xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37 
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135 
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138 	struct intel_engine_cs base;
139 	struct intel_context context;
140 };
141 
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144 		   unsigned long flags);
145 
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148 		    unsigned int num_siblings,
149 		    unsigned int width);
150 
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152 
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
162 	((guc)->submission_state.num_guc_ids / 16)
163 
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
169 #define SCHED_STATE_DESTROYED				BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
171 #define SCHED_STATE_BANNED				BIT(3)
172 #define SCHED_STATE_ENABLED				BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
174 #define SCHED_STATE_REGISTERED				BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
176 #define SCHED_STATE_CLOSED				BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT			9
178 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
180 
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183 	lockdep_assert_held(&ce->guc_state.lock);
184 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186 
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193 	(SCHED_STATE_BLOCKED_MASK | \
194 	 SCHED_STATE_CLOSED | \
195 	 SCHED_STATE_REGISTERED)
196 
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202 
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206 	return ce->guc_state.sched_state &
207 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209 
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213 	lockdep_assert_held(&ce->guc_state.lock);
214 	ce->guc_state.sched_state |=
215 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217 
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221 	lockdep_assert_held(&ce->guc_state.lock);
222 	ce->guc_state.sched_state &=
223 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225 
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231 
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235 	lockdep_assert_held(&ce->guc_state.lock);
236 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238 
239 static inline void
240 clr_context_destroyed(struct intel_context *ce)
241 {
242 	lockdep_assert_held(&ce->guc_state.lock);
243 	ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245 
246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250 
251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253 	lockdep_assert_held(&ce->guc_state.lock);
254 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256 
257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259 	lockdep_assert_held(&ce->guc_state.lock);
260 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262 
263 static inline bool context_banned(struct intel_context *ce)
264 {
265 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267 
268 static inline void set_context_banned(struct intel_context *ce)
269 {
270 	lockdep_assert_held(&ce->guc_state.lock);
271 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273 
274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276 	lockdep_assert_held(&ce->guc_state.lock);
277 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279 
280 static inline bool context_enabled(struct intel_context *ce)
281 {
282 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284 
285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287 	lockdep_assert_held(&ce->guc_state.lock);
288 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290 
291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293 	lockdep_assert_held(&ce->guc_state.lock);
294 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296 
297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301 
302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304 	lockdep_assert_held(&ce->guc_state.lock);
305 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307 
308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310 	lockdep_assert_held(&ce->guc_state.lock);
311 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313 
314 static inline bool context_registered(struct intel_context *ce)
315 {
316 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318 
319 static inline void set_context_registered(struct intel_context *ce)
320 {
321 	lockdep_assert_held(&ce->guc_state.lock);
322 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324 
325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327 	lockdep_assert_held(&ce->guc_state.lock);
328 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330 
331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335 
336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338 	lockdep_assert_held(&ce->guc_state.lock);
339 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341 
342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344 	lockdep_assert_held(&ce->guc_state.lock);
345 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347 
348 static inline bool context_close_done(struct intel_context *ce)
349 {
350 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352 
353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355 	lockdep_assert_held(&ce->guc_state.lock);
356 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358 
359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362 		SCHED_STATE_BLOCKED_SHIFT;
363 }
364 
365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367 	lockdep_assert_held(&ce->guc_state.lock);
368 
369 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370 
371 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
372 }
373 
374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376 	lockdep_assert_held(&ce->guc_state.lock);
377 
378 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
379 
380 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382 
383 static struct intel_context *
384 request_to_scheduling_context(struct i915_request *rq)
385 {
386 	return intel_context_to_parent(rq->context);
387 }
388 
389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393 
394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398 
399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401 	return gt_to_guc(ce->engine->gt);
402 }
403 
404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406 	return rb_entry(rb, struct i915_priolist, node);
407 }
408 
409 /*
410  * When using multi-lrc submission a scratch memory area is reserved in the
411  * parent's context state for the process descriptor, work queue, and handshake
412  * between the parent + children contexts to insert safe preemption points
413  * between each of the BBs. Currently the scratch area is sized to a page.
414  *
415  * The layout of this scratch area is below:
416  * 0						guc_process_desc
417  * + sizeof(struct guc_process_desc)		child go
418  * + CACHELINE_BYTES				child join[0]
419  * ...
420  * + CACHELINE_BYTES				child join[n - 1]
421  * ...						unused
422  * PARENT_SCRATCH_SIZE / 2			work queue start
423  * ...						work queue
424  * PARENT_SCRATCH_SIZE - 1			work queue end
425  */
426 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
428 
429 struct sync_semaphore {
430 	u32 semaphore;
431 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433 
434 struct parent_scratch {
435 	union guc_descs {
436 		struct guc_sched_wq_desc wq_desc;
437 		struct guc_process_desc_v69 pdesc;
438 	} descs;
439 
440 	struct sync_semaphore go;
441 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442 
443 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445 
446 	u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448 
449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
452 
453 	return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455 
456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459 
460 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462 
463 static struct parent_scratch *
464 __get_parent_scratch(struct intel_context *ce)
465 {
466 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468 
469 	/*
470 	 * Need to subtract LRC_STATE_OFFSET here as the
471 	 * parallel.guc.parent_page is the offset into ce->state while
472 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473 	 */
474 	return (struct parent_scratch *)
475 		(ce->lrc_reg_state +
476 		 ((__get_parent_scratch_offset(ce) -
477 		   LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479 
480 static struct guc_process_desc_v69 *
481 __get_process_desc_v69(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.pdesc;
486 }
487 
488 static struct guc_sched_wq_desc *
489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491 	struct parent_scratch *ps = __get_parent_scratch(ce);
492 
493 	return &ps->descs.wq_desc;
494 }
495 
496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498 	/*
499 	 * Check for space in work queue. Caching a value of head pointer in
500 	 * intel_context structure in order reduce the number accesses to shared
501 	 * GPU memory which may be across a PCIe bus.
502 	 */
503 #define AVAILABLE_SPACE	\
504 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505 	if (wqi_size > AVAILABLE_SPACE) {
506 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507 
508 		if (wqi_size > AVAILABLE_SPACE)
509 			return NULL;
510 	}
511 #undef AVAILABLE_SPACE
512 
513 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515 
516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
519 
520 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521 
522 	return ce;
523 }
524 
525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528 
529 	if (!base)
530 		return NULL;
531 
532 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533 
534 	return &base[index];
535 }
536 
537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539 	u32 size;
540 	int ret;
541 
542 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543 			  GUC_MAX_CONTEXT_ID);
544 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
546 	if (ret)
547 		return ret;
548 
549 	return 0;
550 }
551 
552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554 	if (!guc->lrc_desc_pool_vaddr_v69)
555 		return;
556 
557 	guc->lrc_desc_pool_vaddr_v69 = NULL;
558 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560 
561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563 	return guc->submission_initialized;
564 }
565 
566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569 
570 	if (desc)
571 		memset(desc, 0, sizeof(*desc));
572 }
573 
574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576 	return __get_context(guc, id);
577 }
578 
579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580 				      struct intel_context *ce)
581 {
582 	unsigned long flags;
583 
584 	/*
585 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586 	 * lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595 	unsigned long flags;
596 
597 	if (unlikely(!guc_submission_initialized(guc)))
598 		return;
599 
600 	_reset_lrc_desc_v69(guc, id);
601 
602 	/*
603 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604 	 * the lower level functions directly.
605 	 */
606 	xa_lock_irqsave(&guc->context_lookup, flags);
607 	__xa_erase(&guc->context_lookup, id);
608 	xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610 
611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614 		wake_up_all(&guc->ct.wq);
615 }
616 
617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618 					 const u32 *action,
619 					 u32 len,
620 					 u32 g2h_len_dw,
621 					 bool loop)
622 {
623 	int ret;
624 
625 	/*
626 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627 	 * so we don't handle the case where we don't get a reply because we
628 	 * aborted the send due to the channel being busy.
629 	 */
630 	GEM_BUG_ON(g2h_len_dw && !loop);
631 
632 	if (g2h_len_dw)
633 		atomic_inc(&guc->outstanding_submission_g2h);
634 
635 	ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636 	if (ret)
637 		atomic_dec(&guc->outstanding_submission_g2h);
638 
639 	return ret;
640 }
641 
642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643 				   atomic_t *wait_var,
644 				   bool interruptible,
645 				   long timeout)
646 {
647 	const int state = interruptible ?
648 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649 	DEFINE_WAIT(wait);
650 
651 	might_sleep();
652 	GEM_BUG_ON(timeout < 0);
653 
654 	if (!atomic_read(wait_var))
655 		return 0;
656 
657 	if (!timeout)
658 		return -ETIME;
659 
660 	for (;;) {
661 		prepare_to_wait(&guc->ct.wq, &wait, state);
662 
663 		if (!atomic_read(wait_var))
664 			break;
665 
666 		if (signal_pending_state(state, current)) {
667 			timeout = -EINTR;
668 			break;
669 		}
670 
671 		if (!timeout) {
672 			timeout = -ETIME;
673 			break;
674 		}
675 
676 		timeout = io_schedule_timeout(timeout);
677 	}
678 	finish_wait(&guc->ct.wq, &wait);
679 
680 	return (timeout < 0) ? timeout : 0;
681 }
682 
683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686 		return 0;
687 
688 	return intel_guc_wait_for_pending_msg(guc,
689 					      &guc->outstanding_submission_g2h,
690 					      true, timeout);
691 }
692 
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695 
696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698 	int err = 0;
699 	struct intel_context *ce = request_to_scheduling_context(rq);
700 	u32 action[3];
701 	int len = 0;
702 	u32 g2h_len_dw = 0;
703 	bool enabled;
704 
705 	lockdep_assert_held(&rq->engine->sched_engine->lock);
706 
707 	/*
708 	 * Corner case where requests were sitting in the priority list or a
709 	 * request resubmitted after the context was banned.
710 	 */
711 	if (unlikely(!intel_context_is_schedulable(ce))) {
712 		i915_request_put(i915_request_mark_eio(rq));
713 		intel_engine_signal_breadcrumbs(ce->engine);
714 		return 0;
715 	}
716 
717 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718 	GEM_BUG_ON(context_guc_id_invalid(ce));
719 
720 	if (context_policy_required(ce)) {
721 		err = guc_context_policy_init_v70(ce, false);
722 		if (err)
723 			return err;
724 	}
725 
726 	spin_lock(&ce->guc_state.lock);
727 
728 	/*
729 	 * The request / context will be run on the hardware when scheduling
730 	 * gets enabled in the unblock. For multi-lrc we still submit the
731 	 * context to move the LRC tails.
732 	 */
733 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734 		goto out;
735 
736 	enabled = context_enabled(ce) || context_blocked(ce);
737 
738 	if (!enabled) {
739 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740 		action[len++] = ce->guc_id.id;
741 		action[len++] = GUC_CONTEXT_ENABLE;
742 		set_context_pending_enable(ce);
743 		intel_context_get(ce);
744 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745 	} else {
746 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747 		action[len++] = ce->guc_id.id;
748 	}
749 
750 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751 	if (!enabled && !err) {
752 		trace_intel_context_sched_enable(ce);
753 		atomic_inc(&guc->outstanding_submission_g2h);
754 		set_context_enabled(ce);
755 
756 		/*
757 		 * Without multi-lrc KMD does the submission step (moving the
758 		 * lrc tail) so enabling scheduling is sufficient to submit the
759 		 * context. This isn't the case in multi-lrc submission as the
760 		 * GuC needs to move the tails, hence the need for another H2G
761 		 * to submit a multi-lrc context after enabling scheduling.
762 		 */
763 		if (intel_context_is_parent(ce)) {
764 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765 			err = intel_guc_send_nb(guc, action, len - 1, 0);
766 		}
767 	} else if (!enabled) {
768 		clr_context_pending_enable(ce);
769 		intel_context_put(ce);
770 	}
771 	if (likely(!err))
772 		trace_i915_request_guc_submit(rq);
773 
774 out:
775 	spin_unlock(&ce->guc_state.lock);
776 	return err;
777 }
778 
779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781 	int ret = __guc_add_request(guc, rq);
782 
783 	if (unlikely(ret == -EBUSY)) {
784 		guc->stalled_request = rq;
785 		guc->submission_stall_reason = STALL_ADD_REQUEST;
786 	}
787 
788 	return ret;
789 }
790 
791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
794 		intel_ring_set_tail(rq->ring, rq->tail);
795 }
796 
797 static inline int rq_prio(const struct i915_request *rq)
798 {
799 	return rq->sched.attr.priority;
800 }
801 
802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804 	return intel_context_is_parallel(rq->context);
805 }
806 
807 static bool can_merge_rq(struct i915_request *rq,
808 			 struct i915_request *last)
809 {
810 	return request_to_scheduling_context(rq) ==
811 		request_to_scheduling_context(last);
812 }
813 
814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818 
819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822 
823 	/*
824 	 * Ensure WQI are visible before updating tail
825 	 */
826 	intel_guc_write_barrier(ce_to_guc(ce));
827 
828 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829 		(WQ_SIZE - 1);
830 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832 
833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837 
838 	if (!wqi)
839 		return -EBUSY;
840 
841 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842 
843 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844 		FIELD_PREP(WQ_LEN_MASK, len_dw);
845 	ce->parallel.guc.wqi_tail = 0;
846 
847 	return 0;
848 }
849 
850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852 	struct intel_context *ce = request_to_scheduling_context(rq);
853 	struct intel_context *child;
854 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
855 		sizeof(u32);
856 	u32 *wqi;
857 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858 	int ret;
859 
860 	/* Ensure context is in correct state updating work queue */
861 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862 	GEM_BUG_ON(context_guc_id_invalid(ce));
863 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865 
866 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
867 	if (wqi_size > wq_space_until_wrap(ce)) {
868 		ret = guc_wq_noop_append(ce);
869 		if (ret)
870 			return ret;
871 	}
872 
873 	wqi = get_wq_pointer(ce, wqi_size);
874 	if (!wqi)
875 		return -EBUSY;
876 
877 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878 
879 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880 		FIELD_PREP(WQ_LEN_MASK, len_dw);
881 	*wqi++ = ce->lrc.lrca;
882 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884 	*wqi++ = 0;	/* fence_id */
885 	for_each_child(ce, child)
886 		*wqi++ = child->ring->tail / sizeof(u64);
887 
888 	write_wqi(ce, wqi_size);
889 
890 	return 0;
891 }
892 
893 static int guc_wq_item_append(struct intel_guc *guc,
894 			      struct i915_request *rq)
895 {
896 	struct intel_context *ce = request_to_scheduling_context(rq);
897 	int ret;
898 
899 	if (unlikely(!intel_context_is_schedulable(ce)))
900 		return 0;
901 
902 	ret = __guc_wq_item_append(rq);
903 	if (unlikely(ret == -EBUSY)) {
904 		guc->stalled_request = rq;
905 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906 	}
907 
908 	return ret;
909 }
910 
911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913 	struct intel_context *ce = request_to_scheduling_context(rq);
914 
915 	intel_ring_set_tail(rq->ring, rq->tail);
916 
917 	/*
918 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
919 	 * request generated from a multi-BB submission. This indicates to the
920 	 * backend (GuC interface) that we should submit this context thus
921 	 * submitting all the requests generated in parallel.
922 	 */
923 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924 	       !intel_context_is_schedulable(ce);
925 }
926 
927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
930 	struct i915_request *last = NULL;
931 	bool submit = false;
932 	struct rb_node *rb;
933 	int ret;
934 
935 	lockdep_assert_held(&sched_engine->lock);
936 
937 	if (guc->stalled_request) {
938 		submit = true;
939 		last = guc->stalled_request;
940 
941 		switch (guc->submission_stall_reason) {
942 		case STALL_REGISTER_CONTEXT:
943 			goto register_context;
944 		case STALL_MOVE_LRC_TAIL:
945 			goto move_lrc_tail;
946 		case STALL_ADD_REQUEST:
947 			goto add_request;
948 		default:
949 			MISSING_CASE(guc->submission_stall_reason);
950 		}
951 	}
952 
953 	while ((rb = rb_first_cached(&sched_engine->queue))) {
954 		struct i915_priolist *p = to_priolist(rb);
955 		struct i915_request *rq, *rn;
956 
957 		priolist_for_each_request_consume(rq, rn, p) {
958 			if (last && !can_merge_rq(rq, last))
959 				goto register_context;
960 
961 			list_del_init(&rq->sched.link);
962 
963 			__i915_request_submit(rq);
964 
965 			trace_i915_request_in(rq, 0);
966 			last = rq;
967 
968 			if (is_multi_lrc_rq(rq)) {
969 				/*
970 				 * We need to coalesce all multi-lrc requests in
971 				 * a relationship into a single H2G. We are
972 				 * guaranteed that all of these requests will be
973 				 * submitted sequentially.
974 				 */
975 				if (multi_lrc_submit(rq)) {
976 					submit = true;
977 					goto register_context;
978 				}
979 			} else {
980 				submit = true;
981 			}
982 		}
983 
984 		rb_erase_cached(&p->node, &sched_engine->queue);
985 		i915_priolist_free(p);
986 	}
987 
988 register_context:
989 	if (submit) {
990 		struct intel_context *ce = request_to_scheduling_context(last);
991 
992 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993 			     intel_context_is_schedulable(ce))) {
994 			ret = try_context_registration(ce, false);
995 			if (unlikely(ret == -EPIPE)) {
996 				goto deadlk;
997 			} else if (ret == -EBUSY) {
998 				guc->stalled_request = last;
999 				guc->submission_stall_reason =
1000 					STALL_REGISTER_CONTEXT;
1001 				goto schedule_tasklet;
1002 			} else if (ret != 0) {
1003 				GEM_WARN_ON(ret);	/* Unexpected */
1004 				goto deadlk;
1005 			}
1006 		}
1007 
1008 move_lrc_tail:
1009 		if (is_multi_lrc_rq(last)) {
1010 			ret = guc_wq_item_append(guc, last);
1011 			if (ret == -EBUSY) {
1012 				goto schedule_tasklet;
1013 			} else if (ret != 0) {
1014 				GEM_WARN_ON(ret);	/* Unexpected */
1015 				goto deadlk;
1016 			}
1017 		} else {
1018 			guc_set_lrc_tail(last);
1019 		}
1020 
1021 add_request:
1022 		ret = guc_add_request(guc, last);
1023 		if (unlikely(ret == -EPIPE)) {
1024 			goto deadlk;
1025 		} else if (ret == -EBUSY) {
1026 			goto schedule_tasklet;
1027 		} else if (ret != 0) {
1028 			GEM_WARN_ON(ret);	/* Unexpected */
1029 			goto deadlk;
1030 		}
1031 	}
1032 
1033 	guc->stalled_request = NULL;
1034 	guc->submission_stall_reason = STALL_NONE;
1035 	return submit;
1036 
1037 deadlk:
1038 	sched_engine->tasklet.callback = NULL;
1039 	tasklet_disable_nosync(&sched_engine->tasklet);
1040 	return false;
1041 
1042 schedule_tasklet:
1043 	tasklet_schedule(&sched_engine->tasklet);
1044 	return false;
1045 }
1046 
1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049 	struct i915_sched_engine *sched_engine =
1050 		from_tasklet(sched_engine, t, tasklet);
1051 	unsigned long flags;
1052 	bool loop;
1053 
1054 	spin_lock_irqsave(&sched_engine->lock, flags);
1055 
1056 	do {
1057 		loop = guc_dequeue_one_context(sched_engine->private_data);
1058 	} while (loop);
1059 
1060 	i915_sched_engine_reset_on_empty(sched_engine);
1061 
1062 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064 
1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067 	if (iir & GT_RENDER_USER_INTERRUPT)
1068 		intel_engine_signal_breadcrumbs(engine);
1069 }
1070 
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076 
1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079 	struct intel_context *ce;
1080 	unsigned long index, flags;
1081 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1082 
1083 	xa_lock_irqsave(&guc->context_lookup, flags);
1084 	xa_for_each(&guc->context_lookup, index, ce) {
1085 		/*
1086 		 * Corner case where the ref count on the object is zero but and
1087 		 * deregister G2H was lost. In this case we don't touch the ref
1088 		 * count and finish the destroy of the context.
1089 		 */
1090 		bool do_put = kref_get_unless_zero(&ce->ref);
1091 
1092 		xa_unlock(&guc->context_lookup);
1093 
1094 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096 			/* successful cancel so jump straight to close it */
1097 			intel_context_sched_disable_unpin(ce);
1098 		}
1099 
1100 		spin_lock(&ce->guc_state.lock);
1101 
1102 		/*
1103 		 * Once we are at this point submission_disabled() is guaranteed
1104 		 * to be visible to all callers who set the below flags (see above
1105 		 * flush and flushes in reset_prepare). If submission_disabled()
1106 		 * is set, the caller shouldn't set these flags.
1107 		 */
1108 
1109 		destroyed = context_destroyed(ce);
1110 		pending_enable = context_pending_enable(ce);
1111 		pending_disable = context_pending_disable(ce);
1112 		deregister = context_wait_for_deregister_to_register(ce);
1113 		banned = context_banned(ce);
1114 		init_sched_state(ce);
1115 
1116 		spin_unlock(&ce->guc_state.lock);
1117 
1118 		if (pending_enable || destroyed || deregister) {
1119 			decr_outstanding_submission_g2h(guc);
1120 			if (deregister)
1121 				guc_signal_context_fence(ce);
1122 			if (destroyed) {
1123 				intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124 				release_guc_id(guc, ce);
1125 				__guc_context_destroy(ce);
1126 			}
1127 			if (pending_enable || deregister)
1128 				intel_context_put(ce);
1129 		}
1130 
1131 		/* Not mutualy exclusive with above if statement. */
1132 		if (pending_disable) {
1133 			guc_signal_context_fence(ce);
1134 			if (banned) {
1135 				guc_cancel_context_requests(ce);
1136 				intel_engine_signal_breadcrumbs(ce->engine);
1137 			}
1138 			intel_context_sched_disable_unpin(ce);
1139 			decr_outstanding_submission_g2h(guc);
1140 
1141 			spin_lock(&ce->guc_state.lock);
1142 			guc_blocked_fence_complete(ce);
1143 			spin_unlock(&ce->guc_state.lock);
1144 
1145 			intel_context_put(ce);
1146 		}
1147 
1148 		if (do_put)
1149 			intel_context_put(ce);
1150 		xa_lock(&guc->context_lookup);
1151 	}
1152 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154 
1155 /*
1156  * GuC stores busyness stats for each engine at context in/out boundaries. A
1157  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159  * GuC.
1160  *
1161  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163  * active. For an active engine total busyness = total + (now - start), where
1164  * 'now' is the time at which the busyness is sampled. For inactive engine,
1165  * total busyness = total.
1166  *
1167  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168  *
1169  * The start and total values provided by GuC are 32 bits and wrap around in a
1170  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171  * increasing ns values, there is a need for this implementation to account for
1172  * overflows and extend the GuC provided values to 64 bits before returning
1173  * busyness to the user. In order to do that, a worker runs periodically at
1174  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175  * 27 seconds for a gt clock frequency of 19.2 MHz).
1176  */
1177 
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180 
1181 static void
1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186 
1187 	if (new_start == lower_32_bits(*prev_start))
1188 		return;
1189 
1190 	/*
1191 	 * When gt is unparked, we update the gt timestamp and start the ping
1192 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193 	 * is unparked, all switched in contexts will have a start time that is
1194 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195 	 *
1196 	 * If neither gt_stamp nor new_start has rolled over, then the
1197 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1198 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1199 	 *
1200 	 * The below conditions address the cases of new_start rollover and
1201 	 * gt_stamp_last rollover respectively.
1202 	 */
1203 	if (new_start < gt_stamp_last &&
1204 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205 		gt_stamp_hi++;
1206 
1207 	if (new_start > gt_stamp_last &&
1208 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209 		gt_stamp_hi--;
1210 
1211 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213 
1214 #define record_read(map_, field_) \
1215 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216 
1217 /*
1218  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219  * we run into a race where the value read is inconsistent. Sometimes the
1220  * inconsistency is in reading the upper MSB bytes of the last_in value when
1221  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223  * determine validity of these values. Instead we read the values multiple times
1224  * until they are consistent. In test runs, 3 attempts results in consistent
1225  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226  * any new occurences.
1227  */
1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229 				      u32 *last_in, u32 *id, u32 *total)
1230 {
1231 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232 	int i = 0;
1233 
1234 	do {
1235 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1236 		*id = record_read(&rec_map, current_context_index);
1237 		*total = record_read(&rec_map, total_runtime);
1238 
1239 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240 		    record_read(&rec_map, current_context_index) == *id &&
1241 		    record_read(&rec_map, total_runtime) == *total)
1242 			break;
1243 	} while (++i < 6);
1244 }
1245 
1246 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1247 				      u32 last_in, u32 id, u32 total)
1248 {
1249 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1250 
1251 #define record_write(map_, field_, val_) \
1252 	iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1253 
1254 	record_write(&rec_map, last_switch_in_stamp, last_in);
1255 	record_write(&rec_map, current_context_index, id);
1256 	record_write(&rec_map, total_runtime, total);
1257 
1258 #undef record_write
1259 }
1260 
1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1262 {
1263 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1264 	struct intel_guc *guc = gt_to_guc(engine->gt);
1265 	u32 last_switch, ctx_id, total;
1266 
1267 	lockdep_assert_held(&guc->timestamp.lock);
1268 
1269 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1270 
1271 	stats->running = ctx_id != ~0U && last_switch;
1272 	if (stats->running)
1273 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1274 
1275 	/*
1276 	 * Instead of adjusting the total for overflow, just add the
1277 	 * difference from previous sample stats->total_gt_clks
1278 	 */
1279 	if (total && total != ~0U) {
1280 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1281 		stats->prev_total = total;
1282 	}
1283 }
1284 
1285 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1286 {
1287 	intel_wakeref_t wakeref;
1288 	u32 reg, shift;
1289 
1290 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1291 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1292 
1293 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1294 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1295 
1296 	return 3 - shift;
1297 }
1298 
1299 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1300 {
1301 	struct intel_gt *gt = guc_to_gt(guc);
1302 	u32 gt_stamp_lo, gt_stamp_hi;
1303 	u64 gpm_ts;
1304 
1305 	lockdep_assert_held(&guc->timestamp.lock);
1306 
1307 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1308 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1309 					  MISC_STATUS1) >> guc->timestamp.shift;
1310 	gt_stamp_lo = lower_32_bits(gpm_ts);
1311 	*now = ktime_get();
1312 
1313 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1314 		gt_stamp_hi++;
1315 
1316 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1317 }
1318 
1319 /*
1320  * Unlike the execlist mode of submission total and active times are in terms of
1321  * gt clocks. The *now parameter is retained to return the cpu time at which the
1322  * busyness was sampled.
1323  */
1324 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1325 {
1326 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1327 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1328 	struct intel_gt *gt = engine->gt;
1329 	struct intel_guc *guc = gt_to_guc(gt);
1330 	u64 total, gt_stamp_saved;
1331 	unsigned long flags;
1332 	u32 reset_count;
1333 	bool in_reset;
1334 	intel_wakeref_t wakeref;
1335 
1336 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1337 
1338 	/*
1339 	 * If a reset happened, we risk reading partially updated engine
1340 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1341 	 * Synchronize with gt reset using reset_count and the
1342 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1343 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1344 	 * usable by checking the flag afterwards.
1345 	 */
1346 	reset_count = i915_reset_count(gpu_error);
1347 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1348 
1349 	*now = ktime_get();
1350 
1351 	/*
1352 	 * The active busyness depends on start_gt_clk and gt_stamp.
1353 	 * gt_stamp is updated by i915 only when gt is awake and the
1354 	 * start_gt_clk is derived from GuC state. To get a consistent
1355 	 * view of activity, we query the GuC state only if gt is awake.
1356 	 */
1357 	wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt);
1358 	if (wakeref) {
1359 		stats_saved = *stats;
1360 		gt_stamp_saved = guc->timestamp.gt_stamp;
1361 		/*
1362 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1363 		 * start_gt_clk' calculation below for active engines.
1364 		 */
1365 		guc_update_engine_gt_clks(engine);
1366 		guc_update_pm_timestamp(guc, now);
1367 		intel_gt_pm_put_async(gt, wakeref);
1368 		if (i915_reset_count(gpu_error) != reset_count) {
1369 			*stats = stats_saved;
1370 			guc->timestamp.gt_stamp = gt_stamp_saved;
1371 		}
1372 	}
1373 
1374 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1375 	if (stats->running) {
1376 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1377 
1378 		total += intel_gt_clock_interval_to_ns(gt, clk);
1379 	}
1380 
1381 	if (total > stats->total)
1382 		stats->total = total;
1383 
1384 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1385 
1386 	return ns_to_ktime(stats->total);
1387 }
1388 
1389 static void guc_enable_busyness_worker(struct intel_guc *guc)
1390 {
1391 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1392 }
1393 
1394 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1395 {
1396 	/*
1397 	 * There are many different call stacks that can get here. Some of them
1398 	 * hold the reset mutex. The busyness worker also attempts to acquire the
1399 	 * reset mutex. Synchronously flushing a worker thread requires acquiring
1400 	 * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1401 	 * flush can deadlock because it holds the worker mutex while waiting for
1402 	 * the reset mutex, but another thread is holding the reset mutex and might
1403 	 * attempt to use other worker functions.
1404 	 *
1405 	 * In practice, this scenario does not exist because the busyness worker
1406 	 * does not block waiting for the reset mutex. It does a try-lock on it and
1407 	 * immediately exits if the lock is already held. Unfortunately, the mutex
1408 	 * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1409 	 * annotation but not to the extent of explaining the 'might lock' is also a
1410 	 * 'does not need to lock'. So one option would be to add more complex lockdep
1411 	 * annotations to ignore the issue (if at all possible). A simpler option is to
1412 	 * just not flush synchronously when a rest in progress. Given that the worker
1413 	 * will just early exit and re-schedule itself anyway, there is no advantage
1414 	 * to running it immediately.
1415 	 *
1416 	 * If a reset is not in progress, then the synchronous flush may be required.
1417 	 * As noted many call stacks lead here, some during suspend and driver unload
1418 	 * which do require a synchronous flush to make sure the worker is stopped
1419 	 * before memory is freed.
1420 	 *
1421 	 * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1422 	 * every possible call stack is unfeasible. It would be too intrusive to many
1423 	 * areas that really don't care about the GuC backend. However, there is the
1424 	 * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1425 	 * So just use those. Note that testing both is required due to the hideously
1426 	 * complex nature of the i915 driver's reset code paths.
1427 	 *
1428 	 * And note that in the case of a reset occurring during driver unload
1429 	 * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1430 	 * reset flag/mutex are set) is fine because there is another explicit cancel in
1431 	 * intel_guc_submission_fini (when the reset flag/mutex are not).
1432 	 */
1433 	if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1434 	    test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1435 		cancel_delayed_work(&guc->timestamp.work);
1436 	else
1437 		cancel_delayed_work_sync(&guc->timestamp.work);
1438 }
1439 
1440 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1441 {
1442 	struct intel_gt *gt = guc_to_gt(guc);
1443 	struct intel_engine_cs *engine;
1444 	enum intel_engine_id id;
1445 	unsigned long flags;
1446 	ktime_t unused;
1447 
1448 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1449 
1450 	guc_update_pm_timestamp(guc, &unused);
1451 	for_each_engine(engine, gt, id) {
1452 		struct intel_engine_guc_stats *stats = &engine->stats.guc;
1453 
1454 		guc_update_engine_gt_clks(engine);
1455 
1456 		/*
1457 		 * If resetting a running context, accumulate the active
1458 		 * time as well since there will be no context switch.
1459 		 */
1460 		if (stats->running) {
1461 			u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1462 
1463 			stats->total_gt_clks += clk;
1464 		}
1465 		stats->prev_total = 0;
1466 		stats->running = 0;
1467 	}
1468 
1469 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1470 }
1471 
1472 static void __update_guc_busyness_stats(struct intel_guc *guc)
1473 {
1474 	struct intel_gt *gt = guc_to_gt(guc);
1475 	struct intel_engine_cs *engine;
1476 	enum intel_engine_id id;
1477 	unsigned long flags;
1478 	ktime_t unused;
1479 
1480 	guc->timestamp.last_stat_jiffies = jiffies;
1481 
1482 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1483 
1484 	guc_update_pm_timestamp(guc, &unused);
1485 	for_each_engine(engine, gt, id)
1486 		guc_update_engine_gt_clks(engine);
1487 
1488 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1489 }
1490 
1491 static void __guc_context_update_stats(struct intel_context *ce)
1492 {
1493 	struct intel_guc *guc = ce_to_guc(ce);
1494 	unsigned long flags;
1495 
1496 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1497 	lrc_update_runtime(ce);
1498 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1499 }
1500 
1501 static void guc_context_update_stats(struct intel_context *ce)
1502 {
1503 	if (!intel_context_pin_if_active(ce))
1504 		return;
1505 
1506 	__guc_context_update_stats(ce);
1507 	intel_context_unpin(ce);
1508 }
1509 
1510 static void guc_timestamp_ping(struct work_struct *wrk)
1511 {
1512 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1513 					     timestamp.work.work);
1514 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1515 	struct intel_gt *gt = guc_to_gt(guc);
1516 	struct intel_context *ce;
1517 	intel_wakeref_t wakeref;
1518 	unsigned long index;
1519 	int srcu, ret;
1520 
1521 	/*
1522 	 * Ideally the busyness worker should take a gt pm wakeref because the
1523 	 * worker only needs to be active while gt is awake. However, the
1524 	 * gt_park path cancels the worker synchronously and this complicates
1525 	 * the flow if the worker is also running at the same time. The cancel
1526 	 * waits for the worker and when the worker releases the wakeref, that
1527 	 * would call gt_park and would lead to a deadlock.
1528 	 *
1529 	 * The resolution is to take the global pm wakeref if runtime pm is
1530 	 * already active. If not, we don't need to update the busyness stats as
1531 	 * the stats would already be updated when the gt was parked.
1532 	 *
1533 	 * Note:
1534 	 * - We do not requeue the worker if we cannot take a reference to runtime
1535 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1536 	 *   resume path.
1537 	 *
1538 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1539 	 *   over, we ignore those rollovers since we don't care about tracking
1540 	 *   the exact GT time. We only care about roll overs when the gt is
1541 	 *   active and running workloads.
1542 	 *
1543 	 * - There is a window of time between gt_park and runtime suspend,
1544 	 *   where the worker may run. This is acceptable since the worker will
1545 	 *   not find any new data to update busyness.
1546 	 */
1547 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1548 	if (!wakeref)
1549 		return;
1550 
1551 	/*
1552 	 * Synchronize with gt reset to make sure the worker does not
1553 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1554 	 * for a reset to complete as the reset requires flushing out
1555 	 * this worker thread if started. So waiting would deadlock.
1556 	 */
1557 	ret = intel_gt_reset_trylock(gt, &srcu);
1558 	if (ret)
1559 		goto err_trylock;
1560 
1561 	__update_guc_busyness_stats(guc);
1562 
1563 	/* adjust context stats for overflow */
1564 	xa_for_each(&guc->context_lookup, index, ce)
1565 		guc_context_update_stats(ce);
1566 
1567 	intel_gt_reset_unlock(gt, srcu);
1568 
1569 	guc_enable_busyness_worker(guc);
1570 
1571 err_trylock:
1572 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1573 }
1574 
1575 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1576 {
1577 	struct intel_gt *gt = guc_to_gt(guc);
1578 	struct intel_engine_cs *engine;
1579 	enum intel_engine_id id;
1580 	u32 offset = intel_guc_engine_usage_offset(guc);
1581 	u32 action[] = {
1582 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1583 		offset,
1584 		0,
1585 	};
1586 
1587 	for_each_engine(engine, gt, id)
1588 		__set_engine_usage_record(engine, 0, 0xffffffff, 0);
1589 
1590 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1591 }
1592 
1593 static int guc_init_engine_stats(struct intel_guc *guc)
1594 {
1595 	struct intel_gt *gt = guc_to_gt(guc);
1596 	intel_wakeref_t wakeref;
1597 	int ret;
1598 
1599 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1600 		ret = guc_action_enable_usage_stats(guc);
1601 
1602 	if (ret)
1603 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1604 	else
1605 		guc_enable_busyness_worker(guc);
1606 
1607 	return ret;
1608 }
1609 
1610 static void guc_fini_engine_stats(struct intel_guc *guc)
1611 {
1612 	guc_cancel_busyness_worker(guc);
1613 }
1614 
1615 void intel_guc_busyness_park(struct intel_gt *gt)
1616 {
1617 	struct intel_guc *guc = gt_to_guc(gt);
1618 
1619 	if (!guc_submission_initialized(guc))
1620 		return;
1621 
1622 	/*
1623 	 * There is a race with suspend flow where the worker runs after suspend
1624 	 * and causes an unclaimed register access warning. Cancel the worker
1625 	 * synchronously here.
1626 	 */
1627 	guc_cancel_busyness_worker(guc);
1628 
1629 	/*
1630 	 * Before parking, we should sample engine busyness stats if we need to.
1631 	 * We can skip it if we are less than half a ping from the last time we
1632 	 * sampled the busyness stats.
1633 	 */
1634 	if (guc->timestamp.last_stat_jiffies &&
1635 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1636 			(guc->timestamp.ping_delay / 2)))
1637 		return;
1638 
1639 	__update_guc_busyness_stats(guc);
1640 }
1641 
1642 void intel_guc_busyness_unpark(struct intel_gt *gt)
1643 {
1644 	struct intel_guc *guc = gt_to_guc(gt);
1645 	unsigned long flags;
1646 	ktime_t unused;
1647 
1648 	if (!guc_submission_initialized(guc))
1649 		return;
1650 
1651 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1652 	guc_update_pm_timestamp(guc, &unused);
1653 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1654 	guc_enable_busyness_worker(guc);
1655 }
1656 
1657 static inline bool
1658 submission_disabled(struct intel_guc *guc)
1659 {
1660 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1661 
1662 	return unlikely(!sched_engine ||
1663 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1664 			intel_gt_is_wedged(guc_to_gt(guc)));
1665 }
1666 
1667 static void disable_submission(struct intel_guc *guc)
1668 {
1669 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1670 
1671 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1672 		GEM_BUG_ON(!guc->ct.enabled);
1673 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1674 		sched_engine->tasklet.callback = NULL;
1675 	}
1676 }
1677 
1678 static void enable_submission(struct intel_guc *guc)
1679 {
1680 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1681 	unsigned long flags;
1682 
1683 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1684 	sched_engine->tasklet.callback = guc_submission_tasklet;
1685 	wmb();	/* Make sure callback visible */
1686 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1687 	    __tasklet_enable(&sched_engine->tasklet)) {
1688 		GEM_BUG_ON(!guc->ct.enabled);
1689 
1690 		/* And kick in case we missed a new request submission. */
1691 		tasklet_hi_schedule(&sched_engine->tasklet);
1692 	}
1693 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1694 }
1695 
1696 static void guc_flush_submissions(struct intel_guc *guc)
1697 {
1698 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1699 	unsigned long flags;
1700 
1701 	spin_lock_irqsave(&sched_engine->lock, flags);
1702 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1703 }
1704 
1705 void intel_guc_submission_flush_work(struct intel_guc *guc)
1706 {
1707 	flush_work(&guc->submission_state.destroyed_worker);
1708 }
1709 
1710 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1711 
1712 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1713 {
1714 	if (unlikely(!guc_submission_initialized(guc))) {
1715 		/* Reset called during driver load? GuC not yet initialised! */
1716 		return;
1717 	}
1718 
1719 	intel_gt_park_heartbeats(guc_to_gt(guc));
1720 	disable_submission(guc);
1721 	guc->interrupts.disable(guc);
1722 	__reset_guc_busyness_stats(guc);
1723 
1724 	/* Flush IRQ handler */
1725 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1726 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1727 
1728 	guc_flush_submissions(guc);
1729 	guc_flush_destroyed_contexts(guc);
1730 	flush_work(&guc->ct.requests.worker);
1731 
1732 	scrub_guc_desc_for_outstanding_g2h(guc);
1733 }
1734 
1735 static struct intel_engine_cs *
1736 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1737 {
1738 	struct intel_engine_cs *engine;
1739 	intel_engine_mask_t tmp, mask = ve->mask;
1740 	unsigned int num_siblings = 0;
1741 
1742 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1743 		if (num_siblings++ == sibling)
1744 			return engine;
1745 
1746 	return NULL;
1747 }
1748 
1749 static inline struct intel_engine_cs *
1750 __context_to_physical_engine(struct intel_context *ce)
1751 {
1752 	struct intel_engine_cs *engine = ce->engine;
1753 
1754 	if (intel_engine_is_virtual(engine))
1755 		engine = guc_virtual_get_sibling(engine, 0);
1756 
1757 	return engine;
1758 }
1759 
1760 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1761 {
1762 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1763 
1764 	if (!intel_context_is_schedulable(ce))
1765 		return;
1766 
1767 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1768 
1769 	/*
1770 	 * We want a simple context + ring to execute the breadcrumb update.
1771 	 * We cannot rely on the context being intact across the GPU hang,
1772 	 * so clear it and rebuild just what we need for the breadcrumb.
1773 	 * All pending requests for this context will be zapped, and any
1774 	 * future request will be after userspace has had the opportunity
1775 	 * to recreate its own state.
1776 	 */
1777 	if (scrub)
1778 		lrc_init_regs(ce, engine, true);
1779 
1780 	/* Rerun the request; its payload has been neutered (if guilty). */
1781 	lrc_update_regs(ce, engine, head);
1782 }
1783 
1784 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1785 {
1786 	/*
1787 	 * Wa_22011802037: In addition to stopping the cs, we need
1788 	 * to wait for any pending mi force wakeups
1789 	 */
1790 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1791 		intel_engine_stop_cs(engine);
1792 		intel_engine_wait_for_pending_mi_fw(engine);
1793 	}
1794 }
1795 
1796 static void guc_reset_nop(struct intel_engine_cs *engine)
1797 {
1798 }
1799 
1800 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1801 {
1802 }
1803 
1804 static void
1805 __unwind_incomplete_requests(struct intel_context *ce)
1806 {
1807 	struct i915_request *rq, *rn;
1808 	struct list_head *pl;
1809 	int prio = I915_PRIORITY_INVALID;
1810 	struct i915_sched_engine * const sched_engine =
1811 		ce->engine->sched_engine;
1812 	unsigned long flags;
1813 
1814 	spin_lock_irqsave(&sched_engine->lock, flags);
1815 	spin_lock(&ce->guc_state.lock);
1816 	list_for_each_entry_safe_reverse(rq, rn,
1817 					 &ce->guc_state.requests,
1818 					 sched.link) {
1819 		if (i915_request_completed(rq))
1820 			continue;
1821 
1822 		list_del_init(&rq->sched.link);
1823 		__i915_request_unsubmit(rq);
1824 
1825 		/* Push the request back into the queue for later resubmission. */
1826 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1827 		if (rq_prio(rq) != prio) {
1828 			prio = rq_prio(rq);
1829 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1830 		}
1831 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1832 
1833 		list_add(&rq->sched.link, pl);
1834 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1835 	}
1836 	spin_unlock(&ce->guc_state.lock);
1837 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1838 }
1839 
1840 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1841 {
1842 	bool guilty;
1843 	struct i915_request *rq;
1844 	unsigned long flags;
1845 	u32 head;
1846 	int i, number_children = ce->parallel.number_children;
1847 	struct intel_context *parent = ce;
1848 
1849 	GEM_BUG_ON(intel_context_is_child(ce));
1850 
1851 	intel_context_get(ce);
1852 
1853 	/*
1854 	 * GuC will implicitly mark the context as non-schedulable when it sends
1855 	 * the reset notification. Make sure our state reflects this change. The
1856 	 * context will be marked enabled on resubmission.
1857 	 */
1858 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1859 	clr_context_enabled(ce);
1860 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1861 
1862 	/*
1863 	 * For each context in the relationship find the hanging request
1864 	 * resetting each context / request as needed
1865 	 */
1866 	for (i = 0; i < number_children + 1; ++i) {
1867 		if (!intel_context_is_pinned(ce))
1868 			goto next_context;
1869 
1870 		guilty = false;
1871 		rq = intel_context_get_active_request(ce);
1872 		if (!rq) {
1873 			head = ce->ring->tail;
1874 			goto out_replay;
1875 		}
1876 
1877 		if (i915_request_started(rq))
1878 			guilty = stalled & ce->engine->mask;
1879 
1880 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1881 		head = intel_ring_wrap(ce->ring, rq->head);
1882 
1883 		__i915_request_reset(rq, guilty);
1884 		i915_request_put(rq);
1885 out_replay:
1886 		guc_reset_state(ce, head, guilty);
1887 next_context:
1888 		if (i != number_children)
1889 			ce = list_next_entry(ce, parallel.child_link);
1890 	}
1891 
1892 	__unwind_incomplete_requests(parent);
1893 	intel_context_put(parent);
1894 }
1895 
1896 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1897 {
1898 	struct intel_guc_tlb_wait *wait;
1899 	unsigned long i;
1900 
1901 	if (!intel_guc_tlb_invalidation_is_available(guc))
1902 		return;
1903 
1904 	xa_lock_irq(&guc->tlb_lookup);
1905 	xa_for_each(&guc->tlb_lookup, i, wait)
1906 		wake_up(&wait->wq);
1907 	xa_unlock_irq(&guc->tlb_lookup);
1908 }
1909 
1910 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1911 {
1912 	struct intel_context *ce;
1913 	unsigned long index;
1914 	unsigned long flags;
1915 
1916 	if (unlikely(!guc_submission_initialized(guc))) {
1917 		/* Reset called during driver load? GuC not yet initialised! */
1918 		return;
1919 	}
1920 
1921 	xa_lock_irqsave(&guc->context_lookup, flags);
1922 	xa_for_each(&guc->context_lookup, index, ce) {
1923 		if (!kref_get_unless_zero(&ce->ref))
1924 			continue;
1925 
1926 		xa_unlock(&guc->context_lookup);
1927 
1928 		if (intel_context_is_pinned(ce) &&
1929 		    !intel_context_is_child(ce))
1930 			__guc_reset_context(ce, stalled);
1931 
1932 		intel_context_put(ce);
1933 
1934 		xa_lock(&guc->context_lookup);
1935 	}
1936 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1937 
1938 	/* GuC is blown away, drop all references to contexts */
1939 	xa_destroy(&guc->context_lookup);
1940 }
1941 
1942 static void guc_cancel_context_requests(struct intel_context *ce)
1943 {
1944 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1945 	struct i915_request *rq;
1946 	unsigned long flags;
1947 
1948 	/* Mark all executing requests as skipped. */
1949 	spin_lock_irqsave(&sched_engine->lock, flags);
1950 	spin_lock(&ce->guc_state.lock);
1951 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1952 		i915_request_put(i915_request_mark_eio(rq));
1953 	spin_unlock(&ce->guc_state.lock);
1954 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1955 }
1956 
1957 static void
1958 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1959 {
1960 	struct i915_request *rq, *rn;
1961 	struct rb_node *rb;
1962 	unsigned long flags;
1963 
1964 	/* Can be called during boot if GuC fails to load */
1965 	if (!sched_engine)
1966 		return;
1967 
1968 	/*
1969 	 * Before we call engine->cancel_requests(), we should have exclusive
1970 	 * access to the submission state. This is arranged for us by the
1971 	 * caller disabling the interrupt generation, the tasklet and other
1972 	 * threads that may then access the same state, giving us a free hand
1973 	 * to reset state. However, we still need to let lockdep be aware that
1974 	 * we know this state may be accessed in hardirq context, so we
1975 	 * disable the irq around this manipulation and we want to keep
1976 	 * the spinlock focused on its duties and not accidentally conflate
1977 	 * coverage to the submission's irq state. (Similarly, although we
1978 	 * shouldn't need to disable irq around the manipulation of the
1979 	 * submission's irq state, we also wish to remind ourselves that
1980 	 * it is irq state.)
1981 	 */
1982 	spin_lock_irqsave(&sched_engine->lock, flags);
1983 
1984 	/* Flush the queued requests to the timeline list (for retiring). */
1985 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1986 		struct i915_priolist *p = to_priolist(rb);
1987 
1988 		priolist_for_each_request_consume(rq, rn, p) {
1989 			list_del_init(&rq->sched.link);
1990 
1991 			__i915_request_submit(rq);
1992 
1993 			i915_request_put(i915_request_mark_eio(rq));
1994 		}
1995 
1996 		rb_erase_cached(&p->node, &sched_engine->queue);
1997 		i915_priolist_free(p);
1998 	}
1999 
2000 	/* Remaining _unready_ requests will be nop'ed when submitted */
2001 
2002 	sched_engine->queue_priority_hint = INT_MIN;
2003 	sched_engine->queue = RB_ROOT_CACHED;
2004 
2005 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2006 }
2007 
2008 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
2009 {
2010 	struct intel_context *ce;
2011 	unsigned long index;
2012 	unsigned long flags;
2013 
2014 	xa_lock_irqsave(&guc->context_lookup, flags);
2015 	xa_for_each(&guc->context_lookup, index, ce) {
2016 		if (!kref_get_unless_zero(&ce->ref))
2017 			continue;
2018 
2019 		xa_unlock(&guc->context_lookup);
2020 
2021 		if (intel_context_is_pinned(ce) &&
2022 		    !intel_context_is_child(ce))
2023 			guc_cancel_context_requests(ce);
2024 
2025 		intel_context_put(ce);
2026 
2027 		xa_lock(&guc->context_lookup);
2028 	}
2029 	xa_unlock_irqrestore(&guc->context_lookup, flags);
2030 
2031 	guc_cancel_sched_engine_requests(guc->sched_engine);
2032 
2033 	/* GuC is blown away, drop all references to contexts */
2034 	xa_destroy(&guc->context_lookup);
2035 
2036 	/*
2037 	 * Wedged GT won't respond to any TLB invalidation request. Simply
2038 	 * release all the blocked waiters.
2039 	 */
2040 	wake_up_all_tlb_invalidate(guc);
2041 }
2042 
2043 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2044 {
2045 	/* Reset called during driver load or during wedge? */
2046 	if (unlikely(!guc_submission_initialized(guc) ||
2047 		     !intel_guc_is_fw_running(guc) ||
2048 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * Technically possible for either of these values to be non-zero here,
2054 	 * but very unlikely + harmless. Regardless let's add an error so we can
2055 	 * see in CI if this happens frequently / a precursor to taking down the
2056 	 * machine.
2057 	 */
2058 	if (atomic_read(&guc->outstanding_submission_g2h))
2059 		guc_err(guc, "Unexpected outstanding GuC to Host in reset finish\n");
2060 	atomic_set(&guc->outstanding_submission_g2h, 0);
2061 
2062 	intel_guc_global_policies_update(guc);
2063 	enable_submission(guc);
2064 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
2065 
2066 	/*
2067 	 * The full GT reset will have cleared the TLB caches and flushed the
2068 	 * G2H message queue; we can release all the blocked waiters.
2069 	 */
2070 	wake_up_all_tlb_invalidate(guc);
2071 }
2072 
2073 static void destroyed_worker_func(struct work_struct *w);
2074 static void reset_fail_worker_func(struct work_struct *w);
2075 
2076 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2077 {
2078 	return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2079 		intel_guc_is_ready(guc);
2080 }
2081 
2082 static int init_tlb_lookup(struct intel_guc *guc)
2083 {
2084 	struct intel_guc_tlb_wait *wait;
2085 	int err;
2086 
2087 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2088 		return 0;
2089 
2090 	xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2091 
2092 	wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2093 	if (!wait)
2094 		return -ENOMEM;
2095 
2096 	init_waitqueue_head(&wait->wq);
2097 
2098 	/* Preallocate a shared id for use under memory pressure. */
2099 	err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2100 				  xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2101 	if (err < 0) {
2102 		kfree(wait);
2103 		return err;
2104 	}
2105 
2106 	return 0;
2107 }
2108 
2109 static void fini_tlb_lookup(struct intel_guc *guc)
2110 {
2111 	struct intel_guc_tlb_wait *wait;
2112 
2113 	if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2114 		return;
2115 
2116 	wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2117 	if (wait && wait->busy)
2118 		guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2119 	kfree(wait);
2120 
2121 	xa_destroy(&guc->tlb_lookup);
2122 }
2123 
2124 /*
2125  * Set up the memory resources to be shared with the GuC (via the GGTT)
2126  * at firmware loading time.
2127  */
2128 int intel_guc_submission_init(struct intel_guc *guc)
2129 {
2130 	struct intel_gt *gt = guc_to_gt(guc);
2131 	int ret;
2132 
2133 	if (guc->submission_initialized)
2134 		return 0;
2135 
2136 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2137 		ret = guc_lrc_desc_pool_create_v69(guc);
2138 		if (ret)
2139 			return ret;
2140 	}
2141 
2142 	ret = init_tlb_lookup(guc);
2143 	if (ret)
2144 		goto destroy_pool;
2145 
2146 	guc->submission_state.guc_ids_bitmap =
2147 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2148 	if (!guc->submission_state.guc_ids_bitmap) {
2149 		ret = -ENOMEM;
2150 		goto destroy_tlb;
2151 	}
2152 
2153 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2154 	guc->timestamp.shift = gpm_timestamp_shift(gt);
2155 	guc->submission_initialized = true;
2156 
2157 	return 0;
2158 
2159 destroy_tlb:
2160 	fini_tlb_lookup(guc);
2161 destroy_pool:
2162 	guc_lrc_desc_pool_destroy_v69(guc);
2163 	return ret;
2164 }
2165 
2166 void intel_guc_submission_fini(struct intel_guc *guc)
2167 {
2168 	if (!guc->submission_initialized)
2169 		return;
2170 
2171 	guc_fini_engine_stats(guc);
2172 	guc_flush_destroyed_contexts(guc);
2173 	guc_lrc_desc_pool_destroy_v69(guc);
2174 	i915_sched_engine_put(guc->sched_engine);
2175 	bitmap_free(guc->submission_state.guc_ids_bitmap);
2176 	fini_tlb_lookup(guc);
2177 	guc->submission_initialized = false;
2178 }
2179 
2180 static inline void queue_request(struct i915_sched_engine *sched_engine,
2181 				 struct i915_request *rq,
2182 				 int prio)
2183 {
2184 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2185 	list_add_tail(&rq->sched.link,
2186 		      i915_sched_lookup_priolist(sched_engine, prio));
2187 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2188 	tasklet_hi_schedule(&sched_engine->tasklet);
2189 }
2190 
2191 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2192 				     struct i915_request *rq)
2193 {
2194 	int ret = 0;
2195 
2196 	__i915_request_submit(rq);
2197 
2198 	trace_i915_request_in(rq, 0);
2199 
2200 	if (is_multi_lrc_rq(rq)) {
2201 		if (multi_lrc_submit(rq)) {
2202 			ret = guc_wq_item_append(guc, rq);
2203 			if (!ret)
2204 				ret = guc_add_request(guc, rq);
2205 		}
2206 	} else {
2207 		guc_set_lrc_tail(rq);
2208 		ret = guc_add_request(guc, rq);
2209 	}
2210 
2211 	if (unlikely(ret == -EPIPE))
2212 		disable_submission(guc);
2213 
2214 	return ret;
2215 }
2216 
2217 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2218 {
2219 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2220 	struct intel_context *ce = request_to_scheduling_context(rq);
2221 
2222 	return submission_disabled(guc) || guc->stalled_request ||
2223 		!i915_sched_engine_is_empty(sched_engine) ||
2224 		!ctx_id_mapped(guc, ce->guc_id.id);
2225 }
2226 
2227 static void guc_submit_request(struct i915_request *rq)
2228 {
2229 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2230 	struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2231 	unsigned long flags;
2232 
2233 	/* Will be called from irq-context when using foreign fences. */
2234 	spin_lock_irqsave(&sched_engine->lock, flags);
2235 
2236 	if (need_tasklet(guc, rq))
2237 		queue_request(sched_engine, rq, rq_prio(rq));
2238 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2239 		tasklet_hi_schedule(&sched_engine->tasklet);
2240 
2241 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2242 }
2243 
2244 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2245 {
2246 	int ret;
2247 
2248 	GEM_BUG_ON(intel_context_is_child(ce));
2249 
2250 	if (intel_context_is_parent(ce))
2251 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2252 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2253 					      order_base_2(ce->parallel.number_children
2254 							   + 1));
2255 	else
2256 		ret = ida_alloc_range(&guc->submission_state.guc_ids,
2257 				      NUMBER_MULTI_LRC_GUC_ID(guc),
2258 				      guc->submission_state.num_guc_ids - 1,
2259 				      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2260 	if (unlikely(ret < 0))
2261 		return ret;
2262 
2263 	if (!intel_context_is_parent(ce))
2264 		++guc->submission_state.guc_ids_in_use;
2265 
2266 	ce->guc_id.id = ret;
2267 	return 0;
2268 }
2269 
2270 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2271 {
2272 	GEM_BUG_ON(intel_context_is_child(ce));
2273 
2274 	if (!context_guc_id_invalid(ce)) {
2275 		if (intel_context_is_parent(ce)) {
2276 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2277 					      ce->guc_id.id,
2278 					      order_base_2(ce->parallel.number_children
2279 							   + 1));
2280 		} else {
2281 			--guc->submission_state.guc_ids_in_use;
2282 			ida_free(&guc->submission_state.guc_ids,
2283 				 ce->guc_id.id);
2284 		}
2285 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2286 		set_context_guc_id_invalid(ce);
2287 	}
2288 	if (!list_empty(&ce->guc_id.link))
2289 		list_del_init(&ce->guc_id.link);
2290 }
2291 
2292 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2293 {
2294 	unsigned long flags;
2295 
2296 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2297 	__release_guc_id(guc, ce);
2298 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2299 }
2300 
2301 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2302 {
2303 	struct intel_context *cn;
2304 
2305 	lockdep_assert_held(&guc->submission_state.lock);
2306 	GEM_BUG_ON(intel_context_is_child(ce));
2307 	GEM_BUG_ON(intel_context_is_parent(ce));
2308 
2309 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2310 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2311 				      struct intel_context,
2312 				      guc_id.link);
2313 
2314 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2315 		GEM_BUG_ON(context_guc_id_invalid(cn));
2316 		GEM_BUG_ON(intel_context_is_child(cn));
2317 		GEM_BUG_ON(intel_context_is_parent(cn));
2318 
2319 		list_del_init(&cn->guc_id.link);
2320 		ce->guc_id.id = cn->guc_id.id;
2321 
2322 		spin_lock(&cn->guc_state.lock);
2323 		clr_context_registered(cn);
2324 		spin_unlock(&cn->guc_state.lock);
2325 
2326 		set_context_guc_id_invalid(cn);
2327 
2328 #ifdef CONFIG_DRM_I915_SELFTEST
2329 		guc->number_guc_id_stolen++;
2330 #endif
2331 
2332 		return 0;
2333 	} else {
2334 		return -EAGAIN;
2335 	}
2336 }
2337 
2338 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2339 {
2340 	int ret;
2341 
2342 	lockdep_assert_held(&guc->submission_state.lock);
2343 	GEM_BUG_ON(intel_context_is_child(ce));
2344 
2345 	ret = new_guc_id(guc, ce);
2346 	if (unlikely(ret < 0)) {
2347 		if (intel_context_is_parent(ce))
2348 			return -ENOSPC;
2349 
2350 		ret = steal_guc_id(guc, ce);
2351 		if (ret < 0)
2352 			return ret;
2353 	}
2354 
2355 	if (intel_context_is_parent(ce)) {
2356 		struct intel_context *child;
2357 		int i = 1;
2358 
2359 		for_each_child(ce, child)
2360 			child->guc_id.id = ce->guc_id.id + i++;
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 #define PIN_GUC_ID_TRIES	4
2367 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2368 {
2369 	int ret = 0;
2370 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2371 
2372 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2373 
2374 try_again:
2375 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2376 
2377 	might_lock(&ce->guc_state.lock);
2378 
2379 	if (context_guc_id_invalid(ce)) {
2380 		ret = assign_guc_id(guc, ce);
2381 		if (ret)
2382 			goto out_unlock;
2383 		ret = 1;	/* Indidcates newly assigned guc_id */
2384 	}
2385 	if (!list_empty(&ce->guc_id.link))
2386 		list_del_init(&ce->guc_id.link);
2387 	atomic_inc(&ce->guc_id.ref);
2388 
2389 out_unlock:
2390 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2391 
2392 	/*
2393 	 * -EAGAIN indicates no guc_id are available, let's retire any
2394 	 * outstanding requests to see if that frees up a guc_id. If the first
2395 	 * retire didn't help, insert a sleep with the timeslice duration before
2396 	 * attempting to retire more requests. Double the sleep period each
2397 	 * subsequent pass before finally giving up. The sleep period has max of
2398 	 * 100ms and minimum of 1ms.
2399 	 */
2400 	if (ret == -EAGAIN && --tries) {
2401 		if (PIN_GUC_ID_TRIES - tries > 1) {
2402 			unsigned int timeslice_shifted =
2403 				ce->engine->props.timeslice_duration_ms <<
2404 				(PIN_GUC_ID_TRIES - tries - 2);
2405 			unsigned int max = min_t(unsigned int, 100,
2406 						 timeslice_shifted);
2407 
2408 			msleep(max_t(unsigned int, max, 1));
2409 		}
2410 		intel_gt_retire_requests(guc_to_gt(guc));
2411 		goto try_again;
2412 	}
2413 
2414 	return ret;
2415 }
2416 
2417 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2418 {
2419 	unsigned long flags;
2420 
2421 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2422 	GEM_BUG_ON(intel_context_is_child(ce));
2423 
2424 	if (unlikely(context_guc_id_invalid(ce) ||
2425 		     intel_context_is_parent(ce)))
2426 		return;
2427 
2428 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2429 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2430 	    !atomic_read(&ce->guc_id.ref))
2431 		list_add_tail(&ce->guc_id.link,
2432 			      &guc->submission_state.guc_id_list);
2433 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2434 }
2435 
2436 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2437 					       struct intel_context *ce,
2438 					       u32 guc_id,
2439 					       u32 offset,
2440 					       bool loop)
2441 {
2442 	struct intel_context *child;
2443 	u32 action[4 + MAX_ENGINE_INSTANCE];
2444 	int len = 0;
2445 
2446 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2447 
2448 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2449 	action[len++] = guc_id;
2450 	action[len++] = ce->parallel.number_children + 1;
2451 	action[len++] = offset;
2452 	for_each_child(ce, child) {
2453 		offset += sizeof(struct guc_lrc_desc_v69);
2454 		action[len++] = offset;
2455 	}
2456 
2457 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2458 }
2459 
2460 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2461 					       struct intel_context *ce,
2462 					       struct guc_ctxt_registration_info *info,
2463 					       bool loop)
2464 {
2465 	struct intel_context *child;
2466 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2467 	int len = 0;
2468 	u32 next_id;
2469 
2470 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2471 
2472 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2473 	action[len++] = info->flags;
2474 	action[len++] = info->context_idx;
2475 	action[len++] = info->engine_class;
2476 	action[len++] = info->engine_submit_mask;
2477 	action[len++] = info->wq_desc_lo;
2478 	action[len++] = info->wq_desc_hi;
2479 	action[len++] = info->wq_base_lo;
2480 	action[len++] = info->wq_base_hi;
2481 	action[len++] = info->wq_size;
2482 	action[len++] = ce->parallel.number_children + 1;
2483 	action[len++] = info->hwlrca_lo;
2484 	action[len++] = info->hwlrca_hi;
2485 
2486 	next_id = info->context_idx + 1;
2487 	for_each_child(ce, child) {
2488 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2489 
2490 		/*
2491 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2492 		 * only supports 32 bit currently.
2493 		 */
2494 		action[len++] = lower_32_bits(child->lrc.lrca);
2495 		action[len++] = upper_32_bits(child->lrc.lrca);
2496 	}
2497 
2498 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2499 
2500 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2501 }
2502 
2503 static int __guc_action_register_context_v69(struct intel_guc *guc,
2504 					     u32 guc_id,
2505 					     u32 offset,
2506 					     bool loop)
2507 {
2508 	u32 action[] = {
2509 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2510 		guc_id,
2511 		offset,
2512 	};
2513 
2514 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2515 					     0, loop);
2516 }
2517 
2518 static int __guc_action_register_context_v70(struct intel_guc *guc,
2519 					     struct guc_ctxt_registration_info *info,
2520 					     bool loop)
2521 {
2522 	u32 action[] = {
2523 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2524 		info->flags,
2525 		info->context_idx,
2526 		info->engine_class,
2527 		info->engine_submit_mask,
2528 		info->wq_desc_lo,
2529 		info->wq_desc_hi,
2530 		info->wq_base_lo,
2531 		info->wq_base_hi,
2532 		info->wq_size,
2533 		info->hwlrca_lo,
2534 		info->hwlrca_hi,
2535 	};
2536 
2537 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2538 					     0, loop);
2539 }
2540 
2541 static void prepare_context_registration_info_v69(struct intel_context *ce);
2542 static void prepare_context_registration_info_v70(struct intel_context *ce,
2543 						  struct guc_ctxt_registration_info *info);
2544 
2545 static int
2546 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2547 {
2548 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2549 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2550 
2551 	prepare_context_registration_info_v69(ce);
2552 
2553 	if (intel_context_is_parent(ce))
2554 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2555 							   offset, loop);
2556 	else
2557 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2558 							 offset, loop);
2559 }
2560 
2561 static int
2562 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2563 {
2564 	struct guc_ctxt_registration_info info;
2565 
2566 	prepare_context_registration_info_v70(ce, &info);
2567 
2568 	if (intel_context_is_parent(ce))
2569 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2570 	else
2571 		return __guc_action_register_context_v70(guc, &info, loop);
2572 }
2573 
2574 static int register_context(struct intel_context *ce, bool loop)
2575 {
2576 	struct intel_guc *guc = ce_to_guc(ce);
2577 	int ret;
2578 
2579 	GEM_BUG_ON(intel_context_is_child(ce));
2580 	trace_intel_context_register(ce);
2581 
2582 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2583 		ret = register_context_v70(guc, ce, loop);
2584 	else
2585 		ret = register_context_v69(guc, ce, loop);
2586 
2587 	if (likely(!ret)) {
2588 		unsigned long flags;
2589 
2590 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2591 		set_context_registered(ce);
2592 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2593 
2594 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2595 			guc_context_policy_init_v70(ce, loop);
2596 	}
2597 
2598 	return ret;
2599 }
2600 
2601 static int __guc_action_deregister_context(struct intel_guc *guc,
2602 					   u32 guc_id)
2603 {
2604 	u32 action[] = {
2605 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2606 		guc_id,
2607 	};
2608 
2609 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2610 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2611 					     true);
2612 }
2613 
2614 static int deregister_context(struct intel_context *ce, u32 guc_id)
2615 {
2616 	struct intel_guc *guc = ce_to_guc(ce);
2617 
2618 	GEM_BUG_ON(intel_context_is_child(ce));
2619 	trace_intel_context_deregister(ce);
2620 
2621 	return __guc_action_deregister_context(guc, guc_id);
2622 }
2623 
2624 static inline void clear_children_join_go_memory(struct intel_context *ce)
2625 {
2626 	struct parent_scratch *ps = __get_parent_scratch(ce);
2627 	int i;
2628 
2629 	ps->go.semaphore = 0;
2630 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2631 		ps->join[i].semaphore = 0;
2632 }
2633 
2634 static inline u32 get_children_go_value(struct intel_context *ce)
2635 {
2636 	return __get_parent_scratch(ce)->go.semaphore;
2637 }
2638 
2639 static inline u32 get_children_join_value(struct intel_context *ce,
2640 					  u8 child_index)
2641 {
2642 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2643 }
2644 
2645 struct context_policy {
2646 	u32 count;
2647 	struct guc_update_context_policy h2g;
2648 };
2649 
2650 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2651 {
2652 	size_t bytes = sizeof(policy->h2g.header) +
2653 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2654 
2655 	return bytes / sizeof(u32);
2656 }
2657 
2658 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2659 {
2660 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2661 	policy->h2g.header.ctx_id = guc_id;
2662 	policy->count = 0;
2663 }
2664 
2665 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2666 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2667 { \
2668 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2669 	policy->h2g.klv[policy->count].kl = \
2670 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2671 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2672 	policy->h2g.klv[policy->count].value = data; \
2673 	policy->count++; \
2674 }
2675 
2676 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2677 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2678 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2679 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2680 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2681 
2682 #undef MAKE_CONTEXT_POLICY_ADD
2683 
2684 static int __guc_context_set_context_policies(struct intel_guc *guc,
2685 					      struct context_policy *policy,
2686 					      bool loop)
2687 {
2688 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2689 					__guc_context_policy_action_size(policy),
2690 					0, loop);
2691 }
2692 
2693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2694 {
2695 	struct intel_engine_cs *engine = ce->engine;
2696 	struct intel_guc *guc = gt_to_guc(engine->gt);
2697 	struct context_policy policy;
2698 	u32 execution_quantum;
2699 	u32 preemption_timeout;
2700 	u32 slpc_ctx_freq_req = 0;
2701 	unsigned long flags;
2702 	int ret;
2703 
2704 	/* NB: For both of these, zero means disabled. */
2705 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2706 				  execution_quantum));
2707 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2708 				  preemption_timeout));
2709 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2710 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2711 
2712 	if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2713 		slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2714 
2715 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2716 
2717 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2718 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2719 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2720 	__guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2721 
2722 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2723 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2724 
2725 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2726 
2727 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2728 	if (ret != 0)
2729 		set_context_policy_required(ce);
2730 	else
2731 		clr_context_policy_required(ce);
2732 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2733 
2734 	return ret;
2735 }
2736 
2737 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2738 					struct guc_lrc_desc_v69 *desc)
2739 {
2740 	desc->policy_flags = 0;
2741 
2742 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2743 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2744 
2745 	/* NB: For both of these, zero means disabled. */
2746 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2747 				  desc->execution_quantum));
2748 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2749 				  desc->preemption_timeout));
2750 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2751 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2752 }
2753 
2754 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2755 {
2756 	/*
2757 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2758 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2759 	 */
2760 	switch (prio) {
2761 	default:
2762 		MISSING_CASE(prio);
2763 		fallthrough;
2764 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2765 		return GEN12_CTX_PRIORITY_NORMAL;
2766 	case GUC_CLIENT_PRIORITY_NORMAL:
2767 		return GEN12_CTX_PRIORITY_LOW;
2768 	case GUC_CLIENT_PRIORITY_HIGH:
2769 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2770 		return GEN12_CTX_PRIORITY_HIGH;
2771 	}
2772 }
2773 
2774 static void prepare_context_registration_info_v69(struct intel_context *ce)
2775 {
2776 	struct intel_engine_cs *engine = ce->engine;
2777 	struct intel_guc *guc = gt_to_guc(engine->gt);
2778 	u32 ctx_id = ce->guc_id.id;
2779 	struct guc_lrc_desc_v69 *desc;
2780 	struct intel_context *child;
2781 
2782 	GEM_BUG_ON(!engine->mask);
2783 
2784 	/*
2785 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2786 	 * based on CT vma region.
2787 	 */
2788 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2789 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2790 
2791 	desc = __get_lrc_desc_v69(guc, ctx_id);
2792 	GEM_BUG_ON(!desc);
2793 	desc->engine_class = engine_class_to_guc_class(engine->class);
2794 	desc->engine_submit_mask = engine->logical_mask;
2795 	desc->hw_context_desc = ce->lrc.lrca;
2796 	desc->priority = ce->guc_state.prio;
2797 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2798 	guc_context_policy_init_v69(engine, desc);
2799 
2800 	/*
2801 	 * If context is a parent, we need to register a process descriptor
2802 	 * describing a work queue and register all child contexts.
2803 	 */
2804 	if (intel_context_is_parent(ce)) {
2805 		struct guc_process_desc_v69 *pdesc;
2806 
2807 		ce->parallel.guc.wqi_tail = 0;
2808 		ce->parallel.guc.wqi_head = 0;
2809 
2810 		desc->process_desc = i915_ggtt_offset(ce->state) +
2811 			__get_parent_scratch_offset(ce);
2812 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2813 			__get_wq_offset(ce);
2814 		desc->wq_size = WQ_SIZE;
2815 
2816 		pdesc = __get_process_desc_v69(ce);
2817 		memset(pdesc, 0, sizeof(*(pdesc)));
2818 		pdesc->stage_id = ce->guc_id.id;
2819 		pdesc->wq_base_addr = desc->wq_addr;
2820 		pdesc->wq_size_bytes = desc->wq_size;
2821 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2822 
2823 		ce->parallel.guc.wq_head = &pdesc->head;
2824 		ce->parallel.guc.wq_tail = &pdesc->tail;
2825 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2826 
2827 		for_each_child(ce, child) {
2828 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2829 
2830 			desc->engine_class =
2831 				engine_class_to_guc_class(engine->class);
2832 			desc->hw_context_desc = child->lrc.lrca;
2833 			desc->priority = ce->guc_state.prio;
2834 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2835 			guc_context_policy_init_v69(engine, desc);
2836 		}
2837 
2838 		clear_children_join_go_memory(ce);
2839 	}
2840 }
2841 
2842 static void prepare_context_registration_info_v70(struct intel_context *ce,
2843 						  struct guc_ctxt_registration_info *info)
2844 {
2845 	struct intel_engine_cs *engine = ce->engine;
2846 	struct intel_guc *guc = gt_to_guc(engine->gt);
2847 	u32 ctx_id = ce->guc_id.id;
2848 
2849 	GEM_BUG_ON(!engine->mask);
2850 
2851 	/*
2852 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2853 	 * based on CT vma region.
2854 	 */
2855 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2856 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2857 
2858 	memset(info, 0, sizeof(*info));
2859 	info->context_idx = ctx_id;
2860 	info->engine_class = engine_class_to_guc_class(engine->class);
2861 	info->engine_submit_mask = engine->logical_mask;
2862 	/*
2863 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2864 	 * only supports 32 bit currently.
2865 	 */
2866 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2867 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2868 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2869 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2870 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2871 
2872 	/*
2873 	 * If context is a parent, we need to register a process descriptor
2874 	 * describing a work queue and register all child contexts.
2875 	 */
2876 	if (intel_context_is_parent(ce)) {
2877 		struct guc_sched_wq_desc *wq_desc;
2878 		u64 wq_desc_offset, wq_base_offset;
2879 
2880 		ce->parallel.guc.wqi_tail = 0;
2881 		ce->parallel.guc.wqi_head = 0;
2882 
2883 		wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2884 				 __get_parent_scratch_offset(ce);
2885 		wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2886 				 __get_wq_offset(ce);
2887 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2888 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2889 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2890 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2891 		info->wq_size = WQ_SIZE;
2892 
2893 		wq_desc = __get_wq_desc_v70(ce);
2894 		memset(wq_desc, 0, sizeof(*wq_desc));
2895 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2896 
2897 		ce->parallel.guc.wq_head = &wq_desc->head;
2898 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2899 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2900 
2901 		clear_children_join_go_memory(ce);
2902 	}
2903 }
2904 
2905 static int try_context_registration(struct intel_context *ce, bool loop)
2906 {
2907 	struct intel_engine_cs *engine = ce->engine;
2908 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2909 	struct intel_guc *guc = gt_to_guc(engine->gt);
2910 	intel_wakeref_t wakeref;
2911 	u32 ctx_id = ce->guc_id.id;
2912 	bool context_registered;
2913 	int ret = 0;
2914 
2915 	GEM_BUG_ON(!sched_state_is_init(ce));
2916 
2917 	context_registered = ctx_id_mapped(guc, ctx_id);
2918 
2919 	clr_ctx_id_mapping(guc, ctx_id);
2920 	set_ctx_id_mapping(guc, ctx_id, ce);
2921 
2922 	/*
2923 	 * The context_lookup xarray is used to determine if the hardware
2924 	 * context is currently registered. There are two cases in which it
2925 	 * could be registered either the guc_id has been stolen from another
2926 	 * context or the lrc descriptor address of this context has changed. In
2927 	 * either case the context needs to be deregistered with the GuC before
2928 	 * registering this context.
2929 	 */
2930 	if (context_registered) {
2931 		bool disabled;
2932 		unsigned long flags;
2933 
2934 		trace_intel_context_steal_guc_id(ce);
2935 		GEM_BUG_ON(!loop);
2936 
2937 		/* Seal race with Reset */
2938 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2939 		disabled = submission_disabled(guc);
2940 		if (likely(!disabled)) {
2941 			set_context_wait_for_deregister_to_register(ce);
2942 			intel_context_get(ce);
2943 		}
2944 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2945 		if (unlikely(disabled)) {
2946 			clr_ctx_id_mapping(guc, ctx_id);
2947 			return 0;	/* Will get registered later */
2948 		}
2949 
2950 		/*
2951 		 * If stealing the guc_id, this ce has the same guc_id as the
2952 		 * context whose guc_id was stolen.
2953 		 */
2954 		with_intel_runtime_pm(runtime_pm, wakeref)
2955 			ret = deregister_context(ce, ce->guc_id.id);
2956 		if (unlikely(ret == -ENODEV))
2957 			ret = 0;	/* Will get registered later */
2958 	} else {
2959 		with_intel_runtime_pm(runtime_pm, wakeref)
2960 			ret = register_context(ce, loop);
2961 		if (unlikely(ret == -EBUSY)) {
2962 			clr_ctx_id_mapping(guc, ctx_id);
2963 		} else if (unlikely(ret == -ENODEV)) {
2964 			clr_ctx_id_mapping(guc, ctx_id);
2965 			ret = 0;	/* Will get registered later */
2966 		}
2967 	}
2968 
2969 	return ret;
2970 }
2971 
2972 static int __guc_context_pre_pin(struct intel_context *ce,
2973 				 struct intel_engine_cs *engine,
2974 				 struct i915_gem_ww_ctx *ww,
2975 				 void **vaddr)
2976 {
2977 	return lrc_pre_pin(ce, engine, ww, vaddr);
2978 }
2979 
2980 static int __guc_context_pin(struct intel_context *ce,
2981 			     struct intel_engine_cs *engine,
2982 			     void *vaddr)
2983 {
2984 	if (i915_ggtt_offset(ce->state) !=
2985 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2986 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2987 
2988 	/*
2989 	 * GuC context gets pinned in guc_request_alloc. See that function for
2990 	 * explaination of why.
2991 	 */
2992 
2993 	return lrc_pin(ce, engine, vaddr);
2994 }
2995 
2996 static int guc_context_pre_pin(struct intel_context *ce,
2997 			       struct i915_gem_ww_ctx *ww,
2998 			       void **vaddr)
2999 {
3000 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
3001 }
3002 
3003 static int guc_context_pin(struct intel_context *ce, void *vaddr)
3004 {
3005 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
3006 
3007 	if (likely(!ret && !intel_context_is_barrier(ce)))
3008 		intel_engine_pm_get(ce->engine);
3009 
3010 	return ret;
3011 }
3012 
3013 static void guc_context_unpin(struct intel_context *ce)
3014 {
3015 	struct intel_guc *guc = ce_to_guc(ce);
3016 
3017 	__guc_context_update_stats(ce);
3018 	unpin_guc_id(guc, ce);
3019 	lrc_unpin(ce);
3020 
3021 	if (likely(!intel_context_is_barrier(ce)))
3022 		intel_engine_pm_put_async(ce->engine);
3023 }
3024 
3025 static void guc_context_post_unpin(struct intel_context *ce)
3026 {
3027 	lrc_post_unpin(ce);
3028 }
3029 
3030 static void __guc_context_sched_enable(struct intel_guc *guc,
3031 				       struct intel_context *ce)
3032 {
3033 	u32 action[] = {
3034 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3035 		ce->guc_id.id,
3036 		GUC_CONTEXT_ENABLE
3037 	};
3038 
3039 	trace_intel_context_sched_enable(ce);
3040 
3041 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3042 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3043 }
3044 
3045 static void __guc_context_sched_disable(struct intel_guc *guc,
3046 					struct intel_context *ce,
3047 					u16 guc_id)
3048 {
3049 	u32 action[] = {
3050 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3051 		guc_id,	/* ce->guc_id.id not stable */
3052 		GUC_CONTEXT_DISABLE
3053 	};
3054 
3055 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3056 
3057 	GEM_BUG_ON(intel_context_is_child(ce));
3058 	trace_intel_context_sched_disable(ce);
3059 
3060 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3061 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3062 }
3063 
3064 static void guc_blocked_fence_complete(struct intel_context *ce)
3065 {
3066 	lockdep_assert_held(&ce->guc_state.lock);
3067 
3068 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
3069 		i915_sw_fence_complete(&ce->guc_state.blocked);
3070 }
3071 
3072 static void guc_blocked_fence_reinit(struct intel_context *ce)
3073 {
3074 	lockdep_assert_held(&ce->guc_state.lock);
3075 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3076 
3077 	/*
3078 	 * This fence is always complete unless a pending schedule disable is
3079 	 * outstanding. We arm the fence here and complete it when we receive
3080 	 * the pending schedule disable complete message.
3081 	 */
3082 	i915_sw_fence_fini(&ce->guc_state.blocked);
3083 	i915_sw_fence_reinit(&ce->guc_state.blocked);
3084 	i915_sw_fence_await(&ce->guc_state.blocked);
3085 	i915_sw_fence_commit(&ce->guc_state.blocked);
3086 }
3087 
3088 static u16 prep_context_pending_disable(struct intel_context *ce)
3089 {
3090 	lockdep_assert_held(&ce->guc_state.lock);
3091 
3092 	set_context_pending_disable(ce);
3093 	clr_context_enabled(ce);
3094 	guc_blocked_fence_reinit(ce);
3095 	intel_context_get(ce);
3096 
3097 	return ce->guc_id.id;
3098 }
3099 
3100 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3101 {
3102 	struct intel_guc *guc = ce_to_guc(ce);
3103 	unsigned long flags;
3104 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3105 	intel_wakeref_t wakeref;
3106 	u16 guc_id;
3107 	bool enabled;
3108 
3109 	GEM_BUG_ON(intel_context_is_child(ce));
3110 
3111 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3112 
3113 	incr_context_blocked(ce);
3114 
3115 	enabled = context_enabled(ce);
3116 	if (unlikely(!enabled || submission_disabled(guc))) {
3117 		if (enabled)
3118 			clr_context_enabled(ce);
3119 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3120 		return &ce->guc_state.blocked;
3121 	}
3122 
3123 	/*
3124 	 * We add +2 here as the schedule disable complete CTB handler calls
3125 	 * intel_context_sched_disable_unpin (-2 to pin_count).
3126 	 */
3127 	atomic_add(2, &ce->pin_count);
3128 
3129 	guc_id = prep_context_pending_disable(ce);
3130 
3131 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3132 
3133 	with_intel_runtime_pm(runtime_pm, wakeref)
3134 		__guc_context_sched_disable(guc, ce, guc_id);
3135 
3136 	return &ce->guc_state.blocked;
3137 }
3138 
3139 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3140 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3141 #define SCHED_STATE_NO_UNBLOCK \
3142 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
3143 	 SCHED_STATE_PENDING_DISABLE | \
3144 	 SCHED_STATE_BANNED)
3145 
3146 static bool context_cant_unblock(struct intel_context *ce)
3147 {
3148 	lockdep_assert_held(&ce->guc_state.lock);
3149 
3150 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3151 		context_guc_id_invalid(ce) ||
3152 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3153 		!intel_context_is_pinned(ce);
3154 }
3155 
3156 static void guc_context_unblock(struct intel_context *ce)
3157 {
3158 	struct intel_guc *guc = ce_to_guc(ce);
3159 	unsigned long flags;
3160 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3161 	intel_wakeref_t wakeref;
3162 	bool enable;
3163 
3164 	GEM_BUG_ON(context_enabled(ce));
3165 	GEM_BUG_ON(intel_context_is_child(ce));
3166 
3167 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3168 
3169 	if (unlikely(submission_disabled(guc) ||
3170 		     context_cant_unblock(ce))) {
3171 		enable = false;
3172 	} else {
3173 		enable = true;
3174 		set_context_pending_enable(ce);
3175 		set_context_enabled(ce);
3176 		intel_context_get(ce);
3177 	}
3178 
3179 	decr_context_blocked(ce);
3180 
3181 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3182 
3183 	if (enable) {
3184 		with_intel_runtime_pm(runtime_pm, wakeref)
3185 			__guc_context_sched_enable(guc, ce);
3186 	}
3187 }
3188 
3189 static void guc_context_cancel_request(struct intel_context *ce,
3190 				       struct i915_request *rq)
3191 {
3192 	struct intel_context *block_context =
3193 		request_to_scheduling_context(rq);
3194 
3195 	if (i915_sw_fence_signaled(&rq->submit)) {
3196 		struct i915_sw_fence *fence;
3197 
3198 		intel_context_get(ce);
3199 		fence = guc_context_block(block_context);
3200 		i915_sw_fence_wait(fence);
3201 		if (!i915_request_completed(rq)) {
3202 			__i915_request_skip(rq);
3203 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3204 					true);
3205 		}
3206 
3207 		guc_context_unblock(block_context);
3208 		intel_context_put(ce);
3209 	}
3210 }
3211 
3212 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3213 						 u16 guc_id,
3214 						 u32 preemption_timeout)
3215 {
3216 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3217 		struct context_policy policy;
3218 
3219 		__guc_context_policy_start_klv(&policy, guc_id);
3220 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3221 		__guc_context_set_context_policies(guc, &policy, true);
3222 	} else {
3223 		u32 action[] = {
3224 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3225 			guc_id,
3226 			preemption_timeout
3227 		};
3228 
3229 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3230 	}
3231 }
3232 
3233 static void
3234 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3235 		   unsigned int preempt_timeout_ms)
3236 {
3237 	struct intel_guc *guc = ce_to_guc(ce);
3238 	struct intel_runtime_pm *runtime_pm =
3239 		&ce->engine->gt->i915->runtime_pm;
3240 	intel_wakeref_t wakeref;
3241 	unsigned long flags;
3242 
3243 	GEM_BUG_ON(intel_context_is_child(ce));
3244 
3245 	guc_flush_submissions(guc);
3246 
3247 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3248 	set_context_banned(ce);
3249 
3250 	if (submission_disabled(guc) ||
3251 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3252 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3253 
3254 		guc_cancel_context_requests(ce);
3255 		intel_engine_signal_breadcrumbs(ce->engine);
3256 	} else if (!context_pending_disable(ce)) {
3257 		u16 guc_id;
3258 
3259 		/*
3260 		 * We add +2 here as the schedule disable complete CTB handler
3261 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3262 		 */
3263 		atomic_add(2, &ce->pin_count);
3264 
3265 		guc_id = prep_context_pending_disable(ce);
3266 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3267 
3268 		/*
3269 		 * In addition to disabling scheduling, set the preemption
3270 		 * timeout to the minimum value (1 us) so the banned context
3271 		 * gets kicked off the HW ASAP.
3272 		 */
3273 		with_intel_runtime_pm(runtime_pm, wakeref) {
3274 			__guc_context_set_preemption_timeout(guc, guc_id,
3275 							     preempt_timeout_ms);
3276 			__guc_context_sched_disable(guc, ce, guc_id);
3277 		}
3278 	} else {
3279 		if (!context_guc_id_invalid(ce))
3280 			with_intel_runtime_pm(runtime_pm, wakeref)
3281 				__guc_context_set_preemption_timeout(guc,
3282 								     ce->guc_id.id,
3283 								     preempt_timeout_ms);
3284 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3285 	}
3286 }
3287 
3288 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3289 			     unsigned long flags)
3290 	__releases(ce->guc_state.lock)
3291 {
3292 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3293 	intel_wakeref_t wakeref;
3294 	u16 guc_id;
3295 
3296 	lockdep_assert_held(&ce->guc_state.lock);
3297 	guc_id = prep_context_pending_disable(ce);
3298 
3299 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3300 
3301 	with_intel_runtime_pm(runtime_pm, wakeref)
3302 		__guc_context_sched_disable(guc, ce, guc_id);
3303 }
3304 
3305 static bool bypass_sched_disable(struct intel_guc *guc,
3306 				 struct intel_context *ce)
3307 {
3308 	lockdep_assert_held(&ce->guc_state.lock);
3309 	GEM_BUG_ON(intel_context_is_child(ce));
3310 
3311 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3312 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3313 		clr_context_enabled(ce);
3314 		return true;
3315 	}
3316 
3317 	return !context_enabled(ce);
3318 }
3319 
3320 static void __delay_sched_disable(struct work_struct *wrk)
3321 {
3322 	struct intel_context *ce =
3323 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3324 	struct intel_guc *guc = ce_to_guc(ce);
3325 	unsigned long flags;
3326 
3327 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3328 
3329 	if (bypass_sched_disable(guc, ce)) {
3330 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3331 		intel_context_sched_disable_unpin(ce);
3332 	} else {
3333 		do_sched_disable(guc, ce, flags);
3334 	}
3335 }
3336 
3337 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3338 {
3339 	/*
3340 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3341 	 * disable immediately.
3342 	 */
3343 	if (intel_context_is_parent(ce))
3344 		return true;
3345 
3346 	/*
3347 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3348 	 */
3349 	return guc->submission_state.guc_ids_in_use >
3350 		guc->submission_state.sched_disable_gucid_threshold;
3351 }
3352 
3353 static void guc_context_sched_disable(struct intel_context *ce)
3354 {
3355 	struct intel_guc *guc = ce_to_guc(ce);
3356 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3357 	unsigned long flags;
3358 
3359 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3360 
3361 	if (bypass_sched_disable(guc, ce)) {
3362 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3363 		intel_context_sched_disable_unpin(ce);
3364 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3365 		   delay) {
3366 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3367 		mod_delayed_work(system_unbound_wq,
3368 				 &ce->guc_state.sched_disable_delay_work,
3369 				 msecs_to_jiffies(delay));
3370 	} else {
3371 		do_sched_disable(guc, ce, flags);
3372 	}
3373 }
3374 
3375 static void guc_context_close(struct intel_context *ce)
3376 {
3377 	unsigned long flags;
3378 
3379 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3380 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3381 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3382 
3383 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3384 	set_context_close_done(ce);
3385 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3386 }
3387 
3388 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3389 {
3390 	struct intel_guc *guc = ce_to_guc(ce);
3391 	struct intel_gt *gt = guc_to_gt(guc);
3392 	unsigned long flags;
3393 	bool disabled;
3394 	int ret;
3395 
3396 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3397 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3398 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3399 	GEM_BUG_ON(context_enabled(ce));
3400 
3401 	/* Seal race with Reset */
3402 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3403 	disabled = submission_disabled(guc);
3404 	if (likely(!disabled)) {
3405 		/*
3406 		 * Take a gt-pm ref and change context state to be destroyed.
3407 		 * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3408 		 */
3409 		__intel_gt_pm_get(gt);
3410 		set_context_destroyed(ce);
3411 		clr_context_registered(ce);
3412 	}
3413 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3414 
3415 	if (unlikely(disabled)) {
3416 		release_guc_id(guc, ce);
3417 		__guc_context_destroy(ce);
3418 		return 0;
3419 	}
3420 
3421 	/*
3422 	 * GuC is active, lets destroy this context, but at this point we can still be racing
3423 	 * with suspend, so we undo everything if the H2G fails in deregister_context so
3424 	 * that GuC reset will find this context during clean up.
3425 	 */
3426 	ret = deregister_context(ce, ce->guc_id.id);
3427 	if (ret) {
3428 		spin_lock(&ce->guc_state.lock);
3429 		set_context_registered(ce);
3430 		clr_context_destroyed(ce);
3431 		spin_unlock(&ce->guc_state.lock);
3432 		/*
3433 		 * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3434 		 * the wakeref immediately but per function spec usage call this after unlock.
3435 		 */
3436 		intel_wakeref_put_async(&gt->wakeref);
3437 	}
3438 
3439 	return ret;
3440 }
3441 
3442 static void __guc_context_destroy(struct intel_context *ce)
3443 {
3444 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3445 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3446 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3447 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3448 
3449 	lrc_fini(ce);
3450 	intel_context_fini(ce);
3451 
3452 	if (intel_engine_is_virtual(ce->engine)) {
3453 		struct guc_virtual_engine *ve =
3454 			container_of(ce, typeof(*ve), context);
3455 
3456 		if (ve->base.breadcrumbs)
3457 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3458 
3459 		kfree(ve);
3460 	} else {
3461 		intel_context_free(ce);
3462 	}
3463 }
3464 
3465 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3466 {
3467 	struct intel_context *ce;
3468 	unsigned long flags;
3469 
3470 	GEM_BUG_ON(!submission_disabled(guc) &&
3471 		   guc_submission_initialized(guc));
3472 
3473 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3474 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3475 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3476 					      struct intel_context,
3477 					      destroyed_link);
3478 		if (ce)
3479 			list_del_init(&ce->destroyed_link);
3480 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3481 
3482 		if (!ce)
3483 			break;
3484 
3485 		release_guc_id(guc, ce);
3486 		__guc_context_destroy(ce);
3487 	}
3488 }
3489 
3490 static void deregister_destroyed_contexts(struct intel_guc *guc)
3491 {
3492 	struct intel_context *ce;
3493 	unsigned long flags;
3494 
3495 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3496 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3497 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3498 					      struct intel_context,
3499 					      destroyed_link);
3500 		if (ce)
3501 			list_del_init(&ce->destroyed_link);
3502 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3503 
3504 		if (!ce)
3505 			break;
3506 
3507 		if (guc_lrc_desc_unpin(ce)) {
3508 			/*
3509 			 * This means GuC's CT link severed mid-way which could happen
3510 			 * in suspend-resume corner cases. In this case, put the
3511 			 * context back into the destroyed_contexts list which will
3512 			 * get picked up on the next context deregistration event or
3513 			 * purged in a GuC sanitization event (reset/unload/wedged/...).
3514 			 */
3515 			spin_lock_irqsave(&guc->submission_state.lock, flags);
3516 			list_add_tail(&ce->destroyed_link,
3517 				      &guc->submission_state.destroyed_contexts);
3518 			spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3519 			/* Bail now since the list might never be emptied if h2gs fail */
3520 			break;
3521 		}
3522 
3523 	}
3524 }
3525 
3526 static void destroyed_worker_func(struct work_struct *w)
3527 {
3528 	struct intel_guc *guc = container_of(w, struct intel_guc,
3529 					     submission_state.destroyed_worker);
3530 	struct intel_gt *gt = guc_to_gt(guc);
3531 	intel_wakeref_t wakeref;
3532 
3533 	/*
3534 	 * In rare cases we can get here via async context-free fence-signals that
3535 	 * come very late in suspend flow or very early in resume flows. In these
3536 	 * cases, GuC won't be ready but just skipping it here is fine as these
3537 	 * pending-destroy-contexts get destroyed totally at GuC reset time at the
3538 	 * end of suspend.. OR.. this worker can be picked up later on the next
3539 	 * context destruction trigger after resume-completes
3540 	 */
3541 	if (!intel_guc_is_ready(guc))
3542 		return;
3543 
3544 	with_intel_gt_pm(gt, wakeref)
3545 		deregister_destroyed_contexts(guc);
3546 }
3547 
3548 static void guc_context_destroy(struct kref *kref)
3549 {
3550 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3551 	struct intel_guc *guc = ce_to_guc(ce);
3552 	unsigned long flags;
3553 	bool destroy;
3554 
3555 	/*
3556 	 * If the guc_id is invalid this context has been stolen and we can free
3557 	 * it immediately. Also can be freed immediately if the context is not
3558 	 * registered with the GuC or the GuC is in the middle of a reset.
3559 	 */
3560 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3561 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3562 		!ctx_id_mapped(guc, ce->guc_id.id);
3563 	if (likely(!destroy)) {
3564 		if (!list_empty(&ce->guc_id.link))
3565 			list_del_init(&ce->guc_id.link);
3566 		list_add_tail(&ce->destroyed_link,
3567 			      &guc->submission_state.destroyed_contexts);
3568 	} else {
3569 		__release_guc_id(guc, ce);
3570 	}
3571 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3572 	if (unlikely(destroy)) {
3573 		__guc_context_destroy(ce);
3574 		return;
3575 	}
3576 
3577 	/*
3578 	 * We use a worker to issue the H2G to deregister the context as we can
3579 	 * take the GT PM for the first time which isn't allowed from an atomic
3580 	 * context.
3581 	 */
3582 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3583 }
3584 
3585 static int guc_context_alloc(struct intel_context *ce)
3586 {
3587 	return lrc_alloc(ce, ce->engine);
3588 }
3589 
3590 static void __guc_context_set_prio(struct intel_guc *guc,
3591 				   struct intel_context *ce)
3592 {
3593 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3594 		struct context_policy policy;
3595 
3596 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3597 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3598 		__guc_context_set_context_policies(guc, &policy, true);
3599 	} else {
3600 		u32 action[] = {
3601 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3602 			ce->guc_id.id,
3603 			ce->guc_state.prio,
3604 		};
3605 
3606 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3607 	}
3608 }
3609 
3610 static void guc_context_set_prio(struct intel_guc *guc,
3611 				 struct intel_context *ce,
3612 				 u8 prio)
3613 {
3614 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3615 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3616 	lockdep_assert_held(&ce->guc_state.lock);
3617 
3618 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3619 	    !context_registered(ce)) {
3620 		ce->guc_state.prio = prio;
3621 		return;
3622 	}
3623 
3624 	ce->guc_state.prio = prio;
3625 	__guc_context_set_prio(guc, ce);
3626 
3627 	trace_intel_context_set_prio(ce);
3628 }
3629 
3630 static inline u8 map_i915_prio_to_guc_prio(int prio)
3631 {
3632 	if (prio == I915_PRIORITY_NORMAL)
3633 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3634 	else if (prio < I915_PRIORITY_NORMAL)
3635 		return GUC_CLIENT_PRIORITY_NORMAL;
3636 	else if (prio < I915_PRIORITY_DISPLAY)
3637 		return GUC_CLIENT_PRIORITY_HIGH;
3638 	else
3639 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3640 }
3641 
3642 static inline void add_context_inflight_prio(struct intel_context *ce,
3643 					     u8 guc_prio)
3644 {
3645 	lockdep_assert_held(&ce->guc_state.lock);
3646 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3647 
3648 	++ce->guc_state.prio_count[guc_prio];
3649 
3650 	/* Overflow protection */
3651 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3652 }
3653 
3654 static inline void sub_context_inflight_prio(struct intel_context *ce,
3655 					     u8 guc_prio)
3656 {
3657 	lockdep_assert_held(&ce->guc_state.lock);
3658 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3659 
3660 	/* Underflow protection */
3661 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3662 
3663 	--ce->guc_state.prio_count[guc_prio];
3664 }
3665 
3666 static inline void update_context_prio(struct intel_context *ce)
3667 {
3668 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3669 	int i;
3670 
3671 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3672 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3673 
3674 	lockdep_assert_held(&ce->guc_state.lock);
3675 
3676 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3677 		if (ce->guc_state.prio_count[i]) {
3678 			guc_context_set_prio(guc, ce, i);
3679 			break;
3680 		}
3681 	}
3682 }
3683 
3684 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3685 {
3686 	/* Lower value is higher priority */
3687 	return new_guc_prio < old_guc_prio;
3688 }
3689 
3690 static void add_to_context(struct i915_request *rq)
3691 {
3692 	struct intel_context *ce = request_to_scheduling_context(rq);
3693 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3694 
3695 	GEM_BUG_ON(intel_context_is_child(ce));
3696 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3697 
3698 	spin_lock(&ce->guc_state.lock);
3699 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3700 
3701 	if (rq->guc_prio == GUC_PRIO_INIT) {
3702 		rq->guc_prio = new_guc_prio;
3703 		add_context_inflight_prio(ce, rq->guc_prio);
3704 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3705 		sub_context_inflight_prio(ce, rq->guc_prio);
3706 		rq->guc_prio = new_guc_prio;
3707 		add_context_inflight_prio(ce, rq->guc_prio);
3708 	}
3709 	update_context_prio(ce);
3710 
3711 	spin_unlock(&ce->guc_state.lock);
3712 }
3713 
3714 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3715 {
3716 	lockdep_assert_held(&ce->guc_state.lock);
3717 
3718 	if (rq->guc_prio != GUC_PRIO_INIT &&
3719 	    rq->guc_prio != GUC_PRIO_FINI) {
3720 		sub_context_inflight_prio(ce, rq->guc_prio);
3721 		update_context_prio(ce);
3722 	}
3723 	rq->guc_prio = GUC_PRIO_FINI;
3724 }
3725 
3726 static void remove_from_context(struct i915_request *rq)
3727 {
3728 	struct intel_context *ce = request_to_scheduling_context(rq);
3729 
3730 	GEM_BUG_ON(intel_context_is_child(ce));
3731 
3732 	spin_lock_irq(&ce->guc_state.lock);
3733 
3734 	list_del_init(&rq->sched.link);
3735 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3736 
3737 	/* Prevent further __await_execution() registering a cb, then flush */
3738 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3739 
3740 	guc_prio_fini(rq, ce);
3741 
3742 	spin_unlock_irq(&ce->guc_state.lock);
3743 
3744 	atomic_dec(&ce->guc_id.ref);
3745 	i915_request_notify_execute_cb_imm(rq);
3746 }
3747 
3748 static const struct intel_context_ops guc_context_ops = {
3749 	.flags = COPS_RUNTIME_CYCLES,
3750 	.alloc = guc_context_alloc,
3751 
3752 	.close = guc_context_close,
3753 
3754 	.pre_pin = guc_context_pre_pin,
3755 	.pin = guc_context_pin,
3756 	.unpin = guc_context_unpin,
3757 	.post_unpin = guc_context_post_unpin,
3758 
3759 	.revoke = guc_context_revoke,
3760 
3761 	.cancel_request = guc_context_cancel_request,
3762 
3763 	.enter = intel_context_enter_engine,
3764 	.exit = intel_context_exit_engine,
3765 
3766 	.sched_disable = guc_context_sched_disable,
3767 
3768 	.update_stats = guc_context_update_stats,
3769 
3770 	.reset = lrc_reset,
3771 	.destroy = guc_context_destroy,
3772 
3773 	.create_virtual = guc_create_virtual,
3774 	.create_parallel = guc_create_parallel,
3775 };
3776 
3777 static void submit_work_cb(struct irq_work *wrk)
3778 {
3779 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3780 
3781 	might_lock(&rq->engine->sched_engine->lock);
3782 	i915_sw_fence_complete(&rq->submit);
3783 }
3784 
3785 static void __guc_signal_context_fence(struct intel_context *ce)
3786 {
3787 	struct i915_request *rq, *rn;
3788 
3789 	lockdep_assert_held(&ce->guc_state.lock);
3790 
3791 	if (!list_empty(&ce->guc_state.fences))
3792 		trace_intel_context_fence_release(ce);
3793 
3794 	/*
3795 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3796 	 * ce->guc_state.lock is preserved.
3797 	 */
3798 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3799 				 guc_fence_link) {
3800 		list_del(&rq->guc_fence_link);
3801 		irq_work_queue(&rq->submit_work);
3802 	}
3803 
3804 	INIT_LIST_HEAD(&ce->guc_state.fences);
3805 }
3806 
3807 static void guc_signal_context_fence(struct intel_context *ce)
3808 {
3809 	unsigned long flags;
3810 
3811 	GEM_BUG_ON(intel_context_is_child(ce));
3812 
3813 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3814 	clr_context_wait_for_deregister_to_register(ce);
3815 	__guc_signal_context_fence(ce);
3816 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3817 }
3818 
3819 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3820 {
3821 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3822 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3823 		!submission_disabled(ce_to_guc(ce));
3824 }
3825 
3826 static void guc_context_init(struct intel_context *ce)
3827 {
3828 	const struct i915_gem_context *ctx;
3829 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3830 
3831 	rcu_read_lock();
3832 	ctx = rcu_dereference(ce->gem_context);
3833 	if (ctx)
3834 		prio = ctx->sched.priority;
3835 	rcu_read_unlock();
3836 
3837 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3838 
3839 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3840 			  __delay_sched_disable);
3841 
3842 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3843 }
3844 
3845 static int guc_request_alloc(struct i915_request *rq)
3846 {
3847 	struct intel_context *ce = request_to_scheduling_context(rq);
3848 	struct intel_guc *guc = ce_to_guc(ce);
3849 	unsigned long flags;
3850 	int ret;
3851 
3852 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3853 
3854 	/*
3855 	 * Flush enough space to reduce the likelihood of waiting after
3856 	 * we start building the request - in which case we will just
3857 	 * have to repeat work.
3858 	 */
3859 	rq->reserved_space += GUC_REQUEST_SIZE;
3860 
3861 	/*
3862 	 * Note that after this point, we have committed to using
3863 	 * this request as it is being used to both track the
3864 	 * state of engine initialisation and liveness of the
3865 	 * golden renderstate above. Think twice before you try
3866 	 * to cancel/unwind this request now.
3867 	 */
3868 
3869 	/* Unconditionally invalidate GPU caches and TLBs. */
3870 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3871 	if (ret)
3872 		return ret;
3873 
3874 	rq->reserved_space -= GUC_REQUEST_SIZE;
3875 
3876 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3877 		guc_context_init(ce);
3878 
3879 	/*
3880 	 * If the context gets closed while the execbuf is ongoing, the context
3881 	 * close code will race with the below code to cancel the delayed work.
3882 	 * If the context close wins the race and cancels the work, it will
3883 	 * immediately call the sched disable (see guc_context_close), so there
3884 	 * is a chance we can get past this check while the sched_disable code
3885 	 * is being executed. To make sure that code completes before we check
3886 	 * the status further down, we wait for the close process to complete.
3887 	 * Else, this code path could send a request down thinking that the
3888 	 * context is still in a schedule-enable mode while the GuC ends up
3889 	 * dropping the request completely because the disable did go from the
3890 	 * context_close path right to GuC just prior. In the event the CT is
3891 	 * full, we could potentially need to wait up to 1.5 seconds.
3892 	 */
3893 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3894 		intel_context_sched_disable_unpin(ce);
3895 	else if (intel_context_is_closed(ce))
3896 		if (wait_for(context_close_done(ce), 1500))
3897 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3898 	/*
3899 	 * Call pin_guc_id here rather than in the pinning step as with
3900 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3901 	 * guc_id and creating horrible race conditions. This is especially bad
3902 	 * when guc_id are being stolen due to over subscription. By the time
3903 	 * this function is reached, it is guaranteed that the guc_id will be
3904 	 * persistent until the generated request is retired. Thus, sealing these
3905 	 * race conditions. It is still safe to fail here if guc_id are
3906 	 * exhausted and return -EAGAIN to the user indicating that they can try
3907 	 * again in the future.
3908 	 *
3909 	 * There is no need for a lock here as the timeline mutex ensures at
3910 	 * most one context can be executing this code path at once. The
3911 	 * guc_id_ref is incremented once for every request in flight and
3912 	 * decremented on each retire. When it is zero, a lock around the
3913 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3914 	 */
3915 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3916 		goto out;
3917 
3918 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3919 	if (unlikely(ret < 0))
3920 		return ret;
3921 	if (context_needs_register(ce, !!ret)) {
3922 		ret = try_context_registration(ce, true);
3923 		if (unlikely(ret)) {	/* unwind */
3924 			if (ret == -EPIPE) {
3925 				disable_submission(guc);
3926 				goto out;	/* GPU will be reset */
3927 			}
3928 			atomic_dec(&ce->guc_id.ref);
3929 			unpin_guc_id(guc, ce);
3930 			return ret;
3931 		}
3932 	}
3933 
3934 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3935 
3936 out:
3937 	/*
3938 	 * We block all requests on this context if a G2H is pending for a
3939 	 * schedule disable or context deregistration as the GuC will fail a
3940 	 * schedule enable or context registration if either G2H is pending
3941 	 * respectfully. Once a G2H returns, the fence is released that is
3942 	 * blocking these requests (see guc_signal_context_fence).
3943 	 */
3944 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3945 	if (context_wait_for_deregister_to_register(ce) ||
3946 	    context_pending_disable(ce)) {
3947 		init_irq_work(&rq->submit_work, submit_work_cb);
3948 		i915_sw_fence_await(&rq->submit);
3949 
3950 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3951 	}
3952 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3953 
3954 	return 0;
3955 }
3956 
3957 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3958 				       struct i915_gem_ww_ctx *ww,
3959 				       void **vaddr)
3960 {
3961 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3962 
3963 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3964 }
3965 
3966 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3967 {
3968 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3969 	int ret = __guc_context_pin(ce, engine, vaddr);
3970 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3971 
3972 	if (likely(!ret))
3973 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3974 			intel_engine_pm_get(engine);
3975 
3976 	return ret;
3977 }
3978 
3979 static void guc_virtual_context_unpin(struct intel_context *ce)
3980 {
3981 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3982 	struct intel_engine_cs *engine;
3983 	struct intel_guc *guc = ce_to_guc(ce);
3984 
3985 	GEM_BUG_ON(context_enabled(ce));
3986 	GEM_BUG_ON(intel_context_is_barrier(ce));
3987 
3988 	unpin_guc_id(guc, ce);
3989 	lrc_unpin(ce);
3990 
3991 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3992 		intel_engine_pm_put_async(engine);
3993 }
3994 
3995 static void guc_virtual_context_enter(struct intel_context *ce)
3996 {
3997 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3998 	struct intel_engine_cs *engine;
3999 
4000 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4001 		intel_engine_pm_get(engine);
4002 
4003 	intel_timeline_enter(ce->timeline);
4004 }
4005 
4006 static void guc_virtual_context_exit(struct intel_context *ce)
4007 {
4008 	intel_engine_mask_t tmp, mask = ce->engine->mask;
4009 	struct intel_engine_cs *engine;
4010 
4011 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4012 		intel_engine_pm_put(engine);
4013 
4014 	intel_timeline_exit(ce->timeline);
4015 }
4016 
4017 static int guc_virtual_context_alloc(struct intel_context *ce)
4018 {
4019 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4020 
4021 	return lrc_alloc(ce, engine);
4022 }
4023 
4024 static const struct intel_context_ops virtual_guc_context_ops = {
4025 	.flags = COPS_RUNTIME_CYCLES,
4026 	.alloc = guc_virtual_context_alloc,
4027 
4028 	.close = guc_context_close,
4029 
4030 	.pre_pin = guc_virtual_context_pre_pin,
4031 	.pin = guc_virtual_context_pin,
4032 	.unpin = guc_virtual_context_unpin,
4033 	.post_unpin = guc_context_post_unpin,
4034 
4035 	.revoke = guc_context_revoke,
4036 
4037 	.cancel_request = guc_context_cancel_request,
4038 
4039 	.enter = guc_virtual_context_enter,
4040 	.exit = guc_virtual_context_exit,
4041 
4042 	.sched_disable = guc_context_sched_disable,
4043 	.update_stats = guc_context_update_stats,
4044 
4045 	.destroy = guc_context_destroy,
4046 
4047 	.get_sibling = guc_virtual_get_sibling,
4048 };
4049 
4050 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4051 {
4052 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4053 	struct intel_guc *guc = ce_to_guc(ce);
4054 	int ret;
4055 
4056 	GEM_BUG_ON(!intel_context_is_parent(ce));
4057 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4058 
4059 	ret = pin_guc_id(guc, ce);
4060 	if (unlikely(ret < 0))
4061 		return ret;
4062 
4063 	return __guc_context_pin(ce, engine, vaddr);
4064 }
4065 
4066 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4067 {
4068 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4069 
4070 	GEM_BUG_ON(!intel_context_is_child(ce));
4071 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4072 
4073 	__intel_context_pin(ce->parallel.parent);
4074 	return __guc_context_pin(ce, engine, vaddr);
4075 }
4076 
4077 static void guc_parent_context_unpin(struct intel_context *ce)
4078 {
4079 	struct intel_guc *guc = ce_to_guc(ce);
4080 
4081 	GEM_BUG_ON(context_enabled(ce));
4082 	GEM_BUG_ON(intel_context_is_barrier(ce));
4083 	GEM_BUG_ON(!intel_context_is_parent(ce));
4084 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4085 
4086 	unpin_guc_id(guc, ce);
4087 	lrc_unpin(ce);
4088 }
4089 
4090 static void guc_child_context_unpin(struct intel_context *ce)
4091 {
4092 	GEM_BUG_ON(context_enabled(ce));
4093 	GEM_BUG_ON(intel_context_is_barrier(ce));
4094 	GEM_BUG_ON(!intel_context_is_child(ce));
4095 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4096 
4097 	lrc_unpin(ce);
4098 }
4099 
4100 static void guc_child_context_post_unpin(struct intel_context *ce)
4101 {
4102 	GEM_BUG_ON(!intel_context_is_child(ce));
4103 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4104 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4105 
4106 	lrc_post_unpin(ce);
4107 	intel_context_unpin(ce->parallel.parent);
4108 }
4109 
4110 static void guc_child_context_destroy(struct kref *kref)
4111 {
4112 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4113 
4114 	__guc_context_destroy(ce);
4115 }
4116 
4117 static const struct intel_context_ops virtual_parent_context_ops = {
4118 	.alloc = guc_virtual_context_alloc,
4119 
4120 	.close = guc_context_close,
4121 
4122 	.pre_pin = guc_context_pre_pin,
4123 	.pin = guc_parent_context_pin,
4124 	.unpin = guc_parent_context_unpin,
4125 	.post_unpin = guc_context_post_unpin,
4126 
4127 	.revoke = guc_context_revoke,
4128 
4129 	.cancel_request = guc_context_cancel_request,
4130 
4131 	.enter = guc_virtual_context_enter,
4132 	.exit = guc_virtual_context_exit,
4133 
4134 	.sched_disable = guc_context_sched_disable,
4135 
4136 	.destroy = guc_context_destroy,
4137 
4138 	.get_sibling = guc_virtual_get_sibling,
4139 };
4140 
4141 static const struct intel_context_ops virtual_child_context_ops = {
4142 	.alloc = guc_virtual_context_alloc,
4143 
4144 	.pre_pin = guc_context_pre_pin,
4145 	.pin = guc_child_context_pin,
4146 	.unpin = guc_child_context_unpin,
4147 	.post_unpin = guc_child_context_post_unpin,
4148 
4149 	.cancel_request = guc_context_cancel_request,
4150 
4151 	.enter = guc_virtual_context_enter,
4152 	.exit = guc_virtual_context_exit,
4153 
4154 	.destroy = guc_child_context_destroy,
4155 
4156 	.get_sibling = guc_virtual_get_sibling,
4157 };
4158 
4159 /*
4160  * The below override of the breadcrumbs is enabled when the user configures a
4161  * context for parallel submission (multi-lrc, parent-child).
4162  *
4163  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4164  * safely preempt all the hw contexts configured for parallel submission
4165  * between each BB. The contract between the i915 and GuC is if the parent
4166  * context can be preempted, all the children can be preempted, and the GuC will
4167  * always try to preempt the parent before the children. A handshake between the
4168  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4169  * creating a window to preempt between each set of BBs.
4170  */
4171 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4172 						     u64 offset, u32 len,
4173 						     const unsigned int flags);
4174 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4175 						    u64 offset, u32 len,
4176 						    const unsigned int flags);
4177 static u32 *
4178 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4179 						 u32 *cs);
4180 static u32 *
4181 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4182 						u32 *cs);
4183 
4184 static struct intel_context *
4185 guc_create_parallel(struct intel_engine_cs **engines,
4186 		    unsigned int num_siblings,
4187 		    unsigned int width)
4188 {
4189 	struct intel_engine_cs **siblings = NULL;
4190 	struct intel_context *parent = NULL, *ce, *err;
4191 	int i, j;
4192 
4193 	siblings = kmalloc_array(num_siblings,
4194 				 sizeof(*siblings),
4195 				 GFP_KERNEL);
4196 	if (!siblings)
4197 		return ERR_PTR(-ENOMEM);
4198 
4199 	for (i = 0; i < width; ++i) {
4200 		for (j = 0; j < num_siblings; ++j)
4201 			siblings[j] = engines[i * num_siblings + j];
4202 
4203 		ce = intel_engine_create_virtual(siblings, num_siblings,
4204 						 FORCE_VIRTUAL);
4205 		if (IS_ERR(ce)) {
4206 			err = ERR_CAST(ce);
4207 			goto unwind;
4208 		}
4209 
4210 		if (i == 0) {
4211 			parent = ce;
4212 			parent->ops = &virtual_parent_context_ops;
4213 		} else {
4214 			ce->ops = &virtual_child_context_ops;
4215 			intel_context_bind_parent_child(parent, ce);
4216 		}
4217 	}
4218 
4219 	parent->parallel.fence_context = dma_fence_context_alloc(1);
4220 
4221 	parent->engine->emit_bb_start =
4222 		emit_bb_start_parent_no_preempt_mid_batch;
4223 	parent->engine->emit_fini_breadcrumb =
4224 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4225 	parent->engine->emit_fini_breadcrumb_dw =
4226 		12 + 4 * parent->parallel.number_children;
4227 	for_each_child(parent, ce) {
4228 		ce->engine->emit_bb_start =
4229 			emit_bb_start_child_no_preempt_mid_batch;
4230 		ce->engine->emit_fini_breadcrumb =
4231 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
4232 		ce->engine->emit_fini_breadcrumb_dw = 16;
4233 	}
4234 
4235 	kfree(siblings);
4236 	return parent;
4237 
4238 unwind:
4239 	if (parent)
4240 		intel_context_put(parent);
4241 	kfree(siblings);
4242 	return err;
4243 }
4244 
4245 static bool
4246 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4247 {
4248 	struct intel_engine_cs *sibling;
4249 	intel_engine_mask_t tmp, mask = b->engine_mask;
4250 	bool result = false;
4251 
4252 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4253 		result |= intel_engine_irq_enable(sibling);
4254 
4255 	return result;
4256 }
4257 
4258 static void
4259 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4260 {
4261 	struct intel_engine_cs *sibling;
4262 	intel_engine_mask_t tmp, mask = b->engine_mask;
4263 
4264 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4265 		intel_engine_irq_disable(sibling);
4266 }
4267 
4268 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4269 {
4270 	int i;
4271 
4272 	/*
4273 	 * In GuC submission mode we do not know which physical engine a request
4274 	 * will be scheduled on, this creates a problem because the breadcrumb
4275 	 * interrupt is per physical engine. To work around this we attach
4276 	 * requests and direct all breadcrumb interrupts to the first instance
4277 	 * of an engine per class. In addition all breadcrumb interrupts are
4278 	 * enabled / disabled across an engine class in unison.
4279 	 */
4280 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4281 		struct intel_engine_cs *sibling =
4282 			engine->gt->engine_class[engine->class][i];
4283 
4284 		if (sibling) {
4285 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4286 				intel_breadcrumbs_put(engine->breadcrumbs);
4287 				engine->breadcrumbs =
4288 					intel_breadcrumbs_get(sibling->breadcrumbs);
4289 			}
4290 			break;
4291 		}
4292 	}
4293 
4294 	if (engine->breadcrumbs) {
4295 		engine->breadcrumbs->engine_mask |= engine->mask;
4296 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4297 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4298 	}
4299 }
4300 
4301 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4302 					   int prio)
4303 {
4304 	struct intel_context *ce = request_to_scheduling_context(rq);
4305 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4306 
4307 	/* Short circuit function */
4308 	if (prio < I915_PRIORITY_NORMAL)
4309 		return;
4310 
4311 	spin_lock(&ce->guc_state.lock);
4312 
4313 	if (rq->guc_prio == GUC_PRIO_FINI)
4314 		goto exit;
4315 
4316 	if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4317 		goto exit;
4318 
4319 	if (rq->guc_prio != GUC_PRIO_INIT)
4320 		sub_context_inflight_prio(ce, rq->guc_prio);
4321 
4322 	rq->guc_prio = new_guc_prio;
4323 	add_context_inflight_prio(ce, rq->guc_prio);
4324 	update_context_prio(ce);
4325 
4326 exit:
4327 	spin_unlock(&ce->guc_state.lock);
4328 }
4329 
4330 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4331 {
4332 	struct intel_context *ce = request_to_scheduling_context(rq);
4333 
4334 	spin_lock(&ce->guc_state.lock);
4335 	guc_prio_fini(rq, ce);
4336 	spin_unlock(&ce->guc_state.lock);
4337 }
4338 
4339 static void sanitize_hwsp(struct intel_engine_cs *engine)
4340 {
4341 	struct intel_timeline *tl;
4342 
4343 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4344 		intel_timeline_reset_seqno(tl);
4345 }
4346 
4347 static void guc_sanitize(struct intel_engine_cs *engine)
4348 {
4349 	/*
4350 	 * Poison residual state on resume, in case the suspend didn't!
4351 	 *
4352 	 * We have to assume that across suspend/resume (or other loss
4353 	 * of control) that the contents of our pinned buffers has been
4354 	 * lost, replaced by garbage. Since this doesn't always happen,
4355 	 * let's poison such state so that we more quickly spot when
4356 	 * we falsely assume it has been preserved.
4357 	 */
4358 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4359 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4360 
4361 	/*
4362 	 * The kernel_context HWSP is stored in the status_page. As above,
4363 	 * that may be lost on resume/initialisation, and so we need to
4364 	 * reset the value in the HWSP.
4365 	 */
4366 	sanitize_hwsp(engine);
4367 
4368 	/* And scrub the dirty cachelines for the HWSP */
4369 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4370 
4371 	intel_engine_reset_pinned_contexts(engine);
4372 }
4373 
4374 static void setup_hwsp(struct intel_engine_cs *engine)
4375 {
4376 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4377 
4378 	ENGINE_WRITE_FW(engine,
4379 			RING_HWS_PGA,
4380 			i915_ggtt_offset(engine->status_page.vma));
4381 }
4382 
4383 static void start_engine(struct intel_engine_cs *engine)
4384 {
4385 	ENGINE_WRITE_FW(engine,
4386 			RING_MODE_GEN7,
4387 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4388 
4389 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4390 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4391 }
4392 
4393 static int guc_resume(struct intel_engine_cs *engine)
4394 {
4395 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4396 
4397 	intel_mocs_init_engine(engine);
4398 
4399 	intel_breadcrumbs_reset(engine->breadcrumbs);
4400 
4401 	setup_hwsp(engine);
4402 	start_engine(engine);
4403 
4404 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4405 		xehp_enable_ccs_engines(engine);
4406 
4407 	return 0;
4408 }
4409 
4410 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4411 {
4412 	return !sched_engine->tasklet.callback;
4413 }
4414 
4415 static void guc_set_default_submission(struct intel_engine_cs *engine)
4416 {
4417 	engine->submit_request = guc_submit_request;
4418 }
4419 
4420 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4421 					 struct intel_context *ce)
4422 {
4423 	int ret;
4424 
4425 	/*
4426 	 * Note: we purposefully do not check the returns below because
4427 	 * the registration can only fail if a reset is just starting.
4428 	 * This is called at the end of reset so presumably another reset
4429 	 * isn't happening and even it did this code would be run again.
4430 	 */
4431 
4432 	if (context_guc_id_invalid(ce)) {
4433 		ret = pin_guc_id(guc, ce);
4434 
4435 		if (ret < 0)
4436 			return ret;
4437 	}
4438 
4439 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4440 		guc_context_init(ce);
4441 
4442 	ret = try_context_registration(ce, true);
4443 	if (ret)
4444 		unpin_guc_id(guc, ce);
4445 
4446 	return ret;
4447 }
4448 
4449 static inline int guc_init_submission(struct intel_guc *guc)
4450 {
4451 	struct intel_gt *gt = guc_to_gt(guc);
4452 	struct intel_engine_cs *engine;
4453 	enum intel_engine_id id;
4454 
4455 	/* make sure all descriptors are clean... */
4456 	xa_destroy(&guc->context_lookup);
4457 
4458 	/*
4459 	 * A reset might have occurred while we had a pending stalled request,
4460 	 * so make sure we clean that up.
4461 	 */
4462 	guc->stalled_request = NULL;
4463 	guc->submission_stall_reason = STALL_NONE;
4464 
4465 	/*
4466 	 * Some contexts might have been pinned before we enabled GuC
4467 	 * submission, so we need to add them to the GuC bookeeping.
4468 	 * Also, after a reset the of the GuC we want to make sure that the
4469 	 * information shared with GuC is properly reset. The kernel LRCs are
4470 	 * not attached to the gem_context, so they need to be added separately.
4471 	 */
4472 	for_each_engine(engine, gt, id) {
4473 		struct intel_context *ce;
4474 
4475 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4476 				    pinned_contexts_link) {
4477 			int ret = guc_kernel_context_pin(guc, ce);
4478 
4479 			if (ret) {
4480 				/* No point in trying to clean up as i915 will wedge on failure */
4481 				return ret;
4482 			}
4483 		}
4484 	}
4485 
4486 	return 0;
4487 }
4488 
4489 static void guc_release(struct intel_engine_cs *engine)
4490 {
4491 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4492 
4493 	intel_engine_cleanup_common(engine);
4494 	lrc_fini_wa_ctx(engine);
4495 }
4496 
4497 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4498 {
4499 	struct intel_engine_cs *e;
4500 	intel_engine_mask_t tmp, mask = engine->mask;
4501 
4502 	for_each_engine_masked(e, engine->gt, mask, tmp)
4503 		e->serial++;
4504 }
4505 
4506 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4507 {
4508 	/* Default vfuncs which can be overridden by each engine. */
4509 
4510 	engine->resume = guc_resume;
4511 
4512 	engine->cops = &guc_context_ops;
4513 	engine->request_alloc = guc_request_alloc;
4514 	engine->add_active_request = add_to_context;
4515 	engine->remove_active_request = remove_from_context;
4516 
4517 	engine->sched_engine->schedule = i915_schedule;
4518 
4519 	engine->reset.prepare = guc_engine_reset_prepare;
4520 	engine->reset.rewind = guc_rewind_nop;
4521 	engine->reset.cancel = guc_reset_nop;
4522 	engine->reset.finish = guc_reset_nop;
4523 
4524 	engine->emit_flush = gen8_emit_flush_xcs;
4525 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4526 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4527 	if (GRAPHICS_VER(engine->i915) >= 12) {
4528 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4529 		engine->emit_flush = gen12_emit_flush_xcs;
4530 	}
4531 	engine->set_default_submission = guc_set_default_submission;
4532 	engine->busyness = guc_engine_busyness;
4533 
4534 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4535 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4536 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4537 
4538 	/* Wa_14014475959:dg2 */
4539 	if (engine->class == COMPUTE_CLASS)
4540 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4541 		    IS_DG2(engine->i915))
4542 			engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4543 
4544 	/* Wa_16019325821 */
4545 	/* Wa_14019159160 */
4546 	if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4547 	    IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4548 		engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4549 
4550 	/*
4551 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4552 	 * handled by the firmware so some minor tweaks are required before
4553 	 * enabling.
4554 	 *
4555 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4556 	 */
4557 
4558 	engine->emit_bb_start = gen8_emit_bb_start;
4559 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4560 		engine->emit_bb_start = xehp_emit_bb_start;
4561 }
4562 
4563 static void rcs_submission_override(struct intel_engine_cs *engine)
4564 {
4565 	switch (GRAPHICS_VER(engine->i915)) {
4566 	case 12:
4567 		engine->emit_flush = gen12_emit_flush_rcs;
4568 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4569 		break;
4570 	case 11:
4571 		engine->emit_flush = gen11_emit_flush_rcs;
4572 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4573 		break;
4574 	default:
4575 		engine->emit_flush = gen8_emit_flush_rcs;
4576 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4577 		break;
4578 	}
4579 }
4580 
4581 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4582 {
4583 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4584 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4585 }
4586 
4587 static void guc_sched_engine_destroy(struct kref *kref)
4588 {
4589 	struct i915_sched_engine *sched_engine =
4590 		container_of(kref, typeof(*sched_engine), ref);
4591 	struct intel_guc *guc = sched_engine->private_data;
4592 
4593 	guc->sched_engine = NULL;
4594 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4595 	kfree(sched_engine);
4596 }
4597 
4598 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4599 {
4600 	struct drm_i915_private *i915 = engine->i915;
4601 	struct intel_guc *guc = gt_to_guc(engine->gt);
4602 
4603 	/*
4604 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4605 	 * that are only valid on gen11+
4606 	 */
4607 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4608 
4609 	if (!guc->sched_engine) {
4610 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4611 		if (!guc->sched_engine)
4612 			return -ENOMEM;
4613 
4614 		guc->sched_engine->schedule = i915_schedule;
4615 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4616 		guc->sched_engine->private_data = guc;
4617 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4618 		guc->sched_engine->bump_inflight_request_prio =
4619 			guc_bump_inflight_request_prio;
4620 		guc->sched_engine->retire_inflight_request_prio =
4621 			guc_retire_inflight_request_prio;
4622 		tasklet_setup(&guc->sched_engine->tasklet,
4623 			      guc_submission_tasklet);
4624 	}
4625 	i915_sched_engine_put(engine->sched_engine);
4626 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4627 
4628 	guc_default_vfuncs(engine);
4629 	guc_default_irqs(engine);
4630 	guc_init_breadcrumbs(engine);
4631 
4632 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4633 		rcs_submission_override(engine);
4634 
4635 	lrc_init_wa_ctx(engine);
4636 
4637 	/* Finally, take ownership and responsibility for cleanup! */
4638 	engine->sanitize = guc_sanitize;
4639 	engine->release = guc_release;
4640 
4641 	return 0;
4642 }
4643 
4644 struct scheduling_policy {
4645 	/* internal data */
4646 	u32 max_words, num_words;
4647 	u32 count;
4648 	/* API data */
4649 	struct guc_update_scheduling_policy h2g;
4650 };
4651 
4652 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4653 {
4654 	u32 *start = (void *)&policy->h2g;
4655 	u32 *end = policy->h2g.data + policy->num_words;
4656 	size_t delta = end - start;
4657 
4658 	return delta;
4659 }
4660 
4661 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4662 {
4663 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4664 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4665 	policy->num_words = 0;
4666 	policy->count = 0;
4667 
4668 	return policy;
4669 }
4670 
4671 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4672 					    u32 action, u32 *data, u32 len)
4673 {
4674 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4675 
4676 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4677 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4678 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4679 	memcpy(klv_ptr, data, sizeof(u32) * len);
4680 	policy->num_words += 1 + len;
4681 	policy->count++;
4682 }
4683 
4684 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4685 						struct scheduling_policy *policy)
4686 {
4687 	int ret;
4688 
4689 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4690 			     __guc_scheduling_policy_action_size(policy));
4691 	if (ret < 0) {
4692 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4693 				ERR_PTR(ret));
4694 		return ret;
4695 	}
4696 
4697 	if (ret != policy->count) {
4698 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4699 			 ret, policy->count);
4700 		if (ret > policy->count)
4701 			return -EPROTO;
4702 	}
4703 
4704 	return 0;
4705 }
4706 
4707 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4708 {
4709 	struct scheduling_policy policy;
4710 	struct intel_gt *gt = guc_to_gt(guc);
4711 	intel_wakeref_t wakeref;
4712 	int ret;
4713 
4714 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4715 		return 0;
4716 
4717 	__guc_scheduling_policy_start_klv(&policy);
4718 
4719 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4720 		u32 yield[] = {
4721 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4722 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4723 		};
4724 
4725 		__guc_scheduling_policy_add_klv(&policy,
4726 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4727 						yield, ARRAY_SIZE(yield));
4728 
4729 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4730 	}
4731 
4732 	return ret;
4733 }
4734 
4735 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4736 {
4737 	struct intel_gt *gt = guc_to_gt(guc);
4738 	u32 val;
4739 
4740 	if (GRAPHICS_VER(gt->i915) < 12)
4741 		return;
4742 
4743 	if (to_guc)
4744 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4745 	else
4746 		val = 0;
4747 
4748 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4749 }
4750 
4751 int intel_guc_submission_enable(struct intel_guc *guc)
4752 {
4753 	int ret;
4754 
4755 	/* Semaphore interrupt enable and route to GuC */
4756 	guc_route_semaphores(guc, true);
4757 
4758 	ret = guc_init_submission(guc);
4759 	if (ret)
4760 		goto fail_sem;
4761 
4762 	ret = guc_init_engine_stats(guc);
4763 	if (ret)
4764 		goto fail_sem;
4765 
4766 	ret = guc_init_global_schedule_policy(guc);
4767 	if (ret)
4768 		goto fail_stats;
4769 
4770 	return 0;
4771 
4772 fail_stats:
4773 	guc_fini_engine_stats(guc);
4774 fail_sem:
4775 	guc_route_semaphores(guc, false);
4776 	return ret;
4777 }
4778 
4779 /* Note: By the time we're here, GuC may have already been reset */
4780 void intel_guc_submission_disable(struct intel_guc *guc)
4781 {
4782 	guc_cancel_busyness_worker(guc);
4783 
4784 	/* Semaphore interrupt disable and route to host */
4785 	guc_route_semaphores(guc, false);
4786 }
4787 
4788 static bool __guc_submission_supported(struct intel_guc *guc)
4789 {
4790 	/* GuC submission is unavailable for pre-Gen11 */
4791 	return intel_guc_is_supported(guc) &&
4792 	       GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4793 }
4794 
4795 static bool __guc_submission_selected(struct intel_guc *guc)
4796 {
4797 	struct drm_i915_private *i915 = guc_to_i915(guc);
4798 
4799 	if (!intel_guc_submission_is_supported(guc))
4800 		return false;
4801 
4802 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4803 }
4804 
4805 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4806 {
4807 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4808 }
4809 
4810 /*
4811  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4812  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4813  * operation. This matches the 30fps game-render + encode (real world) workload this
4814  * knob was tested against.
4815  */
4816 #define SCHED_DISABLE_DELAY_MS	34
4817 
4818 /*
4819  * A threshold of 75% is a reasonable starting point considering that real world apps
4820  * generally don't get anywhere near this.
4821  */
4822 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4823 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4824 
4825 void intel_guc_submission_init_early(struct intel_guc *guc)
4826 {
4827 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4828 
4829 	spin_lock_init(&guc->submission_state.lock);
4830 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4831 	ida_init(&guc->submission_state.guc_ids);
4832 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4833 	INIT_WORK(&guc->submission_state.destroyed_worker,
4834 		  destroyed_worker_func);
4835 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4836 		  reset_fail_worker_func);
4837 
4838 	spin_lock_init(&guc->timestamp.lock);
4839 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4840 
4841 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4842 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4843 	guc->submission_state.sched_disable_gucid_threshold =
4844 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4845 	guc->submission_supported = __guc_submission_supported(guc);
4846 	guc->submission_selected = __guc_submission_selected(guc);
4847 }
4848 
4849 static inline struct intel_context *
4850 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4851 {
4852 	struct intel_context *ce;
4853 
4854 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4855 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4856 		return NULL;
4857 	}
4858 
4859 	ce = __get_context(guc, ctx_id);
4860 	if (unlikely(!ce)) {
4861 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4862 		return NULL;
4863 	}
4864 
4865 	if (unlikely(intel_context_is_child(ce))) {
4866 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4867 		return NULL;
4868 	}
4869 
4870 	return ce;
4871 }
4872 
4873 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4874 {
4875 	struct intel_guc_tlb_wait *wait;
4876 	unsigned long flags;
4877 
4878 	xa_lock_irqsave(&guc->tlb_lookup, flags);
4879 	wait = xa_load(&guc->tlb_lookup, seqno);
4880 
4881 	if (wait)
4882 		wake_up(&wait->wq);
4883 	else
4884 		guc_dbg(guc,
4885 			"Stale TLB invalidation response with seqno %d\n", seqno);
4886 
4887 	xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4888 }
4889 
4890 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4891 				    const u32 *payload, u32 len)
4892 {
4893 	if (len < 1)
4894 		return -EPROTO;
4895 
4896 	wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4897 	return 0;
4898 }
4899 
4900 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4901 {
4902 	/*
4903 	 * This is equivalent to wait_woken() with the exception that
4904 	 * we do not wake up early if the kthread task has been completed.
4905 	 * As we are called from page reclaim in any task context,
4906 	 * we may be invoked from stopped kthreads, but we *must*
4907 	 * complete the wait from the HW.
4908 	 */
4909 	do {
4910 		set_current_state(TASK_UNINTERRUPTIBLE);
4911 		if (wq_entry->flags & WQ_FLAG_WOKEN)
4912 			break;
4913 
4914 		timeout = schedule_timeout(timeout);
4915 	} while (timeout);
4916 
4917 	/* See wait_woken() and woken_wake_function() */
4918 	__set_current_state(TASK_RUNNING);
4919 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4920 
4921 	return timeout;
4922 }
4923 
4924 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4925 {
4926 	/* Check if GT is wedged or suspended */
4927 	if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4928 		return false;
4929 	return true;
4930 }
4931 
4932 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4933 				   enum intel_guc_tlb_invalidation_type type)
4934 {
4935 	struct intel_guc_tlb_wait _wq, *wq = &_wq;
4936 	struct intel_gt *gt = guc_to_gt(guc);
4937 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
4938 	int err;
4939 	u32 seqno;
4940 	u32 action[] = {
4941 		INTEL_GUC_ACTION_TLB_INVALIDATION,
4942 		0,
4943 		REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4944 			REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4945 				       INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4946 			INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4947 	};
4948 	u32 size = ARRAY_SIZE(action);
4949 
4950 	/*
4951 	 * Early guard against GT enablement.  TLB invalidation should not be
4952 	 * attempted if the GT is disabled due to suspend/wedge.
4953 	 */
4954 	if (!intel_gt_is_enabled(gt))
4955 		return -EINVAL;
4956 
4957 	init_waitqueue_head(&_wq.wq);
4958 
4959 	if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4960 				xa_limit_32b, &guc->next_seqno,
4961 				GFP_ATOMIC | __GFP_NOWARN) < 0) {
4962 		/* Under severe memory pressure? Serialise TLB allocations */
4963 		xa_lock_irq(&guc->tlb_lookup);
4964 		wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4965 		wait_event_lock_irq(wq->wq,
4966 				    !READ_ONCE(wq->busy),
4967 				    guc->tlb_lookup.xa_lock);
4968 		/*
4969 		 * Update wq->busy under lock to ensure only one waiter can
4970 		 * issue the TLB invalidation command using the serial slot at a
4971 		 * time. The condition is set to true before releasing the lock
4972 		 * so that other caller continue to wait until woken up again.
4973 		 */
4974 		wq->busy = true;
4975 		xa_unlock_irq(&guc->tlb_lookup);
4976 
4977 		seqno = guc->serial_slot;
4978 	}
4979 
4980 	action[1] = seqno;
4981 
4982 	add_wait_queue(&wq->wq, &wait);
4983 
4984 	/* This is a critical reclaim path and thus we must loop here. */
4985 	err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4986 	if (err)
4987 		goto out;
4988 
4989 	/*
4990 	 * Late guard against GT enablement.  It is not an error for the TLB
4991 	 * invalidation to time out if the GT is disabled during the process
4992 	 * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
4993 	 * in this case.
4994 	 */
4995 	if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4996 	    intel_gt_is_enabled(gt)) {
4997 		guc_err(guc,
4998 			"TLB invalidation response timed out for seqno %u\n", seqno);
4999 		err = -ETIME;
5000 	}
5001 out:
5002 	remove_wait_queue(&wq->wq, &wait);
5003 	if (seqno != guc->serial_slot)
5004 		xa_erase_irq(&guc->tlb_lookup, seqno);
5005 
5006 	return err;
5007 }
5008 
5009 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
5010 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
5011 {
5012 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
5013 }
5014 
5015 /* Send a H2G command to invalidate the GuC's internal TLB. */
5016 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
5017 {
5018 	return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
5019 }
5020 
5021 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
5022 					  const u32 *msg,
5023 					  u32 len)
5024 {
5025 	struct intel_context *ce;
5026 	u32 ctx_id;
5027 
5028 	if (unlikely(len < 1)) {
5029 		guc_err(guc, "Invalid length %u\n", len);
5030 		return -EPROTO;
5031 	}
5032 	ctx_id = msg[0];
5033 
5034 	ce = g2h_context_lookup(guc, ctx_id);
5035 	if (unlikely(!ce))
5036 		return -EPROTO;
5037 
5038 	trace_intel_context_deregister_done(ce);
5039 
5040 #ifdef CONFIG_DRM_I915_SELFTEST
5041 	if (unlikely(ce->drop_deregister)) {
5042 		ce->drop_deregister = false;
5043 		return 0;
5044 	}
5045 #endif
5046 
5047 	if (context_wait_for_deregister_to_register(ce)) {
5048 		struct intel_runtime_pm *runtime_pm =
5049 			&ce->engine->gt->i915->runtime_pm;
5050 		intel_wakeref_t wakeref;
5051 
5052 		/*
5053 		 * Previous owner of this guc_id has been deregistered, now safe
5054 		 * register this context.
5055 		 */
5056 		with_intel_runtime_pm(runtime_pm, wakeref)
5057 			register_context(ce, true);
5058 		guc_signal_context_fence(ce);
5059 		intel_context_put(ce);
5060 	} else if (context_destroyed(ce)) {
5061 		/* Context has been destroyed */
5062 		intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5063 		release_guc_id(guc, ce);
5064 		__guc_context_destroy(ce);
5065 	}
5066 
5067 	decr_outstanding_submission_g2h(guc);
5068 
5069 	return 0;
5070 }
5071 
5072 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5073 				     const u32 *msg,
5074 				     u32 len)
5075 {
5076 	struct intel_context *ce;
5077 	unsigned long flags;
5078 	u32 ctx_id;
5079 
5080 	if (unlikely(len < 2)) {
5081 		guc_err(guc, "Invalid length %u\n", len);
5082 		return -EPROTO;
5083 	}
5084 	ctx_id = msg[0];
5085 
5086 	ce = g2h_context_lookup(guc, ctx_id);
5087 	if (unlikely(!ce))
5088 		return -EPROTO;
5089 
5090 	if (unlikely(context_destroyed(ce) ||
5091 		     (!context_pending_enable(ce) &&
5092 		     !context_pending_disable(ce)))) {
5093 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5094 			ce->guc_state.sched_state, ctx_id);
5095 		return -EPROTO;
5096 	}
5097 
5098 	trace_intel_context_sched_done(ce);
5099 
5100 	if (context_pending_enable(ce)) {
5101 #ifdef CONFIG_DRM_I915_SELFTEST
5102 		if (unlikely(ce->drop_schedule_enable)) {
5103 			ce->drop_schedule_enable = false;
5104 			return 0;
5105 		}
5106 #endif
5107 
5108 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5109 		clr_context_pending_enable(ce);
5110 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5111 	} else if (context_pending_disable(ce)) {
5112 		bool banned;
5113 
5114 #ifdef CONFIG_DRM_I915_SELFTEST
5115 		if (unlikely(ce->drop_schedule_disable)) {
5116 			ce->drop_schedule_disable = false;
5117 			return 0;
5118 		}
5119 #endif
5120 
5121 		/*
5122 		 * Unpin must be done before __guc_signal_context_fence,
5123 		 * otherwise a race exists between the requests getting
5124 		 * submitted + retired before this unpin completes resulting in
5125 		 * the pin_count going to zero and the context still being
5126 		 * enabled.
5127 		 */
5128 		intel_context_sched_disable_unpin(ce);
5129 
5130 		spin_lock_irqsave(&ce->guc_state.lock, flags);
5131 		banned = context_banned(ce);
5132 		clr_context_banned(ce);
5133 		clr_context_pending_disable(ce);
5134 		__guc_signal_context_fence(ce);
5135 		guc_blocked_fence_complete(ce);
5136 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5137 
5138 		if (banned) {
5139 			guc_cancel_context_requests(ce);
5140 			intel_engine_signal_breadcrumbs(ce->engine);
5141 		}
5142 	}
5143 
5144 	decr_outstanding_submission_g2h(guc);
5145 	intel_context_put(ce);
5146 
5147 	return 0;
5148 }
5149 
5150 static void capture_error_state(struct intel_guc *guc,
5151 				struct intel_context *ce)
5152 {
5153 	struct intel_gt *gt = guc_to_gt(guc);
5154 	struct drm_i915_private *i915 = gt->i915;
5155 	intel_wakeref_t wakeref;
5156 	intel_engine_mask_t engine_mask;
5157 
5158 	if (intel_engine_is_virtual(ce->engine)) {
5159 		struct intel_engine_cs *e;
5160 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5161 
5162 		engine_mask = 0;
5163 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5164 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5165 
5166 			if (match) {
5167 				intel_engine_set_hung_context(e, ce);
5168 				engine_mask |= e->mask;
5169 				i915_increase_reset_engine_count(&i915->gpu_error,
5170 								 e);
5171 			}
5172 		}
5173 
5174 		if (!engine_mask) {
5175 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5176 				 ce->guc_id.id, ce->engine->name);
5177 			engine_mask = ~0U;
5178 		}
5179 	} else {
5180 		intel_engine_set_hung_context(ce->engine, ce);
5181 		engine_mask = ce->engine->mask;
5182 		i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5183 	}
5184 
5185 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5186 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5187 }
5188 
5189 static void guc_context_replay(struct intel_context *ce)
5190 {
5191 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5192 
5193 	__guc_reset_context(ce, ce->engine->mask);
5194 	tasklet_hi_schedule(&sched_engine->tasklet);
5195 }
5196 
5197 static void guc_handle_context_reset(struct intel_guc *guc,
5198 				     struct intel_context *ce)
5199 {
5200 	bool capture = intel_context_is_schedulable(ce);
5201 
5202 	trace_intel_context_reset(ce);
5203 
5204 	guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5205 		capture ? "Got" : "Ignoring",
5206 		ce->guc_id.id, ce->engine->name,
5207 		str_yes_no(intel_context_is_exiting(ce)),
5208 		str_yes_no(intel_context_is_banned(ce)));
5209 
5210 	if (capture) {
5211 		capture_error_state(guc, ce);
5212 		guc_context_replay(ce);
5213 	}
5214 }
5215 
5216 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5217 					const u32 *msg, u32 len)
5218 {
5219 	struct intel_context *ce;
5220 	unsigned long flags;
5221 	int ctx_id;
5222 
5223 	if (unlikely(len != 1)) {
5224 		guc_err(guc, "Invalid length %u", len);
5225 		return -EPROTO;
5226 	}
5227 
5228 	ctx_id = msg[0];
5229 
5230 	/*
5231 	 * The context lookup uses the xarray but lookups only require an RCU lock
5232 	 * not the full spinlock. So take the lock explicitly and keep it until the
5233 	 * context has been reference count locked to ensure it can't be destroyed
5234 	 * asynchronously until the reset is done.
5235 	 */
5236 	xa_lock_irqsave(&guc->context_lookup, flags);
5237 	ce = g2h_context_lookup(guc, ctx_id);
5238 	if (ce)
5239 		intel_context_get(ce);
5240 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5241 
5242 	if (unlikely(!ce))
5243 		return -EPROTO;
5244 
5245 	guc_handle_context_reset(guc, ce);
5246 	intel_context_put(ce);
5247 
5248 	return 0;
5249 }
5250 
5251 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5252 					const u32 *msg, u32 len)
5253 {
5254 	u32 status;
5255 
5256 	if (unlikely(len != 1)) {
5257 		guc_dbg(guc, "Invalid length %u", len);
5258 		return -EPROTO;
5259 	}
5260 
5261 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5262 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5263 		guc_warn(guc, "No space for error capture");
5264 
5265 	intel_guc_capture_process(guc);
5266 
5267 	return 0;
5268 }
5269 
5270 struct intel_engine_cs *
5271 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5272 {
5273 	struct intel_gt *gt = guc_to_gt(guc);
5274 	u8 engine_class = guc_class_to_engine_class(guc_class);
5275 
5276 	/* Class index is checked in class converter */
5277 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5278 
5279 	return gt->engine_class[engine_class][instance];
5280 }
5281 
5282 static void reset_fail_worker_func(struct work_struct *w)
5283 {
5284 	struct intel_guc *guc = container_of(w, struct intel_guc,
5285 					     submission_state.reset_fail_worker);
5286 	struct intel_gt *gt = guc_to_gt(guc);
5287 	intel_engine_mask_t reset_fail_mask;
5288 	unsigned long flags;
5289 
5290 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5291 	reset_fail_mask = guc->submission_state.reset_fail_mask;
5292 	guc->submission_state.reset_fail_mask = 0;
5293 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5294 
5295 	if (likely(reset_fail_mask)) {
5296 		struct intel_engine_cs *engine;
5297 		enum intel_engine_id id;
5298 
5299 		/*
5300 		 * GuC is toast at this point - it dead loops after sending the failed
5301 		 * reset notification. So need to manually determine the guilty context.
5302 		 * Note that it should be reliable to do this here because the GuC is
5303 		 * toast and will not be scheduling behind the KMD's back.
5304 		 */
5305 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
5306 			intel_guc_find_hung_context(engine);
5307 
5308 		intel_gt_handle_error(gt, reset_fail_mask,
5309 				      I915_ERROR_CAPTURE,
5310 				      "GuC failed to reset engine mask=0x%x",
5311 				      reset_fail_mask);
5312 	}
5313 }
5314 
5315 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5316 					 const u32 *msg, u32 len)
5317 {
5318 	struct intel_engine_cs *engine;
5319 	u8 guc_class, instance;
5320 	u32 reason;
5321 	unsigned long flags;
5322 
5323 	if (unlikely(len != 3)) {
5324 		guc_err(guc, "Invalid length %u", len);
5325 		return -EPROTO;
5326 	}
5327 
5328 	guc_class = msg[0];
5329 	instance = msg[1];
5330 	reason = msg[2];
5331 
5332 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
5333 	if (unlikely(!engine)) {
5334 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5335 		return -EPROTO;
5336 	}
5337 
5338 	/*
5339 	 * This is an unexpected failure of a hardware feature. So, log a real
5340 	 * error message not just the informational that comes with the reset.
5341 	 */
5342 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5343 		guc_class, instance, engine->name, reason);
5344 
5345 	spin_lock_irqsave(&guc->submission_state.lock, flags);
5346 	guc->submission_state.reset_fail_mask |= engine->mask;
5347 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5348 
5349 	/*
5350 	 * A GT reset flushes this worker queue (G2H handler) so we must use
5351 	 * another worker to trigger a GT reset.
5352 	 */
5353 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5354 
5355 	return 0;
5356 }
5357 
5358 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5359 {
5360 	struct intel_guc *guc = gt_to_guc(engine->gt);
5361 	struct intel_context *ce;
5362 	struct i915_request *rq;
5363 	unsigned long index;
5364 	unsigned long flags;
5365 
5366 	/* Reset called during driver load? GuC not yet initialised! */
5367 	if (unlikely(!guc_submission_initialized(guc)))
5368 		return;
5369 
5370 	xa_lock_irqsave(&guc->context_lookup, flags);
5371 	xa_for_each(&guc->context_lookup, index, ce) {
5372 		bool found;
5373 
5374 		if (!kref_get_unless_zero(&ce->ref))
5375 			continue;
5376 
5377 		xa_unlock(&guc->context_lookup);
5378 
5379 		if (!intel_context_is_pinned(ce))
5380 			goto next;
5381 
5382 		if (intel_engine_is_virtual(ce->engine)) {
5383 			if (!(ce->engine->mask & engine->mask))
5384 				goto next;
5385 		} else {
5386 			if (ce->engine != engine)
5387 				goto next;
5388 		}
5389 
5390 		found = false;
5391 		spin_lock(&ce->guc_state.lock);
5392 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5393 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5394 				continue;
5395 
5396 			found = true;
5397 			break;
5398 		}
5399 		spin_unlock(&ce->guc_state.lock);
5400 
5401 		if (found) {
5402 			intel_engine_set_hung_context(engine, ce);
5403 
5404 			/* Can only cope with one hang at a time... */
5405 			intel_context_put(ce);
5406 			xa_lock(&guc->context_lookup);
5407 			goto done;
5408 		}
5409 
5410 next:
5411 		intel_context_put(ce);
5412 		xa_lock(&guc->context_lookup);
5413 	}
5414 done:
5415 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5416 }
5417 
5418 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5419 				    struct i915_request *hung_rq,
5420 				    struct drm_printer *m)
5421 {
5422 	struct intel_guc *guc = gt_to_guc(engine->gt);
5423 	struct intel_context *ce;
5424 	unsigned long index;
5425 	unsigned long flags;
5426 
5427 	/* Reset called during driver load? GuC not yet initialised! */
5428 	if (unlikely(!guc_submission_initialized(guc)))
5429 		return;
5430 
5431 	xa_lock_irqsave(&guc->context_lookup, flags);
5432 	xa_for_each(&guc->context_lookup, index, ce) {
5433 		if (!kref_get_unless_zero(&ce->ref))
5434 			continue;
5435 
5436 		xa_unlock(&guc->context_lookup);
5437 
5438 		if (!intel_context_is_pinned(ce))
5439 			goto next;
5440 
5441 		if (intel_engine_is_virtual(ce->engine)) {
5442 			if (!(ce->engine->mask & engine->mask))
5443 				goto next;
5444 		} else {
5445 			if (ce->engine != engine)
5446 				goto next;
5447 		}
5448 
5449 		spin_lock(&ce->guc_state.lock);
5450 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5451 						  hung_rq, m);
5452 		spin_unlock(&ce->guc_state.lock);
5453 
5454 next:
5455 		intel_context_put(ce);
5456 		xa_lock(&guc->context_lookup);
5457 	}
5458 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5459 }
5460 
5461 void intel_guc_submission_print_info(struct intel_guc *guc,
5462 				     struct drm_printer *p)
5463 {
5464 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5465 	struct rb_node *rb;
5466 	unsigned long flags;
5467 
5468 	if (!sched_engine)
5469 		return;
5470 
5471 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5472 		   guc->submission_version.major, guc->submission_version.minor,
5473 		   guc->submission_version.patch);
5474 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5475 		   atomic_read(&guc->outstanding_submission_g2h));
5476 	drm_printf(p, "GuC tasklet count: %u\n",
5477 		   atomic_read(&sched_engine->tasklet.count));
5478 
5479 	spin_lock_irqsave(&sched_engine->lock, flags);
5480 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5481 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5482 		struct i915_priolist *pl = to_priolist(rb);
5483 		struct i915_request *rq;
5484 
5485 		priolist_for_each_request(rq, pl)
5486 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5487 				   rq->context->guc_id.id,
5488 				   rq->fence.seqno);
5489 	}
5490 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5491 	drm_printf(p, "\n");
5492 }
5493 
5494 static inline void guc_log_context_priority(struct drm_printer *p,
5495 					    struct intel_context *ce)
5496 {
5497 	int i;
5498 
5499 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5500 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5501 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5502 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5503 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5504 			   i, ce->guc_state.prio_count[i]);
5505 	}
5506 	drm_printf(p, "\n");
5507 }
5508 
5509 static inline void guc_log_context(struct drm_printer *p,
5510 				   struct intel_context *ce)
5511 {
5512 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5513 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5514 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5515 		   ce->ring->head,
5516 		   ce->lrc_reg_state[CTX_RING_HEAD]);
5517 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5518 		   ce->ring->tail,
5519 		   ce->lrc_reg_state[CTX_RING_TAIL]);
5520 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5521 		   atomic_read(&ce->pin_count));
5522 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5523 		   atomic_read(&ce->guc_id.ref));
5524 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5525 		   ce->guc_state.sched_state);
5526 }
5527 
5528 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5529 					     struct drm_printer *p)
5530 {
5531 	struct intel_context *ce;
5532 	unsigned long index;
5533 	unsigned long flags;
5534 
5535 	xa_lock_irqsave(&guc->context_lookup, flags);
5536 	xa_for_each(&guc->context_lookup, index, ce) {
5537 		GEM_BUG_ON(intel_context_is_child(ce));
5538 
5539 		guc_log_context(p, ce);
5540 		guc_log_context_priority(p, ce);
5541 
5542 		if (intel_context_is_parent(ce)) {
5543 			struct intel_context *child;
5544 
5545 			drm_printf(p, "\t\tNumber children: %u\n",
5546 				   ce->parallel.number_children);
5547 
5548 			if (ce->parallel.guc.wq_status) {
5549 				drm_printf(p, "\t\tWQI Head: %u\n",
5550 					   READ_ONCE(*ce->parallel.guc.wq_head));
5551 				drm_printf(p, "\t\tWQI Tail: %u\n",
5552 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5553 				drm_printf(p, "\t\tWQI Status: %u\n",
5554 					   READ_ONCE(*ce->parallel.guc.wq_status));
5555 			}
5556 
5557 			if (ce->engine->emit_bb_start ==
5558 			    emit_bb_start_parent_no_preempt_mid_batch) {
5559 				u8 i;
5560 
5561 				drm_printf(p, "\t\tChildren Go: %u\n",
5562 					   get_children_go_value(ce));
5563 				for (i = 0; i < ce->parallel.number_children; ++i)
5564 					drm_printf(p, "\t\tChildren Join: %u\n",
5565 						   get_children_join_value(ce, i));
5566 			}
5567 
5568 			for_each_child(ce, child)
5569 				guc_log_context(p, child);
5570 		}
5571 	}
5572 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5573 }
5574 
5575 static inline u32 get_children_go_addr(struct intel_context *ce)
5576 {
5577 	GEM_BUG_ON(!intel_context_is_parent(ce));
5578 
5579 	return i915_ggtt_offset(ce->state) +
5580 		__get_parent_scratch_offset(ce) +
5581 		offsetof(struct parent_scratch, go.semaphore);
5582 }
5583 
5584 static inline u32 get_children_join_addr(struct intel_context *ce,
5585 					 u8 child_index)
5586 {
5587 	GEM_BUG_ON(!intel_context_is_parent(ce));
5588 
5589 	return i915_ggtt_offset(ce->state) +
5590 		__get_parent_scratch_offset(ce) +
5591 		offsetof(struct parent_scratch, join[child_index].semaphore);
5592 }
5593 
5594 #define PARENT_GO_BB			1
5595 #define PARENT_GO_FINI_BREADCRUMB	0
5596 #define CHILD_GO_BB			1
5597 #define CHILD_GO_FINI_BREADCRUMB	0
5598 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5599 						     u64 offset, u32 len,
5600 						     const unsigned int flags)
5601 {
5602 	struct intel_context *ce = rq->context;
5603 	u32 *cs;
5604 	u8 i;
5605 
5606 	GEM_BUG_ON(!intel_context_is_parent(ce));
5607 
5608 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5609 	if (IS_ERR(cs))
5610 		return PTR_ERR(cs);
5611 
5612 	/* Wait on children */
5613 	for (i = 0; i < ce->parallel.number_children; ++i) {
5614 		*cs++ = (MI_SEMAPHORE_WAIT |
5615 			 MI_SEMAPHORE_GLOBAL_GTT |
5616 			 MI_SEMAPHORE_POLL |
5617 			 MI_SEMAPHORE_SAD_EQ_SDD);
5618 		*cs++ = PARENT_GO_BB;
5619 		*cs++ = get_children_join_addr(ce, i);
5620 		*cs++ = 0;
5621 	}
5622 
5623 	/* Turn off preemption */
5624 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5625 	*cs++ = MI_NOOP;
5626 
5627 	/* Tell children go */
5628 	cs = gen8_emit_ggtt_write(cs,
5629 				  CHILD_GO_BB,
5630 				  get_children_go_addr(ce),
5631 				  0);
5632 
5633 	/* Jump to batch */
5634 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5635 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5636 	*cs++ = lower_32_bits(offset);
5637 	*cs++ = upper_32_bits(offset);
5638 	*cs++ = MI_NOOP;
5639 
5640 	intel_ring_advance(rq, cs);
5641 
5642 	return 0;
5643 }
5644 
5645 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5646 						    u64 offset, u32 len,
5647 						    const unsigned int flags)
5648 {
5649 	struct intel_context *ce = rq->context;
5650 	struct intel_context *parent = intel_context_to_parent(ce);
5651 	u32 *cs;
5652 
5653 	GEM_BUG_ON(!intel_context_is_child(ce));
5654 
5655 	cs = intel_ring_begin(rq, 12);
5656 	if (IS_ERR(cs))
5657 		return PTR_ERR(cs);
5658 
5659 	/* Signal parent */
5660 	cs = gen8_emit_ggtt_write(cs,
5661 				  PARENT_GO_BB,
5662 				  get_children_join_addr(parent,
5663 							 ce->parallel.child_index),
5664 				  0);
5665 
5666 	/* Wait on parent for go */
5667 	*cs++ = (MI_SEMAPHORE_WAIT |
5668 		 MI_SEMAPHORE_GLOBAL_GTT |
5669 		 MI_SEMAPHORE_POLL |
5670 		 MI_SEMAPHORE_SAD_EQ_SDD);
5671 	*cs++ = CHILD_GO_BB;
5672 	*cs++ = get_children_go_addr(parent);
5673 	*cs++ = 0;
5674 
5675 	/* Turn off preemption */
5676 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5677 
5678 	/* Jump to batch */
5679 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5680 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5681 	*cs++ = lower_32_bits(offset);
5682 	*cs++ = upper_32_bits(offset);
5683 
5684 	intel_ring_advance(rq, cs);
5685 
5686 	return 0;
5687 }
5688 
5689 static u32 *
5690 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5691 						   u32 *cs)
5692 {
5693 	struct intel_context *ce = rq->context;
5694 	u8 i;
5695 
5696 	GEM_BUG_ON(!intel_context_is_parent(ce));
5697 
5698 	/* Wait on children */
5699 	for (i = 0; i < ce->parallel.number_children; ++i) {
5700 		*cs++ = (MI_SEMAPHORE_WAIT |
5701 			 MI_SEMAPHORE_GLOBAL_GTT |
5702 			 MI_SEMAPHORE_POLL |
5703 			 MI_SEMAPHORE_SAD_EQ_SDD);
5704 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5705 		*cs++ = get_children_join_addr(ce, i);
5706 		*cs++ = 0;
5707 	}
5708 
5709 	/* Turn on preemption */
5710 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5711 	*cs++ = MI_NOOP;
5712 
5713 	/* Tell children go */
5714 	cs = gen8_emit_ggtt_write(cs,
5715 				  CHILD_GO_FINI_BREADCRUMB,
5716 				  get_children_go_addr(ce),
5717 				  0);
5718 
5719 	return cs;
5720 }
5721 
5722 /*
5723  * If this true, a submission of multi-lrc requests had an error and the
5724  * requests need to be skipped. The front end (execuf IOCTL) should've called
5725  * i915_request_skip which squashes the BB but we still need to emit the fini
5726  * breadrcrumbs seqno write. At this point we don't know how many of the
5727  * requests in the multi-lrc submission were generated so we can't do the
5728  * handshake between the parent and children (e.g. if 4 requests should be
5729  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5730  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5731  * has occurred on any of the requests in submission / relationship.
5732  */
5733 static inline bool skip_handshake(struct i915_request *rq)
5734 {
5735 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5736 }
5737 
5738 #define NON_SKIP_LEN	6
5739 static u32 *
5740 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5741 						 u32 *cs)
5742 {
5743 	struct intel_context *ce = rq->context;
5744 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5745 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5746 
5747 	GEM_BUG_ON(!intel_context_is_parent(ce));
5748 
5749 	if (unlikely(skip_handshake(rq))) {
5750 		/*
5751 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5752 		 * the NON_SKIP_LEN comes from the length of the emits below.
5753 		 */
5754 		memset(cs, 0, sizeof(u32) *
5755 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5756 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5757 	} else {
5758 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5759 	}
5760 
5761 	/* Emit fini breadcrumb */
5762 	before_fini_breadcrumb_user_interrupt_cs = cs;
5763 	cs = gen8_emit_ggtt_write(cs,
5764 				  rq->fence.seqno,
5765 				  i915_request_active_timeline(rq)->hwsp_offset,
5766 				  0);
5767 
5768 	/* User interrupt */
5769 	*cs++ = MI_USER_INTERRUPT;
5770 	*cs++ = MI_NOOP;
5771 
5772 	/* Ensure our math for skip + emit is correct */
5773 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5774 		   cs);
5775 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5776 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5777 
5778 	rq->tail = intel_ring_offset(rq, cs);
5779 
5780 	return cs;
5781 }
5782 
5783 static u32 *
5784 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5785 						  u32 *cs)
5786 {
5787 	struct intel_context *ce = rq->context;
5788 	struct intel_context *parent = intel_context_to_parent(ce);
5789 
5790 	GEM_BUG_ON(!intel_context_is_child(ce));
5791 
5792 	/* Turn on preemption */
5793 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5794 	*cs++ = MI_NOOP;
5795 
5796 	/* Signal parent */
5797 	cs = gen8_emit_ggtt_write(cs,
5798 				  PARENT_GO_FINI_BREADCRUMB,
5799 				  get_children_join_addr(parent,
5800 							 ce->parallel.child_index),
5801 				  0);
5802 
5803 	/* Wait parent on for go */
5804 	*cs++ = (MI_SEMAPHORE_WAIT |
5805 		 MI_SEMAPHORE_GLOBAL_GTT |
5806 		 MI_SEMAPHORE_POLL |
5807 		 MI_SEMAPHORE_SAD_EQ_SDD);
5808 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5809 	*cs++ = get_children_go_addr(parent);
5810 	*cs++ = 0;
5811 
5812 	return cs;
5813 }
5814 
5815 static u32 *
5816 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5817 						u32 *cs)
5818 {
5819 	struct intel_context *ce = rq->context;
5820 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5821 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5822 
5823 	GEM_BUG_ON(!intel_context_is_child(ce));
5824 
5825 	if (unlikely(skip_handshake(rq))) {
5826 		/*
5827 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5828 		 * the NON_SKIP_LEN comes from the length of the emits below.
5829 		 */
5830 		memset(cs, 0, sizeof(u32) *
5831 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5832 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5833 	} else {
5834 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5835 	}
5836 
5837 	/* Emit fini breadcrumb */
5838 	before_fini_breadcrumb_user_interrupt_cs = cs;
5839 	cs = gen8_emit_ggtt_write(cs,
5840 				  rq->fence.seqno,
5841 				  i915_request_active_timeline(rq)->hwsp_offset,
5842 				  0);
5843 
5844 	/* User interrupt */
5845 	*cs++ = MI_USER_INTERRUPT;
5846 	*cs++ = MI_NOOP;
5847 
5848 	/* Ensure our math for skip + emit is correct */
5849 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5850 		   cs);
5851 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5852 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5853 
5854 	rq->tail = intel_ring_offset(rq, cs);
5855 
5856 	return cs;
5857 }
5858 
5859 #undef NON_SKIP_LEN
5860 
5861 static struct intel_context *
5862 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5863 		   unsigned long flags)
5864 {
5865 	struct guc_virtual_engine *ve;
5866 	struct intel_guc *guc;
5867 	unsigned int n;
5868 	int err;
5869 
5870 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5871 	if (!ve)
5872 		return ERR_PTR(-ENOMEM);
5873 
5874 	guc = gt_to_guc(siblings[0]->gt);
5875 
5876 	ve->base.i915 = siblings[0]->i915;
5877 	ve->base.gt = siblings[0]->gt;
5878 	ve->base.uncore = siblings[0]->uncore;
5879 	ve->base.id = -1;
5880 
5881 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5882 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5883 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5884 	ve->base.saturated = ALL_ENGINES;
5885 
5886 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5887 
5888 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5889 
5890 	ve->base.cops = &virtual_guc_context_ops;
5891 	ve->base.request_alloc = guc_request_alloc;
5892 	ve->base.bump_serial = virtual_guc_bump_serial;
5893 
5894 	ve->base.submit_request = guc_submit_request;
5895 
5896 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5897 
5898 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5899 	ve->base.mask = VIRTUAL_ENGINES;
5900 
5901 	intel_context_init(&ve->context, &ve->base);
5902 
5903 	for (n = 0; n < count; n++) {
5904 		struct intel_engine_cs *sibling = siblings[n];
5905 
5906 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5907 		if (sibling->mask & ve->base.mask) {
5908 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5909 				sibling->name);
5910 			err = -EINVAL;
5911 			goto err_put;
5912 		}
5913 
5914 		ve->base.mask |= sibling->mask;
5915 		ve->base.logical_mask |= sibling->logical_mask;
5916 
5917 		if (n != 0 && ve->base.class != sibling->class) {
5918 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5919 				sibling->class, ve->base.class);
5920 			err = -EINVAL;
5921 			goto err_put;
5922 		} else if (n == 0) {
5923 			ve->base.class = sibling->class;
5924 			ve->base.uabi_class = sibling->uabi_class;
5925 			snprintf(ve->base.name, sizeof(ve->base.name),
5926 				 "v%dx%d", ve->base.class, count);
5927 			ve->base.context_size = sibling->context_size;
5928 
5929 			ve->base.add_active_request =
5930 				sibling->add_active_request;
5931 			ve->base.remove_active_request =
5932 				sibling->remove_active_request;
5933 			ve->base.emit_bb_start = sibling->emit_bb_start;
5934 			ve->base.emit_flush = sibling->emit_flush;
5935 			ve->base.emit_init_breadcrumb =
5936 				sibling->emit_init_breadcrumb;
5937 			ve->base.emit_fini_breadcrumb =
5938 				sibling->emit_fini_breadcrumb;
5939 			ve->base.emit_fini_breadcrumb_dw =
5940 				sibling->emit_fini_breadcrumb_dw;
5941 			ve->base.breadcrumbs =
5942 				intel_breadcrumbs_get(sibling->breadcrumbs);
5943 
5944 			ve->base.flags |= sibling->flags;
5945 
5946 			ve->base.props.timeslice_duration_ms =
5947 				sibling->props.timeslice_duration_ms;
5948 			ve->base.props.preempt_timeout_ms =
5949 				sibling->props.preempt_timeout_ms;
5950 		}
5951 	}
5952 
5953 	return &ve->context;
5954 
5955 err_put:
5956 	intel_context_put(&ve->context);
5957 	return ERR_PTR(err);
5958 }
5959 
5960 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5961 {
5962 	struct intel_engine_cs *engine;
5963 	intel_engine_mask_t tmp, mask = ve->mask;
5964 
5965 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5966 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5967 			return true;
5968 
5969 	return false;
5970 }
5971 
5972 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5973 #include "selftest_guc.c"
5974 #include "selftest_guc_multi_lrc.c"
5975 #include "selftest_guc_hangcheck.c"
5976 #endif
5977