1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include <linux/debugfs.h> 7 #include <linux/string_helpers.h> 8 9 #include "gt/intel_gt.h" 10 #include "i915_drv.h" 11 #include "i915_irq.h" 12 #include "i915_memcpy.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_log.h" 15 #include "intel_guc_print.h" 16 17 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC) 18 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M 19 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M 20 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M 21 #elif IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 22 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M 23 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M 24 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M 25 #else 26 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K 27 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K 28 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M 29 #endif 30 31 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log); 32 33 struct guc_log_section { 34 u32 max; 35 u32 flag; 36 u32 default_val; 37 const char *name; 38 }; 39 40 static void _guc_log_init_sizes(struct intel_guc_log *log) 41 { 42 struct intel_guc *guc = log_to_guc(log); 43 static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = { 44 { 45 GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT, 46 GUC_LOG_LOG_ALLOC_UNITS, 47 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE, 48 "crash dump" 49 }, 50 { 51 GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT, 52 GUC_LOG_LOG_ALLOC_UNITS, 53 GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE, 54 "debug", 55 }, 56 { 57 GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT, 58 GUC_LOG_CAPTURE_ALLOC_UNITS, 59 GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE, 60 "capture", 61 } 62 }; 63 int i; 64 65 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) 66 log->sizes[i].bytes = sections[i].default_val; 67 68 /* If debug size > 1MB then bump default crash size to keep the same units */ 69 if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M && 70 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M) 71 log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M; 72 73 /* Prepare the GuC API structure fields: */ 74 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) { 75 /* Convert to correct units */ 76 if ((log->sizes[i].bytes % SZ_1M) == 0) { 77 log->sizes[i].units = SZ_1M; 78 log->sizes[i].flag = sections[i].flag; 79 } else { 80 log->sizes[i].units = SZ_4K; 81 log->sizes[i].flag = 0; 82 } 83 84 if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units)) 85 guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n", 86 sections[i].name, log->sizes[i].bytes, log->sizes[i].units); 87 log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units; 88 89 if (!log->sizes[i].count) { 90 guc_err(guc, "Zero log %s size!\n", sections[i].name); 91 } else { 92 /* Size is +1 unit */ 93 log->sizes[i].count--; 94 } 95 96 /* Clip to field size */ 97 if (log->sizes[i].count > sections[i].max) { 98 guc_err(guc, "log %s size too large: %d vs %d!\n", 99 sections[i].name, log->sizes[i].count + 1, sections[i].max + 1); 100 log->sizes[i].count = sections[i].max; 101 } 102 } 103 104 if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) { 105 guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n", 106 log->sizes[GUC_LOG_SECTIONS_CRASH].units, 107 log->sizes[GUC_LOG_SECTIONS_DEBUG].units); 108 log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units; 109 log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0; 110 } 111 112 log->sizes_initialised = true; 113 } 114 115 static void guc_log_init_sizes(struct intel_guc_log *log) 116 { 117 if (log->sizes_initialised) 118 return; 119 120 _guc_log_init_sizes(log); 121 } 122 123 static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log) 124 { 125 guc_log_init_sizes(log); 126 127 return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes; 128 } 129 130 static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log) 131 { 132 guc_log_init_sizes(log); 133 134 return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes; 135 } 136 137 u32 intel_guc_log_section_size_capture(struct intel_guc_log *log) 138 { 139 guc_log_init_sizes(log); 140 141 return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes; 142 } 143 144 static u32 intel_guc_log_size(struct intel_guc_log *log) 145 { 146 /* 147 * GuC Log buffer Layout: 148 * 149 * NB: Ordering must follow "enum guc_log_buffer_type". 150 * 151 * +===============================+ 00B 152 * | Debug state header | 153 * +-------------------------------+ 32B 154 * | Crash dump state header | 155 * +-------------------------------+ 64B 156 * | Capture state header | 157 * +-------------------------------+ 96B 158 * | | 159 * +===============================+ PAGE_SIZE (4KB) 160 * | Debug logs | 161 * +===============================+ + DEBUG_SIZE 162 * | Crash Dump logs | 163 * +===============================+ + CRASH_SIZE 164 * | Capture logs | 165 * +===============================+ + CAPTURE_SIZE 166 */ 167 return PAGE_SIZE + 168 intel_guc_log_section_size_crash(log) + 169 intel_guc_log_section_size_debug(log) + 170 intel_guc_log_section_size_capture(log); 171 } 172 173 /** 174 * DOC: GuC firmware log 175 * 176 * Firmware log is enabled by setting i915.guc_log_level to the positive level. 177 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from 178 * i915_guc_load_status will print out firmware loading status and scratch 179 * registers value. 180 */ 181 182 static int guc_action_flush_log_complete(struct intel_guc *guc) 183 { 184 u32 action[] = { 185 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE, 186 GUC_DEBUG_LOG_BUFFER 187 }; 188 189 return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0); 190 } 191 192 static int guc_action_flush_log(struct intel_guc *guc) 193 { 194 u32 action[] = { 195 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 196 0 197 }; 198 199 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 200 } 201 202 static int guc_action_control_log(struct intel_guc *guc, bool enable, 203 bool default_logging, u32 verbosity) 204 { 205 u32 action[] = { 206 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, 207 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | 208 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | 209 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) 210 }; 211 212 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); 213 214 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 215 } 216 217 /* 218 * Sub buffer switch callback. Called whenever relay has to switch to a new 219 * sub buffer, relay stays on the same sub buffer if 0 is returned. 220 */ 221 static int subbuf_start_callback(struct rchan_buf *buf, 222 void *subbuf, 223 void *prev_subbuf) 224 { 225 /* 226 * Use no-overwrite mode by default, where relay will stop accepting 227 * new data if there are no empty sub buffers left. 228 * There is no strict synchronization enforced by relay between Consumer 229 * and Producer. In overwrite mode, there is a possibility of getting 230 * inconsistent/garbled data, the producer could be writing on to the 231 * same sub buffer from which Consumer is reading. This can't be avoided 232 * unless Consumer is fast enough and can always run in tandem with 233 * Producer. 234 */ 235 if (relay_buf_full(buf)) 236 return 0; 237 238 return 1; 239 } 240 241 /* 242 * file_create() callback. Creates relay file in debugfs. 243 */ 244 static struct dentry *create_buf_file_callback(const char *filename, 245 struct dentry *parent, 246 umode_t mode, 247 struct rchan_buf *buf, 248 int *is_global) 249 { 250 struct dentry *buf_file; 251 252 /* 253 * This to enable the use of a single buffer for the relay channel and 254 * correspondingly have a single file exposed to User, through which 255 * it can collect the logs in order without any post-processing. 256 * Need to set 'is_global' even if parent is NULL for early logging. 257 */ 258 *is_global = 1; 259 260 if (!parent) 261 return NULL; 262 263 buf_file = debugfs_create_file(filename, mode, 264 parent, buf, &relay_file_operations); 265 if (IS_ERR(buf_file)) 266 return NULL; 267 268 return buf_file; 269 } 270 271 /* 272 * file_remove() default callback. Removes relay file in debugfs. 273 */ 274 static int remove_buf_file_callback(struct dentry *dentry) 275 { 276 debugfs_remove(dentry); 277 return 0; 278 } 279 280 /* relay channel callbacks */ 281 static const struct rchan_callbacks relay_callbacks = { 282 .subbuf_start = subbuf_start_callback, 283 .create_buf_file = create_buf_file_callback, 284 .remove_buf_file = remove_buf_file_callback, 285 }; 286 287 static void guc_move_to_next_buf(struct intel_guc_log *log) 288 { 289 /* 290 * Make sure the updates made in the sub buffer are visible when 291 * Consumer sees the following update to offset inside the sub buffer. 292 */ 293 smp_wmb(); 294 295 /* All data has been written, so now move the offset of sub buffer. */ 296 relay_reserve(log->relay.channel, log->vma->obj->base.size - 297 intel_guc_log_section_size_capture(log)); 298 299 /* Switch to the next sub buffer */ 300 relay_flush(log->relay.channel); 301 } 302 303 static void *guc_get_write_buffer(struct intel_guc_log *log) 304 { 305 /* 306 * Just get the base address of a new sub buffer and copy data into it 307 * ourselves. NULL will be returned in no-overwrite mode, if all sub 308 * buffers are full. Could have used the relay_write() to indirectly 309 * copy the data, but that would have been bit convoluted, as we need to 310 * write to only certain locations inside a sub buffer which cannot be 311 * done without using relay_reserve() along with relay_write(). So its 312 * better to use relay_reserve() alone. 313 */ 314 return relay_reserve(log->relay.channel, 0); 315 } 316 317 bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log, 318 enum guc_log_buffer_type type, 319 unsigned int full_cnt) 320 { 321 unsigned int prev_full_cnt = log->stats[type].sampled_overflow; 322 bool overflow = false; 323 324 if (full_cnt != prev_full_cnt) { 325 overflow = true; 326 327 log->stats[type].overflow = full_cnt; 328 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; 329 330 if (full_cnt < prev_full_cnt) { 331 /* buffer_full_cnt is a 4 bit counter */ 332 log->stats[type].sampled_overflow += 16; 333 } 334 335 guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n"); 336 } 337 338 return overflow; 339 } 340 341 unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log, 342 enum guc_log_buffer_type type) 343 { 344 switch (type) { 345 case GUC_DEBUG_LOG_BUFFER: 346 return intel_guc_log_section_size_debug(log); 347 case GUC_CRASH_DUMP_LOG_BUFFER: 348 return intel_guc_log_section_size_crash(log); 349 case GUC_CAPTURE_LOG_BUFFER: 350 return intel_guc_log_section_size_capture(log); 351 default: 352 MISSING_CASE(type); 353 } 354 355 return 0; 356 } 357 358 size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log, 359 enum guc_log_buffer_type type) 360 { 361 enum guc_log_buffer_type i; 362 size_t offset = PAGE_SIZE;/* for the log_buffer_states */ 363 364 for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) { 365 if (i == type) 366 break; 367 offset += intel_guc_get_log_buffer_size(log, i); 368 } 369 370 return offset; 371 } 372 373 static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) 374 { 375 struct intel_guc *guc = log_to_guc(log); 376 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; 377 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; 378 struct guc_log_buffer_state log_buf_state_local; 379 enum guc_log_buffer_type type; 380 void *src_data, *dst_data; 381 bool new_overflow; 382 383 mutex_lock(&log->relay.lock); 384 385 if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log))) 386 goto out_unlock; 387 388 /* Get the pointer to shared GuC log buffer */ 389 src_data = log->buf_addr; 390 log_buf_state = src_data; 391 392 /* Get the pointer to local buffer to store the logs */ 393 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); 394 395 if (unlikely(!log_buf_snapshot_state)) { 396 /* 397 * Used rate limited to avoid deluge of messages, logs might be 398 * getting consumed by User at a slow rate. 399 */ 400 guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n"); 401 log->relay.full_count++; 402 403 goto out_unlock; 404 } 405 406 /* Actual logs are present from the 2nd page */ 407 src_data += PAGE_SIZE; 408 dst_data += PAGE_SIZE; 409 410 /* For relay logging, we exclude error state capture */ 411 for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) { 412 /* 413 * Make a copy of the state structure, inside GuC log buffer 414 * (which is uncached mapped), on the stack to avoid reading 415 * from it multiple times. 416 */ 417 memcpy(&log_buf_state_local, log_buf_state, 418 sizeof(struct guc_log_buffer_state)); 419 buffer_size = intel_guc_get_log_buffer_size(log, type); 420 read_offset = log_buf_state_local.read_ptr; 421 write_offset = log_buf_state_local.sampled_write_ptr; 422 full_cnt = log_buf_state_local.buffer_full_cnt; 423 424 /* Bookkeeping stuff */ 425 log->stats[type].flush += log_buf_state_local.flush_to_file; 426 new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt); 427 428 /* Update the state of shared log buffer */ 429 log_buf_state->read_ptr = write_offset; 430 log_buf_state->flush_to_file = 0; 431 log_buf_state++; 432 433 /* First copy the state structure in snapshot buffer */ 434 memcpy(log_buf_snapshot_state, &log_buf_state_local, 435 sizeof(struct guc_log_buffer_state)); 436 437 /* 438 * The write pointer could have been updated by GuC firmware, 439 * after sending the flush interrupt to Host, for consistency 440 * set write pointer value to same value of sampled_write_ptr 441 * in the snapshot buffer. 442 */ 443 log_buf_snapshot_state->write_ptr = write_offset; 444 log_buf_snapshot_state++; 445 446 /* Now copy the actual logs. */ 447 if (unlikely(new_overflow)) { 448 /* copy the whole buffer in case of overflow */ 449 read_offset = 0; 450 write_offset = buffer_size; 451 } else if (unlikely((read_offset > buffer_size) || 452 (write_offset > buffer_size))) { 453 guc_err(guc, "invalid log buffer state\n"); 454 /* copy whole buffer as offsets are unreliable */ 455 read_offset = 0; 456 write_offset = buffer_size; 457 } 458 459 /* Just copy the newly written data */ 460 if (read_offset > write_offset) { 461 i915_memcpy_from_wc(dst_data, src_data, write_offset); 462 bytes_to_copy = buffer_size - read_offset; 463 } else { 464 bytes_to_copy = write_offset - read_offset; 465 } 466 i915_memcpy_from_wc(dst_data + read_offset, 467 src_data + read_offset, bytes_to_copy); 468 469 src_data += buffer_size; 470 dst_data += buffer_size; 471 } 472 473 guc_move_to_next_buf(log); 474 475 out_unlock: 476 mutex_unlock(&log->relay.lock); 477 } 478 479 static void copy_debug_logs_work(struct work_struct *work) 480 { 481 struct intel_guc_log *log = 482 container_of(work, struct intel_guc_log, relay.flush_work); 483 484 guc_log_copy_debuglogs_for_relay(log); 485 } 486 487 static int guc_log_relay_map(struct intel_guc_log *log) 488 { 489 lockdep_assert_held(&log->relay.lock); 490 491 if (!log->vma || !log->buf_addr) 492 return -ENODEV; 493 494 /* 495 * WC vmalloc mapping of log buffer pages was done at 496 * GuC Log Init time, but lets keep a ref for book-keeping 497 */ 498 i915_gem_object_get(log->vma->obj); 499 log->relay.buf_in_use = true; 500 501 return 0; 502 } 503 504 static void guc_log_relay_unmap(struct intel_guc_log *log) 505 { 506 lockdep_assert_held(&log->relay.lock); 507 508 i915_gem_object_put(log->vma->obj); 509 log->relay.buf_in_use = false; 510 } 511 512 void intel_guc_log_init_early(struct intel_guc_log *log) 513 { 514 mutex_init(&log->relay.lock); 515 INIT_WORK(&log->relay.flush_work, copy_debug_logs_work); 516 log->relay.started = false; 517 } 518 519 static int guc_log_relay_create(struct intel_guc_log *log) 520 { 521 struct intel_guc *guc = log_to_guc(log); 522 struct drm_i915_private *i915 = guc_to_i915(guc); 523 struct rchan *guc_log_relay_chan; 524 size_t n_subbufs, subbuf_size; 525 int ret; 526 527 lockdep_assert_held(&log->relay.lock); 528 GEM_BUG_ON(!log->vma); 529 530 /* 531 * Keep the size of sub buffers same as shared log buffer 532 * but GuC log-events excludes the error-state-capture logs 533 */ 534 subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log); 535 536 /* 537 * Store up to 8 snapshots, which is large enough to buffer sufficient 538 * boot time logs and provides enough leeway to User, in terms of 539 * latency, for consuming the logs from relay. Also doesn't take 540 * up too much memory. 541 */ 542 n_subbufs = 8; 543 544 if (!guc->dbgfs_node) 545 return -ENOENT; 546 547 guc_log_relay_chan = relay_open("guc_log", 548 guc->dbgfs_node, 549 subbuf_size, n_subbufs, 550 &relay_callbacks, i915); 551 if (!guc_log_relay_chan) { 552 guc_err(guc, "Couldn't create relay channel for logging\n"); 553 554 ret = -ENOMEM; 555 return ret; 556 } 557 558 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); 559 log->relay.channel = guc_log_relay_chan; 560 561 return 0; 562 } 563 564 static void guc_log_relay_destroy(struct intel_guc_log *log) 565 { 566 lockdep_assert_held(&log->relay.lock); 567 568 relay_close(log->relay.channel); 569 log->relay.channel = NULL; 570 } 571 572 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) 573 { 574 struct intel_guc *guc = log_to_guc(log); 575 struct drm_i915_private *i915 = guc_to_i915(guc); 576 intel_wakeref_t wakeref; 577 578 _guc_log_copy_debuglogs_for_relay(log); 579 580 /* 581 * Generally device is expected to be active only at this 582 * time, so get/put should be really quick. 583 */ 584 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 585 guc_action_flush_log_complete(guc); 586 } 587 588 static u32 __get_default_log_level(struct intel_guc_log *log) 589 { 590 struct intel_guc *guc = log_to_guc(log); 591 struct drm_i915_private *i915 = guc_to_i915(guc); 592 593 /* A negative value means "use platform/config default" */ 594 if (i915->params.guc_log_level < 0) { 595 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 596 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 597 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE; 598 } 599 600 if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) { 601 guc_warn(guc, "Log verbosity param out of range: %d > %d!\n", 602 i915->params.guc_log_level, GUC_LOG_LEVEL_MAX); 603 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 604 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 605 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED; 606 } 607 608 GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED); 609 GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX); 610 return i915->params.guc_log_level; 611 } 612 613 int intel_guc_log_create(struct intel_guc_log *log) 614 { 615 struct intel_guc *guc = log_to_guc(log); 616 struct i915_vma *vma; 617 void *vaddr; 618 u32 guc_log_size; 619 int ret; 620 621 GEM_BUG_ON(log->vma); 622 623 guc_log_size = intel_guc_log_size(log); 624 625 vma = intel_guc_allocate_vma(guc, guc_log_size); 626 if (IS_ERR(vma)) { 627 ret = PTR_ERR(vma); 628 goto err; 629 } 630 631 log->vma = vma; 632 /* 633 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to 634 * data from memory during critical events such as error capture 635 */ 636 vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC); 637 if (IS_ERR(vaddr)) { 638 ret = PTR_ERR(vaddr); 639 i915_vma_unpin_and_release(&log->vma, 0); 640 goto err; 641 } 642 log->buf_addr = vaddr; 643 644 log->level = __get_default_log_level(log); 645 guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n", 646 log->level, str_enabled_disabled(log->level), 647 str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)), 648 GUC_LOG_LEVEL_TO_VERBOSITY(log->level)); 649 650 return 0; 651 652 err: 653 guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret)); 654 return ret; 655 } 656 657 void intel_guc_log_destroy(struct intel_guc_log *log) 658 { 659 log->buf_addr = NULL; 660 i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP); 661 } 662 663 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) 664 { 665 struct intel_guc *guc = log_to_guc(log); 666 struct drm_i915_private *i915 = guc_to_i915(guc); 667 intel_wakeref_t wakeref; 668 int ret = 0; 669 670 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); 671 GEM_BUG_ON(!log->vma); 672 673 /* 674 * GuC is recognizing log levels starting from 0 to max, we're using 0 675 * as indication that logging should be disabled. 676 */ 677 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) 678 return -EINVAL; 679 680 mutex_lock(&i915->drm.struct_mutex); 681 682 if (log->level == level) 683 goto out_unlock; 684 685 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 686 ret = guc_action_control_log(guc, 687 GUC_LOG_LEVEL_IS_VERBOSE(level), 688 GUC_LOG_LEVEL_IS_ENABLED(level), 689 GUC_LOG_LEVEL_TO_VERBOSITY(level)); 690 if (ret) { 691 guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret)); 692 goto out_unlock; 693 } 694 695 log->level = level; 696 697 out_unlock: 698 mutex_unlock(&i915->drm.struct_mutex); 699 700 return ret; 701 } 702 703 bool intel_guc_log_relay_created(const struct intel_guc_log *log) 704 { 705 return log->buf_addr; 706 } 707 708 int intel_guc_log_relay_open(struct intel_guc_log *log) 709 { 710 int ret; 711 712 if (!log->vma) 713 return -ENODEV; 714 715 mutex_lock(&log->relay.lock); 716 717 if (intel_guc_log_relay_created(log)) { 718 ret = -EEXIST; 719 goto out_unlock; 720 } 721 722 /* 723 * We require SSE 4.1 for fast reads from the GuC log buffer and 724 * it should be present on the chipsets supporting GuC based 725 * submissions. 726 */ 727 if (!i915_has_memcpy_from_wc()) { 728 ret = -ENXIO; 729 goto out_unlock; 730 } 731 732 ret = guc_log_relay_create(log); 733 if (ret) 734 goto out_unlock; 735 736 ret = guc_log_relay_map(log); 737 if (ret) 738 goto out_relay; 739 740 mutex_unlock(&log->relay.lock); 741 742 return 0; 743 744 out_relay: 745 guc_log_relay_destroy(log); 746 out_unlock: 747 mutex_unlock(&log->relay.lock); 748 749 return ret; 750 } 751 752 int intel_guc_log_relay_start(struct intel_guc_log *log) 753 { 754 if (log->relay.started) 755 return -EEXIST; 756 757 /* 758 * When GuC is logging without us relaying to userspace, we're ignoring 759 * the flush notification. This means that we need to unconditionally 760 * flush on relay enabling, since GuC only notifies us once. 761 */ 762 queue_work(system_highpri_wq, &log->relay.flush_work); 763 764 log->relay.started = true; 765 766 return 0; 767 } 768 769 void intel_guc_log_relay_flush(struct intel_guc_log *log) 770 { 771 struct intel_guc *guc = log_to_guc(log); 772 intel_wakeref_t wakeref; 773 774 if (!log->relay.started) 775 return; 776 777 /* 778 * Before initiating the forceful flush, wait for any pending/ongoing 779 * flush to complete otherwise forceful flush may not actually happen. 780 */ 781 flush_work(&log->relay.flush_work); 782 783 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref) 784 guc_action_flush_log(guc); 785 786 /* GuC would have updated log buffer by now, so copy it */ 787 guc_log_copy_debuglogs_for_relay(log); 788 } 789 790 /* 791 * Stops the relay log. Called from intel_guc_log_relay_close(), so no 792 * possibility of race with start/flush since relay_write cannot race 793 * relay_close. 794 */ 795 static void guc_log_relay_stop(struct intel_guc_log *log) 796 { 797 struct intel_guc *guc = log_to_guc(log); 798 struct drm_i915_private *i915 = guc_to_i915(guc); 799 800 if (!log->relay.started) 801 return; 802 803 intel_synchronize_irq(i915); 804 805 flush_work(&log->relay.flush_work); 806 807 log->relay.started = false; 808 } 809 810 void intel_guc_log_relay_close(struct intel_guc_log *log) 811 { 812 guc_log_relay_stop(log); 813 814 mutex_lock(&log->relay.lock); 815 GEM_BUG_ON(!intel_guc_log_relay_created(log)); 816 guc_log_relay_unmap(log); 817 guc_log_relay_destroy(log); 818 mutex_unlock(&log->relay.lock); 819 } 820 821 void intel_guc_log_handle_flush_event(struct intel_guc_log *log) 822 { 823 if (log->relay.started) 824 queue_work(system_highpri_wq, &log->relay.flush_work); 825 } 826 827 static const char * 828 stringify_guc_log_type(enum guc_log_buffer_type type) 829 { 830 switch (type) { 831 case GUC_DEBUG_LOG_BUFFER: 832 return "DEBUG"; 833 case GUC_CRASH_DUMP_LOG_BUFFER: 834 return "CRASH"; 835 case GUC_CAPTURE_LOG_BUFFER: 836 return "CAPTURE"; 837 default: 838 MISSING_CASE(type); 839 } 840 841 return ""; 842 } 843 844 /** 845 * intel_guc_log_info - dump information about GuC log relay 846 * @log: the GuC log 847 * @p: the &drm_printer 848 * 849 * Pretty printer for GuC log info 850 */ 851 void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p) 852 { 853 enum guc_log_buffer_type type; 854 855 if (!intel_guc_log_relay_created(log)) { 856 drm_puts(p, "GuC log relay not created\n"); 857 return; 858 } 859 860 drm_puts(p, "GuC logging stats:\n"); 861 862 drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count); 863 864 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { 865 drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n", 866 stringify_guc_log_type(type), 867 log->stats[type].flush, 868 log->stats[type].sampled_overflow); 869 } 870 } 871 872 /** 873 * intel_guc_log_dump - dump the contents of the GuC log 874 * @log: the GuC log 875 * @p: the &drm_printer 876 * @dump_load_err: dump the log saved on GuC load error 877 * 878 * Pretty printer for the GuC log 879 */ 880 int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p, 881 bool dump_load_err) 882 { 883 struct intel_guc *guc = log_to_guc(log); 884 struct intel_uc *uc = container_of(guc, struct intel_uc, guc); 885 struct drm_i915_gem_object *obj = NULL; 886 void *map; 887 u32 *page; 888 int i, j; 889 890 if (!intel_guc_is_supported(guc)) 891 return -ENODEV; 892 893 if (dump_load_err) 894 obj = uc->load_err_log; 895 else if (guc->log.vma) 896 obj = guc->log.vma->obj; 897 898 if (!obj) 899 return 0; 900 901 page = (u32 *)__get_free_page(GFP_KERNEL); 902 if (!page) 903 return -ENOMEM; 904 905 intel_guc_dump_time_info(guc, p); 906 907 map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); 908 if (IS_ERR(map)) { 909 guc_dbg(guc, "Failed to pin log object: %pe\n", map); 910 drm_puts(p, "(log data unaccessible)\n"); 911 free_page((unsigned long)page); 912 return PTR_ERR(map); 913 } 914 915 for (i = 0; i < obj->base.size; i += PAGE_SIZE) { 916 if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE)) 917 memcpy(page, map + i, PAGE_SIZE); 918 919 for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4) 920 drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n", 921 *(page + j + 0), *(page + j + 1), 922 *(page + j + 2), *(page + j + 3)); 923 } 924 925 drm_puts(p, "\n"); 926 927 i915_gem_object_unpin_map(obj); 928 free_page((unsigned long)page); 929 930 return 0; 931 } 932