * to cancel/unwind this request now.
3273 	 */
3274 
3275 	/* Unconditionally invalidate GPU caches and TLBs. */
3276 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3277 	if (ret)
3278 		return ret;
3279 
3280 	rq->reserved_space -= GUC_REQUEST_SIZE;
3281 
3282 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3283 		guc_context_init(ce);
3284 
3285 	/*
3286 	 * Call pin_guc_id here rather than in the pinning step as with
3287 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3288 	 * guc_id and creating horrible race conditions. This is especially bad
3289 	 * when guc_id are being stolen due to over subscription. By the time
3290 	 * this function is reached, it is guaranteed that the guc_id will be
3291 	 * persistent until the generated request is retired. Thus, sealing these
3292 	 * race conditions. It is still safe to fail here if guc_id are
3293 	 * exhausted and return -EAGAIN to the user indicating that they can try
3294 	 * again in the future.
3295 	 *
3296 	 * There is no need for a lock here as the timeline mutex ensures at
3297 	 * most one context can be executing this code path at once. The
3298 	 * guc_id_ref is incremented once for every request in flight and
3299 	 * decremented on each retire. When it is zero, a lock around the
3300 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3301 	 */
3302 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3303 		goto out;
3304 
3305 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3306 	if (unlikely(ret < 0))
3307 		return ret;
3308 	if (context_needs_register(ce, !!ret)) {
3309 		ret = try_context_registration(ce, true);
3310 		if (unlikely(ret)) {	/* unwind */
3311 			if (ret == -EPIPE) {
3312 				disable_submission(guc);
3313 				goto out;	/* GPU will be reset */
3314 			}
3315 			atomic_dec(&ce->guc_id.ref);
3316 			unpin_guc_id(guc, ce);
3317 			return ret;
3318 		}
3319 	}
3320 
3321 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3322 
3323 out:
3324 	/*
3325 	 * We block all requests on this context if a G2H is pending for a
3326 	 * schedule disable or context deregistration as the GuC will fail a
3327 	 * schedule enable or context registration if either G2H is pending
3328 	 * respectfully. Once a G2H returns, the fence is released that is
3329 	 * blocking these requests (see guc_signal_context_fence).
3330 	 */
3331 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3332 	if (context_wait_for_deregister_to_register(ce) ||
3333 	    context_pending_disable(ce)) {
3334 		init_irq_work(&rq->submit_work, submit_work_cb);
3335 		i915_sw_fence_await(&rq->submit);
3336 
3337 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3338 	}
3339 	incr_context_committed_requests(ce);
3340 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3341 
3342 	return 0;
3343 }
3344 
3345 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3346 				       struct i915_gem_ww_ctx *ww,
3347 				       void **vaddr)
3348 {
3349 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3350 
3351 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3352 }
3353 
3354 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3355 {
3356 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3357 	int ret = __guc_context_pin(ce, engine, vaddr);
3358 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3359 
3360 	if (likely(!ret))
3361 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3362 			intel_engine_pm_get(engine);
3363 
3364 	return ret;
3365 }
3366 
3367 static void guc_virtual_context_unpin(struct intel_context *ce)
3368 {
3369 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3370 	struct intel_engine_cs *engine;
3371 	struct intel_guc *guc = ce_to_guc(ce);
3372 
3373 	GEM_BUG_ON(context_enabled(ce));
3374 	GEM_BUG_ON(intel_context_is_barrier(ce));
3375 
3376 	unpin_guc_id(guc, ce);
3377 	lrc_unpin(ce);
3378 
3379 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3380 		intel_engine_pm_put_async(engine);
3381 }
3382 
3383 static void guc_virtual_context_enter(struct intel_context *ce)
3384 {
3385 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3386 	struct intel_engine_cs *engine;
3387 
3388 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3389 		intel_engine_pm_get(engine);
3390 
3391 	intel_timeline_enter(ce->timeline);
3392 }
3393 
3394 static void guc_virtual_context_exit(struct intel_context *ce)
3395 {
3396 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3397 	struct intel_engine_cs *engine;
3398 
3399 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3400 		intel_engine_pm_put(engine);
3401 
3402 	intel_timeline_exit(ce->timeline);
3403 }
3404 
3405 static int guc_virtual_context_alloc(struct intel_context *ce)
3406 {
3407 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3408 
3409 	return lrc_alloc(ce, engine);
3410 }
3411 
3412 static const struct intel_context_ops virtual_guc_context_ops = {
3413 	.alloc = guc_virtual_context_alloc,
3414 
3415 	.pre_pin = guc_virtual_context_pre_pin,
3416 	.pin = guc_virtual_context_pin,
3417 	.unpin = guc_virtual_context_unpin,
3418 	.post_unpin = guc_context_post_unpin,
3419 
3420 	.ban = guc_context_ban,
3421 
3422 	.cancel_request = guc_context_cancel_request,
3423 
3424 	.enter = guc_virtual_context_enter,
3425 	.exit = guc_virtual_context_exit,
3426 
3427 	.sched_disable = guc_context_sched_disable,
3428 
3429 	.destroy = guc_context_destroy,
3430 
3431 	.get_sibling = guc_virtual_get_sibling,
3432 };
3433 
3434 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3435 {
3436 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3437 	struct intel_guc *guc = ce_to_guc(ce);
3438 	int ret;
3439 
3440 	GEM_BUG_ON(!intel_context_is_parent(ce));
3441 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3442 
3443 	ret = pin_guc_id(guc, ce);
3444 	if (unlikely(ret < 0))
3445 		return ret;
3446 
3447 	return __guc_context_pin(ce, engine, vaddr);
3448 }
3449 
3450 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3451 {
3452 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3453 
3454 	GEM_BUG_ON(!intel_context_is_child(ce));
3455 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3456 
3457 	__intel_context_pin(ce->parallel.parent);
3458 	return __guc_context_pin(ce, engine, vaddr);
3459 }
3460 
3461 static void guc_parent_context_unpin(struct intel_context *ce)
3462 {
3463 	struct intel_guc *guc = ce_to_guc(ce);
3464 
3465 	GEM_BUG_ON(context_enabled(ce));
3466 	GEM_BUG_ON(intel_context_is_barrier(ce));
3467 	GEM_BUG_ON(!intel_context_is_parent(ce));
3468 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3469 
3470 	unpin_guc_id(guc, ce);
3471 	lrc_unpin(ce);
3472 }
3473 
3474 static void guc_child_context_unpin(struct intel_context *ce)
3475 {
3476 	GEM_BUG_ON(context_enabled(ce));
3477 	GEM_BUG_ON(intel_context_is_barrier(ce));
3478 	GEM_BUG_ON(!intel_context_is_child(ce));
3479 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3480 
3481 	lrc_unpin(ce);
3482 }
3483 
3484 static void guc_child_context_post_unpin(struct intel_context *ce)
3485 {
3486 	GEM_BUG_ON(!intel_context_is_child(ce));
3487 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3488 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3489 
3490 	lrc_post_unpin(ce);
3491 	intel_context_unpin(ce->parallel.parent);
3492 }
3493 
3494 static void guc_child_context_destroy(struct kref *kref)
3495 {
3496 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3497 
3498 	__guc_context_destroy(ce);
3499 }
3500 
3501 static const struct intel_context_ops virtual_parent_context_ops = {
3502 	.alloc = guc_virtual_context_alloc,
3503 
3504 	.pre_pin = guc_context_pre_pin,
3505 	.pin = guc_parent_context_pin,
3506 	.unpin = guc_parent_context_unpin,
3507 	.post_unpin = guc_context_post_unpin,
3508 
3509 	.ban = guc_context_ban,
3510 
3511 	.cancel_request = guc_context_cancel_request,
3512 
3513 	.enter = guc_virtual_context_enter,
3514 	.exit = guc_virtual_context_exit,
3515 
3516 	.sched_disable = guc_context_sched_disable,
3517 
3518 	.destroy = guc_context_destroy,
3519 
3520 	.get_sibling = guc_virtual_get_sibling,
3521 };
3522 
3523 static const struct intel_context_ops virtual_child_context_ops = {
3524 	.alloc = guc_virtual_context_alloc,
3525 
3526 	.pre_pin = guc_context_pre_pin,
3527 	.pin = guc_child_context_pin,
3528 	.unpin = guc_child_context_unpin,
3529 	.post_unpin = guc_child_context_post_unpin,
3530 
3531 	.cancel_request = guc_context_cancel_request,
3532 
3533 	.enter = guc_virtual_context_enter,
3534 	.exit = guc_virtual_context_exit,
3535 
3536 	.destroy = guc_child_context_destroy,
3537 
3538 	.get_sibling = guc_virtual_get_sibling,
3539 };
3540 
3541 /*
3542  * The below override of the breadcrumbs is enabled when the user configures a
3543  * context for parallel submission (multi-lrc, parent-child).
3544  *
3545  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3546  * safely preempt all the hw contexts configured for parallel submission
3547  * between each BB. The contract between the i915 and GuC is if the parent
3548  * context can be preempted, all the children can be preempted, and the GuC will
3549  * always try to preempt the parent before the children. A handshake between the
3550  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3551  * creating a window to preempt between each set of BBs.
3552  */
3553 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3554 						     u64 offset, u32 len,
3555 						     const unsigned int flags);
3556 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3557 						    u64 offset, u32 len,
3558 						    const unsigned int flags);
3559 static u32 *
3560 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3561 						 u32 *cs);
3562 static u32 *
3563 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3564 						u32 *cs);
3565 
3566 static struct intel_context *
3567 guc_create_parallel(struct intel_engine_cs **engines,
3568 		    unsigned int num_siblings,
3569 		    unsigned int width)
3570 {
3571 	struct intel_engine_cs **siblings = NULL;
3572 	struct intel_context *parent = NULL, *ce, *err;
3573 	int i, j;
3574 
3575 	siblings = kmalloc_array(num_siblings,
3576 				 sizeof(*siblings),
3577 				 GFP_KERNEL);
3578 	if (!siblings)
3579 		return ERR_PTR(-ENOMEM);
3580 
3581 	for (i = 0; i < width; ++i) {
3582 		for (j = 0; j < num_siblings; ++j)
3583 			siblings[j] = engines[i * num_siblings + j];
3584 
3585 		ce = intel_engine_create_virtual(siblings, num_siblings,
3586 						 FORCE_VIRTUAL);
3587 		if (IS_ERR(ce)) {
3588 			err = ERR_CAST(ce);
3589 			goto unwind;
3590 		}
3591 
3592 		if (i == 0) {
3593 			parent = ce;
3594 			parent->ops = &virtual_parent_context_ops;
3595 		} else {
3596 			ce->ops = &virtual_child_context_ops;
3597 			intel_context_bind_parent_child(parent, ce);
3598 		}
3599 	}
3600 
3601 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3602 
3603 	parent->engine->emit_bb_start =
3604 		emit_bb_start_parent_no_preempt_mid_batch;
3605 	parent->engine->emit_fini_breadcrumb =
3606 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3607 	parent->engine->emit_fini_breadcrumb_dw =
3608 		12 + 4 * parent->parallel.number_children;
3609 	for_each_child(parent, ce) {
3610 		ce->engine->emit_bb_start =
3611 			emit_bb_start_child_no_preempt_mid_batch;
3612 		ce->engine->emit_fini_breadcrumb =
3613 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3614 		ce->engine->emit_fini_breadcrumb_dw = 16;
3615 	}
3616 
3617 	kfree(siblings);
3618 	return parent;
3619 
3620 unwind:
3621 	if (parent)
3622 		intel_context_put(parent);
3623 	kfree(siblings);
3624 	return err;
3625 }
3626 
3627 static bool
3628 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3629 {
3630 	struct intel_engine_cs *sibling;
3631 	intel_engine_mask_t tmp, mask = b->engine_mask;
3632 	bool result = false;
3633 
3634 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3635 		result |= intel_engine_irq_enable(sibling);
3636 
3637 	return result;
3638 }
3639 
3640 static void
3641 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3642 {
3643 	struct intel_engine_cs *sibling;
3644 	intel_engine_mask_t tmp, mask = b->engine_mask;
3645 
3646 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3647 		intel_engine_irq_disable(sibling);
3648 }
3649 
3650 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3651 {
3652 	int i;
3653 
3654 	/*
3655 	 * In GuC submission mode we do not know which physical engine a request
3656 	 * will be scheduled on, this creates a problem because the breadcrumb
3657 	 * interrupt is per physical engine. To work around this we attach
3658 	 * requests and direct all breadcrumb interrupts to the first instance
3659 	 * of an engine per class. In addition all breadcrumb interrupts are
3660 	 * enabled / disabled across an engine class in unison.
3661 	 */
3662 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3663 		struct intel_engine_cs *sibling =
3664 			engine->gt->engine_class[engine->class][i];
3665 
3666 		if (sibling) {
3667 			if (engine->breadcrumbs != sibling->breadcrumbs) {
3668 				intel_breadcrumbs_put(engine->breadcrumbs);
3669 				engine->breadcrumbs =
3670 					intel_breadcrumbs_get(sibling->breadcrumbs);
3671 			}
3672 			break;
3673 		}
3674 	}
3675 
3676 	if (engine->breadcrumbs) {
3677 		engine->breadcrumbs->engine_mask |= engine->mask;
3678 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3679 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3680 	}
3681 }
3682 
3683 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3684 					   int prio)
3685 {
3686 	struct intel_context *ce = request_to_scheduling_context(rq);
3687 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3688 
3689 	/* Short circuit function */
3690 	if (prio < I915_PRIORITY_NORMAL ||
3691 	    rq->guc_prio == GUC_PRIO_FINI ||
3692 	    (rq->guc_prio != GUC_PRIO_INIT &&
3693 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
3694 		return;
3695 
3696 	spin_lock(&ce->guc_state.lock);
3697 	if (rq->guc_prio != GUC_PRIO_FINI) {
3698 		if (rq->guc_prio != GUC_PRIO_INIT)
3699 			sub_context_inflight_prio(ce, rq->guc_prio);
3700 		rq->guc_prio = new_guc_prio;
3701 		add_context_inflight_prio(ce, rq->guc_prio);
3702 		update_context_prio(ce);
3703 	}
3704 	spin_unlock(&ce->guc_state.lock);
3705 }
3706 
3707 static void guc_retire_inflight_request_prio(struct i915_request *rq)
3708 {
3709 	struct intel_context *ce = request_to_scheduling_context(rq);
3710 
3711 	spin_lock(&ce->guc_state.lock);
3712 	guc_prio_fini(rq, ce);
3713 	spin_unlock(&ce->guc_state.lock);
3714 }
3715 
3716 static void sanitize_hwsp(struct intel_engine_cs *engine)
3717 {
3718 	struct intel_timeline *tl;
3719 
3720 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
3721 		intel_timeline_reset_seqno(tl);
3722 }
3723 
3724 static void guc_sanitize(struct intel_engine_cs *engine)
3725 {
3726 	/*
3727 	 * Poison residual state on resume, in case the suspend didn't!
3728 	 *
3729 	 * We have to assume that across suspend/resume (or other loss
3730 	 * of control) that the contents of our pinned buffers has been
3731 	 * lost, replaced by garbage. Since this doesn't always happen,
3732 	 * let's poison such state so that we more quickly spot when
3733 	 * we falsely assume it has been preserved.
3734 	 */
3735 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3736 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
3737 
3738 	/*
3739 	 * The kernel_context HWSP is stored in the status_page. As above,
3740 	 * that may be lost on resume/initialisation, and so we need to
3741 	 * reset the value in the HWSP.
3742 	 */
3743 	sanitize_hwsp(engine);
3744 
3745 	/* And scrub the dirty cachelines for the HWSP */
3746 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
3747 
3748 	intel_engine_reset_pinned_contexts(engine);
3749 }
3750 
3751 static void setup_hwsp(struct intel_engine_cs *engine)
3752 {
3753 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3754 
3755 	ENGINE_WRITE_FW(engine,
3756 			RING_HWS_PGA,
3757 			i915_ggtt_offset(engine->status_page.vma));
3758 }
3759 
3760 static void start_engine(struct intel_engine_cs *engine)
3761 {
3762 	ENGINE_WRITE_FW(engine,
3763 			RING_MODE_GEN7,
3764 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
3765 
3766 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3767 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
3768 }
3769 
3770 static int guc_resume(struct intel_engine_cs *engine)
3771 {
3772 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
3773 
3774 	intel_mocs_init_engine(engine);
3775 
3776 	intel_breadcrumbs_reset(engine->breadcrumbs);
3777 
3778 	setup_hwsp(engine);
3779 	start_engine(engine);
3780 
3781 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3782 		xehp_enable_ccs_engines(engine);
3783 
3784 	return 0;
3785 }
3786 
3787 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
3788 {
3789 	return !sched_engine->tasklet.callback;
3790 }
3791 
3792 static void guc_set_default_submission(struct intel_engine_cs *engine)
3793 {
3794 	engine->submit_request = guc_submit_request;
3795 }
3796 
3797 static inline void guc_kernel_context_pin(struct intel_guc *guc,
3798 					  struct intel_context *ce)
3799 {
3800 	/*
3801 	 * Note: we purposefully do not check the returns below because
3802 	 * the registration can only fail if a reset is just starting.
3803 	 * This is called at the end of reset so presumably another reset
3804 	 * isn't happening and even it did this code would be run again.
3805 	 */
3806 
3807 	if (context_guc_id_invalid(ce))
3808 		pin_guc_id(guc, ce);
3809 
3810 	try_context_registration(ce, true);
3811 }
3812 
3813 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
3814 {
3815 	struct intel_gt *gt = guc_to_gt(guc);
3816 	struct intel_engine_cs *engine;
3817 	enum intel_engine_id id;
3818 
3819 	/* make sure all descriptors are clean... */
3820 	xa_destroy(&guc->context_lookup);
3821 
3822 	/*
3823 	 * Some contexts might have been pinned before we enabled GuC
3824 	 * submission, so we need to add them to the GuC bookeeping.
3825 	 * Also, after a reset the of the GuC we want to make sure that the
3826 	 * information shared with GuC is properly reset. The kernel LRCs are
3827 	 * not attached to the gem_context, so they need to be added separately.
3828 	 */
3829 	for_each_engine(engine, gt, id) {
3830 		struct intel_context *ce;
3831 
3832 		list_for_each_entry(ce, &engine->pinned_contexts_list,
3833 				    pinned_contexts_link)
3834 			guc_kernel_context_pin(guc, ce);
3835 	}
3836 }
3837 
3838 static void guc_release(struct intel_engine_cs *engine)
3839 {
3840 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3841 
3842 	intel_engine_cleanup_common(engine);
3843 	lrc_fini_wa_ctx(engine);
3844 }
3845 
3846 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
3847 {
3848 	struct intel_engine_cs *e;
3849 	intel_engine_mask_t tmp, mask = engine->mask;
3850 
3851 	for_each_engine_masked(e, engine->gt, mask, tmp)
3852 		e->serial++;
3853 }
3854 
3855 static void guc_default_vfuncs(struct intel_engine_cs *engine)
3856 {
3857 	/* Default vfuncs which can be overridden by each engine. */
3858 
3859 	engine->resume = guc_resume;
3860 
3861 	engine->cops = &guc_context_ops;
3862 	engine->request_alloc = guc_request_alloc;
3863 	engine->add_active_request = add_to_context;
3864 	engine->remove_active_request = remove_from_context;
3865 
3866 	engine->sched_engine->schedule = i915_schedule;
3867 
3868 	engine->reset.prepare = guc_engine_reset_prepare;
3869 	engine->reset.rewind = guc_rewind_nop;
3870 	engine->reset.cancel = guc_reset_nop;
3871 	engine->reset.finish = guc_reset_nop;
3872 
3873 	engine->emit_flush = gen8_emit_flush_xcs;
3874 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3875 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3876 	if (GRAPHICS_VER(engine->i915) >= 12) {
3877 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3878 		engine->emit_flush = gen12_emit_flush_xcs;
3879 	}
3880 	engine->set_default_submission = guc_set_default_submission;
3881 	engine->busyness = guc_engine_busyness;
3882 
3883 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3884 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3885 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3886 
3887 	/* Wa_14014475959:dg2 */
3888 	if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS)
3889 		engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
3890 
3891 	/*
3892 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
3893 	 * handled by the firmware so some minor tweaks are required before
3894 	 * enabling.
3895 	 *
3896 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3897 	 */
3898 
3899 	engine->emit_bb_start = gen8_emit_bb_start;
3900 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
3901 		engine->emit_bb_start = gen125_emit_bb_start;
3902 }
3903 
3904 static void rcs_submission_override(struct intel_engine_cs *engine)
3905 {
3906 	switch (GRAPHICS_VER(engine->i915)) {
3907 	case 12:
3908 		engine->emit_flush = gen12_emit_flush_rcs;
3909 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3910 		break;
3911 	case 11:
3912 		engine->emit_flush = gen11_emit_flush_rcs;
3913 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3914 		break;
3915 	default:
3916 		engine->emit_flush = gen8_emit_flush_rcs;
3917 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3918 		break;
3919 	}
3920 }
3921 
3922 static inline void guc_default_irqs(struct intel_engine_cs *engine)
3923 {
3924 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
3925 	intel_engine_set_irq_handler(engine, cs_irq_handler);
3926 }
3927 
3928 static void guc_sched_engine_destroy(struct kref *kref)
3929 {
3930 	struct i915_sched_engine *sched_engine =
3931 		container_of(kref, typeof(*sched_engine), ref);
3932 	struct intel_guc *guc = sched_engine->private_data;
3933 
3934 	guc->sched_engine = NULL;
3935 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
3936 	kfree(sched_engine);
3937 }
3938 
3939 int intel_guc_submission_setup(struct intel_engine_cs *engine)
3940 {
3941 	struct drm_i915_private *i915 = engine->i915;
3942 	struct intel_guc *guc = &engine->gt->uc.guc;
3943 
3944 	/*
3945 	 * The setup relies on several assumptions (e.g. irqs always enabled)
3946 	 * that are only valid on gen11+
3947 	 */
3948 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
3949 
3950 	if (!guc->sched_engine) {
3951 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3952 		if (!guc->sched_engine)
3953 			return -ENOMEM;
3954 
3955 		guc->sched_engine->schedule = i915_schedule;
3956 		guc->sched_engine->disabled = guc_sched_engine_disabled;
3957 		guc->sched_engine->private_data = guc;
3958 		guc->sched_engine->destroy = guc_sched_engine_destroy;
3959 		guc->sched_engine->bump_inflight_request_prio =
3960 			guc_bump_inflight_request_prio;
3961 		guc->sched_engine->retire_inflight_request_prio =
3962 			guc_retire_inflight_request_prio;
3963 		tasklet_setup(&guc->sched_engine->tasklet,
3964 			      guc_submission_tasklet);
3965 	}
3966 	i915_sched_engine_put(engine->sched_engine);
3967 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
3968 
3969 	guc_default_vfuncs(engine);
3970 	guc_default_irqs(engine);
3971 	guc_init_breadcrumbs(engine);
3972 
3973 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3974 		rcs_submission_override(engine);
3975 
3976 	lrc_init_wa_ctx(engine);
3977 
3978 	/* Finally, take ownership and responsibility for cleanup! */
3979 	engine->sanitize = guc_sanitize;
3980 	engine->release = guc_release;
3981 
3982 	return 0;
3983 }
3984 
3985 void intel_guc_submission_enable(struct intel_guc *guc)
3986 {
3987 	guc_init_lrc_mapping(guc);
3988 	guc_init_engine_stats(guc);
3989 }
3990 
3991 void intel_guc_submission_disable(struct intel_guc *guc)
3992 {
3993 	/* Note: By the time we're here, GuC may have already been reset */
3994 }
3995 
3996 static bool __guc_submission_supported(struct intel_guc *guc)
3997 {
3998 	/* GuC submission is unavailable for pre-Gen11 */
3999 	return intel_guc_is_supported(guc) &&
4000 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4001 }
4002 
4003 static bool __guc_submission_selected(struct intel_guc *guc)
4004 {
4005 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4006 
4007 	if (!intel_guc_submission_is_supported(guc))
4008 		return false;
4009 
4010 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4011 }
4012 
4013 void intel_guc_submission_init_early(struct intel_guc *guc)
4014 {
4015 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4016 
4017 	spin_lock_init(&guc->submission_state.lock);
4018 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4019 	ida_init(&guc->submission_state.guc_ids);
4020 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4021 	INIT_WORK(&guc->submission_state.destroyed_worker,
4022 		  destroyed_worker_func);
4023 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4024 		  reset_fail_worker_func);
4025 
4026 	spin_lock_init(&guc->timestamp.lock);
4027 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4028 
4029 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4030 	guc->submission_supported = __guc_submission_supported(guc);
4031 	guc->submission_selected = __guc_submission_selected(guc);
4032 }
4033 
4034 static inline struct intel_context *
4035 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4036 {
4037 	struct intel_context *ce;
4038 
4039 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4040 		drm_err(&guc_to_gt(guc)->i915->drm,
4041 			"Invalid ctx_id %u\n", ctx_id);
4042 		return NULL;
4043 	}
4044 
4045 	ce = __get_context(guc, ctx_id);
4046 	if (unlikely(!ce)) {
4047 		drm_err(&guc_to_gt(guc)->i915->drm,
4048 			"Context is NULL, ctx_id %u\n", ctx_id);
4049 		return NULL;
4050 	}
4051 
4052 	if (unlikely(intel_context_is_child(ce))) {
4053 		drm_err(&guc_to_gt(guc)->i915->drm,
4054 			"Context is child, ctx_id %u\n", ctx_id);
4055 		return NULL;
4056 	}
4057 
4058 	return ce;
4059 }
4060 
4061 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4062 					  const u32 *msg,
4063 					  u32 len)
4064 {
4065 	struct intel_context *ce;
4066 	u32 ctx_id;
4067 
4068 	if (unlikely(len < 1)) {
4069 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4070 		return -EPROTO;
4071 	}
4072 	ctx_id = msg[0];
4073 
4074 	ce = g2h_context_lookup(guc, ctx_id);
4075 	if (unlikely(!ce))
4076 		return -EPROTO;
4077 
4078 	trace_intel_context_deregister_done(ce);
4079 
4080 #ifdef CONFIG_DRM_I915_SELFTEST
4081 	if (unlikely(ce->drop_deregister)) {
4082 		ce->drop_deregister = false;
4083 		return 0;
4084 	}
4085 #endif
4086 
4087 	if (context_wait_for_deregister_to_register(ce)) {
4088 		struct intel_runtime_pm *runtime_pm =
4089 			&ce->engine->gt->i915->runtime_pm;
4090 		intel_wakeref_t wakeref;
4091 
4092 		/*
4093 		 * Previous owner of this guc_id has been deregistered, now safe
4094 		 * register this context.
4095 		 */
4096 		with_intel_runtime_pm(runtime_pm, wakeref)
4097 			register_context(ce, true);
4098 		guc_signal_context_fence(ce);
4099 		intel_context_put(ce);
4100 	} else if (context_destroyed(ce)) {
4101 		/* Context has been destroyed */
4102 		intel_gt_pm_put_async(guc_to_gt(guc));
4103 		release_guc_id(guc, ce);
4104 		__guc_context_destroy(ce);
4105 	}
4106 
4107 	decr_outstanding_submission_g2h(guc);
4108 
4109 	return 0;
4110 }
4111 
4112 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4113 				     const u32 *msg,
4114 				     u32 len)
4115 {
4116 	struct intel_context *ce;
4117 	unsigned long flags;
4118 	u32 ctx_id;
4119 
4120 	if (unlikely(len < 2)) {
4121 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4122 		return -EPROTO;
4123 	}
4124 	ctx_id = msg[0];
4125 
4126 	ce = g2h_context_lookup(guc, ctx_id);
4127 	if (unlikely(!ce))
4128 		return -EPROTO;
4129 
4130 	if (unlikely(context_destroyed(ce) ||
4131 		     (!context_pending_enable(ce) &&
4132 		     !context_pending_disable(ce)))) {
4133 		drm_err(&guc_to_gt(guc)->i915->drm,
4134 			"Bad context sched_state 0x%x, ctx_id %u\n",
4135 			ce->guc_state.sched_state, ctx_id);
4136 		return -EPROTO;
4137 	}
4138 
4139 	trace_intel_context_sched_done(ce);
4140 
4141 	if (context_pending_enable(ce)) {
4142 #ifdef CONFIG_DRM_I915_SELFTEST
4143 		if (unlikely(ce->drop_schedule_enable)) {
4144 			ce->drop_schedule_enable = false;
4145 			return 0;
4146 		}
4147 #endif
4148 
4149 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4150 		clr_context_pending_enable(ce);
4151 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4152 	} else if (context_pending_disable(ce)) {
4153 		bool banned;
4154 
4155 #ifdef CONFIG_DRM_I915_SELFTEST
4156 		if (unlikely(ce->drop_schedule_disable)) {
4157 			ce->drop_schedule_disable = false;
4158 			return 0;
4159 		}
4160 #endif
4161 
4162 		/*
4163 		 * Unpin must be done before __guc_signal_context_fence,
4164 		 * otherwise a race exists between the requests getting
4165 		 * submitted + retired before this unpin completes resulting in
4166 		 * the pin_count going to zero and the context still being
4167 		 * enabled.
4168 		 */
4169 		intel_context_sched_disable_unpin(ce);
4170 
4171 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4172 		banned = context_banned(ce);
4173 		clr_context_banned(ce);
4174 		clr_context_pending_disable(ce);
4175 		__guc_signal_context_fence(ce);
4176 		guc_blocked_fence_complete(ce);
4177 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4178 
4179 		if (banned) {
4180 			guc_cancel_context_requests(ce);
4181 			intel_engine_signal_breadcrumbs(ce->engine);
4182 		}
4183 	}
4184 
4185 	decr_outstanding_submission_g2h(guc);
4186 	intel_context_put(ce);
4187 
4188 	return 0;
4189 }
4190 
4191 static void capture_error_state(struct intel_guc *guc,
4192 				struct intel_context *ce)
4193 {
4194 	struct intel_gt *gt = guc_to_gt(guc);
4195 	struct drm_i915_private *i915 = gt->i915;
4196 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4197 	intel_wakeref_t wakeref;
4198 
4199 	intel_engine_set_hung_context(engine, ce);
4200 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4201 		i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4202 	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4203 }
4204 
4205 static void guc_context_replay(struct intel_context *ce)
4206 {
4207 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4208 
4209 	__guc_reset_context(ce, ce->engine->mask);
4210 	tasklet_hi_schedule(&sched_engine->tasklet);
4211 }
4212 
4213 static void guc_handle_context_reset(struct intel_guc *guc,
4214 				     struct intel_context *ce)
4215 {
4216 	trace_intel_context_reset(ce);
4217 
4218 	if (likely(!intel_context_is_banned(ce))) {
4219 		capture_error_state(guc, ce);
4220 		guc_context_replay(ce);
4221 	} else {
4222 		drm_info(&guc_to_gt(guc)->i915->drm,
4223 			 "Ignoring context reset notification of banned context 0x%04X on %s",
4224 			 ce->guc_id.id, ce->engine->name);
4225 	}
4226 }
4227 
4228 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4229 					const u32 *msg, u32 len)
4230 {
4231 	struct intel_context *ce;
4232 	unsigned long flags;
4233 	int ctx_id;
4234 
4235 	if (unlikely(len != 1)) {
4236 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4237 		return -EPROTO;
4238 	}
4239 
4240 	ctx_id = msg[0];
4241 
4242 	/*
4243 	 * The context lookup uses the xarray but lookups only require an RCU lock
4244 	 * not the full spinlock. So take the lock explicitly and keep it until the
4245 	 * context has been reference count locked to ensure it can't be destroyed
4246 	 * asynchronously until the reset is done.
4247 	 */
4248 	xa_lock_irqsave(&guc->context_lookup, flags);
4249 	ce = g2h_context_lookup(guc, ctx_id);
4250 	if (ce)
4251 		intel_context_get(ce);
4252 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4253 
4254 	if (unlikely(!ce))
4255 		return -EPROTO;
4256 
4257 	guc_handle_context_reset(guc, ce);
4258 	intel_context_put(ce);
4259 
4260 	return 0;
4261 }
4262 
4263 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4264 					const u32 *msg, u32 len)
4265 {
4266 	u32 status;
4267 
4268 	if (unlikely(len != 1)) {
4269 		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4270 		return -EPROTO;
4271 	}
4272 
4273 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4274 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4275 		drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space");
4276 
4277 	intel_guc_capture_process(guc);
4278 
4279 	return 0;
4280 }
4281 
4282 struct intel_engine_cs *
4283 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4284 {
4285 	struct intel_gt *gt = guc_to_gt(guc);
4286 	u8 engine_class = guc_class_to_engine_class(guc_class);
4287 
4288 	/* Class index is checked in class converter */
4289 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4290 
4291 	return gt->engine_class[engine_class][instance];
4292 }
4293 
4294 static void reset_fail_worker_func(struct work_struct *w)
4295 {
4296 	struct intel_guc *guc = container_of(w, struct intel_guc,
4297 					     submission_state.reset_fail_worker);
4298 	struct intel_gt *gt = guc_to_gt(guc);
4299 	intel_engine_mask_t reset_fail_mask;
4300 	unsigned long flags;
4301 
4302 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4303 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4304 	guc->submission_state.reset_fail_mask = 0;
4305 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4306 
4307 	if (likely(reset_fail_mask))
4308 		intel_gt_handle_error(gt, reset_fail_mask,
4309 				      I915_ERROR_CAPTURE,
4310 				      "GuC failed to reset engine mask=0x%x\n",
4311 				      reset_fail_mask);
4312 }
4313 
4314 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4315 					 const u32 *msg, u32 len)
4316 {
4317 	struct intel_engine_cs *engine;
4318 	struct intel_gt *gt = guc_to_gt(guc);
4319 	u8 guc_class, instance;
4320 	u32 reason;
4321 	unsigned long flags;
4322 
4323 	if (unlikely(len != 3)) {
4324 		drm_err(&gt->i915->drm, "Invalid length %u", len);
4325 		return -EPROTO;
4326 	}
4327 
4328 	guc_class = msg[0];
4329 	instance = msg[1];
4330 	reason = msg[2];
4331 
4332 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4333 	if (unlikely(!engine)) {
4334 		drm_err(&gt->i915->drm,
4335 			"Invalid engine %d:%d", guc_class, instance);
4336 		return -EPROTO;
4337 	}
4338 
4339 	/*
4340 	 * This is an unexpected failure of a hardware feature. So, log a real
4341 	 * error message not just the informational that comes with the reset.
4342 	 */
4343 	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
4344 		guc_class, instance, engine->name, reason);
4345 
4346 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4347 	guc->submission_state.reset_fail_mask |= engine->mask;
4348 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4349 
4350 	/*
4351 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4352 	 * another worker to trigger a GT reset.
4353 	 */
4354 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4355 
4356 	return 0;
4357 }
4358 
4359 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4360 {
4361 	struct intel_guc *guc = &engine->gt->uc.guc;
4362 	struct intel_context *ce;
4363 	struct i915_request *rq;
4364 	unsigned long index;
4365 	unsigned long flags;
4366 
4367 	/* Reset called during driver load? GuC not yet initialised! */
4368 	if (unlikely(!guc_submission_initialized(guc)))
4369 		return;
4370 
4371 	xa_lock_irqsave(&guc->context_lookup, flags);
4372 	xa_for_each(&guc->context_lookup, index, ce) {
4373 		if (!kref_get_unless_zero(&ce->ref))
4374 			continue;
4375 
4376 		xa_unlock(&guc->context_lookup);
4377 
4378 		if (!intel_context_is_pinned(ce))
4379 			goto next;
4380 
4381 		if (intel_engine_is_virtual(ce->engine)) {
4382 			if (!(ce->engine->mask & engine->mask))
4383 				goto next;
4384 		} else {
4385 			if (ce->engine != engine)
4386 				goto next;
4387 		}
4388 
4389 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4390 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4391 				continue;
4392 
4393 			intel_engine_set_hung_context(engine, ce);
4394 
4395 			/* Can only cope with one hang at a time... */
4396 			intel_context_put(ce);
4397 			xa_lock(&guc->context_lookup);
4398 			goto done;
4399 		}
4400 next:
4401 		intel_context_put(ce);
4402 		xa_lock(&guc->context_lookup);
4403 	}
4404 done:
4405 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4406 }
4407 
4408 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4409 				    struct i915_request *hung_rq,
4410 				    struct drm_printer *m)
4411 {
4412 	struct intel_guc *guc = &engine->gt->uc.guc;
4413 	struct intel_context *ce;
4414 	unsigned long index;
4415 	unsigned long flags;
4416 
4417 	/* Reset called during driver load? GuC not yet initialised! */
4418 	if (unlikely(!guc_submission_initialized(guc)))
4419 		return;
4420 
4421 	xa_lock_irqsave(&guc->context_lookup, flags);
4422 	xa_for_each(&guc->context_lookup, index, ce) {
4423 		if (!kref_get_unless_zero(&ce->ref))
4424 			continue;
4425 
4426 		xa_unlock(&guc->context_lookup);
4427 
4428 		if (!intel_context_is_pinned(ce))
4429 			goto next;
4430 
4431 		if (intel_engine_is_virtual(ce->engine)) {
4432 			if (!(ce->engine->mask & engine->mask))
4433 				goto next;
4434 		} else {
4435 			if (ce->engine != engine)
4436 				goto next;
4437 		}
4438 
4439 		spin_lock(&ce->guc_state.lock);
4440 		intel_engine_dump_active_requests(&ce->guc_state.requests,
4441 						  hung_rq, m);
4442 		spin_unlock(&ce->guc_state.lock);
4443 
4444 next:
4445 		intel_context_put(ce);
4446 		xa_lock(&guc->context_lookup);
4447 	}
4448 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4449 }
4450 
4451 void intel_guc_submission_print_info(struct intel_guc *guc,
4452 				     struct drm_printer *p)
4453 {
4454 	struct i915_sched_engine *sched_engine = guc->sched_engine;
4455 	struct rb_node *rb;
4456 	unsigned long flags;
4457 
4458 	if (!sched_engine)
4459 		return;
4460 
4461 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4462 		   atomic_read(&guc->outstanding_submission_g2h));
4463 	drm_printf(p, "GuC tasklet count: %u\n\n",
4464 		   atomic_read(&sched_engine->tasklet.count));
4465 
4466 	spin_lock_irqsave(&sched_engine->lock, flags);
4467 	drm_printf(p, "Requests in GuC submit tasklet:\n");
4468 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4469 		struct i915_priolist *pl = to_priolist(rb);
4470 		struct i915_request *rq;
4471 
4472 		priolist_for_each_request(rq, pl)
4473 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4474 				   rq->context->guc_id.id,
4475 				   rq->fence.seqno);
4476 	}
4477 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4478 	drm_printf(p, "\n");
4479 }
4480 
4481 static inline void guc_log_context_priority(struct drm_printer *p,
4482 					    struct intel_context *ce)
4483 {
4484 	int i;
4485 
4486 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4487 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4488 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4489 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4490 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4491 			   i, ce->guc_state.prio_count[i]);
4492 	}
4493 	drm_printf(p, "\n");
4494 }
4495 
4496 static inline void guc_log_context(struct drm_printer *p,
4497 				   struct intel_context *ce)
4498 {
4499 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4500 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4501 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4502 		   ce->ring->head,
4503 		   ce->lrc_reg_state[CTX_RING_HEAD]);
4504 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4505 		   ce->ring->tail,
4506 		   ce->lrc_reg_state[CTX_RING_TAIL]);
4507 	drm_printf(p, "\t\tContext Pin Count: %u\n",
4508 		   atomic_read(&ce->pin_count));
4509 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4510 		   atomic_read(&ce->guc_id.ref));
4511 	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
4512 		   ce->guc_state.sched_state);
4513 }
4514 
4515 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4516 					     struct drm_printer *p)
4517 {
4518 	struct intel_context *ce;
4519 	unsigned long index;
4520 	unsigned long flags;
4521 
4522 	xa_lock_irqsave(&guc->context_lookup, flags);
4523 	xa_for_each(&guc->context_lookup, index, ce) {
4524 		GEM_BUG_ON(intel_context_is_child(ce));
4525 
4526 		guc_log_context(p, ce);
4527 		guc_log_context_priority(p, ce);
4528 
4529 		if (intel_context_is_parent(ce)) {
4530 			struct guc_sched_wq_desc *wq_desc = __get_wq_desc(ce);
4531 			struct intel_context *child;
4532 
4533 			drm_printf(p, "\t\tNumber children: %u\n",
4534 				   ce->parallel.number_children);
4535 			drm_printf(p, "\t\tWQI Head: %u\n",
4536 				   READ_ONCE(wq_desc->head));
4537 			drm_printf(p, "\t\tWQI Tail: %u\n",
4538 				   READ_ONCE(wq_desc->tail));
4539 			drm_printf(p, "\t\tWQI Status: %u\n\n",
4540 				   READ_ONCE(wq_desc->wq_status));
4541 
4542 			if (ce->engine->emit_bb_start ==
4543 			    emit_bb_start_parent_no_preempt_mid_batch) {
4544 				u8 i;
4545 
4546 				drm_printf(p, "\t\tChildren Go: %u\n\n",
4547 					   get_children_go_value(ce));
4548 				for (i = 0; i < ce->parallel.number_children; ++i)
4549 					drm_printf(p, "\t\tChildren Join: %u\n",
4550 						   get_children_join_value(ce, i));
4551 			}
4552 
4553 			for_each_child(ce, child)
4554 				guc_log_context(p, child);
4555 		}
4556 	}
4557 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4558 }
4559 
4560 static inline u32 get_children_go_addr(struct intel_context *ce)
4561 {
4562 	GEM_BUG_ON(!intel_context_is_parent(ce));
4563 
4564 	return i915_ggtt_offset(ce->state) +
4565 		__get_parent_scratch_offset(ce) +
4566 		offsetof(struct parent_scratch, go.semaphore);
4567 }
4568 
4569 static inline u32 get_children_join_addr(struct intel_context *ce,
4570 					 u8 child_index)
4571 {
4572 	GEM_BUG_ON(!intel_context_is_parent(ce));
4573 
4574 	return i915_ggtt_offset(ce->state) +
4575 		__get_parent_scratch_offset(ce) +
4576 		offsetof(struct parent_scratch, join[child_index].semaphore);
4577 }
4578 
4579 #define PARENT_GO_BB			1
4580 #define PARENT_GO_FINI_BREADCRUMB	0
4581 #define CHILD_GO_BB			1
4582 #define CHILD_GO_FINI_BREADCRUMB	0
4583 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4584 						     u64 offset, u32 len,
4585 						     const unsigned int flags)
4586 {
4587 	struct intel_context *ce = rq->context;
4588 	u32 *cs;
4589 	u8 i;
4590 
4591 	GEM_BUG_ON(!intel_context_is_parent(ce));
4592 
4593 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
4594 	if (IS_ERR(cs))
4595 		return PTR_ERR(cs);
4596 
4597 	/* Wait on children */
4598 	for (i = 0; i < ce->parallel.number_children; ++i) {
4599 		*cs++ = (MI_SEMAPHORE_WAIT |
4600 			 MI_SEMAPHORE_GLOBAL_GTT |
4601 			 MI_SEMAPHORE_POLL |
4602 			 MI_SEMAPHORE_SAD_EQ_SDD);
4603 		*cs++ = PARENT_GO_BB;
4604 		*cs++ = get_children_join_addr(ce, i);
4605 		*cs++ = 0;
4606 	}
4607 
4608 	/* Turn off preemption */
4609 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4610 	*cs++ = MI_NOOP;
4611 
4612 	/* Tell children go */
4613 	cs = gen8_emit_ggtt_write(cs,
4614 				  CHILD_GO_BB,
4615 				  get_children_go_addr(ce),
4616 				  0);
4617 
4618 	/* Jump to batch */
4619 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4620 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4621 	*cs++ = lower_32_bits(offset);
4622 	*cs++ = upper_32_bits(offset);
4623 	*cs++ = MI_NOOP;
4624 
4625 	intel_ring_advance(rq, cs);
4626 
4627 	return 0;
4628 }
4629 
4630 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4631 						    u64 offset, u32 len,
4632 						    const unsigned int flags)
4633 {
4634 	struct intel_context *ce = rq->context;
4635 	struct intel_context *parent = intel_context_to_parent(ce);
4636 	u32 *cs;
4637 
4638 	GEM_BUG_ON(!intel_context_is_child(ce));
4639 
4640 	cs = intel_ring_begin(rq, 12);
4641 	if (IS_ERR(cs))
4642 		return PTR_ERR(cs);
4643 
4644 	/* Signal parent */
4645 	cs = gen8_emit_ggtt_write(cs,
4646 				  PARENT_GO_BB,
4647 				  get_children_join_addr(parent,
4648 							 ce->parallel.child_index),
4649 				  0);
4650 
4651 	/* Wait on parent for go */
4652 	*cs++ = (MI_SEMAPHORE_WAIT |
4653 		 MI_SEMAPHORE_GLOBAL_GTT |
4654 		 MI_SEMAPHORE_POLL |
4655 		 MI_SEMAPHORE_SAD_EQ_SDD);
4656 	*cs++ = CHILD_GO_BB;
4657 	*cs++ = get_children_go_addr(parent);
4658 	*cs++ = 0;
4659 
4660 	/* Turn off preemption */
4661 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4662 
4663 	/* Jump to batch */
4664 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4665 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4666 	*cs++ = lower_32_bits(offset);
4667 	*cs++ = upper_32_bits(offset);
4668 
4669 	intel_ring_advance(rq, cs);
4670 
4671 	return 0;
4672 }
4673 
4674 static u32 *
4675 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4676 						   u32 *cs)
4677 {
4678 	struct intel_context *ce = rq->context;
4679 	u8 i;
4680 
4681 	GEM_BUG_ON(!intel_context_is_parent(ce));
4682 
4683 	/* Wait on children */
4684 	for (i = 0; i < ce->parallel.number_children; ++i) {
4685 		*cs++ = (MI_SEMAPHORE_WAIT |
4686 			 MI_SEMAPHORE_GLOBAL_GTT |
4687 			 MI_SEMAPHORE_POLL |
4688 			 MI_SEMAPHORE_SAD_EQ_SDD);
4689 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
4690 		*cs++ = get_children_join_addr(ce, i);
4691 		*cs++ = 0;
4692 	}
4693 
4694 	/* Turn on preemption */
4695 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4696 	*cs++ = MI_NOOP;
4697 
4698 	/* Tell children go */
4699 	cs = gen8_emit_ggtt_write(cs,
4700 				  CHILD_GO_FINI_BREADCRUMB,
4701 				  get_children_go_addr(ce),
4702 				  0);
4703 
4704 	return cs;
4705 }
4706 
4707 /*
4708  * If this true, a submission of multi-lrc requests had an error and the
4709  * requests need to be skipped. The front end (execuf IOCTL) should've called
4710  * i915_request_skip which squashes the BB but we still need to emit the fini
4711  * breadrcrumbs seqno write. At this point we don't know how many of the
4712  * requests in the multi-lrc submission were generated so we can't do the
4713  * handshake between the parent and children (e.g. if 4 requests should be
4714  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
4715  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
4716  * has occurred on any of the requests in submission / relationship.
4717  */
4718 static inline bool skip_handshake(struct i915_request *rq)
4719 {
4720 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
4721 }
4722 
4723 #define NON_SKIP_LEN	6
4724 static u32 *
4725 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4726 						 u32 *cs)
4727 {
4728 	struct intel_context *ce = rq->context;
4729 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4730 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4731 
4732 	GEM_BUG_ON(!intel_context_is_parent(ce));
4733 
4734 	if (unlikely(skip_handshake(rq))) {
4735 		/*
4736 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4737 		 * the NON_SKIP_LEN comes from the length of the emits below.
4738 		 */
4739 		memset(cs, 0, sizeof(u32) *
4740 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
4741 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4742 	} else {
4743 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
4744 	}
4745 
4746 	/* Emit fini breadcrumb */
4747 	before_fini_breadcrumb_user_interrupt_cs = cs;
4748 	cs = gen8_emit_ggtt_write(cs,
4749 				  rq->fence.seqno,
4750 				  i915_request_active_timeline(rq)->hwsp_offset,
4751 				  0);
4752 
4753 	/* User interrupt */
4754 	*cs++ = MI_USER_INTERRUPT;
4755 	*cs++ = MI_NOOP;
4756 
4757 	/* Ensure our math for skip + emit is correct */
4758 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
4759 		   cs);
4760 	GEM_BUG_ON(start_fini_breadcrumb_cs +
4761 		   ce->engine->emit_fini_breadcrumb_dw != cs);
4762 
4763 	rq->tail = intel_ring_offset(rq, cs);
4764 
4765 	return cs;
4766 }
4767 
4768 static u32 *
4769 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4770 						  u32 *cs)
4771 {
4772 	struct intel_context *ce = rq->context;
4773 	struct intel_context *parent = intel_context_to_parent(ce);
4774 
4775 	GEM_BUG_ON(!intel_context_is_child(ce));
4776 
4777 	/* Turn on preemption */
4778 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4779 	*cs++ = MI_NOOP;
4780 
4781 	/* Signal parent */
4782 	cs = gen8_emit_ggtt_write(cs,
4783 				  PARENT_GO_FINI_BREADCRUMB,
4784 				  get_children_join_addr(parent,
4785 							 ce->parallel.child_index),
4786 				  0);
4787 
4788 	/* Wait parent on for go */
4789 	*cs++ = (MI_SEMAPHORE_WAIT |
4790 		 MI_SEMAPHORE_GLOBAL_GTT |
4791 		 MI_SEMAPHORE_POLL |
4792 		 MI_SEMAPHORE_SAD_EQ_SDD);
4793 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
4794 	*cs++ = get_children_go_addr(parent);
4795 	*cs++ = 0;
4796 
4797 	return cs;
4798 }
4799 
4800 static u32 *
4801 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4802 						u32 *cs)
4803 {
4804 	struct intel_context *ce = rq->context;
4805 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4806 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4807 
4808 	GEM_BUG_ON(!intel_context_is_child(ce));
4809 
4810 	if (unlikely(skip_handshake(rq))) {
4811 		/*
4812 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
4813 		 * the NON_SKIP_LEN comes from the length of the emits below.
4814 		 */
4815 		memset(cs, 0, sizeof(u32) *
4816 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
4817 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4818 	} else {
4819 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
4820 	}
4821 
4822 	/* Emit fini breadcrumb */
4823 	before_fini_breadcrumb_user_interrupt_cs = cs;
4824 	cs = gen8_emit_ggtt_write(cs,
4825 				  rq->fence.seqno,
4826 				  i915_request_active_timeline(rq)->hwsp_offset,
4827 				  0);
4828 
4829 	/* User interrupt */
4830 	*cs++ = MI_USER_INTERRUPT;
4831 	*cs++ = MI_NOOP;
4832 
4833 	/* Ensure our math for skip + emit is correct */
4834 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
4835 		   cs);
4836 	GEM_BUG_ON(start_fini_breadcrumb_cs +
4837 		   ce->engine->emit_fini_breadcrumb_dw != cs);
4838 
4839 	rq->tail = intel_ring_offset(rq, cs);
4840 
4841 	return cs;
4842 }
4843 
4844 #undef NON_SKIP_LEN
4845 
4846 static struct intel_context *
4847 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
4848 		   unsigned long flags)
4849 {
4850 	struct guc_virtual_engine *ve;
4851 	struct intel_guc *guc;
4852 	unsigned int n;
4853 	int err;
4854 
4855 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
4856 	if (!ve)
4857 		return ERR_PTR(-ENOMEM);
4858 
4859 	guc = &siblings[0]->gt->uc.guc;
4860 
4861 	ve->base.i915 = siblings[0]->i915;
4862 	ve->base.gt = siblings[0]->gt;
4863 	ve->base.uncore = siblings[0]->uncore;
4864 	ve->base.id = -1;
4865 
4866 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
4867 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
4868 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
4869 	ve->base.saturated = ALL_ENGINES;
4870 
4871 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
4872 
4873 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
4874 
4875 	ve->base.cops = &virtual_guc_context_ops;
4876 	ve->base.request_alloc = guc_request_alloc;
4877 	ve->base.bump_serial = virtual_guc_bump_serial;
4878 
4879 	ve->base.submit_request = guc_submit_request;
4880 
4881 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
4882 
4883 	intel_context_init(&ve->context, &ve->base);
4884 
4885 	for (n = 0; n < count; n++) {
4886 		struct intel_engine_cs *sibling = siblings[n];
4887 
4888 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
4889 		if (sibling->mask & ve->base.mask) {
4890 			DRM_DEBUG("duplicate %s entry in load balancer\n",
4891 				  sibling->name);
4892 			err = -EINVAL;
4893 			goto err_put;
4894 		}
4895 
4896 		ve->base.mask |= sibling->mask;
4897 		ve->base.logical_mask |= sibling->logical_mask;
4898 
4899 		if (n != 0 && ve->base.class != sibling->class) {
4900 			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
4901 				  sibling->class, ve->base.class);
4902 			err = -EINVAL;
4903 			goto err_put;
4904 		} else if (n == 0) {
4905 			ve->base.class = sibling->class;
4906 			ve->base.uabi_class = sibling->uabi_class;
4907 			snprintf(ve->base.name, sizeof(ve->base.name),
4908 				 "v%dx%d", ve->base.class, count);
4909 			ve->base.context_size = sibling->context_size;
4910 
4911 			ve->base.add_active_request =
4912 				sibling->add_active_request;
4913 			ve->base.remove_active_request =
4914 				sibling->remove_active_request;
4915 			ve->base.emit_bb_start = sibling->emit_bb_start;
4916 			ve->base.emit_flush = sibling->emit_flush;
4917 			ve->base.emit_init_breadcrumb =
4918 				sibling->emit_init_breadcrumb;
4919 			ve->base.emit_fini_breadcrumb =
4920 				sibling->emit_fini_breadcrumb;
4921 			ve->base.emit_fini_breadcrumb_dw =
4922 				sibling->emit_fini_breadcrumb_dw;
4923 			ve->base.breadcrumbs =
4924 				intel_breadcrumbs_get(sibling->breadcrumbs);
4925 
4926 			ve->base.flags |= sibling->flags;
4927 
4928 			ve->base.props.timeslice_duration_ms =
4929 				sibling->props.timeslice_duration_ms;
4930 			ve->base.props.preempt_timeout_ms =
4931 				sibling->props.preempt_timeout_ms;
4932 		}
4933 	}
4934 
4935 	return &ve->context;
4936 
4937 err_put:
4938 	intel_context_put(&ve->context);
4939 	return ERR_PTR(err);
4940 }
4941 
4942 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
4943 {
4944 	struct intel_engine_cs *engine;
4945 	intel_engine_mask_t tmp, mask = ve->mask;
4946 
4947 	for_each_engine_masked(engine, ve->gt, mask, tmp)
4948 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
4949 			return true;
4950 
4951 	return false;
4952 }
4953 
4954 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4955 #include "selftest_guc.c"
4956 #include "selftest_guc_multi_lrc.c"
4957 #endif
4958