xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_ct.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/ktime.h>
8 #include <linux/time64.h>
9 #include <linux/string_helpers.h>
10 #include <linux/timekeeping.h>
11 
12 #include "i915_drv.h"
13 #include "intel_guc_ct.h"
14 #include "gt/intel_gt.h"
15 
16 static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
17 {
18 	return container_of(ct, struct intel_guc, ct);
19 }
20 
21 static inline struct intel_gt *ct_to_gt(struct intel_guc_ct *ct)
22 {
23 	return guc_to_gt(ct_to_guc(ct));
24 }
25 
26 static inline struct drm_i915_private *ct_to_i915(struct intel_guc_ct *ct)
27 {
28 	return ct_to_gt(ct)->i915;
29 }
30 
31 static inline struct drm_device *ct_to_drm(struct intel_guc_ct *ct)
32 {
33 	return &ct_to_i915(ct)->drm;
34 }
35 
36 #define CT_ERROR(_ct, _fmt, ...) \
37 	drm_err(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
38 #ifdef CONFIG_DRM_I915_DEBUG_GUC
39 #define CT_DEBUG(_ct, _fmt, ...) \
40 	drm_dbg(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
41 #else
42 #define CT_DEBUG(...)	do { } while (0)
43 #endif
44 #define CT_PROBE_ERROR(_ct, _fmt, ...) \
45 	i915_probe_error(ct_to_i915(ct), "CT: " _fmt, ##__VA_ARGS__)
46 
47 /**
48  * DOC: CTB Blob
49  *
50  * We allocate single blob to hold both CTB descriptors and buffers:
51  *
52  *      +--------+-----------------------------------------------+------+
53  *      | offset | contents                                      | size |
54  *      +========+===============================================+======+
55  *      | 0x0000 | H2G `CTB Descriptor`_ (send)                  |      |
56  *      +--------+-----------------------------------------------+  4K  |
57  *      | 0x0800 | G2H `CTB Descriptor`_ (recv)                  |      |
58  *      +--------+-----------------------------------------------+------+
59  *      | 0x1000 | H2G `CT Buffer`_ (send)                       | n*4K |
60  *      |        |                                               |      |
61  *      +--------+-----------------------------------------------+------+
62  *      | 0x1000 | G2H `CT Buffer`_ (recv)                       | m*4K |
63  *      | + n*4K |                                               |      |
64  *      +--------+-----------------------------------------------+------+
65  *
66  * Size of each `CT Buffer`_ must be multiple of 4K.
67  * We don't expect too many messages in flight at any time, unless we are
68  * using the GuC submission. In that case each request requires a minimum
69  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
70  * enough space to avoid backpressure on the driver. We increase the size
71  * of the receive buffer (relative to the send) to ensure a G2H response
72  * CTB has a landing spot.
73  */
74 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
75 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
76 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
77 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
78 
79 struct ct_request {
80 	struct list_head link;
81 	u32 fence;
82 	u32 status;
83 	u32 response_len;
84 	u32 *response_buf;
85 };
86 
87 struct ct_incoming_msg {
88 	struct list_head link;
89 	u32 size;
90 	u32 msg[];
91 };
92 
93 enum { CTB_SEND = 0, CTB_RECV = 1 };
94 
95 enum { CTB_OWNER_HOST = 0 };
96 
97 static void ct_receive_tasklet_func(struct tasklet_struct *t);
98 static void ct_incoming_request_worker_func(struct work_struct *w);
99 
100 /**
101  * intel_guc_ct_init_early - Initialize CT state without requiring device access
102  * @ct: pointer to CT struct
103  */
104 void intel_guc_ct_init_early(struct intel_guc_ct *ct)
105 {
106 	spin_lock_init(&ct->ctbs.send.lock);
107 	spin_lock_init(&ct->ctbs.recv.lock);
108 	spin_lock_init(&ct->requests.lock);
109 	INIT_LIST_HEAD(&ct->requests.pending);
110 	INIT_LIST_HEAD(&ct->requests.incoming);
111 	INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
112 	tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
113 	init_waitqueue_head(&ct->wq);
114 }
115 
116 static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
117 {
118 	memset(desc, 0, sizeof(*desc));
119 }
120 
121 static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
122 {
123 	u32 space;
124 
125 	ctb->broken = false;
126 	ctb->tail = 0;
127 	ctb->head = 0;
128 	space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
129 	atomic_set(&ctb->space, space);
130 
131 	guc_ct_buffer_desc_init(ctb->desc);
132 }
133 
134 static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
135 			       struct guc_ct_buffer_desc *desc,
136 			       u32 *cmds, u32 size_in_bytes, u32 resv_space)
137 {
138 	GEM_BUG_ON(size_in_bytes % 4);
139 
140 	ctb->desc = desc;
141 	ctb->cmds = cmds;
142 	ctb->size = size_in_bytes / 4;
143 	ctb->resv_space = resv_space / 4;
144 
145 	guc_ct_buffer_reset(ctb);
146 }
147 
148 static int guc_action_control_ctb(struct intel_guc *guc, u32 control)
149 {
150 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
151 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
152 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
153 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB),
154 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, control),
155 	};
156 	int ret;
157 
158 	GEM_BUG_ON(control != GUC_CTB_CONTROL_DISABLE && control != GUC_CTB_CONTROL_ENABLE);
159 
160 	/* CT control must go over MMIO */
161 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
162 
163 	return ret > 0 ? -EPROTO : ret;
164 }
165 
166 static int ct_control_enable(struct intel_guc_ct *ct, bool enable)
167 {
168 	int err;
169 
170 	err = guc_action_control_ctb(ct_to_guc(ct), enable ?
171 				     GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE);
172 	if (unlikely(err))
173 		CT_PROBE_ERROR(ct, "Failed to control/%s CTB (%pe)\n",
174 			       str_enable_disable(enable), ERR_PTR(err));
175 
176 	return err;
177 }
178 
179 static int ct_register_buffer(struct intel_guc_ct *ct, bool send,
180 			      u32 desc_addr, u32 buff_addr, u32 size)
181 {
182 	int err;
183 
184 	err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
185 				   GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY :
186 				   GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
187 				   desc_addr);
188 	if (unlikely(err))
189 		goto failed;
190 
191 	err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
192 				   GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY :
193 				   GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
194 				   buff_addr);
195 	if (unlikely(err))
196 		goto failed;
197 
198 	err = intel_guc_self_cfg32(ct_to_guc(ct), send ?
199 				   GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY :
200 				   GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
201 				   size);
202 	if (unlikely(err))
203 failed:
204 		CT_PROBE_ERROR(ct, "Failed to register %s buffer (%pe)\n",
205 			       send ? "SEND" : "RECV", ERR_PTR(err));
206 
207 	return err;
208 }
209 
210 /**
211  * intel_guc_ct_init - Init buffer-based communication
212  * @ct: pointer to CT struct
213  *
214  * Allocate memory required for buffer-based communication.
215  *
216  * Return: 0 on success, a negative errno code on failure.
217  */
218 int intel_guc_ct_init(struct intel_guc_ct *ct)
219 {
220 	struct intel_guc *guc = ct_to_guc(ct);
221 	struct guc_ct_buffer_desc *desc;
222 	u32 blob_size;
223 	u32 cmds_size;
224 	u32 resv_space;
225 	void *blob;
226 	u32 *cmds;
227 	int err;
228 
229 	err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO);
230 	if (err)
231 		return err;
232 
233 	GEM_BUG_ON(ct->vma);
234 
235 	blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
236 	err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
237 	if (unlikely(err)) {
238 		CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
239 			       blob_size, ERR_PTR(err));
240 		return err;
241 	}
242 
243 	CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
244 
245 	/* store pointers to desc and cmds for send ctb */
246 	desc = blob;
247 	cmds = blob + 2 * CTB_DESC_SIZE;
248 	cmds_size = CTB_H2G_BUFFER_SIZE;
249 	resv_space = 0;
250 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
251 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
252 		 resv_space);
253 
254 	guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
255 
256 	/* store pointers to desc and cmds for recv ctb */
257 	desc = blob + CTB_DESC_SIZE;
258 	cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
259 	cmds_size = CTB_G2H_BUFFER_SIZE;
260 	resv_space = G2H_ROOM_BUFFER_SIZE;
261 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
262 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
263 		 resv_space);
264 
265 	guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
266 
267 	return 0;
268 }
269 
270 /**
271  * intel_guc_ct_fini - Fini buffer-based communication
272  * @ct: pointer to CT struct
273  *
274  * Deallocate memory required for buffer-based communication.
275  */
276 void intel_guc_ct_fini(struct intel_guc_ct *ct)
277 {
278 	GEM_BUG_ON(ct->enabled);
279 
280 	tasklet_kill(&ct->receive_tasklet);
281 	i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
282 	memset(ct, 0, sizeof(*ct));
283 }
284 
285 /**
286  * intel_guc_ct_enable - Enable buffer based command transport.
287  * @ct: pointer to CT struct
288  *
289  * Return: 0 on success, a negative errno code on failure.
290  */
291 int intel_guc_ct_enable(struct intel_guc_ct *ct)
292 {
293 	struct intel_guc *guc = ct_to_guc(ct);
294 	u32 base, desc, cmds, size;
295 	void *blob;
296 	int err;
297 
298 	GEM_BUG_ON(ct->enabled);
299 
300 	/* vma should be already allocated and map'ed */
301 	GEM_BUG_ON(!ct->vma);
302 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
303 	base = intel_guc_ggtt_offset(guc, ct->vma);
304 
305 	/* blob should start with send descriptor */
306 	blob = __px_vaddr(ct->vma->obj);
307 	GEM_BUG_ON(blob != ct->ctbs.send.desc);
308 
309 	/* (re)initialize descriptors */
310 	guc_ct_buffer_reset(&ct->ctbs.send);
311 	guc_ct_buffer_reset(&ct->ctbs.recv);
312 
313 	/*
314 	 * Register both CT buffers starting with RECV buffer.
315 	 * Descriptors are in first half of the blob.
316 	 */
317 	desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
318 	cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
319 	size = ct->ctbs.recv.size * 4;
320 	err = ct_register_buffer(ct, false, desc, cmds, size);
321 	if (unlikely(err))
322 		goto err_out;
323 
324 	desc = base + ptrdiff(ct->ctbs.send.desc, blob);
325 	cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
326 	size = ct->ctbs.send.size * 4;
327 	err = ct_register_buffer(ct, true, desc, cmds, size);
328 	if (unlikely(err))
329 		goto err_out;
330 
331 	err = ct_control_enable(ct, true);
332 	if (unlikely(err))
333 		goto err_out;
334 
335 	ct->enabled = true;
336 	ct->stall_time = KTIME_MAX;
337 
338 	return 0;
339 
340 err_out:
341 	CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
342 	return err;
343 }
344 
345 /**
346  * intel_guc_ct_disable - Disable buffer based command transport.
347  * @ct: pointer to CT struct
348  */
349 void intel_guc_ct_disable(struct intel_guc_ct *ct)
350 {
351 	struct intel_guc *guc = ct_to_guc(ct);
352 
353 	GEM_BUG_ON(!ct->enabled);
354 
355 	ct->enabled = false;
356 
357 	if (intel_guc_is_fw_running(guc)) {
358 		ct_control_enable(ct, false);
359 	}
360 }
361 
362 static u32 ct_get_next_fence(struct intel_guc_ct *ct)
363 {
364 	/* For now it's trivial */
365 	return ++ct->requests.last_fence;
366 }
367 
368 static int ct_write(struct intel_guc_ct *ct,
369 		    const u32 *action,
370 		    u32 len /* in dwords */,
371 		    u32 fence, u32 flags)
372 {
373 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
374 	struct guc_ct_buffer_desc *desc = ctb->desc;
375 	u32 tail = ctb->tail;
376 	u32 size = ctb->size;
377 	u32 header;
378 	u32 hxg;
379 	u32 type;
380 	u32 *cmds = ctb->cmds;
381 	unsigned int i;
382 
383 	if (unlikely(desc->status))
384 		goto corrupted;
385 
386 	GEM_BUG_ON(tail > size);
387 
388 #ifdef CONFIG_DRM_I915_DEBUG_GUC
389 	if (unlikely(tail != READ_ONCE(desc->tail))) {
390 		CT_ERROR(ct, "Tail was modified %u != %u\n",
391 			 desc->tail, tail);
392 		desc->status |= GUC_CTB_STATUS_MISMATCH;
393 		goto corrupted;
394 	}
395 	if (unlikely(READ_ONCE(desc->head) >= size)) {
396 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
397 			 desc->head, size);
398 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
399 		goto corrupted;
400 	}
401 #endif
402 
403 	/*
404 	 * dw0: CT header (including fence)
405 	 * dw1: HXG header (including action code)
406 	 * dw2+: action data
407 	 */
408 	header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
409 		 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
410 		 FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
411 
412 	type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_EVENT :
413 		GUC_HXG_TYPE_REQUEST;
414 	hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
415 		FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
416 			   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
417 
418 	CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
419 		 tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
420 
421 	cmds[tail] = header;
422 	tail = (tail + 1) % size;
423 
424 	cmds[tail] = hxg;
425 	tail = (tail + 1) % size;
426 
427 	for (i = 1; i < len; i++) {
428 		cmds[tail] = action[i];
429 		tail = (tail + 1) % size;
430 	}
431 	GEM_BUG_ON(tail > size);
432 
433 	/*
434 	 * make sure H2G buffer update and LRC tail update (if this triggering a
435 	 * submission) are visible before updating the descriptor tail
436 	 */
437 	intel_guc_write_barrier(ct_to_guc(ct));
438 
439 	/* update local copies */
440 	ctb->tail = tail;
441 	GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
442 	atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
443 
444 	/* now update descriptor */
445 	WRITE_ONCE(desc->tail, tail);
446 
447 	return 0;
448 
449 corrupted:
450 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
451 		 desc->head, desc->tail, desc->status);
452 	ctb->broken = true;
453 	return -EPIPE;
454 }
455 
456 /**
457  * wait_for_ct_request_update - Wait for CT request state update.
458  * @req:	pointer to pending request
459  * @status:	placeholder for status
460  *
461  * For each sent request, GuC shall send back CT response message.
462  * Our message handler will update status of tracked request once
463  * response message with given fence is received. Wait here and
464  * check for valid response status value.
465  *
466  * Return:
467  * *	0 response received (status is valid)
468  * *	-ETIMEDOUT no response within hardcoded timeout
469  */
470 static int wait_for_ct_request_update(struct ct_request *req, u32 *status)
471 {
472 	int err;
473 
474 	/*
475 	 * Fast commands should complete in less than 10us, so sample quickly
476 	 * up to that length of time, then switch to a slower sleep-wait loop.
477 	 * No GuC command should ever take longer than 10ms but many GuC
478 	 * commands can be inflight at time, so use a 1s timeout on the slower
479 	 * sleep-wait loop.
480 	 */
481 #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
482 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
483 #define done \
484 	(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
485 	 GUC_HXG_ORIGIN_GUC)
486 	err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
487 	if (err)
488 		err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
489 #undef done
490 
491 	*status = req->status;
492 	return err;
493 }
494 
495 #define GUC_CTB_TIMEOUT_MS	1500
496 static inline bool ct_deadlocked(struct intel_guc_ct *ct)
497 {
498 	long timeout = GUC_CTB_TIMEOUT_MS;
499 	bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
500 
501 	if (unlikely(ret)) {
502 		struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
503 		struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
504 
505 		CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
506 			 ktime_ms_delta(ktime_get(), ct->stall_time),
507 			 send->status, recv->status);
508 		CT_ERROR(ct, "H2G Space: %u (Bytes)\n",
509 			 atomic_read(&ct->ctbs.send.space) * 4);
510 		CT_ERROR(ct, "Head: %u (Dwords)\n", ct->ctbs.send.desc->head);
511 		CT_ERROR(ct, "Tail: %u (Dwords)\n", ct->ctbs.send.desc->tail);
512 		CT_ERROR(ct, "G2H Space: %u (Bytes)\n",
513 			 atomic_read(&ct->ctbs.recv.space) * 4);
514 		CT_ERROR(ct, "Head: %u\n (Dwords)", ct->ctbs.recv.desc->head);
515 		CT_ERROR(ct, "Tail: %u\n (Dwords)", ct->ctbs.recv.desc->tail);
516 
517 		ct->ctbs.send.broken = true;
518 	}
519 
520 	return ret;
521 }
522 
523 static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
524 {
525 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
526 
527 	/*
528 	 * We leave a certain amount of space in the G2H CTB buffer for
529 	 * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
530 	 */
531 	return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
532 }
533 
534 static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
535 {
536 	lockdep_assert_held(&ct->ctbs.send.lock);
537 
538 	GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
539 
540 	if (g2h_len_dw)
541 		atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
542 }
543 
544 static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
545 {
546 	atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
547 }
548 
549 static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
550 {
551 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
552 	struct guc_ct_buffer_desc *desc = ctb->desc;
553 	u32 head;
554 	u32 space;
555 
556 	if (atomic_read(&ctb->space) >= len_dw)
557 		return true;
558 
559 	head = READ_ONCE(desc->head);
560 	if (unlikely(head > ctb->size)) {
561 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
562 			 head, ctb->size);
563 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
564 		ctb->broken = true;
565 		return false;
566 	}
567 
568 	space = CIRC_SPACE(ctb->tail, head, ctb->size);
569 	atomic_set(&ctb->space, space);
570 
571 	return space >= len_dw;
572 }
573 
574 static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
575 {
576 	bool h2g = h2g_has_room(ct, h2g_dw);
577 	bool g2h = g2h_has_room(ct, g2h_dw);
578 
579 	lockdep_assert_held(&ct->ctbs.send.lock);
580 
581 	if (unlikely(!h2g || !g2h)) {
582 		if (ct->stall_time == KTIME_MAX)
583 			ct->stall_time = ktime_get();
584 
585 		/* Be paranoid and kick G2H tasklet to free credits */
586 		if (!g2h)
587 			tasklet_hi_schedule(&ct->receive_tasklet);
588 
589 		if (unlikely(ct_deadlocked(ct)))
590 			return -EPIPE;
591 		else
592 			return -EBUSY;
593 	}
594 
595 	ct->stall_time = KTIME_MAX;
596 	return 0;
597 }
598 
599 #define G2H_LEN_DW(f) ({ \
600 	typeof(f) f_ = (f); \
601 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
602 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
603 	GUC_CTB_HXG_MSG_MIN_LEN : 0; \
604 })
605 static int ct_send_nb(struct intel_guc_ct *ct,
606 		      const u32 *action,
607 		      u32 len,
608 		      u32 flags)
609 {
610 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
611 	unsigned long spin_flags;
612 	u32 g2h_len_dw = G2H_LEN_DW(flags);
613 	u32 fence;
614 	int ret;
615 
616 	spin_lock_irqsave(&ctb->lock, spin_flags);
617 
618 	ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
619 	if (unlikely(ret))
620 		goto out;
621 
622 	fence = ct_get_next_fence(ct);
623 	ret = ct_write(ct, action, len, fence, flags);
624 	if (unlikely(ret))
625 		goto out;
626 
627 	g2h_reserve_space(ct, g2h_len_dw);
628 	intel_guc_notify(ct_to_guc(ct));
629 
630 out:
631 	spin_unlock_irqrestore(&ctb->lock, spin_flags);
632 
633 	return ret;
634 }
635 
636 static int ct_send(struct intel_guc_ct *ct,
637 		   const u32 *action,
638 		   u32 len,
639 		   u32 *response_buf,
640 		   u32 response_buf_size,
641 		   u32 *status)
642 {
643 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
644 	struct ct_request request;
645 	unsigned long flags;
646 	unsigned int sleep_period_ms = 1;
647 	bool send_again;
648 	u32 fence;
649 	int err;
650 
651 	GEM_BUG_ON(!ct->enabled);
652 	GEM_BUG_ON(!len);
653 	GEM_BUG_ON(len & ~GUC_CT_MSG_LEN_MASK);
654 	GEM_BUG_ON(!response_buf && response_buf_size);
655 	might_sleep();
656 
657 resend:
658 	send_again = false;
659 
660 	/*
661 	 * We use a lazy spin wait loop here as we believe that if the CT
662 	 * buffers are sized correctly the flow control condition should be
663 	 * rare. Reserving the maximum size in the G2H credits as we don't know
664 	 * how big the response is going to be.
665 	 */
666 retry:
667 	spin_lock_irqsave(&ctb->lock, flags);
668 	if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
669 		     !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
670 		if (ct->stall_time == KTIME_MAX)
671 			ct->stall_time = ktime_get();
672 		spin_unlock_irqrestore(&ctb->lock, flags);
673 
674 		if (unlikely(ct_deadlocked(ct)))
675 			return -EPIPE;
676 
677 		if (msleep_interruptible(sleep_period_ms))
678 			return -EINTR;
679 		sleep_period_ms = sleep_period_ms << 1;
680 
681 		goto retry;
682 	}
683 
684 	ct->stall_time = KTIME_MAX;
685 
686 	fence = ct_get_next_fence(ct);
687 	request.fence = fence;
688 	request.status = 0;
689 	request.response_len = response_buf_size;
690 	request.response_buf = response_buf;
691 
692 	spin_lock(&ct->requests.lock);
693 	list_add_tail(&request.link, &ct->requests.pending);
694 	spin_unlock(&ct->requests.lock);
695 
696 	err = ct_write(ct, action, len, fence, 0);
697 	g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
698 
699 	spin_unlock_irqrestore(&ctb->lock, flags);
700 
701 	if (unlikely(err))
702 		goto unlink;
703 
704 	intel_guc_notify(ct_to_guc(ct));
705 
706 	err = wait_for_ct_request_update(&request, status);
707 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
708 	if (unlikely(err)) {
709 		CT_ERROR(ct, "No response for request %#x (fence %u)\n",
710 			 action[0], request.fence);
711 		goto unlink;
712 	}
713 
714 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
715 		CT_DEBUG(ct, "retrying request %#x (%u)\n", *action,
716 			 FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, *status));
717 		send_again = true;
718 		goto unlink;
719 	}
720 
721 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
722 		err = -EIO;
723 		goto unlink;
724 	}
725 
726 	if (response_buf) {
727 		/* There shall be no data in the status */
728 		WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
729 		/* Return actual response len */
730 		err = request.response_len;
731 	} else {
732 		/* There shall be no response payload */
733 		WARN_ON(request.response_len);
734 		/* Return data decoded from the status dword */
735 		err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
736 	}
737 
738 unlink:
739 	spin_lock_irqsave(&ct->requests.lock, flags);
740 	list_del(&request.link);
741 	spin_unlock_irqrestore(&ct->requests.lock, flags);
742 
743 	if (unlikely(send_again))
744 		goto resend;
745 
746 	return err;
747 }
748 
749 /*
750  * Command Transport (CT) buffer based GuC send function.
751  */
752 int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
753 		      u32 *response_buf, u32 response_buf_size, u32 flags)
754 {
755 	u32 status = ~0; /* undefined */
756 	int ret;
757 
758 	if (unlikely(!ct->enabled)) {
759 		struct intel_guc *guc = ct_to_guc(ct);
760 		struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
761 
762 		WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
763 		return -ENODEV;
764 	}
765 
766 	if (unlikely(ct->ctbs.send.broken))
767 		return -EPIPE;
768 
769 	if (flags & INTEL_GUC_CT_SEND_NB)
770 		return ct_send_nb(ct, action, len, flags);
771 
772 	ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
773 	if (unlikely(ret < 0)) {
774 		CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n",
775 			 action[0], ERR_PTR(ret), status);
776 	} else if (unlikely(ret)) {
777 		CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
778 			 action[0], ret, ret);
779 	}
780 
781 	return ret;
782 }
783 
784 static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
785 {
786 	struct ct_incoming_msg *msg;
787 
788 	msg = kmalloc(struct_size(msg, msg, num_dwords), GFP_ATOMIC);
789 	if (msg)
790 		msg->size = num_dwords;
791 	return msg;
792 }
793 
794 static void ct_free_msg(struct ct_incoming_msg *msg)
795 {
796 	kfree(msg);
797 }
798 
799 /*
800  * Return: number available remaining dwords to read (0 if empty)
801  *         or a negative error code on failure
802  */
803 static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
804 {
805 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
806 	struct guc_ct_buffer_desc *desc = ctb->desc;
807 	u32 head = ctb->head;
808 	u32 tail = READ_ONCE(desc->tail);
809 	u32 size = ctb->size;
810 	u32 *cmds = ctb->cmds;
811 	s32 available;
812 	unsigned int len;
813 	unsigned int i;
814 	u32 header;
815 
816 	if (unlikely(ctb->broken))
817 		return -EPIPE;
818 
819 	if (unlikely(desc->status))
820 		goto corrupted;
821 
822 	GEM_BUG_ON(head > size);
823 
824 #ifdef CONFIG_DRM_I915_DEBUG_GUC
825 	if (unlikely(head != READ_ONCE(desc->head))) {
826 		CT_ERROR(ct, "Head was modified %u != %u\n",
827 			 desc->head, head);
828 		desc->status |= GUC_CTB_STATUS_MISMATCH;
829 		goto corrupted;
830 	}
831 #endif
832 	if (unlikely(tail >= size)) {
833 		CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
834 			 tail, size);
835 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
836 		goto corrupted;
837 	}
838 
839 	/* tail == head condition indicates empty */
840 	available = tail - head;
841 	if (unlikely(available == 0)) {
842 		*msg = NULL;
843 		return 0;
844 	}
845 
846 	/* beware of buffer wrap case */
847 	if (unlikely(available < 0))
848 		available += size;
849 	CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
850 	GEM_BUG_ON(available < 0);
851 
852 	header = cmds[head];
853 	head = (head + 1) % size;
854 
855 	/* message len with header */
856 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
857 	if (unlikely(len > (u32)available)) {
858 		CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
859 			 4, &header,
860 			 4 * (head + available - 1 > size ?
861 			      size - head : available - 1), &cmds[head],
862 			 4 * (head + available - 1 > size ?
863 			      available - 1 - size + head : 0), &cmds[0]);
864 		desc->status |= GUC_CTB_STATUS_UNDERFLOW;
865 		goto corrupted;
866 	}
867 
868 	*msg = ct_alloc_msg(len);
869 	if (!*msg) {
870 		CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
871 			 4, &header,
872 			 4 * (head + available - 1 > size ?
873 			      size - head : available - 1), &cmds[head],
874 			 4 * (head + available - 1 > size ?
875 			      available - 1 - size + head : 0), &cmds[0]);
876 		return available;
877 	}
878 
879 	(*msg)->msg[0] = header;
880 
881 	for (i = 1; i < len; i++) {
882 		(*msg)->msg[i] = cmds[head];
883 		head = (head + 1) % size;
884 	}
885 	CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
886 
887 	/* update local copies */
888 	ctb->head = head;
889 
890 	/* now update descriptor */
891 	WRITE_ONCE(desc->head, head);
892 
893 	return available - len;
894 
895 corrupted:
896 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
897 		 desc->head, desc->tail, desc->status);
898 	ctb->broken = true;
899 	return -EPIPE;
900 }
901 
902 static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
903 {
904 	u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
905 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
906 	const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
907 	const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
908 	u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
909 	struct ct_request *req;
910 	unsigned long flags;
911 	bool found = false;
912 	int err = 0;
913 
914 	GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
915 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
916 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
917 		   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_NO_RESPONSE_RETRY &&
918 		   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
919 
920 	CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
921 
922 	spin_lock_irqsave(&ct->requests.lock, flags);
923 	list_for_each_entry(req, &ct->requests.pending, link) {
924 		if (unlikely(fence != req->fence)) {
925 			CT_DEBUG(ct, "request %u awaits response\n",
926 				 req->fence);
927 			continue;
928 		}
929 		if (unlikely(datalen > req->response_len)) {
930 			CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
931 				 req->fence, datalen, req->response_len);
932 			datalen = min(datalen, req->response_len);
933 			err = -EMSGSIZE;
934 		}
935 		if (datalen)
936 			memcpy(req->response_buf, data, 4 * datalen);
937 		req->response_len = datalen;
938 		WRITE_ONCE(req->status, hxg[0]);
939 		found = true;
940 		break;
941 	}
942 	if (!found) {
943 		CT_ERROR(ct, "Unsolicited response (fence %u)\n", fence);
944 		CT_ERROR(ct, "Could not find fence=%u, last_fence=%u\n", fence,
945 			 ct->requests.last_fence);
946 		list_for_each_entry(req, &ct->requests.pending, link)
947 			CT_ERROR(ct, "request %u awaits response\n",
948 				 req->fence);
949 		err = -ENOKEY;
950 	}
951 	spin_unlock_irqrestore(&ct->requests.lock, flags);
952 
953 	if (unlikely(err))
954 		return err;
955 
956 	ct_free_msg(response);
957 	return 0;
958 }
959 
960 static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
961 {
962 	struct intel_guc *guc = ct_to_guc(ct);
963 	const u32 *hxg;
964 	const u32 *payload;
965 	u32 hxg_len, action, len;
966 	int ret;
967 
968 	hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
969 	hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
970 	payload = &hxg[GUC_HXG_MSG_MIN_LEN];
971 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
972 	len = hxg_len - GUC_HXG_MSG_MIN_LEN;
973 
974 	CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
975 
976 	switch (action) {
977 	case INTEL_GUC_ACTION_DEFAULT:
978 		ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
979 		break;
980 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
981 		ret = intel_guc_deregister_done_process_msg(guc, payload,
982 							    len);
983 		break;
984 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
985 		ret = intel_guc_sched_done_process_msg(guc, payload, len);
986 		break;
987 	case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
988 		ret = intel_guc_context_reset_process_msg(guc, payload, len);
989 		break;
990 	case INTEL_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
991 		ret = intel_guc_error_capture_process_msg(guc, payload, len);
992 		if (unlikely(ret))
993 			CT_ERROR(ct, "error capture notification failed %x %*ph\n",
994 				 action, 4 * len, payload);
995 		break;
996 	case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
997 		ret = intel_guc_engine_failure_process_msg(guc, payload, len);
998 		break;
999 	case INTEL_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1000 		intel_guc_log_handle_flush_event(&guc->log);
1001 		ret = 0;
1002 		break;
1003 	case INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1004 		CT_ERROR(ct, "Received GuC crash dump notification!\n");
1005 		ret = 0;
1006 		break;
1007 	case INTEL_GUC_ACTION_NOTIFY_EXCEPTION:
1008 		CT_ERROR(ct, "Received GuC exception notification!\n");
1009 		ret = 0;
1010 		break;
1011 	default:
1012 		ret = -EOPNOTSUPP;
1013 		break;
1014 	}
1015 
1016 	if (unlikely(ret)) {
1017 		CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
1018 			 action, ERR_PTR(ret));
1019 		return ret;
1020 	}
1021 
1022 	ct_free_msg(request);
1023 	return 0;
1024 }
1025 
1026 static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
1027 {
1028 	unsigned long flags;
1029 	struct ct_incoming_msg *request;
1030 	bool done;
1031 	int err;
1032 
1033 	spin_lock_irqsave(&ct->requests.lock, flags);
1034 	request = list_first_entry_or_null(&ct->requests.incoming,
1035 					   struct ct_incoming_msg, link);
1036 	if (request)
1037 		list_del(&request->link);
1038 	done = !!list_empty(&ct->requests.incoming);
1039 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1040 
1041 	if (!request)
1042 		return true;
1043 
1044 	err = ct_process_request(ct, request);
1045 	if (unlikely(err)) {
1046 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1047 			 ERR_PTR(err), 4 * request->size, request->msg);
1048 		ct_free_msg(request);
1049 	}
1050 
1051 	return done;
1052 }
1053 
1054 static void ct_incoming_request_worker_func(struct work_struct *w)
1055 {
1056 	struct intel_guc_ct *ct =
1057 		container_of(w, struct intel_guc_ct, requests.worker);
1058 	bool done;
1059 
1060 	do {
1061 		done = ct_process_incoming_requests(ct);
1062 	} while (!done);
1063 }
1064 
1065 static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1066 {
1067 	const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1068 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1069 	unsigned long flags;
1070 
1071 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1072 
1073 	/*
1074 	 * Adjusting the space must be done in IRQ or deadlock can occur as the
1075 	 * CTB processing in the below workqueue can send CTBs which creates a
1076 	 * circular dependency if the space was returned there.
1077 	 */
1078 	switch (action) {
1079 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1080 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1081 		g2h_release_space(ct, request->size);
1082 	}
1083 
1084 	spin_lock_irqsave(&ct->requests.lock, flags);
1085 	list_add_tail(&request->link, &ct->requests.incoming);
1086 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1087 
1088 	queue_work(system_unbound_wq, &ct->requests.worker);
1089 	return 0;
1090 }
1091 
1092 static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1093 {
1094 	u32 origin, type;
1095 	u32 *hxg;
1096 	int err;
1097 
1098 	if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1099 		return -EBADMSG;
1100 
1101 	hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1102 
1103 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1104 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1105 		err = -EPROTO;
1106 		goto failed;
1107 	}
1108 
1109 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1110 	switch (type) {
1111 	case GUC_HXG_TYPE_EVENT:
1112 		err = ct_handle_event(ct, msg);
1113 		break;
1114 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1115 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1116 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1117 		err = ct_handle_response(ct, msg);
1118 		break;
1119 	default:
1120 		err = -EOPNOTSUPP;
1121 	}
1122 
1123 	if (unlikely(err)) {
1124 failed:
1125 		CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1126 			 ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1127 	}
1128 	return err;
1129 }
1130 
1131 static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1132 {
1133 	u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1134 	int err;
1135 
1136 	if (format == GUC_CTB_FORMAT_HXG)
1137 		err = ct_handle_hxg(ct, msg);
1138 	else
1139 		err = -EOPNOTSUPP;
1140 
1141 	if (unlikely(err)) {
1142 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1143 			 ERR_PTR(err), 4 * msg->size, msg->msg);
1144 		ct_free_msg(msg);
1145 	}
1146 }
1147 
1148 /*
1149  * Return: number available remaining dwords to read (0 if empty)
1150  *         or a negative error code on failure
1151  */
1152 static int ct_receive(struct intel_guc_ct *ct)
1153 {
1154 	struct ct_incoming_msg *msg = NULL;
1155 	unsigned long flags;
1156 	int ret;
1157 
1158 	spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1159 	ret = ct_read(ct, &msg);
1160 	spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1161 	if (ret < 0)
1162 		return ret;
1163 
1164 	if (msg)
1165 		ct_handle_msg(ct, msg);
1166 
1167 	return ret;
1168 }
1169 
1170 static void ct_try_receive_message(struct intel_guc_ct *ct)
1171 {
1172 	int ret;
1173 
1174 	if (GEM_WARN_ON(!ct->enabled))
1175 		return;
1176 
1177 	ret = ct_receive(ct);
1178 	if (ret > 0)
1179 		tasklet_hi_schedule(&ct->receive_tasklet);
1180 }
1181 
1182 static void ct_receive_tasklet_func(struct tasklet_struct *t)
1183 {
1184 	struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1185 
1186 	ct_try_receive_message(ct);
1187 }
1188 
1189 /*
1190  * When we're communicating with the GuC over CT, GuC uses events
1191  * to notify us about new messages being posted on the RECV buffer.
1192  */
1193 void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1194 {
1195 	if (unlikely(!ct->enabled)) {
1196 		WARN(1, "Unexpected GuC event received while CT disabled!\n");
1197 		return;
1198 	}
1199 
1200 	ct_try_receive_message(ct);
1201 }
1202 
1203 void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1204 			     struct drm_printer *p)
1205 {
1206 	drm_printf(p, "CT %s\n", str_enabled_disabled(ct->enabled));
1207 
1208 	if (!ct->enabled)
1209 		return;
1210 
1211 	drm_printf(p, "H2G Space: %u\n",
1212 		   atomic_read(&ct->ctbs.send.space) * 4);
1213 	drm_printf(p, "Head: %u\n",
1214 		   ct->ctbs.send.desc->head);
1215 	drm_printf(p, "Tail: %u\n",
1216 		   ct->ctbs.send.desc->tail);
1217 	drm_printf(p, "G2H Space: %u\n",
1218 		   atomic_read(&ct->ctbs.recv.space) * 4);
1219 	drm_printf(p, "Head: %u\n",
1220 		   ct->ctbs.recv.desc->head);
1221 	drm_printf(p, "Tail: %u\n",
1222 		   ct->ctbs.recv.desc->tail);
1223 }
1224