xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_ct.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/ktime.h>
8 #include <linux/string_helpers.h>
9 #include <linux/time64.h>
10 #include <linux/timekeeping.h>
11 
12 #include "i915_drv.h"
13 #include "i915_wait_util.h"
14 #include "intel_guc_ct.h"
15 #include "intel_guc_print.h"
16 
17 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
18 enum {
19 	CT_DEAD_ALIVE = 0,
20 	CT_DEAD_SETUP,
21 	CT_DEAD_WRITE,
22 	CT_DEAD_DEADLOCK,
23 	CT_DEAD_H2G_HAS_ROOM,
24 	CT_DEAD_READ,
25 	CT_DEAD_PROCESS_FAILED,
26 };
27 
28 static void ct_dead_ct_worker_func(struct work_struct *w);
29 
30 #define CT_DEAD(ct, reason)	\
31 	do { \
32 		if (!(ct)->dead_ct_reported) { \
33 			(ct)->dead_ct_reason |= 1 << CT_DEAD_##reason; \
34 			queue_work(system_unbound_wq, &(ct)->dead_ct_worker); \
35 		} \
36 	} while (0)
37 #else
38 #define CT_DEAD(ct, reason)	do { } while (0)
39 #endif
40 
41 static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
42 {
43 	return container_of(ct, struct intel_guc, ct);
44 }
45 
46 #define CT_ERROR(_ct, _fmt, ...) \
47 	guc_err(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__)
48 #ifdef CONFIG_DRM_I915_DEBUG_GUC
49 #define CT_DEBUG(_ct, _fmt, ...) \
50 	guc_dbg(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__)
51 #else
52 #define CT_DEBUG(...)	do { } while (0)
53 #endif
54 #define CT_PROBE_ERROR(_ct, _fmt, ...) \
55 	guc_probe_error(ct_to_guc(ct), "CT: " _fmt, ##__VA_ARGS__)
56 
57 /**
58  * DOC: CTB Blob
59  *
60  * We allocate single blob to hold both CTB descriptors and buffers:
61  *
62  *      +--------+-----------------------------------------------+------+
63  *      | offset | contents                                      | size |
64  *      +========+===============================================+======+
65  *      | 0x0000 | H2G `CTB Descriptor`_ (send)                  |      |
66  *      +--------+-----------------------------------------------+  4K  |
67  *      | 0x0800 | G2H `CTB Descriptor`_ (recv)                  |      |
68  *      +--------+-----------------------------------------------+------+
69  *      | 0x1000 | H2G `CT Buffer`_ (send)                       | n*4K |
70  *      |        |                                               |      |
71  *      +--------+-----------------------------------------------+------+
72  *      | 0x1000 | G2H `CT Buffer`_ (recv)                       | m*4K |
73  *      | + n*4K |                                               |      |
74  *      +--------+-----------------------------------------------+------+
75  *
76  * Size of each `CT Buffer`_ must be multiple of 4K.
77  * We don't expect too many messages in flight at any time, unless we are
78  * using the GuC submission. In that case each request requires a minimum
79  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
80  * enough space to avoid backpressure on the driver. We increase the size
81  * of the receive buffer (relative to the send) to ensure a G2H response
82  * CTB has a landing spot.
83  */
84 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
85 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
86 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
87 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
88 
89 struct ct_request {
90 	struct list_head link;
91 	u32 fence;
92 	u32 status;
93 	u32 response_len;
94 	u32 *response_buf;
95 };
96 
97 struct ct_incoming_msg {
98 	struct list_head link;
99 	u32 size;
100 	u32 msg[] __counted_by(size);
101 };
102 
103 enum { CTB_SEND = 0, CTB_RECV = 1 };
104 
105 enum { CTB_OWNER_HOST = 0 };
106 
107 /*
108  * Some H2G commands involve a synchronous response that the driver needs
109  * to wait for. In such cases, a timeout is required to prevent the driver
110  * from waiting forever in the case of an error (either no error response
111  * is defined in the protocol or something has died and requires a reset).
112  * The specific command may be defined as having a time bound response but
113  * the CT is a queue and that time guarantee only starts from the point
114  * when the command reaches the head of the queue and is processed by GuC.
115  *
116  * Ideally there would be a helper to report the progress of a given
117  * command through the CT. However, that would require a significant
118  * amount of work in the CT layer. In the meantime, provide a reasonable
119  * estimation of the worst case latency it should take for the entire
120  * queue to drain. And therefore, how long a caller should wait before
121  * giving up on their request. The current estimate is based on empirical
122  * measurement of a test that fills the buffer with context creation and
123  * destruction requests as they seem to be the slowest operation.
124  */
125 long intel_guc_ct_max_queue_time_jiffies(void)
126 {
127 	/*
128 	 * A 4KB buffer full of context destroy commands takes a little
129 	 * over a second to process so bump that to 2s to be super safe.
130 	 */
131 	return (CTB_H2G_BUFFER_SIZE * HZ) / SZ_2K;
132 }
133 
134 static void ct_receive_tasklet_func(struct tasklet_struct *t);
135 static void ct_incoming_request_worker_func(struct work_struct *w);
136 
137 /**
138  * intel_guc_ct_init_early - Initialize CT state without requiring device access
139  * @ct: pointer to CT struct
140  */
141 void intel_guc_ct_init_early(struct intel_guc_ct *ct)
142 {
143 	spin_lock_init(&ct->ctbs.send.lock);
144 	spin_lock_init(&ct->ctbs.recv.lock);
145 	spin_lock_init(&ct->requests.lock);
146 	INIT_LIST_HEAD(&ct->requests.pending);
147 	INIT_LIST_HEAD(&ct->requests.incoming);
148 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
149 	INIT_WORK(&ct->dead_ct_worker, ct_dead_ct_worker_func);
150 #endif
151 	INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
152 	tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
153 	init_waitqueue_head(&ct->wq);
154 }
155 
156 static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
157 {
158 	memset(desc, 0, sizeof(*desc));
159 }
160 
161 static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
162 {
163 	u32 space;
164 
165 	ctb->broken = false;
166 	ctb->tail = 0;
167 	ctb->head = 0;
168 	space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
169 	atomic_set(&ctb->space, space);
170 
171 	guc_ct_buffer_desc_init(ctb->desc);
172 }
173 
174 static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
175 			       struct guc_ct_buffer_desc *desc,
176 			       u32 *cmds, u32 size_in_bytes, u32 resv_space)
177 {
178 	GEM_BUG_ON(size_in_bytes % 4);
179 
180 	ctb->desc = desc;
181 	ctb->cmds = cmds;
182 	ctb->size = size_in_bytes / 4;
183 	ctb->resv_space = resv_space / 4;
184 
185 	guc_ct_buffer_reset(ctb);
186 }
187 
188 static int guc_action_control_ctb(struct intel_guc *guc, u32 control)
189 {
190 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
191 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
192 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
193 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB),
194 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, control),
195 	};
196 	int ret;
197 
198 	GEM_BUG_ON(control != GUC_CTB_CONTROL_DISABLE && control != GUC_CTB_CONTROL_ENABLE);
199 
200 	/* CT control must go over MMIO */
201 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
202 
203 	return ret > 0 ? -EPROTO : ret;
204 }
205 
206 static int ct_control_enable(struct intel_guc_ct *ct, bool enable)
207 {
208 	int err;
209 
210 	err = guc_action_control_ctb(ct_to_guc(ct), enable ?
211 				     GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE);
212 	if (unlikely(err))
213 		CT_PROBE_ERROR(ct, "Failed to control/%s CTB (%pe)\n",
214 			       str_enable_disable(enable), ERR_PTR(err));
215 
216 	return err;
217 }
218 
219 static int ct_register_buffer(struct intel_guc_ct *ct, bool send,
220 			      u32 desc_addr, u32 buff_addr, u32 size)
221 {
222 	int err;
223 
224 	err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
225 				   GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY :
226 				   GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
227 				   desc_addr);
228 	if (unlikely(err))
229 		goto failed;
230 
231 	err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
232 				   GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY :
233 				   GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
234 				   buff_addr);
235 	if (unlikely(err))
236 		goto failed;
237 
238 	err = intel_guc_self_cfg32(ct_to_guc(ct), send ?
239 				   GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY :
240 				   GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
241 				   size);
242 	if (unlikely(err))
243 failed:
244 		CT_PROBE_ERROR(ct, "Failed to register %s buffer (%pe)\n",
245 			       send ? "SEND" : "RECV", ERR_PTR(err));
246 
247 	return err;
248 }
249 
250 /**
251  * intel_guc_ct_init - Init buffer-based communication
252  * @ct: pointer to CT struct
253  *
254  * Allocate memory required for buffer-based communication.
255  *
256  * Return: 0 on success, a negative errno code on failure.
257  */
258 int intel_guc_ct_init(struct intel_guc_ct *ct)
259 {
260 	struct intel_guc *guc = ct_to_guc(ct);
261 	struct guc_ct_buffer_desc *desc;
262 	u32 blob_size;
263 	u32 cmds_size;
264 	u32 resv_space;
265 	void *blob;
266 	u32 *cmds;
267 	int err;
268 
269 	err = i915_inject_probe_error(guc_to_i915(guc), -ENXIO);
270 	if (err)
271 		return err;
272 
273 	GEM_BUG_ON(ct->vma);
274 
275 	blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
276 	err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
277 	if (unlikely(err)) {
278 		CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
279 			       blob_size, ERR_PTR(err));
280 		return err;
281 	}
282 
283 	CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
284 
285 	/* store pointers to desc and cmds for send ctb */
286 	desc = blob;
287 	cmds = blob + 2 * CTB_DESC_SIZE;
288 	cmds_size = CTB_H2G_BUFFER_SIZE;
289 	resv_space = 0;
290 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
291 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
292 		 resv_space);
293 
294 	guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
295 
296 	/* store pointers to desc and cmds for recv ctb */
297 	desc = blob + CTB_DESC_SIZE;
298 	cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
299 	cmds_size = CTB_G2H_BUFFER_SIZE;
300 	resv_space = G2H_ROOM_BUFFER_SIZE;
301 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
302 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
303 		 resv_space);
304 
305 	guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
306 
307 	return 0;
308 }
309 
310 /**
311  * intel_guc_ct_fini - Fini buffer-based communication
312  * @ct: pointer to CT struct
313  *
314  * Deallocate memory required for buffer-based communication.
315  */
316 void intel_guc_ct_fini(struct intel_guc_ct *ct)
317 {
318 	GEM_BUG_ON(ct->enabled);
319 
320 	tasklet_kill(&ct->receive_tasklet);
321 	i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
322 	memset(ct, 0, sizeof(*ct));
323 }
324 
325 /**
326  * intel_guc_ct_enable - Enable buffer based command transport.
327  * @ct: pointer to CT struct
328  *
329  * Return: 0 on success, a negative errno code on failure.
330  */
331 int intel_guc_ct_enable(struct intel_guc_ct *ct)
332 {
333 	struct intel_guc *guc = ct_to_guc(ct);
334 	u32 base, desc, cmds, size;
335 	void *blob;
336 	int err;
337 
338 	GEM_BUG_ON(ct->enabled);
339 
340 	/* vma should be already allocated and map'ed */
341 	GEM_BUG_ON(!ct->vma);
342 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
343 	base = intel_guc_ggtt_offset(guc, ct->vma);
344 
345 	/* blob should start with send descriptor */
346 	blob = __px_vaddr(ct->vma->obj);
347 	GEM_BUG_ON(blob != ct->ctbs.send.desc);
348 
349 	/* (re)initialize descriptors */
350 	guc_ct_buffer_reset(&ct->ctbs.send);
351 	guc_ct_buffer_reset(&ct->ctbs.recv);
352 
353 	/*
354 	 * Register both CT buffers starting with RECV buffer.
355 	 * Descriptors are in first half of the blob.
356 	 */
357 	desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
358 	cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
359 	size = ct->ctbs.recv.size * 4;
360 	err = ct_register_buffer(ct, false, desc, cmds, size);
361 	if (unlikely(err))
362 		goto err_out;
363 
364 	desc = base + ptrdiff(ct->ctbs.send.desc, blob);
365 	cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
366 	size = ct->ctbs.send.size * 4;
367 	err = ct_register_buffer(ct, true, desc, cmds, size);
368 	if (unlikely(err))
369 		goto err_out;
370 
371 	err = ct_control_enable(ct, true);
372 	if (unlikely(err))
373 		goto err_out;
374 
375 	ct->enabled = true;
376 	ct->stall_time = KTIME_MAX;
377 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
378 	ct->dead_ct_reported = false;
379 	ct->dead_ct_reason = CT_DEAD_ALIVE;
380 #endif
381 
382 	return 0;
383 
384 err_out:
385 	CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
386 	CT_DEAD(ct, SETUP);
387 	return err;
388 }
389 
390 /**
391  * intel_guc_ct_disable - Disable buffer based command transport.
392  * @ct: pointer to CT struct
393  */
394 void intel_guc_ct_disable(struct intel_guc_ct *ct)
395 {
396 	struct intel_guc *guc = ct_to_guc(ct);
397 
398 	GEM_BUG_ON(!ct->enabled);
399 
400 	ct->enabled = false;
401 
402 	if (intel_guc_is_fw_running(guc)) {
403 		ct_control_enable(ct, false);
404 	}
405 }
406 
407 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
408 static void ct_track_lost_and_found(struct intel_guc_ct *ct, u32 fence, u32 action)
409 {
410 	unsigned int lost = fence % ARRAY_SIZE(ct->requests.lost_and_found);
411 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
412 	unsigned long entries[SZ_32];
413 	unsigned int n;
414 
415 	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
416 
417 	/* May be called under spinlock, so avoid sleeping */
418 	ct->requests.lost_and_found[lost].stack = stack_depot_save(entries, n, GFP_NOWAIT);
419 #endif
420 	ct->requests.lost_and_found[lost].fence = fence;
421 	ct->requests.lost_and_found[lost].action = action;
422 }
423 #endif
424 
425 static u32 ct_get_next_fence(struct intel_guc_ct *ct)
426 {
427 	/* For now it's trivial */
428 	return ++ct->requests.last_fence;
429 }
430 
431 static int ct_write(struct intel_guc_ct *ct,
432 		    const u32 *action,
433 		    u32 len /* in dwords */,
434 		    u32 fence, u32 flags)
435 {
436 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
437 	struct guc_ct_buffer_desc *desc = ctb->desc;
438 	u32 tail = ctb->tail;
439 	u32 size = ctb->size;
440 	u32 header;
441 	u32 hxg;
442 	u32 type;
443 	u32 *cmds = ctb->cmds;
444 	unsigned int i;
445 
446 	if (unlikely(desc->status))
447 		goto corrupted;
448 
449 	GEM_BUG_ON(tail > size);
450 
451 #ifdef CONFIG_DRM_I915_DEBUG_GUC
452 	if (unlikely(tail != READ_ONCE(desc->tail))) {
453 		CT_ERROR(ct, "Tail was modified %u != %u\n",
454 			 desc->tail, tail);
455 		desc->status |= GUC_CTB_STATUS_MISMATCH;
456 		goto corrupted;
457 	}
458 	if (unlikely(READ_ONCE(desc->head) >= size)) {
459 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
460 			 desc->head, size);
461 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
462 		goto corrupted;
463 	}
464 #endif
465 
466 	/*
467 	 * dw0: CT header (including fence)
468 	 * dw1: HXG header (including action code)
469 	 * dw2+: action data
470 	 */
471 	header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
472 		 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
473 		 FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
474 
475 	type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_FAST_REQUEST :
476 		GUC_HXG_TYPE_REQUEST;
477 	hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
478 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION |
479 			   GUC_HXG_REQUEST_MSG_0_DATA0, action[0]);
480 
481 	CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
482 		 tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
483 
484 	cmds[tail] = header;
485 	tail = (tail + 1) % size;
486 
487 	cmds[tail] = hxg;
488 	tail = (tail + 1) % size;
489 
490 	for (i = 1; i < len; i++) {
491 		cmds[tail] = action[i];
492 		tail = (tail + 1) % size;
493 	}
494 	GEM_BUG_ON(tail > size);
495 
496 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
497 	ct_track_lost_and_found(ct, fence,
498 				FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, action[0]));
499 #endif
500 
501 	/*
502 	 * make sure H2G buffer update and LRC tail update (if this triggering a
503 	 * submission) are visible before updating the descriptor tail
504 	 */
505 	intel_guc_write_barrier(ct_to_guc(ct));
506 
507 	/* update local copies */
508 	ctb->tail = tail;
509 	GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
510 	atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
511 
512 	/* now update descriptor */
513 	WRITE_ONCE(desc->tail, tail);
514 
515 	return 0;
516 
517 corrupted:
518 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
519 		 desc->head, desc->tail, desc->status);
520 	CT_DEAD(ct, WRITE);
521 	ctb->broken = true;
522 	return -EPIPE;
523 }
524 
525 /**
526  * wait_for_ct_request_update - Wait for CT request state update.
527  * @ct:		pointer to CT
528  * @req:	pointer to pending request
529  * @status:	placeholder for status
530  *
531  * For each sent request, GuC shall send back CT response message.
532  * Our message handler will update status of tracked request once
533  * response message with given fence is received. Wait here and
534  * check for valid response status value.
535  *
536  * Return:
537  * *	0 response received (status is valid)
538  * *	-ETIMEDOUT no response within hardcoded timeout
539  */
540 static int wait_for_ct_request_update(struct intel_guc_ct *ct, struct ct_request *req, u32 *status)
541 {
542 	int err;
543 	bool ct_enabled;
544 
545 	/*
546 	 * Fast commands should complete in less than 10us, so sample quickly
547 	 * up to that length of time, then switch to a slower sleep-wait loop.
548 	 * No GuC command should ever take longer than 10ms but many GuC
549 	 * commands can be inflight at time, so use a 1s timeout on the slower
550 	 * sleep-wait loop.
551 	 */
552 #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
553 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
554 #define done \
555 	(!(ct_enabled = intel_guc_ct_enabled(ct)) || \
556 	 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
557 	 GUC_HXG_ORIGIN_GUC)
558 	err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
559 	if (err)
560 		err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
561 #undef done
562 	if (!ct_enabled)
563 		err = -ENODEV;
564 
565 	*status = req->status;
566 	return err;
567 }
568 
569 #define GUC_CTB_TIMEOUT_MS	1500
570 static inline bool ct_deadlocked(struct intel_guc_ct *ct)
571 {
572 	long timeout = GUC_CTB_TIMEOUT_MS;
573 	bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
574 
575 	if (unlikely(ret)) {
576 		struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
577 		struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
578 
579 		CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
580 			 ktime_ms_delta(ktime_get(), ct->stall_time),
581 			 send->status, recv->status);
582 		CT_ERROR(ct, "H2G Space: %u (Bytes)\n",
583 			 atomic_read(&ct->ctbs.send.space) * 4);
584 		CT_ERROR(ct, "Head: %u (Dwords)\n", ct->ctbs.send.desc->head);
585 		CT_ERROR(ct, "Tail: %u (Dwords)\n", ct->ctbs.send.desc->tail);
586 		CT_ERROR(ct, "G2H Space: %u (Bytes)\n",
587 			 atomic_read(&ct->ctbs.recv.space) * 4);
588 		CT_ERROR(ct, "Head: %u\n (Dwords)", ct->ctbs.recv.desc->head);
589 		CT_ERROR(ct, "Tail: %u\n (Dwords)", ct->ctbs.recv.desc->tail);
590 
591 		CT_DEAD(ct, DEADLOCK);
592 		ct->ctbs.send.broken = true;
593 	}
594 
595 	return ret;
596 }
597 
598 static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
599 {
600 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
601 
602 	/*
603 	 * We leave a certain amount of space in the G2H CTB buffer for
604 	 * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
605 	 */
606 	return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
607 }
608 
609 static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
610 {
611 	lockdep_assert_held(&ct->ctbs.send.lock);
612 
613 	GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
614 
615 	if (g2h_len_dw)
616 		atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
617 }
618 
619 static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
620 {
621 	atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
622 }
623 
624 static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
625 {
626 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
627 	struct guc_ct_buffer_desc *desc = ctb->desc;
628 	u32 head;
629 	u32 space;
630 
631 	if (atomic_read(&ctb->space) >= len_dw)
632 		return true;
633 
634 	head = READ_ONCE(desc->head);
635 	if (unlikely(head > ctb->size)) {
636 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
637 			 head, ctb->size);
638 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
639 		ctb->broken = true;
640 		CT_DEAD(ct, H2G_HAS_ROOM);
641 		return false;
642 	}
643 
644 	space = CIRC_SPACE(ctb->tail, head, ctb->size);
645 	atomic_set(&ctb->space, space);
646 
647 	return space >= len_dw;
648 }
649 
650 static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
651 {
652 	bool h2g = h2g_has_room(ct, h2g_dw);
653 	bool g2h = g2h_has_room(ct, g2h_dw);
654 
655 	lockdep_assert_held(&ct->ctbs.send.lock);
656 
657 	if (unlikely(!h2g || !g2h)) {
658 		if (ct->stall_time == KTIME_MAX)
659 			ct->stall_time = ktime_get();
660 
661 		/* Be paranoid and kick G2H tasklet to free credits */
662 		if (!g2h)
663 			tasklet_hi_schedule(&ct->receive_tasklet);
664 
665 		if (unlikely(ct_deadlocked(ct)))
666 			return -EPIPE;
667 		else
668 			return -EBUSY;
669 	}
670 
671 	ct->stall_time = KTIME_MAX;
672 	return 0;
673 }
674 
675 #define G2H_LEN_DW(f) ({ \
676 	typeof(f) f_ = (f); \
677 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
678 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
679 	GUC_CTB_HXG_MSG_MIN_LEN : 0; \
680 })
681 static int ct_send_nb(struct intel_guc_ct *ct,
682 		      const u32 *action,
683 		      u32 len,
684 		      u32 flags)
685 {
686 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
687 	unsigned long spin_flags;
688 	u32 g2h_len_dw = G2H_LEN_DW(flags);
689 	u32 fence;
690 	int ret;
691 
692 	spin_lock_irqsave(&ctb->lock, spin_flags);
693 
694 	ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
695 	if (unlikely(ret))
696 		goto out;
697 
698 	fence = ct_get_next_fence(ct);
699 	ret = ct_write(ct, action, len, fence, flags);
700 	if (unlikely(ret))
701 		goto out;
702 
703 	g2h_reserve_space(ct, g2h_len_dw);
704 	intel_guc_notify(ct_to_guc(ct));
705 
706 out:
707 	spin_unlock_irqrestore(&ctb->lock, spin_flags);
708 
709 	return ret;
710 }
711 
712 static int ct_send(struct intel_guc_ct *ct,
713 		   const u32 *action,
714 		   u32 len,
715 		   u32 *response_buf,
716 		   u32 response_buf_size,
717 		   u32 *status)
718 {
719 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
720 	struct ct_request request;
721 	unsigned long flags;
722 	unsigned int sleep_period_ms = 1;
723 	bool send_again;
724 	u32 fence;
725 	int err;
726 
727 	GEM_BUG_ON(!ct->enabled);
728 	GEM_BUG_ON(!len);
729 	GEM_BUG_ON(len > GUC_CTB_HXG_MSG_MAX_LEN - GUC_CTB_HDR_LEN);
730 	GEM_BUG_ON(!response_buf && response_buf_size);
731 	might_sleep();
732 
733 resend:
734 	send_again = false;
735 
736 	/*
737 	 * We use a lazy spin wait loop here as we believe that if the CT
738 	 * buffers are sized correctly the flow control condition should be
739 	 * rare. Reserving the maximum size in the G2H credits as we don't know
740 	 * how big the response is going to be.
741 	 */
742 retry:
743 	spin_lock_irqsave(&ctb->lock, flags);
744 	if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
745 		     !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
746 		if (ct->stall_time == KTIME_MAX)
747 			ct->stall_time = ktime_get();
748 		spin_unlock_irqrestore(&ctb->lock, flags);
749 
750 		if (unlikely(ct_deadlocked(ct)))
751 			return -EPIPE;
752 
753 		if (msleep_interruptible(sleep_period_ms))
754 			return -EINTR;
755 		sleep_period_ms = sleep_period_ms << 1;
756 
757 		goto retry;
758 	}
759 
760 	ct->stall_time = KTIME_MAX;
761 
762 	fence = ct_get_next_fence(ct);
763 	request.fence = fence;
764 	request.status = 0;
765 	request.response_len = response_buf_size;
766 	request.response_buf = response_buf;
767 
768 	spin_lock(&ct->requests.lock);
769 	list_add_tail(&request.link, &ct->requests.pending);
770 	spin_unlock(&ct->requests.lock);
771 
772 	err = ct_write(ct, action, len, fence, 0);
773 	g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
774 
775 	spin_unlock_irqrestore(&ctb->lock, flags);
776 
777 	if (unlikely(err))
778 		goto unlink;
779 
780 	intel_guc_notify(ct_to_guc(ct));
781 
782 	err = wait_for_ct_request_update(ct, &request, status);
783 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
784 	if (unlikely(err)) {
785 		if (err == -ENODEV)
786 			/* wait_for_ct_request_update returns -ENODEV on reset/suspend in progress.
787 			 * In this case, output is debug rather than error info
788 			 */
789 			CT_DEBUG(ct, "Request %#x (fence %u) cancelled as CTB is disabled\n",
790 				 action[0], request.fence);
791 		else
792 			CT_ERROR(ct, "No response for request %#x (fence %u)\n",
793 				 action[0], request.fence);
794 		goto unlink;
795 	}
796 
797 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
798 		CT_DEBUG(ct, "retrying request %#x (%u)\n", *action,
799 			 FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, *status));
800 		send_again = true;
801 		goto unlink;
802 	}
803 
804 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
805 		err = -EIO;
806 		goto unlink;
807 	}
808 
809 	if (response_buf) {
810 		/* There shall be no data in the status */
811 		WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
812 		/* Return actual response len */
813 		err = request.response_len;
814 	} else {
815 		/* There shall be no response payload */
816 		WARN_ON(request.response_len);
817 		/* Return data decoded from the status dword */
818 		err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
819 	}
820 
821 unlink:
822 	spin_lock_irqsave(&ct->requests.lock, flags);
823 	list_del(&request.link);
824 	spin_unlock_irqrestore(&ct->requests.lock, flags);
825 
826 	if (unlikely(send_again))
827 		goto resend;
828 
829 	return err;
830 }
831 
832 /*
833  * Command Transport (CT) buffer based GuC send function.
834  */
835 int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
836 		      u32 *response_buf, u32 response_buf_size, u32 flags)
837 {
838 	u32 status = ~0; /* undefined */
839 	int ret;
840 
841 	if (unlikely(!ct->enabled)) {
842 		struct intel_guc *guc = ct_to_guc(ct);
843 		struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
844 
845 		WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
846 		return -ENODEV;
847 	}
848 
849 	if (unlikely(ct->ctbs.send.broken))
850 		return -EPIPE;
851 
852 	if (flags & INTEL_GUC_CT_SEND_NB)
853 		return ct_send_nb(ct, action, len, flags);
854 
855 	ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
856 	if (unlikely(ret < 0)) {
857 		if (ret != -ENODEV)
858 			CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n",
859 				 action[0], ERR_PTR(ret), status);
860 	} else if (unlikely(ret)) {
861 		CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
862 			 action[0], ret, ret);
863 	}
864 
865 	return ret;
866 }
867 
868 static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
869 {
870 	struct ct_incoming_msg *msg;
871 
872 	msg = kmalloc(struct_size(msg, msg, num_dwords), GFP_ATOMIC);
873 	if (msg)
874 		msg->size = num_dwords;
875 	return msg;
876 }
877 
878 static void ct_free_msg(struct ct_incoming_msg *msg)
879 {
880 	kfree(msg);
881 }
882 
883 /*
884  * Return: number available remaining dwords to read (0 if empty)
885  *         or a negative error code on failure
886  */
887 static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
888 {
889 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
890 	struct guc_ct_buffer_desc *desc = ctb->desc;
891 	u32 head = ctb->head;
892 	u32 tail = READ_ONCE(desc->tail);
893 	u32 size = ctb->size;
894 	u32 *cmds = ctb->cmds;
895 	s32 available;
896 	unsigned int len;
897 	unsigned int i;
898 	u32 header;
899 
900 	if (unlikely(ctb->broken))
901 		return -EPIPE;
902 
903 	if (unlikely(desc->status)) {
904 		u32 status = desc->status;
905 
906 		if (status & GUC_CTB_STATUS_UNUSED) {
907 			/*
908 			 * Potentially valid if a CLIENT_RESET request resulted in
909 			 * contexts/engines being reset. But should never happen as
910 			 * no contexts should be active when CLIENT_RESET is sent.
911 			 */
912 			CT_ERROR(ct, "Unexpected G2H after GuC has stopped!\n");
913 			status &= ~GUC_CTB_STATUS_UNUSED;
914 		}
915 
916 		if (status)
917 			goto corrupted;
918 	}
919 
920 	GEM_BUG_ON(head > size);
921 
922 #ifdef CONFIG_DRM_I915_DEBUG_GUC
923 	if (unlikely(head != READ_ONCE(desc->head))) {
924 		CT_ERROR(ct, "Head was modified %u != %u\n",
925 			 desc->head, head);
926 		desc->status |= GUC_CTB_STATUS_MISMATCH;
927 		goto corrupted;
928 	}
929 #endif
930 	if (unlikely(tail >= size)) {
931 		CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
932 			 tail, size);
933 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
934 		goto corrupted;
935 	}
936 
937 	/* tail == head condition indicates empty */
938 	available = tail - head;
939 	if (unlikely(available == 0)) {
940 		*msg = NULL;
941 		return 0;
942 	}
943 
944 	/* beware of buffer wrap case */
945 	if (unlikely(available < 0))
946 		available += size;
947 	CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
948 	GEM_BUG_ON(available < 0);
949 
950 	header = cmds[head];
951 	head = (head + 1) % size;
952 
953 	/* message len with header */
954 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
955 	if (unlikely(len > (u32)available)) {
956 		CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
957 			 4, &header,
958 			 4 * (head + available - 1 > size ?
959 			      size - head : available - 1), &cmds[head],
960 			 4 * (head + available - 1 > size ?
961 			      available - 1 - size + head : 0), &cmds[0]);
962 		desc->status |= GUC_CTB_STATUS_UNDERFLOW;
963 		goto corrupted;
964 	}
965 
966 	*msg = ct_alloc_msg(len);
967 	if (!*msg) {
968 		CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
969 			 4, &header,
970 			 4 * (head + available - 1 > size ?
971 			      size - head : available - 1), &cmds[head],
972 			 4 * (head + available - 1 > size ?
973 			      available - 1 - size + head : 0), &cmds[0]);
974 		return available;
975 	}
976 
977 	(*msg)->msg[0] = header;
978 
979 	for (i = 1; i < len; i++) {
980 		(*msg)->msg[i] = cmds[head];
981 		head = (head + 1) % size;
982 	}
983 	CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
984 
985 	/* update local copies */
986 	ctb->head = head;
987 
988 	/* now update descriptor */
989 	WRITE_ONCE(desc->head, head);
990 
991 	intel_guc_write_barrier(ct_to_guc(ct));
992 
993 	return available - len;
994 
995 corrupted:
996 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
997 		 desc->head, desc->tail, desc->status);
998 	ctb->broken = true;
999 	CT_DEAD(ct, READ);
1000 	return -EPIPE;
1001 }
1002 
1003 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
1004 static bool ct_check_lost_and_found(struct intel_guc_ct *ct, u32 fence)
1005 {
1006 	unsigned int n;
1007 	char *buf = NULL;
1008 	bool found = false;
1009 
1010 	lockdep_assert_held(&ct->requests.lock);
1011 
1012 	for (n = 0; n < ARRAY_SIZE(ct->requests.lost_and_found); n++) {
1013 		if (ct->requests.lost_and_found[n].fence != fence)
1014 			continue;
1015 		found = true;
1016 
1017 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
1018 		buf = kmalloc(SZ_4K, GFP_NOWAIT);
1019 		if (buf && stack_depot_snprint(ct->requests.lost_and_found[n].stack,
1020 					       buf, SZ_4K, 0)) {
1021 			CT_ERROR(ct, "Fence %u was used by action %#04x sent at\n%s",
1022 				 fence, ct->requests.lost_and_found[n].action, buf);
1023 			break;
1024 		}
1025 #endif
1026 		CT_ERROR(ct, "Fence %u was used by action %#04x\n",
1027 			 fence, ct->requests.lost_and_found[n].action);
1028 		break;
1029 	}
1030 	kfree(buf);
1031 	return found;
1032 }
1033 #else
1034 static bool ct_check_lost_and_found(struct intel_guc_ct *ct, u32 fence)
1035 {
1036 	return false;
1037 }
1038 #endif
1039 
1040 static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
1041 {
1042 	u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
1043 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
1044 	const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
1045 	const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
1046 	u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
1047 	struct ct_request *req;
1048 	unsigned long flags;
1049 	bool found = false;
1050 	int err = 0;
1051 
1052 	GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
1053 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
1054 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
1055 		   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_NO_RESPONSE_RETRY &&
1056 		   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
1057 
1058 	CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
1059 
1060 	spin_lock_irqsave(&ct->requests.lock, flags);
1061 	list_for_each_entry(req, &ct->requests.pending, link) {
1062 		if (unlikely(fence != req->fence)) {
1063 			CT_DEBUG(ct, "request %u awaits response\n",
1064 				 req->fence);
1065 			continue;
1066 		}
1067 		if (unlikely(datalen > req->response_len)) {
1068 			CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
1069 				 req->fence, datalen, req->response_len);
1070 			datalen = min(datalen, req->response_len);
1071 			err = -EMSGSIZE;
1072 		}
1073 		if (datalen)
1074 			memcpy(req->response_buf, data, 4 * datalen);
1075 		req->response_len = datalen;
1076 		WRITE_ONCE(req->status, hxg[0]);
1077 		found = true;
1078 		break;
1079 	}
1080 
1081 #ifdef CONFIG_DRM_I915_SELFTEST
1082 	if (!found && ct_to_guc(ct)->fast_response_selftest) {
1083 		CT_DEBUG(ct, "Assuming unsolicited response due to FAST_REQUEST selftest\n");
1084 		ct_to_guc(ct)->fast_response_selftest++;
1085 		found = true;
1086 	}
1087 #endif
1088 
1089 	if (!found) {
1090 		CT_ERROR(ct, "Unsolicited response message: len %u, data %#x (fence %u, last %u)\n",
1091 			 len, hxg[0], fence, ct->requests.last_fence);
1092 		if (!ct_check_lost_and_found(ct, fence)) {
1093 			list_for_each_entry(req, &ct->requests.pending, link)
1094 				CT_ERROR(ct, "request %u awaits response\n",
1095 					 req->fence);
1096 		}
1097 		err = -ENOKEY;
1098 	}
1099 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1100 
1101 	if (unlikely(err))
1102 		return err;
1103 
1104 	ct_free_msg(response);
1105 	return 0;
1106 }
1107 
1108 static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1109 {
1110 	struct intel_guc *guc = ct_to_guc(ct);
1111 	const u32 *hxg;
1112 	const u32 *payload;
1113 	u32 hxg_len, action, len;
1114 	int ret;
1115 
1116 	hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1117 	hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
1118 	payload = &hxg[GUC_HXG_MSG_MIN_LEN];
1119 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1120 	len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1121 
1122 	CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
1123 
1124 	switch (action) {
1125 	case INTEL_GUC_ACTION_DEFAULT:
1126 		ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
1127 		break;
1128 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1129 		ret = intel_guc_deregister_done_process_msg(guc, payload,
1130 							    len);
1131 		break;
1132 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1133 		ret = intel_guc_sched_done_process_msg(guc, payload, len);
1134 		break;
1135 	case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1136 		ret = intel_guc_context_reset_process_msg(guc, payload, len);
1137 		break;
1138 	case INTEL_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1139 		ret = intel_guc_error_capture_process_msg(guc, payload, len);
1140 		if (unlikely(ret))
1141 			CT_ERROR(ct, "error capture notification failed %x %*ph\n",
1142 				 action, 4 * len, payload);
1143 		break;
1144 	case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1145 		ret = intel_guc_engine_failure_process_msg(guc, payload, len);
1146 		break;
1147 	case INTEL_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1148 		intel_guc_log_handle_flush_event(&guc->log);
1149 		ret = 0;
1150 		break;
1151 	case INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1152 	case INTEL_GUC_ACTION_NOTIFY_EXCEPTION:
1153 		ret = intel_guc_crash_process_msg(guc, action);
1154 		break;
1155 	case INTEL_GUC_ACTION_TLB_INVALIDATION_DONE:
1156 		ret = intel_guc_tlb_invalidation_done(guc, payload, len);
1157 		break;
1158 	default:
1159 		ret = -EOPNOTSUPP;
1160 		break;
1161 	}
1162 
1163 	if (unlikely(ret)) {
1164 		CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
1165 			 action, ERR_PTR(ret));
1166 		return ret;
1167 	}
1168 
1169 	ct_free_msg(request);
1170 	return 0;
1171 }
1172 
1173 static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
1174 {
1175 	unsigned long flags;
1176 	struct ct_incoming_msg *request;
1177 	bool done;
1178 	int err;
1179 
1180 	spin_lock_irqsave(&ct->requests.lock, flags);
1181 	request = list_first_entry_or_null(&ct->requests.incoming,
1182 					   struct ct_incoming_msg, link);
1183 	if (request)
1184 		list_del(&request->link);
1185 	done = !!list_empty(&ct->requests.incoming);
1186 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1187 
1188 	if (!request)
1189 		return true;
1190 
1191 	err = ct_process_request(ct, request);
1192 	if (unlikely(err)) {
1193 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1194 			 ERR_PTR(err), 4 * request->size, request->msg);
1195 		CT_DEAD(ct, PROCESS_FAILED);
1196 		ct_free_msg(request);
1197 	}
1198 
1199 	return done;
1200 }
1201 
1202 static void ct_incoming_request_worker_func(struct work_struct *w)
1203 {
1204 	struct intel_guc_ct *ct =
1205 		container_of(w, struct intel_guc_ct, requests.worker);
1206 	bool done;
1207 
1208 	do {
1209 		done = ct_process_incoming_requests(ct);
1210 	} while (!done);
1211 }
1212 
1213 static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1214 {
1215 	const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1216 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1217 	unsigned long flags;
1218 
1219 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1220 
1221 	/*
1222 	 * Adjusting the space must be done in IRQ or deadlock can occur as the
1223 	 * CTB processing in the below workqueue can send CTBs which creates a
1224 	 * circular dependency if the space was returned there.
1225 	 */
1226 	switch (action) {
1227 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1228 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1229 	case INTEL_GUC_ACTION_TLB_INVALIDATION_DONE:
1230 		g2h_release_space(ct, request->size);
1231 	}
1232 
1233 	/*
1234 	 * TLB invalidation responses must be handled immediately as processing
1235 	 * of other G2H notifications may be blocked by an invalidation request.
1236 	 */
1237 	if (action == INTEL_GUC_ACTION_TLB_INVALIDATION_DONE)
1238 		return ct_process_request(ct, request);
1239 
1240 	spin_lock_irqsave(&ct->requests.lock, flags);
1241 	list_add_tail(&request->link, &ct->requests.incoming);
1242 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1243 
1244 	queue_work(system_unbound_wq, &ct->requests.worker);
1245 	return 0;
1246 }
1247 
1248 static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1249 {
1250 	u32 origin, type;
1251 	u32 *hxg;
1252 	int err;
1253 
1254 	if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1255 		return -EBADMSG;
1256 
1257 	hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1258 
1259 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1260 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1261 		err = -EPROTO;
1262 		goto failed;
1263 	}
1264 
1265 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1266 	switch (type) {
1267 	case GUC_HXG_TYPE_EVENT:
1268 		err = ct_handle_event(ct, msg);
1269 		break;
1270 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1271 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1272 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1273 		err = ct_handle_response(ct, msg);
1274 		break;
1275 	default:
1276 		err = -EOPNOTSUPP;
1277 	}
1278 
1279 	if (unlikely(err)) {
1280 failed:
1281 		CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1282 			 ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1283 	}
1284 	return err;
1285 }
1286 
1287 static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1288 {
1289 	u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1290 	int err;
1291 
1292 	if (format == GUC_CTB_FORMAT_HXG)
1293 		err = ct_handle_hxg(ct, msg);
1294 	else
1295 		err = -EOPNOTSUPP;
1296 
1297 	if (unlikely(err)) {
1298 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1299 			 ERR_PTR(err), 4 * msg->size, msg->msg);
1300 		ct_free_msg(msg);
1301 	}
1302 }
1303 
1304 /*
1305  * Return: number available remaining dwords to read (0 if empty)
1306  *         or a negative error code on failure
1307  */
1308 static int ct_receive(struct intel_guc_ct *ct)
1309 {
1310 	struct ct_incoming_msg *msg = NULL;
1311 	unsigned long flags;
1312 	int ret;
1313 
1314 	spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1315 	ret = ct_read(ct, &msg);
1316 	spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	if (msg)
1321 		ct_handle_msg(ct, msg);
1322 
1323 	return ret;
1324 }
1325 
1326 static void ct_try_receive_message(struct intel_guc_ct *ct)
1327 {
1328 	int ret;
1329 
1330 	if (GEM_WARN_ON(!ct->enabled))
1331 		return;
1332 
1333 	ret = ct_receive(ct);
1334 	if (ret > 0)
1335 		tasklet_hi_schedule(&ct->receive_tasklet);
1336 }
1337 
1338 static void ct_receive_tasklet_func(struct tasklet_struct *t)
1339 {
1340 	struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1341 
1342 	ct_try_receive_message(ct);
1343 }
1344 
1345 /*
1346  * When we're communicating with the GuC over CT, GuC uses events
1347  * to notify us about new messages being posted on the RECV buffer.
1348  */
1349 void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1350 {
1351 	if (unlikely(!ct->enabled)) {
1352 		WARN(1, "Unexpected GuC event received while CT disabled!\n");
1353 		return;
1354 	}
1355 
1356 	ct_try_receive_message(ct);
1357 }
1358 
1359 void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1360 			     struct drm_printer *p)
1361 {
1362 	drm_printf(p, "CT %s\n", str_enabled_disabled(ct->enabled));
1363 
1364 	if (!ct->enabled)
1365 		return;
1366 
1367 	drm_printf(p, "H2G Space: %u\n",
1368 		   atomic_read(&ct->ctbs.send.space) * 4);
1369 	drm_printf(p, "Head: %u\n",
1370 		   ct->ctbs.send.desc->head);
1371 	drm_printf(p, "Tail: %u\n",
1372 		   ct->ctbs.send.desc->tail);
1373 	drm_printf(p, "G2H Space: %u\n",
1374 		   atomic_read(&ct->ctbs.recv.space) * 4);
1375 	drm_printf(p, "Head: %u\n",
1376 		   ct->ctbs.recv.desc->head);
1377 	drm_printf(p, "Tail: %u\n",
1378 		   ct->ctbs.recv.desc->tail);
1379 }
1380 
1381 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
1382 static void ct_dead_ct_worker_func(struct work_struct *w)
1383 {
1384 	struct intel_guc_ct *ct = container_of(w, struct intel_guc_ct, dead_ct_worker);
1385 	struct intel_guc *guc = ct_to_guc(ct);
1386 
1387 	if (ct->dead_ct_reported)
1388 		return;
1389 
1390 	if (i915_error_injected())
1391 		return;
1392 
1393 	ct->dead_ct_reported = true;
1394 
1395 	guc_info(guc, "CTB is dead - reason=0x%X\n", ct->dead_ct_reason);
1396 	intel_klog_error_capture(guc_to_gt(guc), (intel_engine_mask_t)~0U);
1397 }
1398 #endif
1399