xref: /linux/drivers/gpu/drm/i915/gt/uc/intel_guc_ct.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/ktime.h>
8 #include <linux/time64.h>
9 #include <linux/string_helpers.h>
10 #include <linux/timekeeping.h>
11 
12 #include "i915_drv.h"
13 #include "intel_guc_ct.h"
14 #include "intel_guc_print.h"
15 
16 static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
17 {
18 	return container_of(ct, struct intel_guc, ct);
19 }
20 
21 #define CT_ERROR(_ct, _fmt, ...) \
22 	guc_err(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__)
23 #ifdef CONFIG_DRM_I915_DEBUG_GUC
24 #define CT_DEBUG(_ct, _fmt, ...) \
25 	guc_dbg(ct_to_guc(_ct), "CT: " _fmt, ##__VA_ARGS__)
26 #else
27 #define CT_DEBUG(...)	do { } while (0)
28 #endif
29 #define CT_PROBE_ERROR(_ct, _fmt, ...) \
30 	guc_probe_error(ct_to_guc(ct), "CT: " _fmt, ##__VA_ARGS__)
31 
32 /**
33  * DOC: CTB Blob
34  *
35  * We allocate single blob to hold both CTB descriptors and buffers:
36  *
37  *      +--------+-----------------------------------------------+------+
38  *      | offset | contents                                      | size |
39  *      +========+===============================================+======+
40  *      | 0x0000 | H2G `CTB Descriptor`_ (send)                  |      |
41  *      +--------+-----------------------------------------------+  4K  |
42  *      | 0x0800 | G2H `CTB Descriptor`_ (recv)                  |      |
43  *      +--------+-----------------------------------------------+------+
44  *      | 0x1000 | H2G `CT Buffer`_ (send)                       | n*4K |
45  *      |        |                                               |      |
46  *      +--------+-----------------------------------------------+------+
47  *      | 0x1000 | G2H `CT Buffer`_ (recv)                       | m*4K |
48  *      | + n*4K |                                               |      |
49  *      +--------+-----------------------------------------------+------+
50  *
51  * Size of each `CT Buffer`_ must be multiple of 4K.
52  * We don't expect too many messages in flight at any time, unless we are
53  * using the GuC submission. In that case each request requires a minimum
54  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
55  * enough space to avoid backpressure on the driver. We increase the size
56  * of the receive buffer (relative to the send) to ensure a G2H response
57  * CTB has a landing spot.
58  */
59 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
60 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
61 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
62 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
63 
64 struct ct_request {
65 	struct list_head link;
66 	u32 fence;
67 	u32 status;
68 	u32 response_len;
69 	u32 *response_buf;
70 };
71 
72 struct ct_incoming_msg {
73 	struct list_head link;
74 	u32 size;
75 	u32 msg[];
76 };
77 
78 enum { CTB_SEND = 0, CTB_RECV = 1 };
79 
80 enum { CTB_OWNER_HOST = 0 };
81 
82 static void ct_receive_tasklet_func(struct tasklet_struct *t);
83 static void ct_incoming_request_worker_func(struct work_struct *w);
84 
85 /**
86  * intel_guc_ct_init_early - Initialize CT state without requiring device access
87  * @ct: pointer to CT struct
88  */
89 void intel_guc_ct_init_early(struct intel_guc_ct *ct)
90 {
91 	spin_lock_init(&ct->ctbs.send.lock);
92 	spin_lock_init(&ct->ctbs.recv.lock);
93 	spin_lock_init(&ct->requests.lock);
94 	INIT_LIST_HEAD(&ct->requests.pending);
95 	INIT_LIST_HEAD(&ct->requests.incoming);
96 	INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
97 	tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
98 	init_waitqueue_head(&ct->wq);
99 }
100 
101 static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
102 {
103 	memset(desc, 0, sizeof(*desc));
104 }
105 
106 static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
107 {
108 	u32 space;
109 
110 	ctb->broken = false;
111 	ctb->tail = 0;
112 	ctb->head = 0;
113 	space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
114 	atomic_set(&ctb->space, space);
115 
116 	guc_ct_buffer_desc_init(ctb->desc);
117 }
118 
119 static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
120 			       struct guc_ct_buffer_desc *desc,
121 			       u32 *cmds, u32 size_in_bytes, u32 resv_space)
122 {
123 	GEM_BUG_ON(size_in_bytes % 4);
124 
125 	ctb->desc = desc;
126 	ctb->cmds = cmds;
127 	ctb->size = size_in_bytes / 4;
128 	ctb->resv_space = resv_space / 4;
129 
130 	guc_ct_buffer_reset(ctb);
131 }
132 
133 static int guc_action_control_ctb(struct intel_guc *guc, u32 control)
134 {
135 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
136 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
137 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
138 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_CONTROL_CTB),
139 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL, control),
140 	};
141 	int ret;
142 
143 	GEM_BUG_ON(control != GUC_CTB_CONTROL_DISABLE && control != GUC_CTB_CONTROL_ENABLE);
144 
145 	/* CT control must go over MMIO */
146 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
147 
148 	return ret > 0 ? -EPROTO : ret;
149 }
150 
151 static int ct_control_enable(struct intel_guc_ct *ct, bool enable)
152 {
153 	int err;
154 
155 	err = guc_action_control_ctb(ct_to_guc(ct), enable ?
156 				     GUC_CTB_CONTROL_ENABLE : GUC_CTB_CONTROL_DISABLE);
157 	if (unlikely(err))
158 		CT_PROBE_ERROR(ct, "Failed to control/%s CTB (%pe)\n",
159 			       str_enable_disable(enable), ERR_PTR(err));
160 
161 	return err;
162 }
163 
164 static int ct_register_buffer(struct intel_guc_ct *ct, bool send,
165 			      u32 desc_addr, u32 buff_addr, u32 size)
166 {
167 	int err;
168 
169 	err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
170 				   GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY :
171 				   GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
172 				   desc_addr);
173 	if (unlikely(err))
174 		goto failed;
175 
176 	err = intel_guc_self_cfg64(ct_to_guc(ct), send ?
177 				   GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY :
178 				   GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
179 				   buff_addr);
180 	if (unlikely(err))
181 		goto failed;
182 
183 	err = intel_guc_self_cfg32(ct_to_guc(ct), send ?
184 				   GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY :
185 				   GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
186 				   size);
187 	if (unlikely(err))
188 failed:
189 		CT_PROBE_ERROR(ct, "Failed to register %s buffer (%pe)\n",
190 			       send ? "SEND" : "RECV", ERR_PTR(err));
191 
192 	return err;
193 }
194 
195 /**
196  * intel_guc_ct_init - Init buffer-based communication
197  * @ct: pointer to CT struct
198  *
199  * Allocate memory required for buffer-based communication.
200  *
201  * Return: 0 on success, a negative errno code on failure.
202  */
203 int intel_guc_ct_init(struct intel_guc_ct *ct)
204 {
205 	struct intel_guc *guc = ct_to_guc(ct);
206 	struct guc_ct_buffer_desc *desc;
207 	u32 blob_size;
208 	u32 cmds_size;
209 	u32 resv_space;
210 	void *blob;
211 	u32 *cmds;
212 	int err;
213 
214 	err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO);
215 	if (err)
216 		return err;
217 
218 	GEM_BUG_ON(ct->vma);
219 
220 	blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
221 	err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
222 	if (unlikely(err)) {
223 		CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
224 			       blob_size, ERR_PTR(err));
225 		return err;
226 	}
227 
228 	CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
229 
230 	/* store pointers to desc and cmds for send ctb */
231 	desc = blob;
232 	cmds = blob + 2 * CTB_DESC_SIZE;
233 	cmds_size = CTB_H2G_BUFFER_SIZE;
234 	resv_space = 0;
235 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
236 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
237 		 resv_space);
238 
239 	guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
240 
241 	/* store pointers to desc and cmds for recv ctb */
242 	desc = blob + CTB_DESC_SIZE;
243 	cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
244 	cmds_size = CTB_G2H_BUFFER_SIZE;
245 	resv_space = G2H_ROOM_BUFFER_SIZE;
246 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
247 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
248 		 resv_space);
249 
250 	guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
251 
252 	return 0;
253 }
254 
255 /**
256  * intel_guc_ct_fini - Fini buffer-based communication
257  * @ct: pointer to CT struct
258  *
259  * Deallocate memory required for buffer-based communication.
260  */
261 void intel_guc_ct_fini(struct intel_guc_ct *ct)
262 {
263 	GEM_BUG_ON(ct->enabled);
264 
265 	tasklet_kill(&ct->receive_tasklet);
266 	i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
267 	memset(ct, 0, sizeof(*ct));
268 }
269 
270 /**
271  * intel_guc_ct_enable - Enable buffer based command transport.
272  * @ct: pointer to CT struct
273  *
274  * Return: 0 on success, a negative errno code on failure.
275  */
276 int intel_guc_ct_enable(struct intel_guc_ct *ct)
277 {
278 	struct intel_guc *guc = ct_to_guc(ct);
279 	u32 base, desc, cmds, size;
280 	void *blob;
281 	int err;
282 
283 	GEM_BUG_ON(ct->enabled);
284 
285 	/* vma should be already allocated and map'ed */
286 	GEM_BUG_ON(!ct->vma);
287 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
288 	base = intel_guc_ggtt_offset(guc, ct->vma);
289 
290 	/* blob should start with send descriptor */
291 	blob = __px_vaddr(ct->vma->obj);
292 	GEM_BUG_ON(blob != ct->ctbs.send.desc);
293 
294 	/* (re)initialize descriptors */
295 	guc_ct_buffer_reset(&ct->ctbs.send);
296 	guc_ct_buffer_reset(&ct->ctbs.recv);
297 
298 	/*
299 	 * Register both CT buffers starting with RECV buffer.
300 	 * Descriptors are in first half of the blob.
301 	 */
302 	desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
303 	cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
304 	size = ct->ctbs.recv.size * 4;
305 	err = ct_register_buffer(ct, false, desc, cmds, size);
306 	if (unlikely(err))
307 		goto err_out;
308 
309 	desc = base + ptrdiff(ct->ctbs.send.desc, blob);
310 	cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
311 	size = ct->ctbs.send.size * 4;
312 	err = ct_register_buffer(ct, true, desc, cmds, size);
313 	if (unlikely(err))
314 		goto err_out;
315 
316 	err = ct_control_enable(ct, true);
317 	if (unlikely(err))
318 		goto err_out;
319 
320 	ct->enabled = true;
321 	ct->stall_time = KTIME_MAX;
322 
323 	return 0;
324 
325 err_out:
326 	CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
327 	return err;
328 }
329 
330 /**
331  * intel_guc_ct_disable - Disable buffer based command transport.
332  * @ct: pointer to CT struct
333  */
334 void intel_guc_ct_disable(struct intel_guc_ct *ct)
335 {
336 	struct intel_guc *guc = ct_to_guc(ct);
337 
338 	GEM_BUG_ON(!ct->enabled);
339 
340 	ct->enabled = false;
341 
342 	if (intel_guc_is_fw_running(guc)) {
343 		ct_control_enable(ct, false);
344 	}
345 }
346 
347 static u32 ct_get_next_fence(struct intel_guc_ct *ct)
348 {
349 	/* For now it's trivial */
350 	return ++ct->requests.last_fence;
351 }
352 
353 static int ct_write(struct intel_guc_ct *ct,
354 		    const u32 *action,
355 		    u32 len /* in dwords */,
356 		    u32 fence, u32 flags)
357 {
358 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
359 	struct guc_ct_buffer_desc *desc = ctb->desc;
360 	u32 tail = ctb->tail;
361 	u32 size = ctb->size;
362 	u32 header;
363 	u32 hxg;
364 	u32 type;
365 	u32 *cmds = ctb->cmds;
366 	unsigned int i;
367 
368 	if (unlikely(desc->status))
369 		goto corrupted;
370 
371 	GEM_BUG_ON(tail > size);
372 
373 #ifdef CONFIG_DRM_I915_DEBUG_GUC
374 	if (unlikely(tail != READ_ONCE(desc->tail))) {
375 		CT_ERROR(ct, "Tail was modified %u != %u\n",
376 			 desc->tail, tail);
377 		desc->status |= GUC_CTB_STATUS_MISMATCH;
378 		goto corrupted;
379 	}
380 	if (unlikely(READ_ONCE(desc->head) >= size)) {
381 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
382 			 desc->head, size);
383 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
384 		goto corrupted;
385 	}
386 #endif
387 
388 	/*
389 	 * dw0: CT header (including fence)
390 	 * dw1: HXG header (including action code)
391 	 * dw2+: action data
392 	 */
393 	header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
394 		 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
395 		 FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
396 
397 	type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_EVENT :
398 		GUC_HXG_TYPE_REQUEST;
399 	hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
400 		FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
401 			   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
402 
403 	CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
404 		 tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
405 
406 	cmds[tail] = header;
407 	tail = (tail + 1) % size;
408 
409 	cmds[tail] = hxg;
410 	tail = (tail + 1) % size;
411 
412 	for (i = 1; i < len; i++) {
413 		cmds[tail] = action[i];
414 		tail = (tail + 1) % size;
415 	}
416 	GEM_BUG_ON(tail > size);
417 
418 	/*
419 	 * make sure H2G buffer update and LRC tail update (if this triggering a
420 	 * submission) are visible before updating the descriptor tail
421 	 */
422 	intel_guc_write_barrier(ct_to_guc(ct));
423 
424 	/* update local copies */
425 	ctb->tail = tail;
426 	GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
427 	atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
428 
429 	/* now update descriptor */
430 	WRITE_ONCE(desc->tail, tail);
431 
432 	return 0;
433 
434 corrupted:
435 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
436 		 desc->head, desc->tail, desc->status);
437 	ctb->broken = true;
438 	return -EPIPE;
439 }
440 
441 /**
442  * wait_for_ct_request_update - Wait for CT request state update.
443  * @ct:		pointer to CT
444  * @req:	pointer to pending request
445  * @status:	placeholder for status
446  *
447  * For each sent request, GuC shall send back CT response message.
448  * Our message handler will update status of tracked request once
449  * response message with given fence is received. Wait here and
450  * check for valid response status value.
451  *
452  * Return:
453  * *	0 response received (status is valid)
454  * *	-ETIMEDOUT no response within hardcoded timeout
455  */
456 static int wait_for_ct_request_update(struct intel_guc_ct *ct, struct ct_request *req, u32 *status)
457 {
458 	int err;
459 	bool ct_enabled;
460 
461 	/*
462 	 * Fast commands should complete in less than 10us, so sample quickly
463 	 * up to that length of time, then switch to a slower sleep-wait loop.
464 	 * No GuC command should ever take longer than 10ms but many GuC
465 	 * commands can be inflight at time, so use a 1s timeout on the slower
466 	 * sleep-wait loop.
467 	 */
468 #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
469 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
470 #define done \
471 	(!(ct_enabled = intel_guc_ct_enabled(ct)) || \
472 	 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
473 	 GUC_HXG_ORIGIN_GUC)
474 	err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
475 	if (err)
476 		err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
477 #undef done
478 	if (!ct_enabled)
479 		err = -ENODEV;
480 
481 	*status = req->status;
482 	return err;
483 }
484 
485 #define GUC_CTB_TIMEOUT_MS	1500
486 static inline bool ct_deadlocked(struct intel_guc_ct *ct)
487 {
488 	long timeout = GUC_CTB_TIMEOUT_MS;
489 	bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
490 
491 	if (unlikely(ret)) {
492 		struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
493 		struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
494 
495 		CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
496 			 ktime_ms_delta(ktime_get(), ct->stall_time),
497 			 send->status, recv->status);
498 		CT_ERROR(ct, "H2G Space: %u (Bytes)\n",
499 			 atomic_read(&ct->ctbs.send.space) * 4);
500 		CT_ERROR(ct, "Head: %u (Dwords)\n", ct->ctbs.send.desc->head);
501 		CT_ERROR(ct, "Tail: %u (Dwords)\n", ct->ctbs.send.desc->tail);
502 		CT_ERROR(ct, "G2H Space: %u (Bytes)\n",
503 			 atomic_read(&ct->ctbs.recv.space) * 4);
504 		CT_ERROR(ct, "Head: %u\n (Dwords)", ct->ctbs.recv.desc->head);
505 		CT_ERROR(ct, "Tail: %u\n (Dwords)", ct->ctbs.recv.desc->tail);
506 
507 		ct->ctbs.send.broken = true;
508 	}
509 
510 	return ret;
511 }
512 
513 static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
514 {
515 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
516 
517 	/*
518 	 * We leave a certain amount of space in the G2H CTB buffer for
519 	 * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
520 	 */
521 	return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
522 }
523 
524 static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
525 {
526 	lockdep_assert_held(&ct->ctbs.send.lock);
527 
528 	GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
529 
530 	if (g2h_len_dw)
531 		atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
532 }
533 
534 static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
535 {
536 	atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
537 }
538 
539 static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
540 {
541 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
542 	struct guc_ct_buffer_desc *desc = ctb->desc;
543 	u32 head;
544 	u32 space;
545 
546 	if (atomic_read(&ctb->space) >= len_dw)
547 		return true;
548 
549 	head = READ_ONCE(desc->head);
550 	if (unlikely(head > ctb->size)) {
551 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
552 			 head, ctb->size);
553 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
554 		ctb->broken = true;
555 		return false;
556 	}
557 
558 	space = CIRC_SPACE(ctb->tail, head, ctb->size);
559 	atomic_set(&ctb->space, space);
560 
561 	return space >= len_dw;
562 }
563 
564 static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
565 {
566 	bool h2g = h2g_has_room(ct, h2g_dw);
567 	bool g2h = g2h_has_room(ct, g2h_dw);
568 
569 	lockdep_assert_held(&ct->ctbs.send.lock);
570 
571 	if (unlikely(!h2g || !g2h)) {
572 		if (ct->stall_time == KTIME_MAX)
573 			ct->stall_time = ktime_get();
574 
575 		/* Be paranoid and kick G2H tasklet to free credits */
576 		if (!g2h)
577 			tasklet_hi_schedule(&ct->receive_tasklet);
578 
579 		if (unlikely(ct_deadlocked(ct)))
580 			return -EPIPE;
581 		else
582 			return -EBUSY;
583 	}
584 
585 	ct->stall_time = KTIME_MAX;
586 	return 0;
587 }
588 
589 #define G2H_LEN_DW(f) ({ \
590 	typeof(f) f_ = (f); \
591 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
592 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
593 	GUC_CTB_HXG_MSG_MIN_LEN : 0; \
594 })
595 static int ct_send_nb(struct intel_guc_ct *ct,
596 		      const u32 *action,
597 		      u32 len,
598 		      u32 flags)
599 {
600 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
601 	unsigned long spin_flags;
602 	u32 g2h_len_dw = G2H_LEN_DW(flags);
603 	u32 fence;
604 	int ret;
605 
606 	spin_lock_irqsave(&ctb->lock, spin_flags);
607 
608 	ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
609 	if (unlikely(ret))
610 		goto out;
611 
612 	fence = ct_get_next_fence(ct);
613 	ret = ct_write(ct, action, len, fence, flags);
614 	if (unlikely(ret))
615 		goto out;
616 
617 	g2h_reserve_space(ct, g2h_len_dw);
618 	intel_guc_notify(ct_to_guc(ct));
619 
620 out:
621 	spin_unlock_irqrestore(&ctb->lock, spin_flags);
622 
623 	return ret;
624 }
625 
626 static int ct_send(struct intel_guc_ct *ct,
627 		   const u32 *action,
628 		   u32 len,
629 		   u32 *response_buf,
630 		   u32 response_buf_size,
631 		   u32 *status)
632 {
633 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
634 	struct ct_request request;
635 	unsigned long flags;
636 	unsigned int sleep_period_ms = 1;
637 	bool send_again;
638 	u32 fence;
639 	int err;
640 
641 	GEM_BUG_ON(!ct->enabled);
642 	GEM_BUG_ON(!len);
643 	GEM_BUG_ON(len & ~GUC_CT_MSG_LEN_MASK);
644 	GEM_BUG_ON(!response_buf && response_buf_size);
645 	might_sleep();
646 
647 resend:
648 	send_again = false;
649 
650 	/*
651 	 * We use a lazy spin wait loop here as we believe that if the CT
652 	 * buffers are sized correctly the flow control condition should be
653 	 * rare. Reserving the maximum size in the G2H credits as we don't know
654 	 * how big the response is going to be.
655 	 */
656 retry:
657 	spin_lock_irqsave(&ctb->lock, flags);
658 	if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
659 		     !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
660 		if (ct->stall_time == KTIME_MAX)
661 			ct->stall_time = ktime_get();
662 		spin_unlock_irqrestore(&ctb->lock, flags);
663 
664 		if (unlikely(ct_deadlocked(ct)))
665 			return -EPIPE;
666 
667 		if (msleep_interruptible(sleep_period_ms))
668 			return -EINTR;
669 		sleep_period_ms = sleep_period_ms << 1;
670 
671 		goto retry;
672 	}
673 
674 	ct->stall_time = KTIME_MAX;
675 
676 	fence = ct_get_next_fence(ct);
677 	request.fence = fence;
678 	request.status = 0;
679 	request.response_len = response_buf_size;
680 	request.response_buf = response_buf;
681 
682 	spin_lock(&ct->requests.lock);
683 	list_add_tail(&request.link, &ct->requests.pending);
684 	spin_unlock(&ct->requests.lock);
685 
686 	err = ct_write(ct, action, len, fence, 0);
687 	g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
688 
689 	spin_unlock_irqrestore(&ctb->lock, flags);
690 
691 	if (unlikely(err))
692 		goto unlink;
693 
694 	intel_guc_notify(ct_to_guc(ct));
695 
696 	err = wait_for_ct_request_update(ct, &request, status);
697 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
698 	if (unlikely(err)) {
699 		if (err == -ENODEV)
700 			/* wait_for_ct_request_update returns -ENODEV on reset/suspend in progress.
701 			 * In this case, output is debug rather than error info
702 			 */
703 			CT_DEBUG(ct, "Request %#x (fence %u) cancelled as CTB is disabled\n",
704 				 action[0], request.fence);
705 		else
706 			CT_ERROR(ct, "No response for request %#x (fence %u)\n",
707 				 action[0], request.fence);
708 		goto unlink;
709 	}
710 
711 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
712 		CT_DEBUG(ct, "retrying request %#x (%u)\n", *action,
713 			 FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, *status));
714 		send_again = true;
715 		goto unlink;
716 	}
717 
718 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
719 		err = -EIO;
720 		goto unlink;
721 	}
722 
723 	if (response_buf) {
724 		/* There shall be no data in the status */
725 		WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
726 		/* Return actual response len */
727 		err = request.response_len;
728 	} else {
729 		/* There shall be no response payload */
730 		WARN_ON(request.response_len);
731 		/* Return data decoded from the status dword */
732 		err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
733 	}
734 
735 unlink:
736 	spin_lock_irqsave(&ct->requests.lock, flags);
737 	list_del(&request.link);
738 	spin_unlock_irqrestore(&ct->requests.lock, flags);
739 
740 	if (unlikely(send_again))
741 		goto resend;
742 
743 	return err;
744 }
745 
746 /*
747  * Command Transport (CT) buffer based GuC send function.
748  */
749 int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
750 		      u32 *response_buf, u32 response_buf_size, u32 flags)
751 {
752 	u32 status = ~0; /* undefined */
753 	int ret;
754 
755 	if (unlikely(!ct->enabled)) {
756 		struct intel_guc *guc = ct_to_guc(ct);
757 		struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
758 
759 		WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
760 		return -ENODEV;
761 	}
762 
763 	if (unlikely(ct->ctbs.send.broken))
764 		return -EPIPE;
765 
766 	if (flags & INTEL_GUC_CT_SEND_NB)
767 		return ct_send_nb(ct, action, len, flags);
768 
769 	ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
770 	if (unlikely(ret < 0)) {
771 		if (ret != -ENODEV)
772 			CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n",
773 				 action[0], ERR_PTR(ret), status);
774 	} else if (unlikely(ret)) {
775 		CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
776 			 action[0], ret, ret);
777 	}
778 
779 	return ret;
780 }
781 
782 static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
783 {
784 	struct ct_incoming_msg *msg;
785 
786 	msg = kmalloc(struct_size(msg, msg, num_dwords), GFP_ATOMIC);
787 	if (msg)
788 		msg->size = num_dwords;
789 	return msg;
790 }
791 
792 static void ct_free_msg(struct ct_incoming_msg *msg)
793 {
794 	kfree(msg);
795 }
796 
797 /*
798  * Return: number available remaining dwords to read (0 if empty)
799  *         or a negative error code on failure
800  */
801 static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
802 {
803 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
804 	struct guc_ct_buffer_desc *desc = ctb->desc;
805 	u32 head = ctb->head;
806 	u32 tail = READ_ONCE(desc->tail);
807 	u32 size = ctb->size;
808 	u32 *cmds = ctb->cmds;
809 	s32 available;
810 	unsigned int len;
811 	unsigned int i;
812 	u32 header;
813 
814 	if (unlikely(ctb->broken))
815 		return -EPIPE;
816 
817 	if (unlikely(desc->status)) {
818 		u32 status = desc->status;
819 
820 		if (status & GUC_CTB_STATUS_UNUSED) {
821 			/*
822 			 * Potentially valid if a CLIENT_RESET request resulted in
823 			 * contexts/engines being reset. But should never happen as
824 			 * no contexts should be active when CLIENT_RESET is sent.
825 			 */
826 			CT_ERROR(ct, "Unexpected G2H after GuC has stopped!\n");
827 			status &= ~GUC_CTB_STATUS_UNUSED;
828 		}
829 
830 		if (status)
831 			goto corrupted;
832 	}
833 
834 	GEM_BUG_ON(head > size);
835 
836 #ifdef CONFIG_DRM_I915_DEBUG_GUC
837 	if (unlikely(head != READ_ONCE(desc->head))) {
838 		CT_ERROR(ct, "Head was modified %u != %u\n",
839 			 desc->head, head);
840 		desc->status |= GUC_CTB_STATUS_MISMATCH;
841 		goto corrupted;
842 	}
843 #endif
844 	if (unlikely(tail >= size)) {
845 		CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
846 			 tail, size);
847 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
848 		goto corrupted;
849 	}
850 
851 	/* tail == head condition indicates empty */
852 	available = tail - head;
853 	if (unlikely(available == 0)) {
854 		*msg = NULL;
855 		return 0;
856 	}
857 
858 	/* beware of buffer wrap case */
859 	if (unlikely(available < 0))
860 		available += size;
861 	CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
862 	GEM_BUG_ON(available < 0);
863 
864 	header = cmds[head];
865 	head = (head + 1) % size;
866 
867 	/* message len with header */
868 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
869 	if (unlikely(len > (u32)available)) {
870 		CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
871 			 4, &header,
872 			 4 * (head + available - 1 > size ?
873 			      size - head : available - 1), &cmds[head],
874 			 4 * (head + available - 1 > size ?
875 			      available - 1 - size + head : 0), &cmds[0]);
876 		desc->status |= GUC_CTB_STATUS_UNDERFLOW;
877 		goto corrupted;
878 	}
879 
880 	*msg = ct_alloc_msg(len);
881 	if (!*msg) {
882 		CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
883 			 4, &header,
884 			 4 * (head + available - 1 > size ?
885 			      size - head : available - 1), &cmds[head],
886 			 4 * (head + available - 1 > size ?
887 			      available - 1 - size + head : 0), &cmds[0]);
888 		return available;
889 	}
890 
891 	(*msg)->msg[0] = header;
892 
893 	for (i = 1; i < len; i++) {
894 		(*msg)->msg[i] = cmds[head];
895 		head = (head + 1) % size;
896 	}
897 	CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
898 
899 	/* update local copies */
900 	ctb->head = head;
901 
902 	/* now update descriptor */
903 	WRITE_ONCE(desc->head, head);
904 
905 	return available - len;
906 
907 corrupted:
908 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
909 		 desc->head, desc->tail, desc->status);
910 	ctb->broken = true;
911 	return -EPIPE;
912 }
913 
914 static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
915 {
916 	u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
917 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
918 	const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
919 	const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
920 	u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
921 	struct ct_request *req;
922 	unsigned long flags;
923 	bool found = false;
924 	int err = 0;
925 
926 	GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
927 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
928 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
929 		   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_NO_RESPONSE_RETRY &&
930 		   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
931 
932 	CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
933 
934 	spin_lock_irqsave(&ct->requests.lock, flags);
935 	list_for_each_entry(req, &ct->requests.pending, link) {
936 		if (unlikely(fence != req->fence)) {
937 			CT_DEBUG(ct, "request %u awaits response\n",
938 				 req->fence);
939 			continue;
940 		}
941 		if (unlikely(datalen > req->response_len)) {
942 			CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
943 				 req->fence, datalen, req->response_len);
944 			datalen = min(datalen, req->response_len);
945 			err = -EMSGSIZE;
946 		}
947 		if (datalen)
948 			memcpy(req->response_buf, data, 4 * datalen);
949 		req->response_len = datalen;
950 		WRITE_ONCE(req->status, hxg[0]);
951 		found = true;
952 		break;
953 	}
954 	if (!found) {
955 		CT_ERROR(ct, "Unsolicited response (fence %u)\n", fence);
956 		CT_ERROR(ct, "Could not find fence=%u, last_fence=%u\n", fence,
957 			 ct->requests.last_fence);
958 		list_for_each_entry(req, &ct->requests.pending, link)
959 			CT_ERROR(ct, "request %u awaits response\n",
960 				 req->fence);
961 		err = -ENOKEY;
962 	}
963 	spin_unlock_irqrestore(&ct->requests.lock, flags);
964 
965 	if (unlikely(err))
966 		return err;
967 
968 	ct_free_msg(response);
969 	return 0;
970 }
971 
972 static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
973 {
974 	struct intel_guc *guc = ct_to_guc(ct);
975 	const u32 *hxg;
976 	const u32 *payload;
977 	u32 hxg_len, action, len;
978 	int ret;
979 
980 	hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
981 	hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
982 	payload = &hxg[GUC_HXG_MSG_MIN_LEN];
983 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
984 	len = hxg_len - GUC_HXG_MSG_MIN_LEN;
985 
986 	CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
987 
988 	switch (action) {
989 	case INTEL_GUC_ACTION_DEFAULT:
990 		ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
991 		break;
992 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
993 		ret = intel_guc_deregister_done_process_msg(guc, payload,
994 							    len);
995 		break;
996 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
997 		ret = intel_guc_sched_done_process_msg(guc, payload, len);
998 		break;
999 	case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1000 		ret = intel_guc_context_reset_process_msg(guc, payload, len);
1001 		break;
1002 	case INTEL_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1003 		ret = intel_guc_error_capture_process_msg(guc, payload, len);
1004 		if (unlikely(ret))
1005 			CT_ERROR(ct, "error capture notification failed %x %*ph\n",
1006 				 action, 4 * len, payload);
1007 		break;
1008 	case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1009 		ret = intel_guc_engine_failure_process_msg(guc, payload, len);
1010 		break;
1011 	case INTEL_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1012 		intel_guc_log_handle_flush_event(&guc->log);
1013 		ret = 0;
1014 		break;
1015 	case INTEL_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1016 		CT_ERROR(ct, "Received GuC crash dump notification!\n");
1017 		ret = 0;
1018 		break;
1019 	case INTEL_GUC_ACTION_NOTIFY_EXCEPTION:
1020 		CT_ERROR(ct, "Received GuC exception notification!\n");
1021 		ret = 0;
1022 		break;
1023 	default:
1024 		ret = -EOPNOTSUPP;
1025 		break;
1026 	}
1027 
1028 	if (unlikely(ret)) {
1029 		CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
1030 			 action, ERR_PTR(ret));
1031 		return ret;
1032 	}
1033 
1034 	ct_free_msg(request);
1035 	return 0;
1036 }
1037 
1038 static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
1039 {
1040 	unsigned long flags;
1041 	struct ct_incoming_msg *request;
1042 	bool done;
1043 	int err;
1044 
1045 	spin_lock_irqsave(&ct->requests.lock, flags);
1046 	request = list_first_entry_or_null(&ct->requests.incoming,
1047 					   struct ct_incoming_msg, link);
1048 	if (request)
1049 		list_del(&request->link);
1050 	done = !!list_empty(&ct->requests.incoming);
1051 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1052 
1053 	if (!request)
1054 		return true;
1055 
1056 	err = ct_process_request(ct, request);
1057 	if (unlikely(err)) {
1058 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1059 			 ERR_PTR(err), 4 * request->size, request->msg);
1060 		ct_free_msg(request);
1061 	}
1062 
1063 	return done;
1064 }
1065 
1066 static void ct_incoming_request_worker_func(struct work_struct *w)
1067 {
1068 	struct intel_guc_ct *ct =
1069 		container_of(w, struct intel_guc_ct, requests.worker);
1070 	bool done;
1071 
1072 	do {
1073 		done = ct_process_incoming_requests(ct);
1074 	} while (!done);
1075 }
1076 
1077 static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1078 {
1079 	const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1080 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1081 	unsigned long flags;
1082 
1083 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1084 
1085 	/*
1086 	 * Adjusting the space must be done in IRQ or deadlock can occur as the
1087 	 * CTB processing in the below workqueue can send CTBs which creates a
1088 	 * circular dependency if the space was returned there.
1089 	 */
1090 	switch (action) {
1091 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1092 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1093 		g2h_release_space(ct, request->size);
1094 	}
1095 
1096 	spin_lock_irqsave(&ct->requests.lock, flags);
1097 	list_add_tail(&request->link, &ct->requests.incoming);
1098 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1099 
1100 	queue_work(system_unbound_wq, &ct->requests.worker);
1101 	return 0;
1102 }
1103 
1104 static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1105 {
1106 	u32 origin, type;
1107 	u32 *hxg;
1108 	int err;
1109 
1110 	if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1111 		return -EBADMSG;
1112 
1113 	hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1114 
1115 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1116 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1117 		err = -EPROTO;
1118 		goto failed;
1119 	}
1120 
1121 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1122 	switch (type) {
1123 	case GUC_HXG_TYPE_EVENT:
1124 		err = ct_handle_event(ct, msg);
1125 		break;
1126 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1127 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1128 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1129 		err = ct_handle_response(ct, msg);
1130 		break;
1131 	default:
1132 		err = -EOPNOTSUPP;
1133 	}
1134 
1135 	if (unlikely(err)) {
1136 failed:
1137 		CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1138 			 ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1139 	}
1140 	return err;
1141 }
1142 
1143 static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1144 {
1145 	u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1146 	int err;
1147 
1148 	if (format == GUC_CTB_FORMAT_HXG)
1149 		err = ct_handle_hxg(ct, msg);
1150 	else
1151 		err = -EOPNOTSUPP;
1152 
1153 	if (unlikely(err)) {
1154 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1155 			 ERR_PTR(err), 4 * msg->size, msg->msg);
1156 		ct_free_msg(msg);
1157 	}
1158 }
1159 
1160 /*
1161  * Return: number available remaining dwords to read (0 if empty)
1162  *         or a negative error code on failure
1163  */
1164 static int ct_receive(struct intel_guc_ct *ct)
1165 {
1166 	struct ct_incoming_msg *msg = NULL;
1167 	unsigned long flags;
1168 	int ret;
1169 
1170 	spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1171 	ret = ct_read(ct, &msg);
1172 	spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1173 	if (ret < 0)
1174 		return ret;
1175 
1176 	if (msg)
1177 		ct_handle_msg(ct, msg);
1178 
1179 	return ret;
1180 }
1181 
1182 static void ct_try_receive_message(struct intel_guc_ct *ct)
1183 {
1184 	int ret;
1185 
1186 	if (GEM_WARN_ON(!ct->enabled))
1187 		return;
1188 
1189 	ret = ct_receive(ct);
1190 	if (ret > 0)
1191 		tasklet_hi_schedule(&ct->receive_tasklet);
1192 }
1193 
1194 static void ct_receive_tasklet_func(struct tasklet_struct *t)
1195 {
1196 	struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1197 
1198 	ct_try_receive_message(ct);
1199 }
1200 
1201 /*
1202  * When we're communicating with the GuC over CT, GuC uses events
1203  * to notify us about new messages being posted on the RECV buffer.
1204  */
1205 void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1206 {
1207 	if (unlikely(!ct->enabled)) {
1208 		WARN(1, "Unexpected GuC event received while CT disabled!\n");
1209 		return;
1210 	}
1211 
1212 	ct_try_receive_message(ct);
1213 }
1214 
1215 void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1216 			     struct drm_printer *p)
1217 {
1218 	drm_printf(p, "CT %s\n", str_enabled_disabled(ct->enabled));
1219 
1220 	if (!ct->enabled)
1221 		return;
1222 
1223 	drm_printf(p, "H2G Space: %u\n",
1224 		   atomic_read(&ct->ctbs.send.space) * 4);
1225 	drm_printf(p, "Head: %u\n",
1226 		   ct->ctbs.send.desc->head);
1227 	drm_printf(p, "Tail: %u\n",
1228 		   ct->ctbs.send.desc->tail);
1229 	drm_printf(p, "G2H Space: %u\n",
1230 		   atomic_read(&ct->ctbs.recv.space) * 4);
1231 	drm_printf(p, "Head: %u\n",
1232 		   ct->ctbs.recv.desc->head);
1233 	drm_printf(p, "Tail: %u\n",
1234 		   ct->ctbs.recv.desc->tail);
1235 }
1236