xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37 
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135 
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 	struct intel_engine_cs base;
139 	struct intel_context context;
140 };
141 
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 		   unsigned long flags);
145 
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 		    unsigned int num_siblings,
149 		    unsigned int width);
150 
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152 
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
162 	((guc)->submission_state.num_guc_ids / 16)
163 
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
169 #define SCHED_STATE_DESTROYED				BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
171 #define SCHED_STATE_BANNED				BIT(3)
172 #define SCHED_STATE_ENABLED				BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
174 #define SCHED_STATE_REGISTERED				BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
176 #define SCHED_STATE_CLOSED				BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT			9
178 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
180 
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 	lockdep_assert_held(&ce->guc_state.lock);
184 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186 
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193 	(SCHED_STATE_BLOCKED_MASK | \
194 	 SCHED_STATE_CLOSED | \
195 	 SCHED_STATE_REGISTERED)
196 
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202 
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 	return ce->guc_state.sched_state &
207 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209 
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 	lockdep_assert_held(&ce->guc_state.lock);
214 	ce->guc_state.sched_state |=
215 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217 
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 	lockdep_assert_held(&ce->guc_state.lock);
222 	ce->guc_state.sched_state &=
223 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225 
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231 
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235 	lockdep_assert_held(&ce->guc_state.lock);
236 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238 
239 static inline void
240 clr_context_destroyed(struct intel_context *ce)
241 {
242 	lockdep_assert_held(&ce->guc_state.lock);
243 	ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245 
246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250 
251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 	lockdep_assert_held(&ce->guc_state.lock);
254 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256 
257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 	lockdep_assert_held(&ce->guc_state.lock);
260 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262 
263 static inline bool context_banned(struct intel_context *ce)
264 {
265 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267 
268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 	lockdep_assert_held(&ce->guc_state.lock);
271 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273 
274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 	lockdep_assert_held(&ce->guc_state.lock);
277 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279 
280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284 
285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 	lockdep_assert_held(&ce->guc_state.lock);
288 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290 
291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 	lockdep_assert_held(&ce->guc_state.lock);
294 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296 
297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301 
302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 	lockdep_assert_held(&ce->guc_state.lock);
305 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307 
308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 	lockdep_assert_held(&ce->guc_state.lock);
311 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313 
314 static inline bool context_registered(struct intel_context *ce)
315 {
316 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318 
319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 	lockdep_assert_held(&ce->guc_state.lock);
322 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324 
325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 	lockdep_assert_held(&ce->guc_state.lock);
328 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330 
331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335 
336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 	lockdep_assert_held(&ce->guc_state.lock);
339 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341 
342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 	lockdep_assert_held(&ce->guc_state.lock);
345 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347 
348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352 
353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 	lockdep_assert_held(&ce->guc_state.lock);
356 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358 
359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 		SCHED_STATE_BLOCKED_SHIFT;
363 }
364 
365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 	lockdep_assert_held(&ce->guc_state.lock);
368 
369 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370 
371 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
372 }
373 
374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 	lockdep_assert_held(&ce->guc_state.lock);
377 
378 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
379 
380 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382 
383 static struct intel_context *
384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 	return intel_context_to_parent(rq->context);
387 }
388 
389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393 
394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398 
399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 	return &ce->engine->gt->uc.guc;
402 }
403 
404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 	return rb_entry(rb, struct i915_priolist, node);
407 }
408 
409 /*
410  * When using multi-lrc submission a scratch memory area is reserved in the
411  * parent's context state for the process descriptor, work queue, and handshake
412  * between the parent + children contexts to insert safe preemption points
413  * between each of the BBs. Currently the scratch area is sized to a page.
414  *
415  * The layout of this scratch area is below:
416  * 0						guc_process_desc
417  * + sizeof(struct guc_process_desc)		child go
418  * + CACHELINE_BYTES				child join[0]
419  * ...
420  * + CACHELINE_BYTES				child join[n - 1]
421  * ...						unused
422  * PARENT_SCRATCH_SIZE / 2			work queue start
423  * ...						work queue
424  * PARENT_SCRATCH_SIZE - 1			work queue end
425  */
426 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
428 
429 struct sync_semaphore {
430 	u32 semaphore;
431 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433 
434 struct parent_scratch {
435 	union guc_descs {
436 		struct guc_sched_wq_desc wq_desc;
437 		struct guc_process_desc_v69 pdesc;
438 	} descs;
439 
440 	struct sync_semaphore go;
441 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442 
443 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445 
446 	u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448 
449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
452 
453 	return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455 
456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459 
460 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462 
463 static struct parent_scratch *
464 __get_parent_scratch(struct intel_context *ce)
465 {
466 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468 
469 	/*
470 	 * Need to subtract LRC_STATE_OFFSET here as the
471 	 * parallel.guc.parent_page is the offset into ce->state while
472 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 	 */
474 	return (struct parent_scratch *)
475 		(ce->lrc_reg_state +
476 		 ((__get_parent_scratch_offset(ce) -
477 		   LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479 
480 static struct guc_process_desc_v69 *
481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.pdesc;
486 }
487 
488 static struct guc_sched_wq_desc *
489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 	struct parent_scratch *ps = __get_parent_scratch(ce);
492 
493 	return &ps->descs.wq_desc;
494 }
495 
496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 	/*
499 	 * Check for space in work queue. Caching a value of head pointer in
500 	 * intel_context structure in order reduce the number accesses to shared
501 	 * GPU memory which may be across a PCIe bus.
502 	 */
503 #define AVAILABLE_SPACE	\
504 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 	if (wqi_size > AVAILABLE_SPACE) {
506 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507 
508 		if (wqi_size > AVAILABLE_SPACE)
509 			return NULL;
510 	}
511 #undef AVAILABLE_SPACE
512 
513 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515 
516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
519 
520 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521 
522 	return ce;
523 }
524 
525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528 
529 	if (!base)
530 		return NULL;
531 
532 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533 
534 	return &base[index];
535 }
536 
537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 	u32 size;
540 	int ret;
541 
542 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 			  GUC_MAX_CONTEXT_ID);
544 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
546 	if (ret)
547 		return ret;
548 
549 	return 0;
550 }
551 
552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 	if (!guc->lrc_desc_pool_vaddr_v69)
555 		return;
556 
557 	guc->lrc_desc_pool_vaddr_v69 = NULL;
558 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560 
561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 	return guc->submission_initialized;
564 }
565 
566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569 
570 	if (desc)
571 		memset(desc, 0, sizeof(*desc));
572 }
573 
574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 	return __get_context(guc, id);
577 }
578 
579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 				      struct intel_context *ce)
581 {
582 	unsigned long flags;
583 
584 	/*
585 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 	 * lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 	unsigned long flags;
596 
597 	if (unlikely(!guc_submission_initialized(guc)))
598 		return;
599 
600 	_reset_lrc_desc_v69(guc, id);
601 
602 	/*
603 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 	 * the lower level functions directly.
605 	 */
606 	xa_lock_irqsave(&guc->context_lookup, flags);
607 	__xa_erase(&guc->context_lookup, id);
608 	xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610 
611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 		wake_up_all(&guc->ct.wq);
615 }
616 
617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 					 const u32 *action,
619 					 u32 len,
620 					 u32 g2h_len_dw,
621 					 bool loop)
622 {
623 	int ret;
624 
625 	/*
626 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 	 * so we don't handle the case where we don't get a reply because we
628 	 * aborted the send due to the channel being busy.
629 	 */
630 	GEM_BUG_ON(g2h_len_dw && !loop);
631 
632 	if (g2h_len_dw)
633 		atomic_inc(&guc->outstanding_submission_g2h);
634 
635 	ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 	if (ret)
637 		atomic_dec(&guc->outstanding_submission_g2h);
638 
639 	return ret;
640 }
641 
642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 				   atomic_t *wait_var,
644 				   bool interruptible,
645 				   long timeout)
646 {
647 	const int state = interruptible ?
648 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 	DEFINE_WAIT(wait);
650 
651 	might_sleep();
652 	GEM_BUG_ON(timeout < 0);
653 
654 	if (!atomic_read(wait_var))
655 		return 0;
656 
657 	if (!timeout)
658 		return -ETIME;
659 
660 	for (;;) {
661 		prepare_to_wait(&guc->ct.wq, &wait, state);
662 
663 		if (!atomic_read(wait_var))
664 			break;
665 
666 		if (signal_pending_state(state, current)) {
667 			timeout = -EINTR;
668 			break;
669 		}
670 
671 		if (!timeout) {
672 			timeout = -ETIME;
673 			break;
674 		}
675 
676 		timeout = io_schedule_timeout(timeout);
677 	}
678 	finish_wait(&guc->ct.wq, &wait);
679 
680 	return (timeout < 0) ? timeout : 0;
681 }
682 
683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 		return 0;
687 
688 	return intel_guc_wait_for_pending_msg(guc,
689 					      &guc->outstanding_submission_g2h,
690 					      true, timeout);
691 }
692 
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695 
696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 	int err = 0;
699 	struct intel_context *ce = request_to_scheduling_context(rq);
700 	u32 action[3];
701 	int len = 0;
702 	u32 g2h_len_dw = 0;
703 	bool enabled;
704 
705 	lockdep_assert_held(&rq->engine->sched_engine->lock);
706 
707 	/*
708 	 * Corner case where requests were sitting in the priority list or a
709 	 * request resubmitted after the context was banned.
710 	 */
711 	if (unlikely(!intel_context_is_schedulable(ce))) {
712 		i915_request_put(i915_request_mark_eio(rq));
713 		intel_engine_signal_breadcrumbs(ce->engine);
714 		return 0;
715 	}
716 
717 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 	GEM_BUG_ON(context_guc_id_invalid(ce));
719 
720 	if (context_policy_required(ce)) {
721 		err = guc_context_policy_init_v70(ce, false);
722 		if (err)
723 			return err;
724 	}
725 
726 	spin_lock(&ce->guc_state.lock);
727 
728 	/*
729 	 * The request / context will be run on the hardware when scheduling
730 	 * gets enabled in the unblock. For multi-lrc we still submit the
731 	 * context to move the LRC tails.
732 	 */
733 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 		goto out;
735 
736 	enabled = context_enabled(ce) || context_blocked(ce);
737 
738 	if (!enabled) {
739 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 		action[len++] = ce->guc_id.id;
741 		action[len++] = GUC_CONTEXT_ENABLE;
742 		set_context_pending_enable(ce);
743 		intel_context_get(ce);
744 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 	} else {
746 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 		action[len++] = ce->guc_id.id;
748 	}
749 
750 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 	if (!enabled && !err) {
752 		trace_intel_context_sched_enable(ce);
753 		atomic_inc(&guc->outstanding_submission_g2h);
754 		set_context_enabled(ce);
755 
756 		/*
757 		 * Without multi-lrc KMD does the submission step (moving the
758 		 * lrc tail) so enabling scheduling is sufficient to submit the
759 		 * context. This isn't the case in multi-lrc submission as the
760 		 * GuC needs to move the tails, hence the need for another H2G
761 		 * to submit a multi-lrc context after enabling scheduling.
762 		 */
763 		if (intel_context_is_parent(ce)) {
764 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 			err = intel_guc_send_nb(guc, action, len - 1, 0);
766 		}
767 	} else if (!enabled) {
768 		clr_context_pending_enable(ce);
769 		intel_context_put(ce);
770 	}
771 	if (likely(!err))
772 		trace_i915_request_guc_submit(rq);
773 
774 out:
775 	spin_unlock(&ce->guc_state.lock);
776 	return err;
777 }
778 
779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 	int ret = __guc_add_request(guc, rq);
782 
783 	if (unlikely(ret == -EBUSY)) {
784 		guc->stalled_request = rq;
785 		guc->submission_stall_reason = STALL_ADD_REQUEST;
786 	}
787 
788 	return ret;
789 }
790 
791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 		intel_ring_set_tail(rq->ring, rq->tail);
795 }
796 
797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 	return rq->sched.attr.priority;
800 }
801 
802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 	return intel_context_is_parallel(rq->context);
805 }
806 
807 static bool can_merge_rq(struct i915_request *rq,
808 			 struct i915_request *last)
809 {
810 	return request_to_scheduling_context(rq) ==
811 		request_to_scheduling_context(last);
812 }
813 
814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818 
819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822 
823 	/*
824 	 * Ensure WQI are visible before updating tail
825 	 */
826 	intel_guc_write_barrier(ce_to_guc(ce));
827 
828 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 		(WQ_SIZE - 1);
830 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832 
833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837 
838 	if (!wqi)
839 		return -EBUSY;
840 
841 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842 
843 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 		FIELD_PREP(WQ_LEN_MASK, len_dw);
845 	ce->parallel.guc.wqi_tail = 0;
846 
847 	return 0;
848 }
849 
850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 	struct intel_context *ce = request_to_scheduling_context(rq);
853 	struct intel_context *child;
854 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 		sizeof(u32);
856 	u32 *wqi;
857 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 	int ret;
859 
860 	/* Ensure context is in correct state updating work queue */
861 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 	GEM_BUG_ON(context_guc_id_invalid(ce));
863 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865 
866 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
867 	if (wqi_size > wq_space_until_wrap(ce)) {
868 		ret = guc_wq_noop_append(ce);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	wqi = get_wq_pointer(ce, wqi_size);
874 	if (!wqi)
875 		return -EBUSY;
876 
877 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878 
879 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 		FIELD_PREP(WQ_LEN_MASK, len_dw);
881 	*wqi++ = ce->lrc.lrca;
882 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 	*wqi++ = 0;	/* fence_id */
885 	for_each_child(ce, child)
886 		*wqi++ = child->ring->tail / sizeof(u64);
887 
888 	write_wqi(ce, wqi_size);
889 
890 	return 0;
891 }
892 
893 static int guc_wq_item_append(struct intel_guc *guc,
894 			      struct i915_request *rq)
895 {
896 	struct intel_context *ce = request_to_scheduling_context(rq);
897 	int ret;
898 
899 	if (unlikely(!intel_context_is_schedulable(ce)))
900 		return 0;
901 
902 	ret = __guc_wq_item_append(rq);
903 	if (unlikely(ret == -EBUSY)) {
904 		guc->stalled_request = rq;
905 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 	}
907 
908 	return ret;
909 }
910 
911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 	struct intel_context *ce = request_to_scheduling_context(rq);
914 
915 	intel_ring_set_tail(rq->ring, rq->tail);
916 
917 	/*
918 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 	 * request generated from a multi-BB submission. This indicates to the
920 	 * backend (GuC interface) that we should submit this context thus
921 	 * submitting all the requests generated in parallel.
922 	 */
923 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 	       !intel_context_is_schedulable(ce);
925 }
926 
927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 	struct i915_request *last = NULL;
931 	bool submit = false;
932 	struct rb_node *rb;
933 	int ret;
934 
935 	lockdep_assert_held(&sched_engine->lock);
936 
937 	if (guc->stalled_request) {
938 		submit = true;
939 		last = guc->stalled_request;
940 
941 		switch (guc->submission_stall_reason) {
942 		case STALL_REGISTER_CONTEXT:
943 			goto register_context;
944 		case STALL_MOVE_LRC_TAIL:
945 			goto move_lrc_tail;
946 		case STALL_ADD_REQUEST:
947 			goto add_request;
948 		default:
949 			MISSING_CASE(guc->submission_stall_reason);
950 		}
951 	}
952 
953 	while ((rb = rb_first_cached(&sched_engine->queue))) {
954 		struct i915_priolist *p = to_priolist(rb);
955 		struct i915_request *rq, *rn;
956 
957 		priolist_for_each_request_consume(rq, rn, p) {
958 			if (last && !can_merge_rq(rq, last))
959 				goto register_context;
960 
961 			list_del_init(&rq->sched.link);
962 
963 			__i915_request_submit(rq);
964 
965 			trace_i915_request_in(rq, 0);
966 			last = rq;
967 
968 			if (is_multi_lrc_rq(rq)) {
969 				/*
970 				 * We need to coalesce all multi-lrc requests in
971 				 * a relationship into a single H2G. We are
972 				 * guaranteed that all of these requests will be
973 				 * submitted sequentially.
974 				 */
975 				if (multi_lrc_submit(rq)) {
976 					submit = true;
977 					goto register_context;
978 				}
979 			} else {
980 				submit = true;
981 			}
982 		}
983 
984 		rb_erase_cached(&p->node, &sched_engine->queue);
985 		i915_priolist_free(p);
986 	}
987 
988 register_context:
989 	if (submit) {
990 		struct intel_context *ce = request_to_scheduling_context(last);
991 
992 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 			     intel_context_is_schedulable(ce))) {
994 			ret = try_context_registration(ce, false);
995 			if (unlikely(ret == -EPIPE)) {
996 				goto deadlk;
997 			} else if (ret == -EBUSY) {
998 				guc->stalled_request = last;
999 				guc->submission_stall_reason =
1000 					STALL_REGISTER_CONTEXT;
1001 				goto schedule_tasklet;
1002 			} else if (ret != 0) {
1003 				GEM_WARN_ON(ret);	/* Unexpected */
1004 				goto deadlk;
1005 			}
1006 		}
1007 
1008 move_lrc_tail:
1009 		if (is_multi_lrc_rq(last)) {
1010 			ret = guc_wq_item_append(guc, last);
1011 			if (ret == -EBUSY) {
1012 				goto schedule_tasklet;
1013 			} else if (ret != 0) {
1014 				GEM_WARN_ON(ret);	/* Unexpected */
1015 				goto deadlk;
1016 			}
1017 		} else {
1018 			guc_set_lrc_tail(last);
1019 		}
1020 
1021 add_request:
1022 		ret = guc_add_request(guc, last);
1023 		if (unlikely(ret == -EPIPE)) {
1024 			goto deadlk;
1025 		} else if (ret == -EBUSY) {
1026 			goto schedule_tasklet;
1027 		} else if (ret != 0) {
1028 			GEM_WARN_ON(ret);	/* Unexpected */
1029 			goto deadlk;
1030 		}
1031 	}
1032 
1033 	guc->stalled_request = NULL;
1034 	guc->submission_stall_reason = STALL_NONE;
1035 	return submit;
1036 
1037 deadlk:
1038 	sched_engine->tasklet.callback = NULL;
1039 	tasklet_disable_nosync(&sched_engine->tasklet);
1040 	return false;
1041 
1042 schedule_tasklet:
1043 	tasklet_schedule(&sched_engine->tasklet);
1044 	return false;
1045 }
1046 
1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 	struct i915_sched_engine *sched_engine =
1050 		from_tasklet(sched_engine, t, tasklet);
1051 	unsigned long flags;
1052 	bool loop;
1053 
1054 	spin_lock_irqsave(&sched_engine->lock, flags);
1055 
1056 	do {
1057 		loop = guc_dequeue_one_context(sched_engine->private_data);
1058 	} while (loop);
1059 
1060 	i915_sched_engine_reset_on_empty(sched_engine);
1061 
1062 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064 
1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 	if (iir & GT_RENDER_USER_INTERRUPT)
1068 		intel_engine_signal_breadcrumbs(engine);
1069 }
1070 
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076 
1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 	struct intel_context *ce;
1080 	unsigned long index, flags;
1081 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1082 
1083 	xa_lock_irqsave(&guc->context_lookup, flags);
1084 	xa_for_each(&guc->context_lookup, index, ce) {
1085 		/*
1086 		 * Corner case where the ref count on the object is zero but and
1087 		 * deregister G2H was lost. In this case we don't touch the ref
1088 		 * count and finish the destroy of the context.
1089 		 */
1090 		bool do_put = kref_get_unless_zero(&ce->ref);
1091 
1092 		xa_unlock(&guc->context_lookup);
1093 
1094 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 			/* successful cancel so jump straight to close it */
1097 			intel_context_sched_disable_unpin(ce);
1098 		}
1099 
1100 		spin_lock(&ce->guc_state.lock);
1101 
1102 		/*
1103 		 * Once we are at this point submission_disabled() is guaranteed
1104 		 * to be visible to all callers who set the below flags (see above
1105 		 * flush and flushes in reset_prepare). If submission_disabled()
1106 		 * is set, the caller shouldn't set these flags.
1107 		 */
1108 
1109 		destroyed = context_destroyed(ce);
1110 		pending_enable = context_pending_enable(ce);
1111 		pending_disable = context_pending_disable(ce);
1112 		deregister = context_wait_for_deregister_to_register(ce);
1113 		banned = context_banned(ce);
1114 		init_sched_state(ce);
1115 
1116 		spin_unlock(&ce->guc_state.lock);
1117 
1118 		if (pending_enable || destroyed || deregister) {
1119 			decr_outstanding_submission_g2h(guc);
1120 			if (deregister)
1121 				guc_signal_context_fence(ce);
1122 			if (destroyed) {
1123 				intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 				release_guc_id(guc, ce);
1125 				__guc_context_destroy(ce);
1126 			}
1127 			if (pending_enable || deregister)
1128 				intel_context_put(ce);
1129 		}
1130 
1131 		/* Not mutualy exclusive with above if statement. */
1132 		if (pending_disable) {
1133 			guc_signal_context_fence(ce);
1134 			if (banned) {
1135 				guc_cancel_context_requests(ce);
1136 				intel_engine_signal_breadcrumbs(ce->engine);
1137 			}
1138 			intel_context_sched_disable_unpin(ce);
1139 			decr_outstanding_submission_g2h(guc);
1140 
1141 			spin_lock(&ce->guc_state.lock);
1142 			guc_blocked_fence_complete(ce);
1143 			spin_unlock(&ce->guc_state.lock);
1144 
1145 			intel_context_put(ce);
1146 		}
1147 
1148 		if (do_put)
1149 			intel_context_put(ce);
1150 		xa_lock(&guc->context_lookup);
1151 	}
1152 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154 
1155 /*
1156  * GuC stores busyness stats for each engine at context in/out boundaries. A
1157  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159  * GuC.
1160  *
1161  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163  * active. For an active engine total busyness = total + (now - start), where
1164  * 'now' is the time at which the busyness is sampled. For inactive engine,
1165  * total busyness = total.
1166  *
1167  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168  *
1169  * The start and total values provided by GuC are 32 bits and wrap around in a
1170  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171  * increasing ns values, there is a need for this implementation to account for
1172  * overflows and extend the GuC provided values to 64 bits before returning
1173  * busyness to the user. In order to do that, a worker runs periodically at
1174  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175  * 27 seconds for a gt clock frequency of 19.2 MHz).
1176  */
1177 
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180 
1181 static void
1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186 
1187 	if (new_start == lower_32_bits(*prev_start))
1188 		return;
1189 
1190 	/*
1191 	 * When gt is unparked, we update the gt timestamp and start the ping
1192 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 	 * is unparked, all switched in contexts will have a start time that is
1194 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 	 *
1196 	 * If neither gt_stamp nor new_start has rolled over, then the
1197 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 	 *
1200 	 * The below conditions address the cases of new_start rollover and
1201 	 * gt_stamp_last rollover respectively.
1202 	 */
1203 	if (new_start < gt_stamp_last &&
1204 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 		gt_stamp_hi++;
1206 
1207 	if (new_start > gt_stamp_last &&
1208 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 		gt_stamp_hi--;
1210 
1211 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213 
1214 #define record_read(map_, field_) \
1215 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216 
1217 /*
1218  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219  * we run into a race where the value read is inconsistent. Sometimes the
1220  * inconsistency is in reading the upper MSB bytes of the last_in value when
1221  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223  * determine validity of these values. Instead we read the values multiple times
1224  * until they are consistent. In test runs, 3 attempts results in consistent
1225  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226  * any new occurences.
1227  */
1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 				      u32 *last_in, u32 *id, u32 *total)
1230 {
1231 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 	int i = 0;
1233 
1234 	do {
1235 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1236 		*id = record_read(&rec_map, current_context_index);
1237 		*total = record_read(&rec_map, total_runtime);
1238 
1239 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 		    record_read(&rec_map, current_context_index) == *id &&
1241 		    record_read(&rec_map, total_runtime) == *total)
1242 			break;
1243 	} while (++i < 6);
1244 }
1245 
1246 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1247 {
1248 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1249 	struct intel_guc *guc = &engine->gt->uc.guc;
1250 	u32 last_switch, ctx_id, total;
1251 
1252 	lockdep_assert_held(&guc->timestamp.lock);
1253 
1254 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1255 
1256 	stats->running = ctx_id != ~0U && last_switch;
1257 	if (stats->running)
1258 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1259 
1260 	/*
1261 	 * Instead of adjusting the total for overflow, just add the
1262 	 * difference from previous sample stats->total_gt_clks
1263 	 */
1264 	if (total && total != ~0U) {
1265 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1266 		stats->prev_total = total;
1267 	}
1268 }
1269 
1270 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1271 {
1272 	intel_wakeref_t wakeref;
1273 	u32 reg, shift;
1274 
1275 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1276 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1277 
1278 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1279 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1280 
1281 	return 3 - shift;
1282 }
1283 
1284 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1285 {
1286 	struct intel_gt *gt = guc_to_gt(guc);
1287 	u32 gt_stamp_lo, gt_stamp_hi;
1288 	u64 gpm_ts;
1289 
1290 	lockdep_assert_held(&guc->timestamp.lock);
1291 
1292 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1293 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1294 					  MISC_STATUS1) >> guc->timestamp.shift;
1295 	gt_stamp_lo = lower_32_bits(gpm_ts);
1296 	*now = ktime_get();
1297 
1298 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1299 		gt_stamp_hi++;
1300 
1301 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1302 }
1303 
1304 /*
1305  * Unlike the execlist mode of submission total and active times are in terms of
1306  * gt clocks. The *now parameter is retained to return the cpu time at which the
1307  * busyness was sampled.
1308  */
1309 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1310 {
1311 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1312 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1313 	struct intel_gt *gt = engine->gt;
1314 	struct intel_guc *guc = &gt->uc.guc;
1315 	u64 total, gt_stamp_saved;
1316 	unsigned long flags;
1317 	u32 reset_count;
1318 	bool in_reset;
1319 	intel_wakeref_t wakeref;
1320 
1321 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1322 
1323 	/*
1324 	 * If a reset happened, we risk reading partially updated engine
1325 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1326 	 * Synchronize with gt reset using reset_count and the
1327 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1328 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1329 	 * usable by checking the flag afterwards.
1330 	 */
1331 	reset_count = i915_reset_count(gpu_error);
1332 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1333 
1334 	*now = ktime_get();
1335 
1336 	/*
1337 	 * The active busyness depends on start_gt_clk and gt_stamp.
1338 	 * gt_stamp is updated by i915 only when gt is awake and the
1339 	 * start_gt_clk is derived from GuC state. To get a consistent
1340 	 * view of activity, we query the GuC state only if gt is awake.
1341 	 */
1342 	wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt);
1343 	if (wakeref) {
1344 		stats_saved = *stats;
1345 		gt_stamp_saved = guc->timestamp.gt_stamp;
1346 		/*
1347 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1348 		 * start_gt_clk' calculation below for active engines.
1349 		 */
1350 		guc_update_engine_gt_clks(engine);
1351 		guc_update_pm_timestamp(guc, now);
1352 		intel_gt_pm_put_async(gt, wakeref);
1353 		if (i915_reset_count(gpu_error) != reset_count) {
1354 			*stats = stats_saved;
1355 			guc->timestamp.gt_stamp = gt_stamp_saved;
1356 		}
1357 	}
1358 
1359 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1360 	if (stats->running) {
1361 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1362 
1363 		total += intel_gt_clock_interval_to_ns(gt, clk);
1364 	}
1365 
1366 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1367 
1368 	return ns_to_ktime(total);
1369 }
1370 
1371 static void guc_enable_busyness_worker(struct intel_guc *guc)
1372 {
1373 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1374 }
1375 
1376 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1377 {
1378 	/*
1379 	 * There are many different call stacks that can get here. Some of them
1380 	 * hold the reset mutex. The busyness worker also attempts to acquire the
1381 	 * reset mutex. Synchronously flushing a worker thread requires acquiring
1382 	 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1383 	 * flush can deadlock because it holds the worker mutex while waiting for
1384 	 * the reset mutex, but another thread is holding the reset mutex and might
1385 	 * attempt to use other worker functions.
1386 	 *
1387 	 * In practice, this scenario does not exist because the busyness worker
1388 	 * does not block waiting for the reset mutex. It does a try-lock on it and
1389 	 * immediately exits if the lock is already held. Unfortunately, the mutex
1390 	 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1391 	 * annotation but not to the extent of explaining the 'might lock' is also a
1392 	 * 'does not need to lock'. So one option would be to add more complex lockdep
1393 	 * annotations to ignore the issue (if at all possible). A simpler option is to
1394 	 * just not flush synchronously when a rest in progress. Given that the worker
1395 	 * will just early exit and re-schedule itself anyway, there is no advantage
1396 	 * to running it immediately.
1397 	 *
1398 	 * If a reset is not in progress, then the synchronous flush may be required.
1399 	 * As noted many call stacks lead here, some during suspend and driver unload
1400 	 * which do require a synchronous flush to make sure the worker is stopped
1401 	 * before memory is freed.
1402 	 *
1403 	 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1404 	 * every possible call stack is unfeasible. It would be too intrusive to many
1405 	 * areas that really don't care about the GuC backend. However, there is the
1406 	 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1407 	 * So just use those. Note that testing both is required due to the hideously
1408 	 * complex nature of the i915 driver's reset code paths.
1409 	 *
1410 	 * And note that in the case of a reset occurring during driver unload
1411 	 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1412 	 * reset flag/mutex are set) is fine because there is another explicit cancel in
1413 	 * intel_guc_submission_fini (when the reset flag/mutex are not).
1414 	 */
1415 	if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1416 	    test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1417 		cancel_delayed_work(&guc->timestamp.work);
1418 	else
1419 		cancel_delayed_work_sync(&guc->timestamp.work);
1420 }
1421 
1422 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1423 {
1424 	struct intel_gt *gt = guc_to_gt(guc);
1425 	struct intel_engine_cs *engine;
1426 	enum intel_engine_id id;
1427 	unsigned long flags;
1428 	ktime_t unused;
1429 
1430 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1431 
1432 	guc_update_pm_timestamp(guc, &unused);
1433 	for_each_engine(engine, gt, id) {
1434 		guc_update_engine_gt_clks(engine);
1435 		engine->stats.guc.prev_total = 0;
1436 	}
1437 
1438 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1439 }
1440 
1441 static void __update_guc_busyness_stats(struct intel_guc *guc)
1442 {
1443 	struct intel_gt *gt = guc_to_gt(guc);
1444 	struct intel_engine_cs *engine;
1445 	enum intel_engine_id id;
1446 	unsigned long flags;
1447 	ktime_t unused;
1448 
1449 	guc->timestamp.last_stat_jiffies = jiffies;
1450 
1451 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1452 
1453 	guc_update_pm_timestamp(guc, &unused);
1454 	for_each_engine(engine, gt, id)
1455 		guc_update_engine_gt_clks(engine);
1456 
1457 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1458 }
1459 
1460 static void __guc_context_update_stats(struct intel_context *ce)
1461 {
1462 	struct intel_guc *guc = ce_to_guc(ce);
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1466 	lrc_update_runtime(ce);
1467 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1468 }
1469 
1470 static void guc_context_update_stats(struct intel_context *ce)
1471 {
1472 	if (!intel_context_pin_if_active(ce))
1473 		return;
1474 
1475 	__guc_context_update_stats(ce);
1476 	intel_context_unpin(ce);
1477 }
1478 
1479 static void guc_timestamp_ping(struct work_struct *wrk)
1480 {
1481 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1482 					     timestamp.work.work);
1483 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1484 	struct intel_gt *gt = guc_to_gt(guc);
1485 	struct intel_context *ce;
1486 	intel_wakeref_t wakeref;
1487 	unsigned long index;
1488 	int srcu, ret;
1489 
1490 	/*
1491 	 * Ideally the busyness worker should take a gt pm wakeref because the
1492 	 * worker only needs to be active while gt is awake. However, the
1493 	 * gt_park path cancels the worker synchronously and this complicates
1494 	 * the flow if the worker is also running at the same time. The cancel
1495 	 * waits for the worker and when the worker releases the wakeref, that
1496 	 * would call gt_park and would lead to a deadlock.
1497 	 *
1498 	 * The resolution is to take the global pm wakeref if runtime pm is
1499 	 * already active. If not, we don't need to update the busyness stats as
1500 	 * the stats would already be updated when the gt was parked.
1501 	 *
1502 	 * Note:
1503 	 * - We do not requeue the worker if we cannot take a reference to runtime
1504 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1505 	 *   resume path.
1506 	 *
1507 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1508 	 *   over, we ignore those rollovers since we don't care about tracking
1509 	 *   the exact GT time. We only care about roll overs when the gt is
1510 	 *   active and running workloads.
1511 	 *
1512 	 * - There is a window of time between gt_park and runtime suspend,
1513 	 *   where the worker may run. This is acceptable since the worker will
1514 	 *   not find any new data to update busyness.
1515 	 */
1516 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1517 	if (!wakeref)
1518 		return;
1519 
1520 	/*
1521 	 * Synchronize with gt reset to make sure the worker does not
1522 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1523 	 * for a reset to complete as the reset requires flushing out
1524 	 * this worker thread if started. So waiting would deadlock.
1525 	 */
1526 	ret = intel_gt_reset_trylock(gt, &srcu);
1527 	if (ret)
1528 		goto err_trylock;
1529 
1530 	__update_guc_busyness_stats(guc);
1531 
1532 	/* adjust context stats for overflow */
1533 	xa_for_each(&guc->context_lookup, index, ce)
1534 		guc_context_update_stats(ce);
1535 
1536 	intel_gt_reset_unlock(gt, srcu);
1537 
1538 	guc_enable_busyness_worker(guc);
1539 
1540 err_trylock:
1541 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1542 }
1543 
1544 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1545 {
1546 	u32 offset = intel_guc_engine_usage_offset(guc);
1547 	u32 action[] = {
1548 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1549 		offset,
1550 		0,
1551 	};
1552 
1553 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1554 }
1555 
1556 static int guc_init_engine_stats(struct intel_guc *guc)
1557 {
1558 	struct intel_gt *gt = guc_to_gt(guc);
1559 	intel_wakeref_t wakeref;
1560 	int ret;
1561 
1562 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1563 		ret = guc_action_enable_usage_stats(guc);
1564 
1565 	if (ret)
1566 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1567 	else
1568 		guc_enable_busyness_worker(guc);
1569 
1570 	return ret;
1571 }
1572 
1573 static void guc_fini_engine_stats(struct intel_guc *guc)
1574 {
1575 	guc_cancel_busyness_worker(guc);
1576 }
1577 
1578 void intel_guc_busyness_park(struct intel_gt *gt)
1579 {
1580 	struct intel_guc *guc = &gt->uc.guc;
1581 
1582 	if (!guc_submission_initialized(guc))
1583 		return;
1584 
1585 	/*
1586 	 * There is a race with suspend flow where the worker runs after suspend
1587 	 * and causes an unclaimed register access warning. Cancel the worker
1588 	 * synchronously here.
1589 	 */
1590 	guc_cancel_busyness_worker(guc);
1591 
1592 	/*
1593 	 * Before parking, we should sample engine busyness stats if we need to.
1594 	 * We can skip it if we are less than half a ping from the last time we
1595 	 * sampled the busyness stats.
1596 	 */
1597 	if (guc->timestamp.last_stat_jiffies &&
1598 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1599 			(guc->timestamp.ping_delay / 2)))
1600 		return;
1601 
1602 	__update_guc_busyness_stats(guc);
1603 }
1604 
1605 void intel_guc_busyness_unpark(struct intel_gt *gt)
1606 {
1607 	struct intel_guc *guc = &gt->uc.guc;
1608 	unsigned long flags;
1609 	ktime_t unused;
1610 
1611 	if (!guc_submission_initialized(guc))
1612 		return;
1613 
1614 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1615 	guc_update_pm_timestamp(guc, &unused);
1616 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1617 	guc_enable_busyness_worker(guc);
1618 }
1619 
1620 static inline bool
1621 submission_disabled(struct intel_guc *guc)
1622 {
1623 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1624 
1625 	return unlikely(!sched_engine ||
1626 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1627 			intel_gt_is_wedged(guc_to_gt(guc)));
1628 }
1629 
1630 static void disable_submission(struct intel_guc *guc)
1631 {
1632 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1633 
1634 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1635 		GEM_BUG_ON(!guc->ct.enabled);
1636 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1637 		sched_engine->tasklet.callback = NULL;
1638 	}
1639 }
1640 
1641 static void enable_submission(struct intel_guc *guc)
1642 {
1643 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1644 	unsigned long flags;
1645 
1646 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1647 	sched_engine->tasklet.callback = guc_submission_tasklet;
1648 	wmb();	/* Make sure callback visible */
1649 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1650 	    __tasklet_enable(&sched_engine->tasklet)) {
1651 		GEM_BUG_ON(!guc->ct.enabled);
1652 
1653 		/* And kick in case we missed a new request submission. */
1654 		tasklet_hi_schedule(&sched_engine->tasklet);
1655 	}
1656 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1657 }
1658 
1659 static void guc_flush_submissions(struct intel_guc *guc)
1660 {
1661 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1662 	unsigned long flags;
1663 
1664 	spin_lock_irqsave(&sched_engine->lock, flags);
1665 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1666 }
1667 
1668 void intel_guc_submission_flush_work(struct intel_guc *guc)
1669 {
1670 	flush_work(&guc->submission_state.destroyed_worker);
1671 }
1672 
1673 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1674 
1675 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1676 {
1677 	if (unlikely(!guc_submission_initialized(guc))) {
1678 		/* Reset called during driver load? GuC not yet initialised! */
1679 		return;
1680 	}
1681 
1682 	intel_gt_park_heartbeats(guc_to_gt(guc));
1683 	disable_submission(guc);
1684 	guc->interrupts.disable(guc);
1685 	__reset_guc_busyness_stats(guc);
1686 
1687 	/* Flush IRQ handler */
1688 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1689 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1690 
1691 	guc_flush_submissions(guc);
1692 	guc_flush_destroyed_contexts(guc);
1693 	flush_work(&guc->ct.requests.worker);
1694 
1695 	scrub_guc_desc_for_outstanding_g2h(guc);
1696 }
1697 
1698 static struct intel_engine_cs *
1699 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1700 {
1701 	struct intel_engine_cs *engine;
1702 	intel_engine_mask_t tmp, mask = ve->mask;
1703 	unsigned int num_siblings = 0;
1704 
1705 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1706 		if (num_siblings++ == sibling)
1707 			return engine;
1708 
1709 	return NULL;
1710 }
1711 
1712 static inline struct intel_engine_cs *
1713 __context_to_physical_engine(struct intel_context *ce)
1714 {
1715 	struct intel_engine_cs *engine = ce->engine;
1716 
1717 	if (intel_engine_is_virtual(engine))
1718 		engine = guc_virtual_get_sibling(engine, 0);
1719 
1720 	return engine;
1721 }
1722 
1723 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1724 {
1725 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1726 
1727 	if (!intel_context_is_schedulable(ce))
1728 		return;
1729 
1730 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1731 
1732 	/*
1733 	 * We want a simple context + ring to execute the breadcrumb update.
1734 	 * We cannot rely on the context being intact across the GPU hang,
1735 	 * so clear it and rebuild just what we need for the breadcrumb.
1736 	 * All pending requests for this context will be zapped, and any
1737 	 * future request will be after userspace has had the opportunity
1738 	 * to recreate its own state.
1739 	 */
1740 	if (scrub)
1741 		lrc_init_regs(ce, engine, true);
1742 
1743 	/* Rerun the request; its payload has been neutered (if guilty). */
1744 	lrc_update_regs(ce, engine, head);
1745 }
1746 
1747 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1748 {
1749 	/*
1750 	 * Wa_22011802037: In addition to stopping the cs, we need
1751 	 * to wait for any pending mi force wakeups
1752 	 */
1753 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1754 		intel_engine_stop_cs(engine);
1755 		intel_engine_wait_for_pending_mi_fw(engine);
1756 	}
1757 }
1758 
1759 static void guc_reset_nop(struct intel_engine_cs *engine)
1760 {
1761 }
1762 
1763 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1764 {
1765 }
1766 
1767 static void
1768 __unwind_incomplete_requests(struct intel_context *ce)
1769 {
1770 	struct i915_request *rq, *rn;
1771 	struct list_head *pl;
1772 	int prio = I915_PRIORITY_INVALID;
1773 	struct i915_sched_engine * const sched_engine =
1774 		ce->engine->sched_engine;
1775 	unsigned long flags;
1776 
1777 	spin_lock_irqsave(&sched_engine->lock, flags);
1778 	spin_lock(&ce->guc_state.lock);
1779 	list_for_each_entry_safe_reverse(rq, rn,
1780 					 &ce->guc_state.requests,
1781 					 sched.link) {
1782 		if (i915_request_completed(rq))
1783 			continue;
1784 
1785 		list_del_init(&rq->sched.link);
1786 		__i915_request_unsubmit(rq);
1787 
1788 		/* Push the request back into the queue for later resubmission. */
1789 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1790 		if (rq_prio(rq) != prio) {
1791 			prio = rq_prio(rq);
1792 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1793 		}
1794 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1795 
1796 		list_add(&rq->sched.link, pl);
1797 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1798 	}
1799 	spin_unlock(&ce->guc_state.lock);
1800 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1801 }
1802 
1803 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1804 {
1805 	bool guilty;
1806 	struct i915_request *rq;
1807 	unsigned long flags;
1808 	u32 head;
1809 	int i, number_children = ce->parallel.number_children;
1810 	struct intel_context *parent = ce;
1811 
1812 	GEM_BUG_ON(intel_context_is_child(ce));
1813 
1814 	intel_context_get(ce);
1815 
1816 	/*
1817 	 * GuC will implicitly mark the context as non-schedulable when it sends
1818 	 * the reset notification. Make sure our state reflects this change. The
1819 	 * context will be marked enabled on resubmission.
1820 	 */
1821 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1822 	clr_context_enabled(ce);
1823 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1824 
1825 	/*
1826 	 * For each context in the relationship find the hanging request
1827 	 * resetting each context / request as needed
1828 	 */
1829 	for (i = 0; i < number_children + 1; ++i) {
1830 		if (!intel_context_is_pinned(ce))
1831 			goto next_context;
1832 
1833 		guilty = false;
1834 		rq = intel_context_get_active_request(ce);
1835 		if (!rq) {
1836 			head = ce->ring->tail;
1837 			goto out_replay;
1838 		}
1839 
1840 		if (i915_request_started(rq))
1841 			guilty = stalled & ce->engine->mask;
1842 
1843 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1844 		head = intel_ring_wrap(ce->ring, rq->head);
1845 
1846 		__i915_request_reset(rq, guilty);
1847 		i915_request_put(rq);
1848 out_replay:
1849 		guc_reset_state(ce, head, guilty);
1850 next_context:
1851 		if (i != number_children)
1852 			ce = list_next_entry(ce, parallel.child_link);
1853 	}
1854 
1855 	__unwind_incomplete_requests(parent);
1856 	intel_context_put(parent);
1857 }
1858 
1859 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1860 {
1861 	struct intel_guc_tlb_wait *wait;
1862 	unsigned long i;
1863 
1864 	if (!intel_guc_tlb_invalidation_is_available(guc))
1865 		return;
1866 
1867 	xa_lock_irq(&guc->tlb_lookup);
1868 	xa_for_each(&guc->tlb_lookup, i, wait)
1869 		wake_up(&wait->wq);
1870 	xa_unlock_irq(&guc->tlb_lookup);
1871 }
1872 
1873 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1874 {
1875 	struct intel_context *ce;
1876 	unsigned long index;
1877 	unsigned long flags;
1878 
1879 	if (unlikely(!guc_submission_initialized(guc))) {
1880 		/* Reset called during driver load? GuC not yet initialised! */
1881 		return;
1882 	}
1883 
1884 	xa_lock_irqsave(&guc->context_lookup, flags);
1885 	xa_for_each(&guc->context_lookup, index, ce) {
1886 		if (!kref_get_unless_zero(&ce->ref))
1887 			continue;
1888 
1889 		xa_unlock(&guc->context_lookup);
1890 
1891 		if (intel_context_is_pinned(ce) &&
1892 		    !intel_context_is_child(ce))
1893 			__guc_reset_context(ce, stalled);
1894 
1895 		intel_context_put(ce);
1896 
1897 		xa_lock(&guc->context_lookup);
1898 	}
1899 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1900 
1901 	/* GuC is blown away, drop all references to contexts */
1902 	xa_destroy(&guc->context_lookup);
1903 }
1904 
1905 static void guc_cancel_context_requests(struct intel_context *ce)
1906 {
1907 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1908 	struct i915_request *rq;
1909 	unsigned long flags;
1910 
1911 	/* Mark all executing requests as skipped. */
1912 	spin_lock_irqsave(&sched_engine->lock, flags);
1913 	spin_lock(&ce->guc_state.lock);
1914 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1915 		i915_request_put(i915_request_mark_eio(rq));
1916 	spin_unlock(&ce->guc_state.lock);
1917 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1918 }
1919 
1920 static void
1921 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1922 {
1923 	struct i915_request *rq, *rn;
1924 	struct rb_node *rb;
1925 	unsigned long flags;
1926 
1927 	/* Can be called during boot if GuC fails to load */
1928 	if (!sched_engine)
1929 		return;
1930 
1931 	/*
1932 	 * Before we call engine->cancel_requests(), we should have exclusive
1933 	 * access to the submission state. This is arranged for us by the
1934 	 * caller disabling the interrupt generation, the tasklet and other
1935 	 * threads that may then access the same state, giving us a free hand
1936 	 * to reset state. However, we still need to let lockdep be aware that
1937 	 * we know this state may be accessed in hardirq context, so we
1938 	 * disable the irq around this manipulation and we want to keep
1939 	 * the spinlock focused on its duties and not accidentally conflate
1940 	 * coverage to the submission's irq state. (Similarly, although we
1941 	 * shouldn't need to disable irq around the manipulation of the
1942 	 * submission's irq state, we also wish to remind ourselves that
1943 	 * it is irq state.)
1944 	 */
1945 	spin_lock_irqsave(&sched_engine->lock, flags);
1946 
1947 	/* Flush the queued requests to the timeline list (for retiring). */
1948 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1949 		struct i915_priolist *p = to_priolist(rb);
1950 
1951 		priolist_for_each_request_consume(rq, rn, p) {
1952 			list_del_init(&rq->sched.link);
1953 
1954 			__i915_request_submit(rq);
1955 
1956 			i915_request_put(i915_request_mark_eio(rq));
1957 		}
1958 
1959 		rb_erase_cached(&p->node, &sched_engine->queue);
1960 		i915_priolist_free(p);
1961 	}
1962 
1963 	/* Remaining _unready_ requests will be nop'ed when submitted */
1964 
1965 	sched_engine->queue_priority_hint = INT_MIN;
1966 	sched_engine->queue = RB_ROOT_CACHED;
1967 
1968 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1969 }
1970 
1971 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1972 {
1973 	struct intel_context *ce;
1974 	unsigned long index;
1975 	unsigned long flags;
1976 
1977 	xa_lock_irqsave(&guc->context_lookup, flags);
1978 	xa_for_each(&guc->context_lookup, index, ce) {
1979 		if (!kref_get_unless_zero(&ce->ref))
1980 			continue;
1981 
1982 		xa_unlock(&guc->context_lookup);
1983 
1984 		if (intel_context_is_pinned(ce) &&
1985 		    !intel_context_is_child(ce))
1986 			guc_cancel_context_requests(ce);
1987 
1988 		intel_context_put(ce);
1989 
1990 		xa_lock(&guc->context_lookup);
1991 	}
1992 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1993 
1994 	guc_cancel_sched_engine_requests(guc->sched_engine);
1995 
1996 	/* GuC is blown away, drop all references to contexts */
1997 	xa_destroy(&guc->context_lookup);
1998 
1999 	/*
2000 	 * Wedged GT won't respond to any TLB invalidation request. Simply
2001 	 * release all the blocked waiters.
2002 	 */
2003 	wake_up_all_tlb_invalidate(guc);
2004 }
2005 
2006 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2007 {
2008 	/* Reset called during driver load or during wedge? */
2009 	if (unlikely(!guc_submission_initialized(guc) ||
2010 		     !intel_guc_is_fw_running(guc) ||
2011 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
2012 		return;
2013 	}
2014 
2015 	/*
2016 	 * Technically possible for either of these values to be non-zero here,
2017 	 * but very unlikely + harmless. Regardless let's add a warn so we can
2018 	 * see in CI if this happens frequently / a precursor to taking down the
2019 	 * machine.
2020 	 */
2021 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
2022 	atomic_set(&guc->outstanding_submission_g2h, 0);
2023 
2024 	intel_guc_global_policies_update(guc);
2025 	enable_submission(guc);
2026 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
2027 
2028 	/*
2029 	 * The full GT reset will have cleared the TLB caches and flushed the
2030 	 * G2H message queue; we can release all the blocked waiters.
2031 	 */
2032 	wake_up_all_tlb_invalidate(guc);
2033 }
2034 
2035 static void destroyed_worker_func(struct work_struct *w);
2036 static void reset_fail_worker_func(struct work_struct *w);
2037 
2038 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2039 {
2040 	return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2041 		intel_guc_is_ready(guc);
2042 }
2043 
2044 static int init_tlb_lookup(struct intel_guc *guc)
2045 {
2046 	struct intel_guc_tlb_wait *wait;
2047 	int err;
2048 
2049 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2050 		return 0;
2051 
2052 	xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2053 
2054 	wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2055 	if (!wait)
2056 		return -ENOMEM;
2057 
2058 	init_waitqueue_head(&wait->wq);
2059 
2060 	/* Preallocate a shared id for use under memory pressure. */
2061 	err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2062 				  xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2063 	if (err < 0) {
2064 		kfree(wait);
2065 		return err;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 static void fini_tlb_lookup(struct intel_guc *guc)
2072 {
2073 	struct intel_guc_tlb_wait *wait;
2074 
2075 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2076 		return;
2077 
2078 	wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2079 	if (wait && wait->busy)
2080 		guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2081 	kfree(wait);
2082 
2083 	xa_destroy(&guc->tlb_lookup);
2084 }
2085 
2086 /*
2087  * Set up the memory resources to be shared with the GuC (via the GGTT)
2088  * at firmware loading time.
2089  */
2090 int intel_guc_submission_init(struct intel_guc *guc)
2091 {
2092 	struct intel_gt *gt = guc_to_gt(guc);
2093 	int ret;
2094 
2095 	if (guc->submission_initialized)
2096 		return 0;
2097 
2098 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2099 		ret = guc_lrc_desc_pool_create_v69(guc);
2100 		if (ret)
2101 			return ret;
2102 	}
2103 
2104 	ret = init_tlb_lookup(guc);
2105 	if (ret)
2106 		goto destroy_pool;
2107 
2108 	guc->submission_state.guc_ids_bitmap =
2109 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2110 	if (!guc->submission_state.guc_ids_bitmap) {
2111 		ret = -ENOMEM;
2112 		goto destroy_tlb;
2113 	}
2114 
2115 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2116 	guc->timestamp.shift = gpm_timestamp_shift(gt);
2117 	guc->submission_initialized = true;
2118 
2119 	return 0;
2120 
2121 destroy_tlb:
2122 	fini_tlb_lookup(guc);
2123 destroy_pool:
2124 	guc_lrc_desc_pool_destroy_v69(guc);
2125 	return ret;
2126 }
2127 
2128 void intel_guc_submission_fini(struct intel_guc *guc)
2129 {
2130 	if (!guc->submission_initialized)
2131 		return;
2132 
2133 	guc_fini_engine_stats(guc);
2134 	guc_flush_destroyed_contexts(guc);
2135 	guc_lrc_desc_pool_destroy_v69(guc);
2136 	i915_sched_engine_put(guc->sched_engine);
2137 	bitmap_free(guc->submission_state.guc_ids_bitmap);
2138 	fini_tlb_lookup(guc);
2139 	guc->submission_initialized = false;
2140 }
2141 
2142 static inline void queue_request(struct i915_sched_engine *sched_engine,
2143 				 struct i915_request *rq,
2144 				 int prio)
2145 {
2146 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2147 	list_add_tail(&rq->sched.link,
2148 		      i915_sched_lookup_priolist(sched_engine, prio));
2149 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2150 	tasklet_hi_schedule(&sched_engine->tasklet);
2151 }
2152 
2153 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2154 				     struct i915_request *rq)
2155 {
2156 	int ret = 0;
2157 
2158 	__i915_request_submit(rq);
2159 
2160 	trace_i915_request_in(rq, 0);
2161 
2162 	if (is_multi_lrc_rq(rq)) {
2163 		if (multi_lrc_submit(rq)) {
2164 			ret = guc_wq_item_append(guc, rq);
2165 			if (!ret)
2166 				ret = guc_add_request(guc, rq);
2167 		}
2168 	} else {
2169 		guc_set_lrc_tail(rq);
2170 		ret = guc_add_request(guc, rq);
2171 	}
2172 
2173 	if (unlikely(ret == -EPIPE))
2174 		disable_submission(guc);
2175 
2176 	return ret;
2177 }
2178 
2179 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2180 {
2181 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2182 	struct intel_context *ce = request_to_scheduling_context(rq);
2183 
2184 	return submission_disabled(guc) || guc->stalled_request ||
2185 		!i915_sched_engine_is_empty(sched_engine) ||
2186 		!ctx_id_mapped(guc, ce->guc_id.id);
2187 }
2188 
2189 static void guc_submit_request(struct i915_request *rq)
2190 {
2191 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2192 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
2193 	unsigned long flags;
2194 
2195 	/* Will be called from irq-context when using foreign fences. */
2196 	spin_lock_irqsave(&sched_engine->lock, flags);
2197 
2198 	if (need_tasklet(guc, rq))
2199 		queue_request(sched_engine, rq, rq_prio(rq));
2200 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2201 		tasklet_hi_schedule(&sched_engine->tasklet);
2202 
2203 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2204 }
2205 
2206 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2207 {
2208 	int ret;
2209 
2210 	GEM_BUG_ON(intel_context_is_child(ce));
2211 
2212 	if (intel_context_is_parent(ce))
2213 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2214 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2215 					      order_base_2(ce->parallel.number_children
2216 							   + 1));
2217 	else
2218 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2219 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2220 				     guc->submission_state.num_guc_ids,
2221 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2222 				     __GFP_NOWARN);
2223 	if (unlikely(ret < 0))
2224 		return ret;
2225 
2226 	if (!intel_context_is_parent(ce))
2227 		++guc->submission_state.guc_ids_in_use;
2228 
2229 	ce->guc_id.id = ret;
2230 	return 0;
2231 }
2232 
2233 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2234 {
2235 	GEM_BUG_ON(intel_context_is_child(ce));
2236 
2237 	if (!context_guc_id_invalid(ce)) {
2238 		if (intel_context_is_parent(ce)) {
2239 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2240 					      ce->guc_id.id,
2241 					      order_base_2(ce->parallel.number_children
2242 							   + 1));
2243 		} else {
2244 			--guc->submission_state.guc_ids_in_use;
2245 			ida_simple_remove(&guc->submission_state.guc_ids,
2246 					  ce->guc_id.id);
2247 		}
2248 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2249 		set_context_guc_id_invalid(ce);
2250 	}
2251 	if (!list_empty(&ce->guc_id.link))
2252 		list_del_init(&ce->guc_id.link);
2253 }
2254 
2255 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2256 {
2257 	unsigned long flags;
2258 
2259 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2260 	__release_guc_id(guc, ce);
2261 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2262 }
2263 
2264 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2265 {
2266 	struct intel_context *cn;
2267 
2268 	lockdep_assert_held(&guc->submission_state.lock);
2269 	GEM_BUG_ON(intel_context_is_child(ce));
2270 	GEM_BUG_ON(intel_context_is_parent(ce));
2271 
2272 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2273 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2274 				      struct intel_context,
2275 				      guc_id.link);
2276 
2277 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2278 		GEM_BUG_ON(context_guc_id_invalid(cn));
2279 		GEM_BUG_ON(intel_context_is_child(cn));
2280 		GEM_BUG_ON(intel_context_is_parent(cn));
2281 
2282 		list_del_init(&cn->guc_id.link);
2283 		ce->guc_id.id = cn->guc_id.id;
2284 
2285 		spin_lock(&cn->guc_state.lock);
2286 		clr_context_registered(cn);
2287 		spin_unlock(&cn->guc_state.lock);
2288 
2289 		set_context_guc_id_invalid(cn);
2290 
2291 #ifdef CONFIG_DRM_I915_SELFTEST
2292 		guc->number_guc_id_stolen++;
2293 #endif
2294 
2295 		return 0;
2296 	} else {
2297 		return -EAGAIN;
2298 	}
2299 }
2300 
2301 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2302 {
2303 	int ret;
2304 
2305 	lockdep_assert_held(&guc->submission_state.lock);
2306 	GEM_BUG_ON(intel_context_is_child(ce));
2307 
2308 	ret = new_guc_id(guc, ce);
2309 	if (unlikely(ret < 0)) {
2310 		if (intel_context_is_parent(ce))
2311 			return -ENOSPC;
2312 
2313 		ret = steal_guc_id(guc, ce);
2314 		if (ret < 0)
2315 			return ret;
2316 	}
2317 
2318 	if (intel_context_is_parent(ce)) {
2319 		struct intel_context *child;
2320 		int i = 1;
2321 
2322 		for_each_child(ce, child)
2323 			child->guc_id.id = ce->guc_id.id + i++;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 #define PIN_GUC_ID_TRIES	4
2330 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2331 {
2332 	int ret = 0;
2333 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2334 
2335 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2336 
2337 try_again:
2338 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2339 
2340 	might_lock(&ce->guc_state.lock);
2341 
2342 	if (context_guc_id_invalid(ce)) {
2343 		ret = assign_guc_id(guc, ce);
2344 		if (ret)
2345 			goto out_unlock;
2346 		ret = 1;	/* Indidcates newly assigned guc_id */
2347 	}
2348 	if (!list_empty(&ce->guc_id.link))
2349 		list_del_init(&ce->guc_id.link);
2350 	atomic_inc(&ce->guc_id.ref);
2351 
2352 out_unlock:
2353 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2354 
2355 	/*
2356 	 * -EAGAIN indicates no guc_id are available, let's retire any
2357 	 * outstanding requests to see if that frees up a guc_id. If the first
2358 	 * retire didn't help, insert a sleep with the timeslice duration before
2359 	 * attempting to retire more requests. Double the sleep period each
2360 	 * subsequent pass before finally giving up. The sleep period has max of
2361 	 * 100ms and minimum of 1ms.
2362 	 */
2363 	if (ret == -EAGAIN && --tries) {
2364 		if (PIN_GUC_ID_TRIES - tries > 1) {
2365 			unsigned int timeslice_shifted =
2366 				ce->engine->props.timeslice_duration_ms <<
2367 				(PIN_GUC_ID_TRIES - tries - 2);
2368 			unsigned int max = min_t(unsigned int, 100,
2369 						 timeslice_shifted);
2370 
2371 			msleep(max_t(unsigned int, max, 1));
2372 		}
2373 		intel_gt_retire_requests(guc_to_gt(guc));
2374 		goto try_again;
2375 	}
2376 
2377 	return ret;
2378 }
2379 
2380 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2381 {
2382 	unsigned long flags;
2383 
2384 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2385 	GEM_BUG_ON(intel_context_is_child(ce));
2386 
2387 	if (unlikely(context_guc_id_invalid(ce) ||
2388 		     intel_context_is_parent(ce)))
2389 		return;
2390 
2391 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2392 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2393 	    !atomic_read(&ce->guc_id.ref))
2394 		list_add_tail(&ce->guc_id.link,
2395 			      &guc->submission_state.guc_id_list);
2396 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2397 }
2398 
2399 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2400 					       struct intel_context *ce,
2401 					       u32 guc_id,
2402 					       u32 offset,
2403 					       bool loop)
2404 {
2405 	struct intel_context *child;
2406 	u32 action[4 + MAX_ENGINE_INSTANCE];
2407 	int len = 0;
2408 
2409 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2410 
2411 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2412 	action[len++] = guc_id;
2413 	action[len++] = ce->parallel.number_children + 1;
2414 	action[len++] = offset;
2415 	for_each_child(ce, child) {
2416 		offset += sizeof(struct guc_lrc_desc_v69);
2417 		action[len++] = offset;
2418 	}
2419 
2420 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2421 }
2422 
2423 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2424 					       struct intel_context *ce,
2425 					       struct guc_ctxt_registration_info *info,
2426 					       bool loop)
2427 {
2428 	struct intel_context *child;
2429 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2430 	int len = 0;
2431 	u32 next_id;
2432 
2433 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2434 
2435 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2436 	action[len++] = info->flags;
2437 	action[len++] = info->context_idx;
2438 	action[len++] = info->engine_class;
2439 	action[len++] = info->engine_submit_mask;
2440 	action[len++] = info->wq_desc_lo;
2441 	action[len++] = info->wq_desc_hi;
2442 	action[len++] = info->wq_base_lo;
2443 	action[len++] = info->wq_base_hi;
2444 	action[len++] = info->wq_size;
2445 	action[len++] = ce->parallel.number_children + 1;
2446 	action[len++] = info->hwlrca_lo;
2447 	action[len++] = info->hwlrca_hi;
2448 
2449 	next_id = info->context_idx + 1;
2450 	for_each_child(ce, child) {
2451 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2452 
2453 		/*
2454 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2455 		 * only supports 32 bit currently.
2456 		 */
2457 		action[len++] = lower_32_bits(child->lrc.lrca);
2458 		action[len++] = upper_32_bits(child->lrc.lrca);
2459 	}
2460 
2461 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2462 
2463 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2464 }
2465 
2466 static int __guc_action_register_context_v69(struct intel_guc *guc,
2467 					     u32 guc_id,
2468 					     u32 offset,
2469 					     bool loop)
2470 {
2471 	u32 action[] = {
2472 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2473 		guc_id,
2474 		offset,
2475 	};
2476 
2477 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2478 					     0, loop);
2479 }
2480 
2481 static int __guc_action_register_context_v70(struct intel_guc *guc,
2482 					     struct guc_ctxt_registration_info *info,
2483 					     bool loop)
2484 {
2485 	u32 action[] = {
2486 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2487 		info->flags,
2488 		info->context_idx,
2489 		info->engine_class,
2490 		info->engine_submit_mask,
2491 		info->wq_desc_lo,
2492 		info->wq_desc_hi,
2493 		info->wq_base_lo,
2494 		info->wq_base_hi,
2495 		info->wq_size,
2496 		info->hwlrca_lo,
2497 		info->hwlrca_hi,
2498 	};
2499 
2500 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2501 					     0, loop);
2502 }
2503 
2504 static void prepare_context_registration_info_v69(struct intel_context *ce);
2505 static void prepare_context_registration_info_v70(struct intel_context *ce,
2506 						  struct guc_ctxt_registration_info *info);
2507 
2508 static int
2509 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2510 {
2511 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2512 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2513 
2514 	prepare_context_registration_info_v69(ce);
2515 
2516 	if (intel_context_is_parent(ce))
2517 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2518 							   offset, loop);
2519 	else
2520 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2521 							 offset, loop);
2522 }
2523 
2524 static int
2525 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2526 {
2527 	struct guc_ctxt_registration_info info;
2528 
2529 	prepare_context_registration_info_v70(ce, &info);
2530 
2531 	if (intel_context_is_parent(ce))
2532 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2533 	else
2534 		return __guc_action_register_context_v70(guc, &info, loop);
2535 }
2536 
2537 static int register_context(struct intel_context *ce, bool loop)
2538 {
2539 	struct intel_guc *guc = ce_to_guc(ce);
2540 	int ret;
2541 
2542 	GEM_BUG_ON(intel_context_is_child(ce));
2543 	trace_intel_context_register(ce);
2544 
2545 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2546 		ret = register_context_v70(guc, ce, loop);
2547 	else
2548 		ret = register_context_v69(guc, ce, loop);
2549 
2550 	if (likely(!ret)) {
2551 		unsigned long flags;
2552 
2553 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2554 		set_context_registered(ce);
2555 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2556 
2557 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2558 			guc_context_policy_init_v70(ce, loop);
2559 	}
2560 
2561 	return ret;
2562 }
2563 
2564 static int __guc_action_deregister_context(struct intel_guc *guc,
2565 					   u32 guc_id)
2566 {
2567 	u32 action[] = {
2568 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2569 		guc_id,
2570 	};
2571 
2572 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2573 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2574 					     true);
2575 }
2576 
2577 static int deregister_context(struct intel_context *ce, u32 guc_id)
2578 {
2579 	struct intel_guc *guc = ce_to_guc(ce);
2580 
2581 	GEM_BUG_ON(intel_context_is_child(ce));
2582 	trace_intel_context_deregister(ce);
2583 
2584 	return __guc_action_deregister_context(guc, guc_id);
2585 }
2586 
2587 static inline void clear_children_join_go_memory(struct intel_context *ce)
2588 {
2589 	struct parent_scratch *ps = __get_parent_scratch(ce);
2590 	int i;
2591 
2592 	ps->go.semaphore = 0;
2593 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2594 		ps->join[i].semaphore = 0;
2595 }
2596 
2597 static inline u32 get_children_go_value(struct intel_context *ce)
2598 {
2599 	return __get_parent_scratch(ce)->go.semaphore;
2600 }
2601 
2602 static inline u32 get_children_join_value(struct intel_context *ce,
2603 					  u8 child_index)
2604 {
2605 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2606 }
2607 
2608 struct context_policy {
2609 	u32 count;
2610 	struct guc_update_context_policy h2g;
2611 };
2612 
2613 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2614 {
2615 	size_t bytes = sizeof(policy->h2g.header) +
2616 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2617 
2618 	return bytes / sizeof(u32);
2619 }
2620 
2621 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2622 {
2623 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2624 	policy->h2g.header.ctx_id = guc_id;
2625 	policy->count = 0;
2626 }
2627 
2628 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2629 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2630 { \
2631 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2632 	policy->h2g.klv[policy->count].kl = \
2633 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2634 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2635 	policy->h2g.klv[policy->count].value = data; \
2636 	policy->count++; \
2637 }
2638 
2639 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2640 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2641 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2642 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2643 
2644 #undef MAKE_CONTEXT_POLICY_ADD
2645 
2646 static int __guc_context_set_context_policies(struct intel_guc *guc,
2647 					      struct context_policy *policy,
2648 					      bool loop)
2649 {
2650 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2651 					__guc_context_policy_action_size(policy),
2652 					0, loop);
2653 }
2654 
2655 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2656 {
2657 	struct intel_engine_cs *engine = ce->engine;
2658 	struct intel_guc *guc = &engine->gt->uc.guc;
2659 	struct context_policy policy;
2660 	u32 execution_quantum;
2661 	u32 preemption_timeout;
2662 	unsigned long flags;
2663 	int ret;
2664 
2665 	/* NB: For both of these, zero means disabled. */
2666 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2667 				  execution_quantum));
2668 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2669 				  preemption_timeout));
2670 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2671 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2672 
2673 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2674 
2675 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2676 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2677 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2678 
2679 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2680 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2681 
2682 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2683 
2684 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2685 	if (ret != 0)
2686 		set_context_policy_required(ce);
2687 	else
2688 		clr_context_policy_required(ce);
2689 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2690 
2691 	return ret;
2692 }
2693 
2694 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2695 					struct guc_lrc_desc_v69 *desc)
2696 {
2697 	desc->policy_flags = 0;
2698 
2699 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2700 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2701 
2702 	/* NB: For both of these, zero means disabled. */
2703 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2704 				  desc->execution_quantum));
2705 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2706 				  desc->preemption_timeout));
2707 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2708 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2709 }
2710 
2711 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2712 {
2713 	/*
2714 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2715 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2716 	 */
2717 	switch (prio) {
2718 	default:
2719 		MISSING_CASE(prio);
2720 		fallthrough;
2721 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2722 		return GEN12_CTX_PRIORITY_NORMAL;
2723 	case GUC_CLIENT_PRIORITY_NORMAL:
2724 		return GEN12_CTX_PRIORITY_LOW;
2725 	case GUC_CLIENT_PRIORITY_HIGH:
2726 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2727 		return GEN12_CTX_PRIORITY_HIGH;
2728 	}
2729 }
2730 
2731 static void prepare_context_registration_info_v69(struct intel_context *ce)
2732 {
2733 	struct intel_engine_cs *engine = ce->engine;
2734 	struct intel_guc *guc = &engine->gt->uc.guc;
2735 	u32 ctx_id = ce->guc_id.id;
2736 	struct guc_lrc_desc_v69 *desc;
2737 	struct intel_context *child;
2738 
2739 	GEM_BUG_ON(!engine->mask);
2740 
2741 	/*
2742 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2743 	 * based on CT vma region.
2744 	 */
2745 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2746 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2747 
2748 	desc = __get_lrc_desc_v69(guc, ctx_id);
2749 	GEM_BUG_ON(!desc);
2750 	desc->engine_class = engine_class_to_guc_class(engine->class);
2751 	desc->engine_submit_mask = engine->logical_mask;
2752 	desc->hw_context_desc = ce->lrc.lrca;
2753 	desc->priority = ce->guc_state.prio;
2754 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2755 	guc_context_policy_init_v69(engine, desc);
2756 
2757 	/*
2758 	 * If context is a parent, we need to register a process descriptor
2759 	 * describing a work queue and register all child contexts.
2760 	 */
2761 	if (intel_context_is_parent(ce)) {
2762 		struct guc_process_desc_v69 *pdesc;
2763 
2764 		ce->parallel.guc.wqi_tail = 0;
2765 		ce->parallel.guc.wqi_head = 0;
2766 
2767 		desc->process_desc = i915_ggtt_offset(ce->state) +
2768 			__get_parent_scratch_offset(ce);
2769 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2770 			__get_wq_offset(ce);
2771 		desc->wq_size = WQ_SIZE;
2772 
2773 		pdesc = __get_process_desc_v69(ce);
2774 		memset(pdesc, 0, sizeof(*(pdesc)));
2775 		pdesc->stage_id = ce->guc_id.id;
2776 		pdesc->wq_base_addr = desc->wq_addr;
2777 		pdesc->wq_size_bytes = desc->wq_size;
2778 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2779 
2780 		ce->parallel.guc.wq_head = &pdesc->head;
2781 		ce->parallel.guc.wq_tail = &pdesc->tail;
2782 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2783 
2784 		for_each_child(ce, child) {
2785 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2786 
2787 			desc->engine_class =
2788 				engine_class_to_guc_class(engine->class);
2789 			desc->hw_context_desc = child->lrc.lrca;
2790 			desc->priority = ce->guc_state.prio;
2791 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2792 			guc_context_policy_init_v69(engine, desc);
2793 		}
2794 
2795 		clear_children_join_go_memory(ce);
2796 	}
2797 }
2798 
2799 static void prepare_context_registration_info_v70(struct intel_context *ce,
2800 						  struct guc_ctxt_registration_info *info)
2801 {
2802 	struct intel_engine_cs *engine = ce->engine;
2803 	struct intel_guc *guc = &engine->gt->uc.guc;
2804 	u32 ctx_id = ce->guc_id.id;
2805 
2806 	GEM_BUG_ON(!engine->mask);
2807 
2808 	/*
2809 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2810 	 * based on CT vma region.
2811 	 */
2812 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2813 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2814 
2815 	memset(info, 0, sizeof(*info));
2816 	info->context_idx = ctx_id;
2817 	info->engine_class = engine_class_to_guc_class(engine->class);
2818 	info->engine_submit_mask = engine->logical_mask;
2819 	/*
2820 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2821 	 * only supports 32 bit currently.
2822 	 */
2823 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2824 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2825 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2826 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2827 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2828 
2829 	/*
2830 	 * If context is a parent, we need to register a process descriptor
2831 	 * describing a work queue and register all child contexts.
2832 	 */
2833 	if (intel_context_is_parent(ce)) {
2834 		struct guc_sched_wq_desc *wq_desc;
2835 		u64 wq_desc_offset, wq_base_offset;
2836 
2837 		ce->parallel.guc.wqi_tail = 0;
2838 		ce->parallel.guc.wqi_head = 0;
2839 
2840 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2841 				 __get_parent_scratch_offset(ce);
2842 		wq_base_offset = i915_ggtt_offset(ce->state) +
2843 				 __get_wq_offset(ce);
2844 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2845 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2846 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2847 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2848 		info->wq_size = WQ_SIZE;
2849 
2850 		wq_desc = __get_wq_desc_v70(ce);
2851 		memset(wq_desc, 0, sizeof(*wq_desc));
2852 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2853 
2854 		ce->parallel.guc.wq_head = &wq_desc->head;
2855 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2856 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2857 
2858 		clear_children_join_go_memory(ce);
2859 	}
2860 }
2861 
2862 static int try_context_registration(struct intel_context *ce, bool loop)
2863 {
2864 	struct intel_engine_cs *engine = ce->engine;
2865 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2866 	struct intel_guc *guc = &engine->gt->uc.guc;
2867 	intel_wakeref_t wakeref;
2868 	u32 ctx_id = ce->guc_id.id;
2869 	bool context_registered;
2870 	int ret = 0;
2871 
2872 	GEM_BUG_ON(!sched_state_is_init(ce));
2873 
2874 	context_registered = ctx_id_mapped(guc, ctx_id);
2875 
2876 	clr_ctx_id_mapping(guc, ctx_id);
2877 	set_ctx_id_mapping(guc, ctx_id, ce);
2878 
2879 	/*
2880 	 * The context_lookup xarray is used to determine if the hardware
2881 	 * context is currently registered. There are two cases in which it
2882 	 * could be registered either the guc_id has been stolen from another
2883 	 * context or the lrc descriptor address of this context has changed. In
2884 	 * either case the context needs to be deregistered with the GuC before
2885 	 * registering this context.
2886 	 */
2887 	if (context_registered) {
2888 		bool disabled;
2889 		unsigned long flags;
2890 
2891 		trace_intel_context_steal_guc_id(ce);
2892 		GEM_BUG_ON(!loop);
2893 
2894 		/* Seal race with Reset */
2895 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2896 		disabled = submission_disabled(guc);
2897 		if (likely(!disabled)) {
2898 			set_context_wait_for_deregister_to_register(ce);
2899 			intel_context_get(ce);
2900 		}
2901 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2902 		if (unlikely(disabled)) {
2903 			clr_ctx_id_mapping(guc, ctx_id);
2904 			return 0;	/* Will get registered later */
2905 		}
2906 
2907 		/*
2908 		 * If stealing the guc_id, this ce has the same guc_id as the
2909 		 * context whose guc_id was stolen.
2910 		 */
2911 		with_intel_runtime_pm(runtime_pm, wakeref)
2912 			ret = deregister_context(ce, ce->guc_id.id);
2913 		if (unlikely(ret == -ENODEV))
2914 			ret = 0;	/* Will get registered later */
2915 	} else {
2916 		with_intel_runtime_pm(runtime_pm, wakeref)
2917 			ret = register_context(ce, loop);
2918 		if (unlikely(ret == -EBUSY)) {
2919 			clr_ctx_id_mapping(guc, ctx_id);
2920 		} else if (unlikely(ret == -ENODEV)) {
2921 			clr_ctx_id_mapping(guc, ctx_id);
2922 			ret = 0;	/* Will get registered later */
2923 		}
2924 	}
2925 
2926 	return ret;
2927 }
2928 
2929 static int __guc_context_pre_pin(struct intel_context *ce,
2930 				 struct intel_engine_cs *engine,
2931 				 struct i915_gem_ww_ctx *ww,
2932 				 void **vaddr)
2933 {
2934 	return lrc_pre_pin(ce, engine, ww, vaddr);
2935 }
2936 
2937 static int __guc_context_pin(struct intel_context *ce,
2938 			     struct intel_engine_cs *engine,
2939 			     void *vaddr)
2940 {
2941 	if (i915_ggtt_offset(ce->state) !=
2942 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2943 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2944 
2945 	/*
2946 	 * GuC context gets pinned in guc_request_alloc. See that function for
2947 	 * explaination of why.
2948 	 */
2949 
2950 	return lrc_pin(ce, engine, vaddr);
2951 }
2952 
2953 static int guc_context_pre_pin(struct intel_context *ce,
2954 			       struct i915_gem_ww_ctx *ww,
2955 			       void **vaddr)
2956 {
2957 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2958 }
2959 
2960 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2961 {
2962 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2963 
2964 	if (likely(!ret && !intel_context_is_barrier(ce)))
2965 		intel_engine_pm_get(ce->engine);
2966 
2967 	return ret;
2968 }
2969 
2970 static void guc_context_unpin(struct intel_context *ce)
2971 {
2972 	struct intel_guc *guc = ce_to_guc(ce);
2973 
2974 	__guc_context_update_stats(ce);
2975 	unpin_guc_id(guc, ce);
2976 	lrc_unpin(ce);
2977 
2978 	if (likely(!intel_context_is_barrier(ce)))
2979 		intel_engine_pm_put_async(ce->engine);
2980 }
2981 
2982 static void guc_context_post_unpin(struct intel_context *ce)
2983 {
2984 	lrc_post_unpin(ce);
2985 }
2986 
2987 static void __guc_context_sched_enable(struct intel_guc *guc,
2988 				       struct intel_context *ce)
2989 {
2990 	u32 action[] = {
2991 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2992 		ce->guc_id.id,
2993 		GUC_CONTEXT_ENABLE
2994 	};
2995 
2996 	trace_intel_context_sched_enable(ce);
2997 
2998 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2999 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3000 }
3001 
3002 static void __guc_context_sched_disable(struct intel_guc *guc,
3003 					struct intel_context *ce,
3004 					u16 guc_id)
3005 {
3006 	u32 action[] = {
3007 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3008 		guc_id,	/* ce->guc_id.id not stable */
3009 		GUC_CONTEXT_DISABLE
3010 	};
3011 
3012 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3013 
3014 	GEM_BUG_ON(intel_context_is_child(ce));
3015 	trace_intel_context_sched_disable(ce);
3016 
3017 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3018 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3019 }
3020 
3021 static void guc_blocked_fence_complete(struct intel_context *ce)
3022 {
3023 	lockdep_assert_held(&ce->guc_state.lock);
3024 
3025 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
3026 		i915_sw_fence_complete(&ce->guc_state.blocked);
3027 }
3028 
3029 static void guc_blocked_fence_reinit(struct intel_context *ce)
3030 {
3031 	lockdep_assert_held(&ce->guc_state.lock);
3032 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3033 
3034 	/*
3035 	 * This fence is always complete unless a pending schedule disable is
3036 	 * outstanding. We arm the fence here and complete it when we receive
3037 	 * the pending schedule disable complete message.
3038 	 */
3039 	i915_sw_fence_fini(&ce->guc_state.blocked);
3040 	i915_sw_fence_reinit(&ce->guc_state.blocked);
3041 	i915_sw_fence_await(&ce->guc_state.blocked);
3042 	i915_sw_fence_commit(&ce->guc_state.blocked);
3043 }
3044 
3045 static u16 prep_context_pending_disable(struct intel_context *ce)
3046 {
3047 	lockdep_assert_held(&ce->guc_state.lock);
3048 
3049 	set_context_pending_disable(ce);
3050 	clr_context_enabled(ce);
3051 	guc_blocked_fence_reinit(ce);
3052 	intel_context_get(ce);
3053 
3054 	return ce->guc_id.id;
3055 }
3056 
3057 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3058 {
3059 	struct intel_guc *guc = ce_to_guc(ce);
3060 	unsigned long flags;
3061 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3062 	intel_wakeref_t wakeref;
3063 	u16 guc_id;
3064 	bool enabled;
3065 
3066 	GEM_BUG_ON(intel_context_is_child(ce));
3067 
3068 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3069 
3070 	incr_context_blocked(ce);
3071 
3072 	enabled = context_enabled(ce);
3073 	if (unlikely(!enabled || submission_disabled(guc))) {
3074 		if (enabled)
3075 			clr_context_enabled(ce);
3076 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3077 		return &ce->guc_state.blocked;
3078 	}
3079 
3080 	/*
3081 	 * We add +2 here as the schedule disable complete CTB handler calls
3082 	 * intel_context_sched_disable_unpin (-2 to pin_count).
3083 	 */
3084 	atomic_add(2, &ce->pin_count);
3085 
3086 	guc_id = prep_context_pending_disable(ce);
3087 
3088 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3089 
3090 	with_intel_runtime_pm(runtime_pm, wakeref)
3091 		__guc_context_sched_disable(guc, ce, guc_id);
3092 
3093 	return &ce->guc_state.blocked;
3094 }
3095 
3096 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3097 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3098 #define SCHED_STATE_NO_UNBLOCK \
3099 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
3100 	 SCHED_STATE_PENDING_DISABLE | \
3101 	 SCHED_STATE_BANNED)
3102 
3103 static bool context_cant_unblock(struct intel_context *ce)
3104 {
3105 	lockdep_assert_held(&ce->guc_state.lock);
3106 
3107 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3108 		context_guc_id_invalid(ce) ||
3109 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3110 		!intel_context_is_pinned(ce);
3111 }
3112 
3113 static void guc_context_unblock(struct intel_context *ce)
3114 {
3115 	struct intel_guc *guc = ce_to_guc(ce);
3116 	unsigned long flags;
3117 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3118 	intel_wakeref_t wakeref;
3119 	bool enable;
3120 
3121 	GEM_BUG_ON(context_enabled(ce));
3122 	GEM_BUG_ON(intel_context_is_child(ce));
3123 
3124 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3125 
3126 	if (unlikely(submission_disabled(guc) ||
3127 		     context_cant_unblock(ce))) {
3128 		enable = false;
3129 	} else {
3130 		enable = true;
3131 		set_context_pending_enable(ce);
3132 		set_context_enabled(ce);
3133 		intel_context_get(ce);
3134 	}
3135 
3136 	decr_context_blocked(ce);
3137 
3138 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3139 
3140 	if (enable) {
3141 		with_intel_runtime_pm(runtime_pm, wakeref)
3142 			__guc_context_sched_enable(guc, ce);
3143 	}
3144 }
3145 
3146 static void guc_context_cancel_request(struct intel_context *ce,
3147 				       struct i915_request *rq)
3148 {
3149 	struct intel_context *block_context =
3150 		request_to_scheduling_context(rq);
3151 
3152 	if (i915_sw_fence_signaled(&rq->submit)) {
3153 		struct i915_sw_fence *fence;
3154 
3155 		intel_context_get(ce);
3156 		fence = guc_context_block(block_context);
3157 		i915_sw_fence_wait(fence);
3158 		if (!i915_request_completed(rq)) {
3159 			__i915_request_skip(rq);
3160 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3161 					true);
3162 		}
3163 
3164 		guc_context_unblock(block_context);
3165 		intel_context_put(ce);
3166 	}
3167 }
3168 
3169 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3170 						 u16 guc_id,
3171 						 u32 preemption_timeout)
3172 {
3173 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3174 		struct context_policy policy;
3175 
3176 		__guc_context_policy_start_klv(&policy, guc_id);
3177 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3178 		__guc_context_set_context_policies(guc, &policy, true);
3179 	} else {
3180 		u32 action[] = {
3181 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3182 			guc_id,
3183 			preemption_timeout
3184 		};
3185 
3186 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3187 	}
3188 }
3189 
3190 static void
3191 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3192 		   unsigned int preempt_timeout_ms)
3193 {
3194 	struct intel_guc *guc = ce_to_guc(ce);
3195 	struct intel_runtime_pm *runtime_pm =
3196 		&ce->engine->gt->i915->runtime_pm;
3197 	intel_wakeref_t wakeref;
3198 	unsigned long flags;
3199 
3200 	GEM_BUG_ON(intel_context_is_child(ce));
3201 
3202 	guc_flush_submissions(guc);
3203 
3204 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3205 	set_context_banned(ce);
3206 
3207 	if (submission_disabled(guc) ||
3208 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3209 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3210 
3211 		guc_cancel_context_requests(ce);
3212 		intel_engine_signal_breadcrumbs(ce->engine);
3213 	} else if (!context_pending_disable(ce)) {
3214 		u16 guc_id;
3215 
3216 		/*
3217 		 * We add +2 here as the schedule disable complete CTB handler
3218 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3219 		 */
3220 		atomic_add(2, &ce->pin_count);
3221 
3222 		guc_id = prep_context_pending_disable(ce);
3223 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3224 
3225 		/*
3226 		 * In addition to disabling scheduling, set the preemption
3227 		 * timeout to the minimum value (1 us) so the banned context
3228 		 * gets kicked off the HW ASAP.
3229 		 */
3230 		with_intel_runtime_pm(runtime_pm, wakeref) {
3231 			__guc_context_set_preemption_timeout(guc, guc_id,
3232 							     preempt_timeout_ms);
3233 			__guc_context_sched_disable(guc, ce, guc_id);
3234 		}
3235 	} else {
3236 		if (!context_guc_id_invalid(ce))
3237 			with_intel_runtime_pm(runtime_pm, wakeref)
3238 				__guc_context_set_preemption_timeout(guc,
3239 								     ce->guc_id.id,
3240 								     preempt_timeout_ms);
3241 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3242 	}
3243 }
3244 
3245 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3246 			     unsigned long flags)
3247 	__releases(ce->guc_state.lock)
3248 {
3249 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3250 	intel_wakeref_t wakeref;
3251 	u16 guc_id;
3252 
3253 	lockdep_assert_held(&ce->guc_state.lock);
3254 	guc_id = prep_context_pending_disable(ce);
3255 
3256 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3257 
3258 	with_intel_runtime_pm(runtime_pm, wakeref)
3259 		__guc_context_sched_disable(guc, ce, guc_id);
3260 }
3261 
3262 static bool bypass_sched_disable(struct intel_guc *guc,
3263 				 struct intel_context *ce)
3264 {
3265 	lockdep_assert_held(&ce->guc_state.lock);
3266 	GEM_BUG_ON(intel_context_is_child(ce));
3267 
3268 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3269 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3270 		clr_context_enabled(ce);
3271 		return true;
3272 	}
3273 
3274 	return !context_enabled(ce);
3275 }
3276 
3277 static void __delay_sched_disable(struct work_struct *wrk)
3278 {
3279 	struct intel_context *ce =
3280 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3281 	struct intel_guc *guc = ce_to_guc(ce);
3282 	unsigned long flags;
3283 
3284 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3285 
3286 	if (bypass_sched_disable(guc, ce)) {
3287 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3288 		intel_context_sched_disable_unpin(ce);
3289 	} else {
3290 		do_sched_disable(guc, ce, flags);
3291 	}
3292 }
3293 
3294 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3295 {
3296 	/*
3297 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3298 	 * disable immediately.
3299 	 */
3300 	if (intel_context_is_parent(ce))
3301 		return true;
3302 
3303 	/*
3304 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3305 	 */
3306 	return guc->submission_state.guc_ids_in_use >
3307 		guc->submission_state.sched_disable_gucid_threshold;
3308 }
3309 
3310 static void guc_context_sched_disable(struct intel_context *ce)
3311 {
3312 	struct intel_guc *guc = ce_to_guc(ce);
3313 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3314 	unsigned long flags;
3315 
3316 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3317 
3318 	if (bypass_sched_disable(guc, ce)) {
3319 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3320 		intel_context_sched_disable_unpin(ce);
3321 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3322 		   delay) {
3323 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3324 		mod_delayed_work(system_unbound_wq,
3325 				 &ce->guc_state.sched_disable_delay_work,
3326 				 msecs_to_jiffies(delay));
3327 	} else {
3328 		do_sched_disable(guc, ce, flags);
3329 	}
3330 }
3331 
3332 static void guc_context_close(struct intel_context *ce)
3333 {
3334 	unsigned long flags;
3335 
3336 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3337 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3338 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3339 
3340 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3341 	set_context_close_done(ce);
3342 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3343 }
3344 
3345 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3346 {
3347 	struct intel_guc *guc = ce_to_guc(ce);
3348 	struct intel_gt *gt = guc_to_gt(guc);
3349 	unsigned long flags;
3350 	bool disabled;
3351 	int ret;
3352 
3353 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3354 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3355 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3356 	GEM_BUG_ON(context_enabled(ce));
3357 
3358 	/* Seal race with Reset */
3359 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3360 	disabled = submission_disabled(guc);
3361 	if (likely(!disabled)) {
3362 		/*
3363 		 * Take a gt-pm ref and change context state to be destroyed.
3364 		 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3365 		 */
3366 		__intel_gt_pm_get(gt);
3367 		set_context_destroyed(ce);
3368 		clr_context_registered(ce);
3369 	}
3370 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3371 
3372 	if (unlikely(disabled)) {
3373 		release_guc_id(guc, ce);
3374 		__guc_context_destroy(ce);
3375 		return 0;
3376 	}
3377 
3378 	/*
3379 	 * GuC is active, lets destroy this context, but at this point we can still be racing
3380 	 * with suspend, so we undo everything if the H2G fails in deregister_context so
3381 	 * that GuC reset will find this context during clean up.
3382 	 */
3383 	ret = deregister_context(ce, ce->guc_id.id);
3384 	if (ret) {
3385 		spin_lock(&ce->guc_state.lock);
3386 		set_context_registered(ce);
3387 		clr_context_destroyed(ce);
3388 		spin_unlock(&ce->guc_state.lock);
3389 		/*
3390 		 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3391 		 * the wakeref immediately but per function spec usage call this after unlock.
3392 		 */
3393 		intel_wakeref_put_async(&gt->wakeref);
3394 	}
3395 
3396 	return ret;
3397 }
3398 
3399 static void __guc_context_destroy(struct intel_context *ce)
3400 {
3401 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3402 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3403 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3404 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3405 
3406 	lrc_fini(ce);
3407 	intel_context_fini(ce);
3408 
3409 	if (intel_engine_is_virtual(ce->engine)) {
3410 		struct guc_virtual_engine *ve =
3411 			container_of(ce, typeof(*ve), context);
3412 
3413 		if (ve->base.breadcrumbs)
3414 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3415 
3416 		kfree(ve);
3417 	} else {
3418 		intel_context_free(ce);
3419 	}
3420 }
3421 
3422 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3423 {
3424 	struct intel_context *ce;
3425 	unsigned long flags;
3426 
3427 	GEM_BUG_ON(!submission_disabled(guc) &&
3428 		   guc_submission_initialized(guc));
3429 
3430 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3431 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3432 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3433 					      struct intel_context,
3434 					      destroyed_link);
3435 		if (ce)
3436 			list_del_init(&ce->destroyed_link);
3437 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3438 
3439 		if (!ce)
3440 			break;
3441 
3442 		release_guc_id(guc, ce);
3443 		__guc_context_destroy(ce);
3444 	}
3445 }
3446 
3447 static void deregister_destroyed_contexts(struct intel_guc *guc)
3448 {
3449 	struct intel_context *ce;
3450 	unsigned long flags;
3451 
3452 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3453 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3454 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3455 					      struct intel_context,
3456 					      destroyed_link);
3457 		if (ce)
3458 			list_del_init(&ce->destroyed_link);
3459 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3460 
3461 		if (!ce)
3462 			break;
3463 
3464 		if (guc_lrc_desc_unpin(ce)) {
3465 			/*
3466 			 * This means GuC's CT link severed mid-way which could happen
3467 			 * in suspend-resume corner cases. In this case, put the
3468 			 * context back into the destroyed_contexts list which will
3469 			 * get picked up on the next context deregistration event or
3470 			 * purged in a GuC sanitization event (reset/unload/wedged/...).
3471 			 */
3472 			spin_lock_irqsave(&guc->submission_state.lock, flags);
3473 			list_add_tail(&ce->destroyed_link,
3474 				      &guc->submission_state.destroyed_contexts);
3475 			spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3476 			/* Bail now since the list might never be emptied if h2gs fail */
3477 			break;
3478 		}
3479 
3480 	}
3481 }
3482 
3483 static void destroyed_worker_func(struct work_struct *w)
3484 {
3485 	struct intel_guc *guc = container_of(w, struct intel_guc,
3486 					     submission_state.destroyed_worker);
3487 	struct intel_gt *gt = guc_to_gt(guc);
3488 	intel_wakeref_t wakeref;
3489 
3490 	/*
3491 	 * In rare cases we can get here via async context-free fence-signals that
3492 	 * come very late in suspend flow or very early in resume flows. In these
3493 	 * cases, GuC won't be ready but just skipping it here is fine as these
3494 	 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3495 	 * end of suspend.. OR.. this worker can be picked up later on the next
3496 	 * context destruction trigger after resume-completes
3497 	 */
3498 	if (!intel_guc_is_ready(guc))
3499 		return;
3500 
3501 	with_intel_gt_pm(gt, wakeref)
3502 		deregister_destroyed_contexts(guc);
3503 }
3504 
3505 static void guc_context_destroy(struct kref *kref)
3506 {
3507 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3508 	struct intel_guc *guc = ce_to_guc(ce);
3509 	unsigned long flags;
3510 	bool destroy;
3511 
3512 	/*
3513 	 * If the guc_id is invalid this context has been stolen and we can free
3514 	 * it immediately. Also can be freed immediately if the context is not
3515 	 * registered with the GuC or the GuC is in the middle of a reset.
3516 	 */
3517 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3518 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3519 		!ctx_id_mapped(guc, ce->guc_id.id);
3520 	if (likely(!destroy)) {
3521 		if (!list_empty(&ce->guc_id.link))
3522 			list_del_init(&ce->guc_id.link);
3523 		list_add_tail(&ce->destroyed_link,
3524 			      &guc->submission_state.destroyed_contexts);
3525 	} else {
3526 		__release_guc_id(guc, ce);
3527 	}
3528 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3529 	if (unlikely(destroy)) {
3530 		__guc_context_destroy(ce);
3531 		return;
3532 	}
3533 
3534 	/*
3535 	 * We use a worker to issue the H2G to deregister the context as we can
3536 	 * take the GT PM for the first time which isn't allowed from an atomic
3537 	 * context.
3538 	 */
3539 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3540 }
3541 
3542 static int guc_context_alloc(struct intel_context *ce)
3543 {
3544 	return lrc_alloc(ce, ce->engine);
3545 }
3546 
3547 static void __guc_context_set_prio(struct intel_guc *guc,
3548 				   struct intel_context *ce)
3549 {
3550 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3551 		struct context_policy policy;
3552 
3553 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3554 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3555 		__guc_context_set_context_policies(guc, &policy, true);
3556 	} else {
3557 		u32 action[] = {
3558 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3559 			ce->guc_id.id,
3560 			ce->guc_state.prio,
3561 		};
3562 
3563 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3564 	}
3565 }
3566 
3567 static void guc_context_set_prio(struct intel_guc *guc,
3568 				 struct intel_context *ce,
3569 				 u8 prio)
3570 {
3571 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3572 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3573 	lockdep_assert_held(&ce->guc_state.lock);
3574 
3575 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3576 	    !context_registered(ce)) {
3577 		ce->guc_state.prio = prio;
3578 		return;
3579 	}
3580 
3581 	ce->guc_state.prio = prio;
3582 	__guc_context_set_prio(guc, ce);
3583 
3584 	trace_intel_context_set_prio(ce);
3585 }
3586 
3587 static inline u8 map_i915_prio_to_guc_prio(int prio)
3588 {
3589 	if (prio == I915_PRIORITY_NORMAL)
3590 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3591 	else if (prio < I915_PRIORITY_NORMAL)
3592 		return GUC_CLIENT_PRIORITY_NORMAL;
3593 	else if (prio < I915_PRIORITY_DISPLAY)
3594 		return GUC_CLIENT_PRIORITY_HIGH;
3595 	else
3596 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3597 }
3598 
3599 static inline void add_context_inflight_prio(struct intel_context *ce,
3600 					     u8 guc_prio)
3601 {
3602 	lockdep_assert_held(&ce->guc_state.lock);
3603 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3604 
3605 	++ce->guc_state.prio_count[guc_prio];
3606 
3607 	/* Overflow protection */
3608 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3609 }
3610 
3611 static inline void sub_context_inflight_prio(struct intel_context *ce,
3612 					     u8 guc_prio)
3613 {
3614 	lockdep_assert_held(&ce->guc_state.lock);
3615 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3616 
3617 	/* Underflow protection */
3618 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3619 
3620 	--ce->guc_state.prio_count[guc_prio];
3621 }
3622 
3623 static inline void update_context_prio(struct intel_context *ce)
3624 {
3625 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3626 	int i;
3627 
3628 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3629 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3630 
3631 	lockdep_assert_held(&ce->guc_state.lock);
3632 
3633 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3634 		if (ce->guc_state.prio_count[i]) {
3635 			guc_context_set_prio(guc, ce, i);
3636 			break;
3637 		}
3638 	}
3639 }
3640 
3641 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3642 {
3643 	/* Lower value is higher priority */
3644 	return new_guc_prio < old_guc_prio;
3645 }
3646 
3647 static void add_to_context(struct i915_request *rq)
3648 {
3649 	struct intel_context *ce = request_to_scheduling_context(rq);
3650 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3651 
3652 	GEM_BUG_ON(intel_context_is_child(ce));
3653 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3654 
3655 	spin_lock(&ce->guc_state.lock);
3656 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3657 
3658 	if (rq->guc_prio == GUC_PRIO_INIT) {
3659 		rq->guc_prio = new_guc_prio;
3660 		add_context_inflight_prio(ce, rq->guc_prio);
3661 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3662 		sub_context_inflight_prio(ce, rq->guc_prio);
3663 		rq->guc_prio = new_guc_prio;
3664 		add_context_inflight_prio(ce, rq->guc_prio);
3665 	}
3666 	update_context_prio(ce);
3667 
3668 	spin_unlock(&ce->guc_state.lock);
3669 }
3670 
3671 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3672 {
3673 	lockdep_assert_held(&ce->guc_state.lock);
3674 
3675 	if (rq->guc_prio != GUC_PRIO_INIT &&
3676 	    rq->guc_prio != GUC_PRIO_FINI) {
3677 		sub_context_inflight_prio(ce, rq->guc_prio);
3678 		update_context_prio(ce);
3679 	}
3680 	rq->guc_prio = GUC_PRIO_FINI;
3681 }
3682 
3683 static void remove_from_context(struct i915_request *rq)
3684 {
3685 	struct intel_context *ce = request_to_scheduling_context(rq);
3686 
3687 	GEM_BUG_ON(intel_context_is_child(ce));
3688 
3689 	spin_lock_irq(&ce->guc_state.lock);
3690 
3691 	list_del_init(&rq->sched.link);
3692 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3693 
3694 	/* Prevent further __await_execution() registering a cb, then flush */
3695 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3696 
3697 	guc_prio_fini(rq, ce);
3698 
3699 	spin_unlock_irq(&ce->guc_state.lock);
3700 
3701 	atomic_dec(&ce->guc_id.ref);
3702 	i915_request_notify_execute_cb_imm(rq);
3703 }
3704 
3705 static const struct intel_context_ops guc_context_ops = {
3706 	.flags = COPS_RUNTIME_CYCLES,
3707 	.alloc = guc_context_alloc,
3708 
3709 	.close = guc_context_close,
3710 
3711 	.pre_pin = guc_context_pre_pin,
3712 	.pin = guc_context_pin,
3713 	.unpin = guc_context_unpin,
3714 	.post_unpin = guc_context_post_unpin,
3715 
3716 	.revoke = guc_context_revoke,
3717 
3718 	.cancel_request = guc_context_cancel_request,
3719 
3720 	.enter = intel_context_enter_engine,
3721 	.exit = intel_context_exit_engine,
3722 
3723 	.sched_disable = guc_context_sched_disable,
3724 
3725 	.update_stats = guc_context_update_stats,
3726 
3727 	.reset = lrc_reset,
3728 	.destroy = guc_context_destroy,
3729 
3730 	.create_virtual = guc_create_virtual,
3731 	.create_parallel = guc_create_parallel,
3732 };
3733 
3734 static void submit_work_cb(struct irq_work *wrk)
3735 {
3736 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3737 
3738 	might_lock(&rq->engine->sched_engine->lock);
3739 	i915_sw_fence_complete(&rq->submit);
3740 }
3741 
3742 static void __guc_signal_context_fence(struct intel_context *ce)
3743 {
3744 	struct i915_request *rq, *rn;
3745 
3746 	lockdep_assert_held(&ce->guc_state.lock);
3747 
3748 	if (!list_empty(&ce->guc_state.fences))
3749 		trace_intel_context_fence_release(ce);
3750 
3751 	/*
3752 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3753 	 * ce->guc_state.lock is preserved.
3754 	 */
3755 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3756 				 guc_fence_link) {
3757 		list_del(&rq->guc_fence_link);
3758 		irq_work_queue(&rq->submit_work);
3759 	}
3760 
3761 	INIT_LIST_HEAD(&ce->guc_state.fences);
3762 }
3763 
3764 static void guc_signal_context_fence(struct intel_context *ce)
3765 {
3766 	unsigned long flags;
3767 
3768 	GEM_BUG_ON(intel_context_is_child(ce));
3769 
3770 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3771 	clr_context_wait_for_deregister_to_register(ce);
3772 	__guc_signal_context_fence(ce);
3773 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3774 }
3775 
3776 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3777 {
3778 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3779 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3780 		!submission_disabled(ce_to_guc(ce));
3781 }
3782 
3783 static void guc_context_init(struct intel_context *ce)
3784 {
3785 	const struct i915_gem_context *ctx;
3786 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3787 
3788 	rcu_read_lock();
3789 	ctx = rcu_dereference(ce->gem_context);
3790 	if (ctx)
3791 		prio = ctx->sched.priority;
3792 	rcu_read_unlock();
3793 
3794 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3795 
3796 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3797 			  __delay_sched_disable);
3798 
3799 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3800 }
3801 
3802 static int guc_request_alloc(struct i915_request *rq)
3803 {
3804 	struct intel_context *ce = request_to_scheduling_context(rq);
3805 	struct intel_guc *guc = ce_to_guc(ce);
3806 	unsigned long flags;
3807 	int ret;
3808 
3809 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3810 
3811 	/*
3812 	 * Flush enough space to reduce the likelihood of waiting after
3813 	 * we start building the request - in which case we will just
3814 	 * have to repeat work.
3815 	 */
3816 	rq->reserved_space += GUC_REQUEST_SIZE;
3817 
3818 	/*
3819 	 * Note that after this point, we have committed to using
3820 	 * this request as it is being used to both track the
3821 	 * state of engine initialisation and liveness of the
3822 	 * golden renderstate above. Think twice before you try
3823 	 * to cancel/unwind this request now.
3824 	 */
3825 
3826 	/* Unconditionally invalidate GPU caches and TLBs. */
3827 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3828 	if (ret)
3829 		return ret;
3830 
3831 	rq->reserved_space -= GUC_REQUEST_SIZE;
3832 
3833 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3834 		guc_context_init(ce);
3835 
3836 	/*
3837 	 * If the context gets closed while the execbuf is ongoing, the context
3838 	 * close code will race with the below code to cancel the delayed work.
3839 	 * If the context close wins the race and cancels the work, it will
3840 	 * immediately call the sched disable (see guc_context_close), so there
3841 	 * is a chance we can get past this check while the sched_disable code
3842 	 * is being executed. To make sure that code completes before we check
3843 	 * the status further down, we wait for the close process to complete.
3844 	 * Else, this code path could send a request down thinking that the
3845 	 * context is still in a schedule-enable mode while the GuC ends up
3846 	 * dropping the request completely because the disable did go from the
3847 	 * context_close path right to GuC just prior. In the event the CT is
3848 	 * full, we could potentially need to wait up to 1.5 seconds.
3849 	 */
3850 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3851 		intel_context_sched_disable_unpin(ce);
3852 	else if (intel_context_is_closed(ce))
3853 		if (wait_for(context_close_done(ce), 1500))
3854 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3855 	/*
3856 	 * Call pin_guc_id here rather than in the pinning step as with
3857 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3858 	 * guc_id and creating horrible race conditions. This is especially bad
3859 	 * when guc_id are being stolen due to over subscription. By the time
3860 	 * this function is reached, it is guaranteed that the guc_id will be
3861 	 * persistent until the generated request is retired. Thus, sealing these
3862 	 * race conditions. It is still safe to fail here if guc_id are
3863 	 * exhausted and return -EAGAIN to the user indicating that they can try
3864 	 * again in the future.
3865 	 *
3866 	 * There is no need for a lock here as the timeline mutex ensures at
3867 	 * most one context can be executing this code path at once. The
3868 	 * guc_id_ref is incremented once for every request in flight and
3869 	 * decremented on each retire. When it is zero, a lock around the
3870 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3871 	 */
3872 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3873 		goto out;
3874 
3875 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3876 	if (unlikely(ret < 0))
3877 		return ret;
3878 	if (context_needs_register(ce, !!ret)) {
3879 		ret = try_context_registration(ce, true);
3880 		if (unlikely(ret)) {	/* unwind */
3881 			if (ret == -EPIPE) {
3882 				disable_submission(guc);
3883 				goto out;	/* GPU will be reset */
3884 			}
3885 			atomic_dec(&ce->guc_id.ref);
3886 			unpin_guc_id(guc, ce);
3887 			return ret;
3888 		}
3889 	}
3890 
3891 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3892 
3893 out:
3894 	/*
3895 	 * We block all requests on this context if a G2H is pending for a
3896 	 * schedule disable or context deregistration as the GuC will fail a
3897 	 * schedule enable or context registration if either G2H is pending
3898 	 * respectfully. Once a G2H returns, the fence is released that is
3899 	 * blocking these requests (see guc_signal_context_fence).
3900 	 */
3901 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3902 	if (context_wait_for_deregister_to_register(ce) ||
3903 	    context_pending_disable(ce)) {
3904 		init_irq_work(&rq->submit_work, submit_work_cb);
3905 		i915_sw_fence_await(&rq->submit);
3906 
3907 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3908 	}
3909 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3910 
3911 	return 0;
3912 }
3913 
3914 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3915 				       struct i915_gem_ww_ctx *ww,
3916 				       void **vaddr)
3917 {
3918 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3919 
3920 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3921 }
3922 
3923 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3924 {
3925 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3926 	int ret = __guc_context_pin(ce, engine, vaddr);
3927 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3928 
3929 	if (likely(!ret))
3930 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3931 			intel_engine_pm_get(engine);
3932 
3933 	return ret;
3934 }
3935 
3936 static void guc_virtual_context_unpin(struct intel_context *ce)
3937 {
3938 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3939 	struct intel_engine_cs *engine;
3940 	struct intel_guc *guc = ce_to_guc(ce);
3941 
3942 	GEM_BUG_ON(context_enabled(ce));
3943 	GEM_BUG_ON(intel_context_is_barrier(ce));
3944 
3945 	unpin_guc_id(guc, ce);
3946 	lrc_unpin(ce);
3947 
3948 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3949 		intel_engine_pm_put_async(engine);
3950 }
3951 
3952 static void guc_virtual_context_enter(struct intel_context *ce)
3953 {
3954 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3955 	struct intel_engine_cs *engine;
3956 
3957 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3958 		intel_engine_pm_get(engine);
3959 
3960 	intel_timeline_enter(ce->timeline);
3961 }
3962 
3963 static void guc_virtual_context_exit(struct intel_context *ce)
3964 {
3965 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3966 	struct intel_engine_cs *engine;
3967 
3968 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3969 		intel_engine_pm_put(engine);
3970 
3971 	intel_timeline_exit(ce->timeline);
3972 }
3973 
3974 static int guc_virtual_context_alloc(struct intel_context *ce)
3975 {
3976 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3977 
3978 	return lrc_alloc(ce, engine);
3979 }
3980 
3981 static const struct intel_context_ops virtual_guc_context_ops = {
3982 	.flags = COPS_RUNTIME_CYCLES,
3983 	.alloc = guc_virtual_context_alloc,
3984 
3985 	.close = guc_context_close,
3986 
3987 	.pre_pin = guc_virtual_context_pre_pin,
3988 	.pin = guc_virtual_context_pin,
3989 	.unpin = guc_virtual_context_unpin,
3990 	.post_unpin = guc_context_post_unpin,
3991 
3992 	.revoke = guc_context_revoke,
3993 
3994 	.cancel_request = guc_context_cancel_request,
3995 
3996 	.enter = guc_virtual_context_enter,
3997 	.exit = guc_virtual_context_exit,
3998 
3999 	.sched_disable = guc_context_sched_disable,
4000 	.update_stats = guc_context_update_stats,
4001 
4002 	.destroy = guc_context_destroy,
4003 
4004 	.get_sibling = guc_virtual_get_sibling,
4005 };
4006 
4007 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4008 {
4009 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4010 	struct intel_guc *guc = ce_to_guc(ce);
4011 	int ret;
4012 
4013 	GEM_BUG_ON(!intel_context_is_parent(ce));
4014 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4015 
4016 	ret = pin_guc_id(guc, ce);
4017 	if (unlikely(ret < 0))
4018 		return ret;
4019 
4020 	return __guc_context_pin(ce, engine, vaddr);
4021 }
4022 
4023 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4024 {
4025 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4026 
4027 	GEM_BUG_ON(!intel_context_is_child(ce));
4028 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4029 
4030 	__intel_context_pin(ce->parallel.parent);
4031 	return __guc_context_pin(ce, engine, vaddr);
4032 }
4033 
4034 static void guc_parent_context_unpin(struct intel_context *ce)
4035 {
4036 	struct intel_guc *guc = ce_to_guc(ce);
4037 
4038 	GEM_BUG_ON(context_enabled(ce));
4039 	GEM_BUG_ON(intel_context_is_barrier(ce));
4040 	GEM_BUG_ON(!intel_context_is_parent(ce));
4041 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4042 
4043 	unpin_guc_id(guc, ce);
4044 	lrc_unpin(ce);
4045 }
4046 
4047 static void guc_child_context_unpin(struct intel_context *ce)
4048 {
4049 	GEM_BUG_ON(context_enabled(ce));
4050 	GEM_BUG_ON(intel_context_is_barrier(ce));
4051 	GEM_BUG_ON(!intel_context_is_child(ce));
4052 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4053 
4054 	lrc_unpin(ce);
4055 }
4056 
4057 static void guc_child_context_post_unpin(struct intel_context *ce)
4058 {
4059 	GEM_BUG_ON(!intel_context_is_child(ce));
4060 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4061 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4062 
4063 	lrc_post_unpin(ce);
4064 	intel_context_unpin(ce->parallel.parent);
4065 }
4066 
4067 static void guc_child_context_destroy(struct kref *kref)
4068 {
4069 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4070 
4071 	__guc_context_destroy(ce);
4072 }
4073 
4074 static const struct intel_context_ops virtual_parent_context_ops = {
4075 	.alloc = guc_virtual_context_alloc,
4076 
4077 	.close = guc_context_close,
4078 
4079 	.pre_pin = guc_context_pre_pin,
4080 	.pin = guc_parent_context_pin,
4081 	.unpin = guc_parent_context_unpin,
4082 	.post_unpin = guc_context_post_unpin,
4083 
4084 	.revoke = guc_context_revoke,
4085 
4086 	.cancel_request = guc_context_cancel_request,
4087 
4088 	.enter = guc_virtual_context_enter,
4089 	.exit = guc_virtual_context_exit,
4090 
4091 	.sched_disable = guc_context_sched_disable,
4092 
4093 	.destroy = guc_context_destroy,
4094 
4095 	.get_sibling = guc_virtual_get_sibling,
4096 };
4097 
4098 static const struct intel_context_ops virtual_child_context_ops = {
4099 	.alloc = guc_virtual_context_alloc,
4100 
4101 	.pre_pin = guc_context_pre_pin,
4102 	.pin = guc_child_context_pin,
4103 	.unpin = guc_child_context_unpin,
4104 	.post_unpin = guc_child_context_post_unpin,
4105 
4106 	.cancel_request = guc_context_cancel_request,
4107 
4108 	.enter = guc_virtual_context_enter,
4109 	.exit = guc_virtual_context_exit,
4110 
4111 	.destroy = guc_child_context_destroy,
4112 
4113 	.get_sibling = guc_virtual_get_sibling,
4114 };
4115 
4116 /*
4117  * The below override of the breadcrumbs is enabled when the user configures a
4118  * context for parallel submission (multi-lrc, parent-child).
4119  *
4120  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4121  * safely preempt all the hw contexts configured for parallel submission
4122  * between each BB. The contract between the i915 and GuC is if the parent
4123  * context can be preempted, all the children can be preempted, and the GuC will
4124  * always try to preempt the parent before the children. A handshake between the
4125  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4126  * creating a window to preempt between each set of BBs.
4127  */
4128 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4129 						     u64 offset, u32 len,
4130 						     const unsigned int flags);
4131 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4132 						    u64 offset, u32 len,
4133 						    const unsigned int flags);
4134 static u32 *
4135 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4136 						 u32 *cs);
4137 static u32 *
4138 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4139 						u32 *cs);
4140 
4141 static struct intel_context *
4142 guc_create_parallel(struct intel_engine_cs **engines,
4143 		    unsigned int num_siblings,
4144 		    unsigned int width)
4145 {
4146 	struct intel_engine_cs **siblings = NULL;
4147 	struct intel_context *parent = NULL, *ce, *err;
4148 	int i, j;
4149 
4150 	siblings = kmalloc_array(num_siblings,
4151 				 sizeof(*siblings),
4152 				 GFP_KERNEL);
4153 	if (!siblings)
4154 		return ERR_PTR(-ENOMEM);
4155 
4156 	for (i = 0; i < width; ++i) {
4157 		for (j = 0; j < num_siblings; ++j)
4158 			siblings[j] = engines[i * num_siblings + j];
4159 
4160 		ce = intel_engine_create_virtual(siblings, num_siblings,
4161 						 FORCE_VIRTUAL);
4162 		if (IS_ERR(ce)) {
4163 			err = ERR_CAST(ce);
4164 			goto unwind;
4165 		}
4166 
4167 		if (i == 0) {
4168 			parent = ce;
4169 			parent->ops = &virtual_parent_context_ops;
4170 		} else {
4171 			ce->ops = &virtual_child_context_ops;
4172 			intel_context_bind_parent_child(parent, ce);
4173 		}
4174 	}
4175 
4176 	parent->parallel.fence_context = dma_fence_context_alloc(1);
4177 
4178 	parent->engine->emit_bb_start =
4179 		emit_bb_start_parent_no_preempt_mid_batch;
4180 	parent->engine->emit_fini_breadcrumb =
4181 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4182 	parent->engine->emit_fini_breadcrumb_dw =
4183 		12 + 4 * parent->parallel.number_children;
4184 	for_each_child(parent, ce) {
4185 		ce->engine->emit_bb_start =
4186 			emit_bb_start_child_no_preempt_mid_batch;
4187 		ce->engine->emit_fini_breadcrumb =
4188 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
4189 		ce->engine->emit_fini_breadcrumb_dw = 16;
4190 	}
4191 
4192 	kfree(siblings);
4193 	return parent;
4194 
4195 unwind:
4196 	if (parent)
4197 		intel_context_put(parent);
4198 	kfree(siblings);
4199 	return err;
4200 }
4201 
4202 static bool
4203 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4204 {
4205 	struct intel_engine_cs *sibling;
4206 	intel_engine_mask_t tmp, mask = b->engine_mask;
4207 	bool result = false;
4208 
4209 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4210 		result |= intel_engine_irq_enable(sibling);
4211 
4212 	return result;
4213 }
4214 
4215 static void
4216 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4217 {
4218 	struct intel_engine_cs *sibling;
4219 	intel_engine_mask_t tmp, mask = b->engine_mask;
4220 
4221 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4222 		intel_engine_irq_disable(sibling);
4223 }
4224 
4225 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4226 {
4227 	int i;
4228 
4229 	/*
4230 	 * In GuC submission mode we do not know which physical engine a request
4231 	 * will be scheduled on, this creates a problem because the breadcrumb
4232 	 * interrupt is per physical engine. To work around this we attach
4233 	 * requests and direct all breadcrumb interrupts to the first instance
4234 	 * of an engine per class. In addition all breadcrumb interrupts are
4235 	 * enabled / disabled across an engine class in unison.
4236 	 */
4237 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4238 		struct intel_engine_cs *sibling =
4239 			engine->gt->engine_class[engine->class][i];
4240 
4241 		if (sibling) {
4242 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4243 				intel_breadcrumbs_put(engine->breadcrumbs);
4244 				engine->breadcrumbs =
4245 					intel_breadcrumbs_get(sibling->breadcrumbs);
4246 			}
4247 			break;
4248 		}
4249 	}
4250 
4251 	if (engine->breadcrumbs) {
4252 		engine->breadcrumbs->engine_mask |= engine->mask;
4253 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4254 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4255 	}
4256 }
4257 
4258 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4259 					   int prio)
4260 {
4261 	struct intel_context *ce = request_to_scheduling_context(rq);
4262 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4263 
4264 	/* Short circuit function */
4265 	if (prio < I915_PRIORITY_NORMAL ||
4266 	    rq->guc_prio == GUC_PRIO_FINI ||
4267 	    (rq->guc_prio != GUC_PRIO_INIT &&
4268 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4269 		return;
4270 
4271 	spin_lock(&ce->guc_state.lock);
4272 	if (rq->guc_prio != GUC_PRIO_FINI) {
4273 		if (rq->guc_prio != GUC_PRIO_INIT)
4274 			sub_context_inflight_prio(ce, rq->guc_prio);
4275 		rq->guc_prio = new_guc_prio;
4276 		add_context_inflight_prio(ce, rq->guc_prio);
4277 		update_context_prio(ce);
4278 	}
4279 	spin_unlock(&ce->guc_state.lock);
4280 }
4281 
4282 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4283 {
4284 	struct intel_context *ce = request_to_scheduling_context(rq);
4285 
4286 	spin_lock(&ce->guc_state.lock);
4287 	guc_prio_fini(rq, ce);
4288 	spin_unlock(&ce->guc_state.lock);
4289 }
4290 
4291 static void sanitize_hwsp(struct intel_engine_cs *engine)
4292 {
4293 	struct intel_timeline *tl;
4294 
4295 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4296 		intel_timeline_reset_seqno(tl);
4297 }
4298 
4299 static void guc_sanitize(struct intel_engine_cs *engine)
4300 {
4301 	/*
4302 	 * Poison residual state on resume, in case the suspend didn't!
4303 	 *
4304 	 * We have to assume that across suspend/resume (or other loss
4305 	 * of control) that the contents of our pinned buffers has been
4306 	 * lost, replaced by garbage. Since this doesn't always happen,
4307 	 * let's poison such state so that we more quickly spot when
4308 	 * we falsely assume it has been preserved.
4309 	 */
4310 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4311 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4312 
4313 	/*
4314 	 * The kernel_context HWSP is stored in the status_page. As above,
4315 	 * that may be lost on resume/initialisation, and so we need to
4316 	 * reset the value in the HWSP.
4317 	 */
4318 	sanitize_hwsp(engine);
4319 
4320 	/* And scrub the dirty cachelines for the HWSP */
4321 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4322 
4323 	intel_engine_reset_pinned_contexts(engine);
4324 }
4325 
4326 static void setup_hwsp(struct intel_engine_cs *engine)
4327 {
4328 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4329 
4330 	ENGINE_WRITE_FW(engine,
4331 			RING_HWS_PGA,
4332 			i915_ggtt_offset(engine->status_page.vma));
4333 }
4334 
4335 static void start_engine(struct intel_engine_cs *engine)
4336 {
4337 	ENGINE_WRITE_FW(engine,
4338 			RING_MODE_GEN7,
4339 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4340 
4341 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4342 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4343 }
4344 
4345 static int guc_resume(struct intel_engine_cs *engine)
4346 {
4347 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4348 
4349 	intel_mocs_init_engine(engine);
4350 
4351 	intel_breadcrumbs_reset(engine->breadcrumbs);
4352 
4353 	setup_hwsp(engine);
4354 	start_engine(engine);
4355 
4356 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4357 		xehp_enable_ccs_engines(engine);
4358 
4359 	return 0;
4360 }
4361 
4362 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4363 {
4364 	return !sched_engine->tasklet.callback;
4365 }
4366 
4367 static void guc_set_default_submission(struct intel_engine_cs *engine)
4368 {
4369 	engine->submit_request = guc_submit_request;
4370 }
4371 
4372 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4373 					 struct intel_context *ce)
4374 {
4375 	int ret;
4376 
4377 	/*
4378 	 * Note: we purposefully do not check the returns below because
4379 	 * the registration can only fail if a reset is just starting.
4380 	 * This is called at the end of reset so presumably another reset
4381 	 * isn't happening and even it did this code would be run again.
4382 	 */
4383 
4384 	if (context_guc_id_invalid(ce)) {
4385 		ret = pin_guc_id(guc, ce);
4386 
4387 		if (ret < 0)
4388 			return ret;
4389 	}
4390 
4391 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4392 		guc_context_init(ce);
4393 
4394 	ret = try_context_registration(ce, true);
4395 	if (ret)
4396 		unpin_guc_id(guc, ce);
4397 
4398 	return ret;
4399 }
4400 
4401 static inline int guc_init_submission(struct intel_guc *guc)
4402 {
4403 	struct intel_gt *gt = guc_to_gt(guc);
4404 	struct intel_engine_cs *engine;
4405 	enum intel_engine_id id;
4406 
4407 	/* make sure all descriptors are clean... */
4408 	xa_destroy(&guc->context_lookup);
4409 
4410 	/*
4411 	 * A reset might have occurred while we had a pending stalled request,
4412 	 * so make sure we clean that up.
4413 	 */
4414 	guc->stalled_request = NULL;
4415 	guc->submission_stall_reason = STALL_NONE;
4416 
4417 	/*
4418 	 * Some contexts might have been pinned before we enabled GuC
4419 	 * submission, so we need to add them to the GuC bookeeping.
4420 	 * Also, after a reset the of the GuC we want to make sure that the
4421 	 * information shared with GuC is properly reset. The kernel LRCs are
4422 	 * not attached to the gem_context, so they need to be added separately.
4423 	 */
4424 	for_each_engine(engine, gt, id) {
4425 		struct intel_context *ce;
4426 
4427 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4428 				    pinned_contexts_link) {
4429 			int ret = guc_kernel_context_pin(guc, ce);
4430 
4431 			if (ret) {
4432 				/* No point in trying to clean up as i915 will wedge on failure */
4433 				return ret;
4434 			}
4435 		}
4436 	}
4437 
4438 	return 0;
4439 }
4440 
4441 static void guc_release(struct intel_engine_cs *engine)
4442 {
4443 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4444 
4445 	intel_engine_cleanup_common(engine);
4446 	lrc_fini_wa_ctx(engine);
4447 }
4448 
4449 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4450 {
4451 	struct intel_engine_cs *e;
4452 	intel_engine_mask_t tmp, mask = engine->mask;
4453 
4454 	for_each_engine_masked(e, engine->gt, mask, tmp)
4455 		e->serial++;
4456 }
4457 
4458 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4459 {
4460 	/* Default vfuncs which can be overridden by each engine. */
4461 
4462 	engine->resume = guc_resume;
4463 
4464 	engine->cops = &guc_context_ops;
4465 	engine->request_alloc = guc_request_alloc;
4466 	engine->add_active_request = add_to_context;
4467 	engine->remove_active_request = remove_from_context;
4468 
4469 	engine->sched_engine->schedule = i915_schedule;
4470 
4471 	engine->reset.prepare = guc_engine_reset_prepare;
4472 	engine->reset.rewind = guc_rewind_nop;
4473 	engine->reset.cancel = guc_reset_nop;
4474 	engine->reset.finish = guc_reset_nop;
4475 
4476 	engine->emit_flush = gen8_emit_flush_xcs;
4477 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4478 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4479 	if (GRAPHICS_VER(engine->i915) >= 12) {
4480 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4481 		engine->emit_flush = gen12_emit_flush_xcs;
4482 	}
4483 	engine->set_default_submission = guc_set_default_submission;
4484 	engine->busyness = guc_engine_busyness;
4485 
4486 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4487 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4488 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4489 
4490 	/* Wa_14014475959:dg2 */
4491 	if (engine->class == COMPUTE_CLASS)
4492 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4493 		    IS_DG2(engine->i915))
4494 			engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4495 
4496 	/*
4497 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4498 	 * handled by the firmware so some minor tweaks are required before
4499 	 * enabling.
4500 	 *
4501 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4502 	 */
4503 
4504 	engine->emit_bb_start = gen8_emit_bb_start;
4505 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4506 		engine->emit_bb_start = xehp_emit_bb_start;
4507 }
4508 
4509 static void rcs_submission_override(struct intel_engine_cs *engine)
4510 {
4511 	switch (GRAPHICS_VER(engine->i915)) {
4512 	case 12:
4513 		engine->emit_flush = gen12_emit_flush_rcs;
4514 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4515 		break;
4516 	case 11:
4517 		engine->emit_flush = gen11_emit_flush_rcs;
4518 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4519 		break;
4520 	default:
4521 		engine->emit_flush = gen8_emit_flush_rcs;
4522 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4523 		break;
4524 	}
4525 }
4526 
4527 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4528 {
4529 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4530 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4531 }
4532 
4533 static void guc_sched_engine_destroy(struct kref *kref)
4534 {
4535 	struct i915_sched_engine *sched_engine =
4536 		container_of(kref, typeof(*sched_engine), ref);
4537 	struct intel_guc *guc = sched_engine->private_data;
4538 
4539 	guc->sched_engine = NULL;
4540 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4541 	kfree(sched_engine);
4542 }
4543 
4544 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4545 {
4546 	struct drm_i915_private *i915 = engine->i915;
4547 	struct intel_guc *guc = &engine->gt->uc.guc;
4548 
4549 	/*
4550 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4551 	 * that are only valid on gen11+
4552 	 */
4553 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4554 
4555 	if (!guc->sched_engine) {
4556 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4557 		if (!guc->sched_engine)
4558 			return -ENOMEM;
4559 
4560 		guc->sched_engine->schedule = i915_schedule;
4561 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4562 		guc->sched_engine->private_data = guc;
4563 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4564 		guc->sched_engine->bump_inflight_request_prio =
4565 			guc_bump_inflight_request_prio;
4566 		guc->sched_engine->retire_inflight_request_prio =
4567 			guc_retire_inflight_request_prio;
4568 		tasklet_setup(&guc->sched_engine->tasklet,
4569 			      guc_submission_tasklet);
4570 	}
4571 	i915_sched_engine_put(engine->sched_engine);
4572 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4573 
4574 	guc_default_vfuncs(engine);
4575 	guc_default_irqs(engine);
4576 	guc_init_breadcrumbs(engine);
4577 
4578 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4579 		rcs_submission_override(engine);
4580 
4581 	lrc_init_wa_ctx(engine);
4582 
4583 	/* Finally, take ownership and responsibility for cleanup! */
4584 	engine->sanitize = guc_sanitize;
4585 	engine->release = guc_release;
4586 
4587 	return 0;
4588 }
4589 
4590 struct scheduling_policy {
4591 	/* internal data */
4592 	u32 max_words, num_words;
4593 	u32 count;
4594 	/* API data */
4595 	struct guc_update_scheduling_policy h2g;
4596 };
4597 
4598 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4599 {
4600 	u32 *start = (void *)&policy->h2g;
4601 	u32 *end = policy->h2g.data + policy->num_words;
4602 	size_t delta = end - start;
4603 
4604 	return delta;
4605 }
4606 
4607 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4608 {
4609 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4610 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4611 	policy->num_words = 0;
4612 	policy->count = 0;
4613 
4614 	return policy;
4615 }
4616 
4617 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4618 					    u32 action, u32 *data, u32 len)
4619 {
4620 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4621 
4622 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4623 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4624 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4625 	memcpy(klv_ptr, data, sizeof(u32) * len);
4626 	policy->num_words += 1 + len;
4627 	policy->count++;
4628 }
4629 
4630 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4631 						struct scheduling_policy *policy)
4632 {
4633 	int ret;
4634 
4635 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4636 			     __guc_scheduling_policy_action_size(policy));
4637 	if (ret < 0) {
4638 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4639 				ERR_PTR(ret));
4640 		return ret;
4641 	}
4642 
4643 	if (ret != policy->count) {
4644 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4645 			 ret, policy->count);
4646 		if (ret > policy->count)
4647 			return -EPROTO;
4648 	}
4649 
4650 	return 0;
4651 }
4652 
4653 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4654 {
4655 	struct scheduling_policy policy;
4656 	struct intel_gt *gt = guc_to_gt(guc);
4657 	intel_wakeref_t wakeref;
4658 	int ret;
4659 
4660 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4661 		return 0;
4662 
4663 	__guc_scheduling_policy_start_klv(&policy);
4664 
4665 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4666 		u32 yield[] = {
4667 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4668 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4669 		};
4670 
4671 		__guc_scheduling_policy_add_klv(&policy,
4672 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4673 						yield, ARRAY_SIZE(yield));
4674 
4675 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4676 	}
4677 
4678 	return ret;
4679 }
4680 
4681 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4682 {
4683 	struct intel_gt *gt = guc_to_gt(guc);
4684 	u32 val;
4685 
4686 	if (GRAPHICS_VER(gt->i915) < 12)
4687 		return;
4688 
4689 	if (to_guc)
4690 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4691 	else
4692 		val = 0;
4693 
4694 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4695 }
4696 
4697 int intel_guc_submission_enable(struct intel_guc *guc)
4698 {
4699 	int ret;
4700 
4701 	/* Semaphore interrupt enable and route to GuC */
4702 	guc_route_semaphores(guc, true);
4703 
4704 	ret = guc_init_submission(guc);
4705 	if (ret)
4706 		goto fail_sem;
4707 
4708 	ret = guc_init_engine_stats(guc);
4709 	if (ret)
4710 		goto fail_sem;
4711 
4712 	ret = guc_init_global_schedule_policy(guc);
4713 	if (ret)
4714 		goto fail_stats;
4715 
4716 	return 0;
4717 
4718 fail_stats:
4719 	guc_fini_engine_stats(guc);
4720 fail_sem:
4721 	guc_route_semaphores(guc, false);
4722 	return ret;
4723 }
4724 
4725 /* Note: By the time we're here, GuC may have already been reset */
4726 void intel_guc_submission_disable(struct intel_guc *guc)
4727 {
4728 	guc_cancel_busyness_worker(guc);
4729 
4730 	/* Semaphore interrupt disable and route to host */
4731 	guc_route_semaphores(guc, false);
4732 }
4733 
4734 static bool __guc_submission_supported(struct intel_guc *guc)
4735 {
4736 	/* GuC submission is unavailable for pre-Gen11 */
4737 	return intel_guc_is_supported(guc) &&
4738 	       GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4739 }
4740 
4741 static bool __guc_submission_selected(struct intel_guc *guc)
4742 {
4743 	struct drm_i915_private *i915 = guc_to_i915(guc);
4744 
4745 	if (!intel_guc_submission_is_supported(guc))
4746 		return false;
4747 
4748 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4749 }
4750 
4751 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4752 {
4753 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4754 }
4755 
4756 /*
4757  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4758  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4759  * operation. This matches the 30fps game-render + encode (real world) workload this
4760  * knob was tested against.
4761  */
4762 #define SCHED_DISABLE_DELAY_MS	34
4763 
4764 /*
4765  * A threshold of 75% is a reasonable starting point considering that real world apps
4766  * generally don't get anywhere near this.
4767  */
4768 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4769 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4770 
4771 void intel_guc_submission_init_early(struct intel_guc *guc)
4772 {
4773 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4774 
4775 	spin_lock_init(&guc->submission_state.lock);
4776 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4777 	ida_init(&guc->submission_state.guc_ids);
4778 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4779 	INIT_WORK(&guc->submission_state.destroyed_worker,
4780 		  destroyed_worker_func);
4781 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4782 		  reset_fail_worker_func);
4783 
4784 	spin_lock_init(&guc->timestamp.lock);
4785 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4786 
4787 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4788 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4789 	guc->submission_state.sched_disable_gucid_threshold =
4790 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4791 	guc->submission_supported = __guc_submission_supported(guc);
4792 	guc->submission_selected = __guc_submission_selected(guc);
4793 }
4794 
4795 static inline struct intel_context *
4796 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4797 {
4798 	struct intel_context *ce;
4799 
4800 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4801 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4802 		return NULL;
4803 	}
4804 
4805 	ce = __get_context(guc, ctx_id);
4806 	if (unlikely(!ce)) {
4807 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4808 		return NULL;
4809 	}
4810 
4811 	if (unlikely(intel_context_is_child(ce))) {
4812 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4813 		return NULL;
4814 	}
4815 
4816 	return ce;
4817 }
4818 
4819 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4820 {
4821 	struct intel_guc_tlb_wait *wait;
4822 	unsigned long flags;
4823 
4824 	xa_lock_irqsave(&guc->tlb_lookup, flags);
4825 	wait = xa_load(&guc->tlb_lookup, seqno);
4826 
4827 	if (wait)
4828 		wake_up(&wait->wq);
4829 	else
4830 		guc_dbg(guc,
4831 			"Stale TLB invalidation response with seqno %d\n", seqno);
4832 
4833 	xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4834 }
4835 
4836 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4837 				    const u32 *payload, u32 len)
4838 {
4839 	if (len < 1)
4840 		return -EPROTO;
4841 
4842 	wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4843 	return 0;
4844 }
4845 
4846 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4847 {
4848 	/*
4849 	 * This is equivalent to wait_woken() with the exception that
4850 	 * we do not wake up early if the kthread task has been completed.
4851 	 * As we are called from page reclaim in any task context,
4852 	 * we may be invoked from stopped kthreads, but we *must*
4853 	 * complete the wait from the HW.
4854 	 */
4855 	do {
4856 		set_current_state(TASK_UNINTERRUPTIBLE);
4857 		if (wq_entry->flags & WQ_FLAG_WOKEN)
4858 			break;
4859 
4860 		timeout = schedule_timeout(timeout);
4861 	} while (timeout);
4862 
4863 	/* See wait_woken() and woken_wake_function() */
4864 	__set_current_state(TASK_RUNNING);
4865 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4866 
4867 	return timeout;
4868 }
4869 
4870 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4871 {
4872 	/* Check if GT is wedged or suspended */
4873 	if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4874 		return false;
4875 	return true;
4876 }
4877 
4878 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4879 				   enum intel_guc_tlb_invalidation_type type)
4880 {
4881 	struct intel_guc_tlb_wait _wq, *wq = &_wq;
4882 	struct intel_gt *gt = guc_to_gt(guc);
4883 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
4884 	int err;
4885 	u32 seqno;
4886 	u32 action[] = {
4887 		INTEL_GUC_ACTION_TLB_INVALIDATION,
4888 		0,
4889 		REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4890 			REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4891 				       INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4892 			INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4893 	};
4894 	u32 size = ARRAY_SIZE(action);
4895 
4896 	/*
4897 	 * Early guard against GT enablement.  TLB invalidation should not be
4898 	 * attempted if the GT is disabled due to suspend/wedge.
4899 	 */
4900 	if (!intel_gt_is_enabled(gt))
4901 		return -EINVAL;
4902 
4903 	init_waitqueue_head(&_wq.wq);
4904 
4905 	if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4906 				xa_limit_32b, &guc->next_seqno,
4907 				GFP_ATOMIC | __GFP_NOWARN) < 0) {
4908 		/* Under severe memory pressure? Serialise TLB allocations */
4909 		xa_lock_irq(&guc->tlb_lookup);
4910 		wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4911 		wait_event_lock_irq(wq->wq,
4912 				    !READ_ONCE(wq->busy),
4913 				    guc->tlb_lookup.xa_lock);
4914 		/*
4915 		 * Update wq->busy under lock to ensure only one waiter can
4916 		 * issue the TLB invalidation command using the serial slot at a
4917 		 * time. The condition is set to true before releasing the lock
4918 		 * so that other caller continue to wait until woken up again.
4919 		 */
4920 		wq->busy = true;
4921 		xa_unlock_irq(&guc->tlb_lookup);
4922 
4923 		seqno = guc->serial_slot;
4924 	}
4925 
4926 	action[1] = seqno;
4927 
4928 	add_wait_queue(&wq->wq, &wait);
4929 
4930 	/* This is a critical reclaim path and thus we must loop here. */
4931 	err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4932 	if (err)
4933 		goto out;
4934 
4935 	/*
4936 	 * Late guard against GT enablement.  It is not an error for the TLB
4937 	 * invalidation to time out if the GT is disabled during the process
4938 	 * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
4939 	 * in this case.
4940 	 */
4941 	if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4942 	    intel_gt_is_enabled(gt)) {
4943 		guc_err(guc,
4944 			"TLB invalidation response timed out for seqno %u\n", seqno);
4945 		err = -ETIME;
4946 	}
4947 out:
4948 	remove_wait_queue(&wq->wq, &wait);
4949 	if (seqno != guc->serial_slot)
4950 		xa_erase_irq(&guc->tlb_lookup, seqno);
4951 
4952 	return err;
4953 }
4954 
4955 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
4956 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
4957 {
4958 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
4959 }
4960 
4961 /* Send a H2G command to invalidate the GuC's internal TLB. */
4962 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
4963 {
4964 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
4965 }
4966 
4967 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4968 					  const u32 *msg,
4969 					  u32 len)
4970 {
4971 	struct intel_context *ce;
4972 	u32 ctx_id;
4973 
4974 	if (unlikely(len < 1)) {
4975 		guc_err(guc, "Invalid length %u\n", len);
4976 		return -EPROTO;
4977 	}
4978 	ctx_id = msg[0];
4979 
4980 	ce = g2h_context_lookup(guc, ctx_id);
4981 	if (unlikely(!ce))
4982 		return -EPROTO;
4983 
4984 	trace_intel_context_deregister_done(ce);
4985 
4986 #ifdef CONFIG_DRM_I915_SELFTEST
4987 	if (unlikely(ce->drop_deregister)) {
4988 		ce->drop_deregister = false;
4989 		return 0;
4990 	}
4991 #endif
4992 
4993 	if (context_wait_for_deregister_to_register(ce)) {
4994 		struct intel_runtime_pm *runtime_pm =
4995 			&ce->engine->gt->i915->runtime_pm;
4996 		intel_wakeref_t wakeref;
4997 
4998 		/*
4999 		 * Previous owner of this guc_id has been deregistered, now safe
5000 		 * register this context.
5001 		 */
5002 		with_intel_runtime_pm(runtime_pm, wakeref)
5003 			register_context(ce, true);
5004 		guc_signal_context_fence(ce);
5005 		intel_context_put(ce);
5006 	} else if (context_destroyed(ce)) {
5007 		/* Context has been destroyed */
5008 		intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5009 		release_guc_id(guc, ce);
5010 		__guc_context_destroy(ce);
5011 	}
5012 
5013 	decr_outstanding_submission_g2h(guc);
5014 
5015 	return 0;
5016 }
5017 
5018 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5019 				     const u32 *msg,
5020 				     u32 len)
5021 {
5022 	struct intel_context *ce;
5023 	unsigned long flags;
5024 	u32 ctx_id;
5025 
5026 	if (unlikely(len < 2)) {
5027 		guc_err(guc, "Invalid length %u\n", len);
5028 		return -EPROTO;
5029 	}
5030 	ctx_id = msg[0];
5031 
5032 	ce = g2h_context_lookup(guc, ctx_id);
5033 	if (unlikely(!ce))
5034 		return -EPROTO;
5035 
5036 	if (unlikely(context_destroyed(ce) ||
5037 		     (!context_pending_enable(ce) &&
5038 		     !context_pending_disable(ce)))) {
5039 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5040 			ce->guc_state.sched_state, ctx_id);
5041 		return -EPROTO;
5042 	}
5043 
5044 	trace_intel_context_sched_done(ce);
5045 
5046 	if (context_pending_enable(ce)) {
5047 #ifdef CONFIG_DRM_I915_SELFTEST
5048 		if (unlikely(ce->drop_schedule_enable)) {
5049 			ce->drop_schedule_enable = false;
5050 			return 0;
5051 		}
5052 #endif
5053 
5054 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5055 		clr_context_pending_enable(ce);
5056 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5057 	} else if (context_pending_disable(ce)) {
5058 		bool banned;
5059 
5060 #ifdef CONFIG_DRM_I915_SELFTEST
5061 		if (unlikely(ce->drop_schedule_disable)) {
5062 			ce->drop_schedule_disable = false;
5063 			return 0;
5064 		}
5065 #endif
5066 
5067 		/*
5068 		 * Unpin must be done before __guc_signal_context_fence,
5069 		 * otherwise a race exists between the requests getting
5070 		 * submitted + retired before this unpin completes resulting in
5071 		 * the pin_count going to zero and the context still being
5072 		 * enabled.
5073 		 */
5074 		intel_context_sched_disable_unpin(ce);
5075 
5076 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5077 		banned = context_banned(ce);
5078 		clr_context_banned(ce);
5079 		clr_context_pending_disable(ce);
5080 		__guc_signal_context_fence(ce);
5081 		guc_blocked_fence_complete(ce);
5082 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5083 
5084 		if (banned) {
5085 			guc_cancel_context_requests(ce);
5086 			intel_engine_signal_breadcrumbs(ce->engine);
5087 		}
5088 	}
5089 
5090 	decr_outstanding_submission_g2h(guc);
5091 	intel_context_put(ce);
5092 
5093 	return 0;
5094 }
5095 
5096 static void capture_error_state(struct intel_guc *guc,
5097 				struct intel_context *ce)
5098 {
5099 	struct intel_gt *gt = guc_to_gt(guc);
5100 	struct drm_i915_private *i915 = gt->i915;
5101 	intel_wakeref_t wakeref;
5102 	intel_engine_mask_t engine_mask;
5103 
5104 	if (intel_engine_is_virtual(ce->engine)) {
5105 		struct intel_engine_cs *e;
5106 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5107 
5108 		engine_mask = 0;
5109 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5110 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5111 
5112 			if (match) {
5113 				intel_engine_set_hung_context(e, ce);
5114 				engine_mask |= e->mask;
5115 				i915_increase_reset_engine_count(&i915->gpu_error,
5116 								 e);
5117 			}
5118 		}
5119 
5120 		if (!engine_mask) {
5121 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5122 				 ce->guc_id.id, ce->engine->name);
5123 			engine_mask = ~0U;
5124 		}
5125 	} else {
5126 		intel_engine_set_hung_context(ce->engine, ce);
5127 		engine_mask = ce->engine->mask;
5128 		i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5129 	}
5130 
5131 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5132 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5133 }
5134 
5135 static void guc_context_replay(struct intel_context *ce)
5136 {
5137 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5138 
5139 	__guc_reset_context(ce, ce->engine->mask);
5140 	tasklet_hi_schedule(&sched_engine->tasklet);
5141 }
5142 
5143 static void guc_handle_context_reset(struct intel_guc *guc,
5144 				     struct intel_context *ce)
5145 {
5146 	bool capture = intel_context_is_schedulable(ce);
5147 
5148 	trace_intel_context_reset(ce);
5149 
5150 	guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5151 		capture ? "Got" : "Ignoring",
5152 		ce->guc_id.id, ce->engine->name,
5153 		str_yes_no(intel_context_is_exiting(ce)),
5154 		str_yes_no(intel_context_is_banned(ce)));
5155 
5156 	if (capture) {
5157 		capture_error_state(guc, ce);
5158 		guc_context_replay(ce);
5159 	}
5160 }
5161 
5162 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5163 					const u32 *msg, u32 len)
5164 {
5165 	struct intel_context *ce;
5166 	unsigned long flags;
5167 	int ctx_id;
5168 
5169 	if (unlikely(len != 1)) {
5170 		guc_err(guc, "Invalid length %u", len);
5171 		return -EPROTO;
5172 	}
5173 
5174 	ctx_id = msg[0];
5175 
5176 	/*
5177 	 * The context lookup uses the xarray but lookups only require an RCU lock
5178 	 * not the full spinlock. So take the lock explicitly and keep it until the
5179 	 * context has been reference count locked to ensure it can't be destroyed
5180 	 * asynchronously until the reset is done.
5181 	 */
5182 	xa_lock_irqsave(&guc->context_lookup, flags);
5183 	ce = g2h_context_lookup(guc, ctx_id);
5184 	if (ce)
5185 		intel_context_get(ce);
5186 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5187 
5188 	if (unlikely(!ce))
5189 		return -EPROTO;
5190 
5191 	guc_handle_context_reset(guc, ce);
5192 	intel_context_put(ce);
5193 
5194 	return 0;
5195 }
5196 
5197 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5198 					const u32 *msg, u32 len)
5199 {
5200 	u32 status;
5201 
5202 	if (unlikely(len != 1)) {
5203 		guc_dbg(guc, "Invalid length %u", len);
5204 		return -EPROTO;
5205 	}
5206 
5207 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5208 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5209 		guc_warn(guc, "No space for error capture");
5210 
5211 	intel_guc_capture_process(guc);
5212 
5213 	return 0;
5214 }
5215 
5216 struct intel_engine_cs *
5217 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5218 {
5219 	struct intel_gt *gt = guc_to_gt(guc);
5220 	u8 engine_class = guc_class_to_engine_class(guc_class);
5221 
5222 	/* Class index is checked in class converter */
5223 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5224 
5225 	return gt->engine_class[engine_class][instance];
5226 }
5227 
5228 static void reset_fail_worker_func(struct work_struct *w)
5229 {
5230 	struct intel_guc *guc = container_of(w, struct intel_guc,
5231 					     submission_state.reset_fail_worker);
5232 	struct intel_gt *gt = guc_to_gt(guc);
5233 	intel_engine_mask_t reset_fail_mask;
5234 	unsigned long flags;
5235 
5236 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5237 	reset_fail_mask = guc->submission_state.reset_fail_mask;
5238 	guc->submission_state.reset_fail_mask = 0;
5239 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5240 
5241 	if (likely(reset_fail_mask)) {
5242 		struct intel_engine_cs *engine;
5243 		enum intel_engine_id id;
5244 
5245 		/*
5246 		 * GuC is toast at this point - it dead loops after sending the failed
5247 		 * reset notification. So need to manually determine the guilty context.
5248 		 * Note that it should be reliable to do this here because the GuC is
5249 		 * toast and will not be scheduling behind the KMD's back.
5250 		 */
5251 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
5252 			intel_guc_find_hung_context(engine);
5253 
5254 		intel_gt_handle_error(gt, reset_fail_mask,
5255 				      I915_ERROR_CAPTURE,
5256 				      "GuC failed to reset engine mask=0x%x",
5257 				      reset_fail_mask);
5258 	}
5259 }
5260 
5261 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5262 					 const u32 *msg, u32 len)
5263 {
5264 	struct intel_engine_cs *engine;
5265 	u8 guc_class, instance;
5266 	u32 reason;
5267 	unsigned long flags;
5268 
5269 	if (unlikely(len != 3)) {
5270 		guc_err(guc, "Invalid length %u", len);
5271 		return -EPROTO;
5272 	}
5273 
5274 	guc_class = msg[0];
5275 	instance = msg[1];
5276 	reason = msg[2];
5277 
5278 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
5279 	if (unlikely(!engine)) {
5280 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5281 		return -EPROTO;
5282 	}
5283 
5284 	/*
5285 	 * This is an unexpected failure of a hardware feature. So, log a real
5286 	 * error message not just the informational that comes with the reset.
5287 	 */
5288 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5289 		guc_class, instance, engine->name, reason);
5290 
5291 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5292 	guc->submission_state.reset_fail_mask |= engine->mask;
5293 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5294 
5295 	/*
5296 	 * A GT reset flushes this worker queue (G2H handler) so we must use
5297 	 * another worker to trigger a GT reset.
5298 	 */
5299 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5300 
5301 	return 0;
5302 }
5303 
5304 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5305 {
5306 	struct intel_guc *guc = &engine->gt->uc.guc;
5307 	struct intel_context *ce;
5308 	struct i915_request *rq;
5309 	unsigned long index;
5310 	unsigned long flags;
5311 
5312 	/* Reset called during driver load? GuC not yet initialised! */
5313 	if (unlikely(!guc_submission_initialized(guc)))
5314 		return;
5315 
5316 	xa_lock_irqsave(&guc->context_lookup, flags);
5317 	xa_for_each(&guc->context_lookup, index, ce) {
5318 		bool found;
5319 
5320 		if (!kref_get_unless_zero(&ce->ref))
5321 			continue;
5322 
5323 		xa_unlock(&guc->context_lookup);
5324 
5325 		if (!intel_context_is_pinned(ce))
5326 			goto next;
5327 
5328 		if (intel_engine_is_virtual(ce->engine)) {
5329 			if (!(ce->engine->mask & engine->mask))
5330 				goto next;
5331 		} else {
5332 			if (ce->engine != engine)
5333 				goto next;
5334 		}
5335 
5336 		found = false;
5337 		spin_lock(&ce->guc_state.lock);
5338 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5339 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5340 				continue;
5341 
5342 			found = true;
5343 			break;
5344 		}
5345 		spin_unlock(&ce->guc_state.lock);
5346 
5347 		if (found) {
5348 			intel_engine_set_hung_context(engine, ce);
5349 
5350 			/* Can only cope with one hang at a time... */
5351 			intel_context_put(ce);
5352 			xa_lock(&guc->context_lookup);
5353 			goto done;
5354 		}
5355 
5356 next:
5357 		intel_context_put(ce);
5358 		xa_lock(&guc->context_lookup);
5359 	}
5360 done:
5361 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5362 }
5363 
5364 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5365 				    struct i915_request *hung_rq,
5366 				    struct drm_printer *m)
5367 {
5368 	struct intel_guc *guc = &engine->gt->uc.guc;
5369 	struct intel_context *ce;
5370 	unsigned long index;
5371 	unsigned long flags;
5372 
5373 	/* Reset called during driver load? GuC not yet initialised! */
5374 	if (unlikely(!guc_submission_initialized(guc)))
5375 		return;
5376 
5377 	xa_lock_irqsave(&guc->context_lookup, flags);
5378 	xa_for_each(&guc->context_lookup, index, ce) {
5379 		if (!kref_get_unless_zero(&ce->ref))
5380 			continue;
5381 
5382 		xa_unlock(&guc->context_lookup);
5383 
5384 		if (!intel_context_is_pinned(ce))
5385 			goto next;
5386 
5387 		if (intel_engine_is_virtual(ce->engine)) {
5388 			if (!(ce->engine->mask & engine->mask))
5389 				goto next;
5390 		} else {
5391 			if (ce->engine != engine)
5392 				goto next;
5393 		}
5394 
5395 		spin_lock(&ce->guc_state.lock);
5396 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5397 						  hung_rq, m);
5398 		spin_unlock(&ce->guc_state.lock);
5399 
5400 next:
5401 		intel_context_put(ce);
5402 		xa_lock(&guc->context_lookup);
5403 	}
5404 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5405 }
5406 
5407 void intel_guc_submission_print_info(struct intel_guc *guc,
5408 				     struct drm_printer *p)
5409 {
5410 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5411 	struct rb_node *rb;
5412 	unsigned long flags;
5413 
5414 	if (!sched_engine)
5415 		return;
5416 
5417 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5418 		   guc->submission_version.major, guc->submission_version.minor,
5419 		   guc->submission_version.patch);
5420 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5421 		   atomic_read(&guc->outstanding_submission_g2h));
5422 	drm_printf(p, "GuC tasklet count: %u\n",
5423 		   atomic_read(&sched_engine->tasklet.count));
5424 
5425 	spin_lock_irqsave(&sched_engine->lock, flags);
5426 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5427 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5428 		struct i915_priolist *pl = to_priolist(rb);
5429 		struct i915_request *rq;
5430 
5431 		priolist_for_each_request(rq, pl)
5432 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5433 				   rq->context->guc_id.id,
5434 				   rq->fence.seqno);
5435 	}
5436 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5437 	drm_printf(p, "\n");
5438 }
5439 
5440 static inline void guc_log_context_priority(struct drm_printer *p,
5441 					    struct intel_context *ce)
5442 {
5443 	int i;
5444 
5445 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5446 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5447 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5448 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5449 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5450 			   i, ce->guc_state.prio_count[i]);
5451 	}
5452 	drm_printf(p, "\n");
5453 }
5454 
5455 static inline void guc_log_context(struct drm_printer *p,
5456 				   struct intel_context *ce)
5457 {
5458 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5459 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5460 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5461 		   ce->ring->head,
5462 		   ce->lrc_reg_state[CTX_RING_HEAD]);
5463 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5464 		   ce->ring->tail,
5465 		   ce->lrc_reg_state[CTX_RING_TAIL]);
5466 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5467 		   atomic_read(&ce->pin_count));
5468 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5469 		   atomic_read(&ce->guc_id.ref));
5470 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5471 		   ce->guc_state.sched_state);
5472 }
5473 
5474 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5475 					     struct drm_printer *p)
5476 {
5477 	struct intel_context *ce;
5478 	unsigned long index;
5479 	unsigned long flags;
5480 
5481 	xa_lock_irqsave(&guc->context_lookup, flags);
5482 	xa_for_each(&guc->context_lookup, index, ce) {
5483 		GEM_BUG_ON(intel_context_is_child(ce));
5484 
5485 		guc_log_context(p, ce);
5486 		guc_log_context_priority(p, ce);
5487 
5488 		if (intel_context_is_parent(ce)) {
5489 			struct intel_context *child;
5490 
5491 			drm_printf(p, "\t\tNumber children: %u\n",
5492 				   ce->parallel.number_children);
5493 
5494 			if (ce->parallel.guc.wq_status) {
5495 				drm_printf(p, "\t\tWQI Head: %u\n",
5496 					   READ_ONCE(*ce->parallel.guc.wq_head));
5497 				drm_printf(p, "\t\tWQI Tail: %u\n",
5498 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5499 				drm_printf(p, "\t\tWQI Status: %u\n",
5500 					   READ_ONCE(*ce->parallel.guc.wq_status));
5501 			}
5502 
5503 			if (ce->engine->emit_bb_start ==
5504 			    emit_bb_start_parent_no_preempt_mid_batch) {
5505 				u8 i;
5506 
5507 				drm_printf(p, "\t\tChildren Go: %u\n",
5508 					   get_children_go_value(ce));
5509 				for (i = 0; i < ce->parallel.number_children; ++i)
5510 					drm_printf(p, "\t\tChildren Join: %u\n",
5511 						   get_children_join_value(ce, i));
5512 			}
5513 
5514 			for_each_child(ce, child)
5515 				guc_log_context(p, child);
5516 		}
5517 	}
5518 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5519 }
5520 
5521 static inline u32 get_children_go_addr(struct intel_context *ce)
5522 {
5523 	GEM_BUG_ON(!intel_context_is_parent(ce));
5524 
5525 	return i915_ggtt_offset(ce->state) +
5526 		__get_parent_scratch_offset(ce) +
5527 		offsetof(struct parent_scratch, go.semaphore);
5528 }
5529 
5530 static inline u32 get_children_join_addr(struct intel_context *ce,
5531 					 u8 child_index)
5532 {
5533 	GEM_BUG_ON(!intel_context_is_parent(ce));
5534 
5535 	return i915_ggtt_offset(ce->state) +
5536 		__get_parent_scratch_offset(ce) +
5537 		offsetof(struct parent_scratch, join[child_index].semaphore);
5538 }
5539 
5540 #define PARENT_GO_BB			1
5541 #define PARENT_GO_FINI_BREADCRUMB	0
5542 #define CHILD_GO_BB			1
5543 #define CHILD_GO_FINI_BREADCRUMB	0
5544 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5545 						     u64 offset, u32 len,
5546 						     const unsigned int flags)
5547 {
5548 	struct intel_context *ce = rq->context;
5549 	u32 *cs;
5550 	u8 i;
5551 
5552 	GEM_BUG_ON(!intel_context_is_parent(ce));
5553 
5554 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5555 	if (IS_ERR(cs))
5556 		return PTR_ERR(cs);
5557 
5558 	/* Wait on children */
5559 	for (i = 0; i < ce->parallel.number_children; ++i) {
5560 		*cs++ = (MI_SEMAPHORE_WAIT |
5561 			 MI_SEMAPHORE_GLOBAL_GTT |
5562 			 MI_SEMAPHORE_POLL |
5563 			 MI_SEMAPHORE_SAD_EQ_SDD);
5564 		*cs++ = PARENT_GO_BB;
5565 		*cs++ = get_children_join_addr(ce, i);
5566 		*cs++ = 0;
5567 	}
5568 
5569 	/* Turn off preemption */
5570 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5571 	*cs++ = MI_NOOP;
5572 
5573 	/* Tell children go */
5574 	cs = gen8_emit_ggtt_write(cs,
5575 				  CHILD_GO_BB,
5576 				  get_children_go_addr(ce),
5577 				  0);
5578 
5579 	/* Jump to batch */
5580 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5581 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5582 	*cs++ = lower_32_bits(offset);
5583 	*cs++ = upper_32_bits(offset);
5584 	*cs++ = MI_NOOP;
5585 
5586 	intel_ring_advance(rq, cs);
5587 
5588 	return 0;
5589 }
5590 
5591 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5592 						    u64 offset, u32 len,
5593 						    const unsigned int flags)
5594 {
5595 	struct intel_context *ce = rq->context;
5596 	struct intel_context *parent = intel_context_to_parent(ce);
5597 	u32 *cs;
5598 
5599 	GEM_BUG_ON(!intel_context_is_child(ce));
5600 
5601 	cs = intel_ring_begin(rq, 12);
5602 	if (IS_ERR(cs))
5603 		return PTR_ERR(cs);
5604 
5605 	/* Signal parent */
5606 	cs = gen8_emit_ggtt_write(cs,
5607 				  PARENT_GO_BB,
5608 				  get_children_join_addr(parent,
5609 							 ce->parallel.child_index),
5610 				  0);
5611 
5612 	/* Wait on parent for go */
5613 	*cs++ = (MI_SEMAPHORE_WAIT |
5614 		 MI_SEMAPHORE_GLOBAL_GTT |
5615 		 MI_SEMAPHORE_POLL |
5616 		 MI_SEMAPHORE_SAD_EQ_SDD);
5617 	*cs++ = CHILD_GO_BB;
5618 	*cs++ = get_children_go_addr(parent);
5619 	*cs++ = 0;
5620 
5621 	/* Turn off preemption */
5622 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5623 
5624 	/* Jump to batch */
5625 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5626 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5627 	*cs++ = lower_32_bits(offset);
5628 	*cs++ = upper_32_bits(offset);
5629 
5630 	intel_ring_advance(rq, cs);
5631 
5632 	return 0;
5633 }
5634 
5635 static u32 *
5636 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5637 						   u32 *cs)
5638 {
5639 	struct intel_context *ce = rq->context;
5640 	u8 i;
5641 
5642 	GEM_BUG_ON(!intel_context_is_parent(ce));
5643 
5644 	/* Wait on children */
5645 	for (i = 0; i < ce->parallel.number_children; ++i) {
5646 		*cs++ = (MI_SEMAPHORE_WAIT |
5647 			 MI_SEMAPHORE_GLOBAL_GTT |
5648 			 MI_SEMAPHORE_POLL |
5649 			 MI_SEMAPHORE_SAD_EQ_SDD);
5650 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5651 		*cs++ = get_children_join_addr(ce, i);
5652 		*cs++ = 0;
5653 	}
5654 
5655 	/* Turn on preemption */
5656 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5657 	*cs++ = MI_NOOP;
5658 
5659 	/* Tell children go */
5660 	cs = gen8_emit_ggtt_write(cs,
5661 				  CHILD_GO_FINI_BREADCRUMB,
5662 				  get_children_go_addr(ce),
5663 				  0);
5664 
5665 	return cs;
5666 }
5667 
5668 /*
5669  * If this true, a submission of multi-lrc requests had an error and the
5670  * requests need to be skipped. The front end (execuf IOCTL) should've called
5671  * i915_request_skip which squashes the BB but we still need to emit the fini
5672  * breadrcrumbs seqno write. At this point we don't know how many of the
5673  * requests in the multi-lrc submission were generated so we can't do the
5674  * handshake between the parent and children (e.g. if 4 requests should be
5675  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5676  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5677  * has occurred on any of the requests in submission / relationship.
5678  */
5679 static inline bool skip_handshake(struct i915_request *rq)
5680 {
5681 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5682 }
5683 
5684 #define NON_SKIP_LEN	6
5685 static u32 *
5686 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5687 						 u32 *cs)
5688 {
5689 	struct intel_context *ce = rq->context;
5690 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5691 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5692 
5693 	GEM_BUG_ON(!intel_context_is_parent(ce));
5694 
5695 	if (unlikely(skip_handshake(rq))) {
5696 		/*
5697 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5698 		 * the NON_SKIP_LEN comes from the length of the emits below.
5699 		 */
5700 		memset(cs, 0, sizeof(u32) *
5701 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5702 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5703 	} else {
5704 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5705 	}
5706 
5707 	/* Emit fini breadcrumb */
5708 	before_fini_breadcrumb_user_interrupt_cs = cs;
5709 	cs = gen8_emit_ggtt_write(cs,
5710 				  rq->fence.seqno,
5711 				  i915_request_active_timeline(rq)->hwsp_offset,
5712 				  0);
5713 
5714 	/* User interrupt */
5715 	*cs++ = MI_USER_INTERRUPT;
5716 	*cs++ = MI_NOOP;
5717 
5718 	/* Ensure our math for skip + emit is correct */
5719 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5720 		   cs);
5721 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5722 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5723 
5724 	rq->tail = intel_ring_offset(rq, cs);
5725 
5726 	return cs;
5727 }
5728 
5729 static u32 *
5730 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5731 						  u32 *cs)
5732 {
5733 	struct intel_context *ce = rq->context;
5734 	struct intel_context *parent = intel_context_to_parent(ce);
5735 
5736 	GEM_BUG_ON(!intel_context_is_child(ce));
5737 
5738 	/* Turn on preemption */
5739 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5740 	*cs++ = MI_NOOP;
5741 
5742 	/* Signal parent */
5743 	cs = gen8_emit_ggtt_write(cs,
5744 				  PARENT_GO_FINI_BREADCRUMB,
5745 				  get_children_join_addr(parent,
5746 							 ce->parallel.child_index),
5747 				  0);
5748 
5749 	/* Wait parent on for go */
5750 	*cs++ = (MI_SEMAPHORE_WAIT |
5751 		 MI_SEMAPHORE_GLOBAL_GTT |
5752 		 MI_SEMAPHORE_POLL |
5753 		 MI_SEMAPHORE_SAD_EQ_SDD);
5754 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5755 	*cs++ = get_children_go_addr(parent);
5756 	*cs++ = 0;
5757 
5758 	return cs;
5759 }
5760 
5761 static u32 *
5762 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5763 						u32 *cs)
5764 {
5765 	struct intel_context *ce = rq->context;
5766 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5767 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5768 
5769 	GEM_BUG_ON(!intel_context_is_child(ce));
5770 
5771 	if (unlikely(skip_handshake(rq))) {
5772 		/*
5773 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5774 		 * the NON_SKIP_LEN comes from the length of the emits below.
5775 		 */
5776 		memset(cs, 0, sizeof(u32) *
5777 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5778 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5779 	} else {
5780 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5781 	}
5782 
5783 	/* Emit fini breadcrumb */
5784 	before_fini_breadcrumb_user_interrupt_cs = cs;
5785 	cs = gen8_emit_ggtt_write(cs,
5786 				  rq->fence.seqno,
5787 				  i915_request_active_timeline(rq)->hwsp_offset,
5788 				  0);
5789 
5790 	/* User interrupt */
5791 	*cs++ = MI_USER_INTERRUPT;
5792 	*cs++ = MI_NOOP;
5793 
5794 	/* Ensure our math for skip + emit is correct */
5795 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5796 		   cs);
5797 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5798 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5799 
5800 	rq->tail = intel_ring_offset(rq, cs);
5801 
5802 	return cs;
5803 }
5804 
5805 #undef NON_SKIP_LEN
5806 
5807 static struct intel_context *
5808 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5809 		   unsigned long flags)
5810 {
5811 	struct guc_virtual_engine *ve;
5812 	struct intel_guc *guc;
5813 	unsigned int n;
5814 	int err;
5815 
5816 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5817 	if (!ve)
5818 		return ERR_PTR(-ENOMEM);
5819 
5820 	guc = &siblings[0]->gt->uc.guc;
5821 
5822 	ve->base.i915 = siblings[0]->i915;
5823 	ve->base.gt = siblings[0]->gt;
5824 	ve->base.uncore = siblings[0]->uncore;
5825 	ve->base.id = -1;
5826 
5827 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5828 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5829 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5830 	ve->base.saturated = ALL_ENGINES;
5831 
5832 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5833 
5834 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5835 
5836 	ve->base.cops = &virtual_guc_context_ops;
5837 	ve->base.request_alloc = guc_request_alloc;
5838 	ve->base.bump_serial = virtual_guc_bump_serial;
5839 
5840 	ve->base.submit_request = guc_submit_request;
5841 
5842 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5843 
5844 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5845 	ve->base.mask = VIRTUAL_ENGINES;
5846 
5847 	intel_context_init(&ve->context, &ve->base);
5848 
5849 	for (n = 0; n < count; n++) {
5850 		struct intel_engine_cs *sibling = siblings[n];
5851 
5852 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5853 		if (sibling->mask & ve->base.mask) {
5854 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5855 				sibling->name);
5856 			err = -EINVAL;
5857 			goto err_put;
5858 		}
5859 
5860 		ve->base.mask |= sibling->mask;
5861 		ve->base.logical_mask |= sibling->logical_mask;
5862 
5863 		if (n != 0 && ve->base.class != sibling->class) {
5864 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5865 				sibling->class, ve->base.class);
5866 			err = -EINVAL;
5867 			goto err_put;
5868 		} else if (n == 0) {
5869 			ve->base.class = sibling->class;
5870 			ve->base.uabi_class = sibling->uabi_class;
5871 			snprintf(ve->base.name, sizeof(ve->base.name),
5872 				 "v%dx%d", ve->base.class, count);
5873 			ve->base.context_size = sibling->context_size;
5874 
5875 			ve->base.add_active_request =
5876 				sibling->add_active_request;
5877 			ve->base.remove_active_request =
5878 				sibling->remove_active_request;
5879 			ve->base.emit_bb_start = sibling->emit_bb_start;
5880 			ve->base.emit_flush = sibling->emit_flush;
5881 			ve->base.emit_init_breadcrumb =
5882 				sibling->emit_init_breadcrumb;
5883 			ve->base.emit_fini_breadcrumb =
5884 				sibling->emit_fini_breadcrumb;
5885 			ve->base.emit_fini_breadcrumb_dw =
5886 				sibling->emit_fini_breadcrumb_dw;
5887 			ve->base.breadcrumbs =
5888 				intel_breadcrumbs_get(sibling->breadcrumbs);
5889 
5890 			ve->base.flags |= sibling->flags;
5891 
5892 			ve->base.props.timeslice_duration_ms =
5893 				sibling->props.timeslice_duration_ms;
5894 			ve->base.props.preempt_timeout_ms =
5895 				sibling->props.preempt_timeout_ms;
5896 		}
5897 	}
5898 
5899 	return &ve->context;
5900 
5901 err_put:
5902 	intel_context_put(&ve->context);
5903 	return ERR_PTR(err);
5904 }
5905 
5906 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5907 {
5908 	struct intel_engine_cs *engine;
5909 	intel_engine_mask_t tmp, mask = ve->mask;
5910 
5911 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5912 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5913 			return true;
5914 
5915 	return false;
5916 }
5917 
5918 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5919 #include "selftest_guc.c"
5920 #include "selftest_guc_multi_lrc.c"
5921 #include "selftest_guc_hangcheck.c"
5922 #endif
5923