1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2018 Intel Corporation 4 */ 5 6 #include <linux/sort.h> 7 8 #include "gt/intel_gt_print.h" 9 #include "i915_selftest.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gpu_commands.h" 12 #include "intel_gt_clock_utils.h" 13 #include "selftest_engine.h" 14 #include "selftest_engine_heartbeat.h" 15 #include "selftests/igt_atomic.h" 16 #include "selftests/igt_flush_test.h" 17 #include "selftests/igt_spinner.h" 18 19 #define COUNT 5 20 21 static int cmp_u64(const void *A, const void *B) 22 { 23 const u64 *a = A, *b = B; 24 25 return *a - *b; 26 } 27 28 static u64 trifilter(u64 *a) 29 { 30 sort(a, COUNT, sizeof(*a), cmp_u64, NULL); 31 return (a[1] + 2 * a[2] + a[3]) >> 2; 32 } 33 34 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value) 35 { 36 *cs++ = MI_SEMAPHORE_WAIT | 37 MI_SEMAPHORE_GLOBAL_GTT | 38 MI_SEMAPHORE_POLL | 39 op; 40 *cs++ = value; 41 *cs++ = offset; 42 *cs++ = 0; 43 44 return cs; 45 } 46 47 static u32 *emit_store(u32 *cs, u32 offset, u32 value) 48 { 49 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 50 *cs++ = offset; 51 *cs++ = 0; 52 *cs++ = value; 53 54 return cs; 55 } 56 57 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset) 58 { 59 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; 60 *cs++ = i915_mmio_reg_offset(reg); 61 *cs++ = offset; 62 *cs++ = 0; 63 64 return cs; 65 } 66 67 static void write_semaphore(u32 *x, u32 value) 68 { 69 WRITE_ONCE(*x, value); 70 wmb(); 71 } 72 73 static int __measure_timestamps(struct intel_context *ce, 74 u64 *dt, u64 *d_ring, u64 *d_ctx) 75 { 76 struct intel_engine_cs *engine = ce->engine; 77 u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5); 78 u32 offset = i915_ggtt_offset(engine->status_page.vma); 79 struct i915_request *rq; 80 u32 *cs; 81 82 rq = intel_context_create_request(ce); 83 if (IS_ERR(rq)) 84 return PTR_ERR(rq); 85 86 cs = intel_ring_begin(rq, 28); 87 if (IS_ERR(cs)) { 88 i915_request_add(rq); 89 return PTR_ERR(cs); 90 } 91 92 /* Signal & wait for start */ 93 cs = emit_store(cs, offset + 4008, 1); 94 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1); 95 96 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000); 97 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004); 98 99 /* Busy wait */ 100 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1); 101 102 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016); 103 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012); 104 105 intel_ring_advance(rq, cs); 106 i915_request_get(rq); 107 i915_request_add(rq); 108 intel_engine_flush_submission(engine); 109 110 /* Wait for the request to start executing, that then waits for us */ 111 while (READ_ONCE(sema[2]) == 0) 112 cpu_relax(); 113 114 /* Run the request for a 100us, sampling timestamps before/after */ 115 local_irq_disable(); 116 write_semaphore(&sema[2], 0); 117 while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */ 118 cpu_relax(); 119 *dt = local_clock(); 120 udelay(100); 121 *dt = local_clock() - *dt; 122 write_semaphore(&sema[2], 1); 123 local_irq_enable(); 124 125 if (i915_request_wait(rq, 0, HZ / 2) < 0) { 126 i915_request_put(rq); 127 return -ETIME; 128 } 129 i915_request_put(rq); 130 131 pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n", 132 engine->name, sema[1], sema[3], sema[0], sema[4]); 133 134 *d_ctx = sema[3] - sema[1]; 135 *d_ring = sema[4] - sema[0]; 136 return 0; 137 } 138 139 static int __live_engine_timestamps(struct intel_engine_cs *engine) 140 { 141 u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt; 142 struct intel_context *ce; 143 int i, err = 0; 144 145 ce = intel_context_create(engine); 146 if (IS_ERR(ce)) 147 return PTR_ERR(ce); 148 149 for (i = 0; i < COUNT; i++) { 150 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]); 151 if (err) 152 break; 153 } 154 intel_context_put(ce); 155 if (err) 156 return err; 157 158 dt = trifilter(st); 159 d_ring = trifilter(s_ring); 160 d_ctx = trifilter(s_ctx); 161 162 pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n", 163 engine->name, dt, 164 intel_gt_clock_interval_to_ns(engine->gt, d_ctx), 165 intel_gt_clock_interval_to_ns(engine->gt, d_ring)); 166 167 d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring); 168 if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) { 169 pr_err("%s Mismatch between ring timestamp and walltime!\n", 170 engine->name); 171 return -EINVAL; 172 } 173 174 d_ring = trifilter(s_ring); 175 d_ctx = trifilter(s_ctx); 176 177 d_ctx *= engine->gt->clock_frequency; 178 if (GRAPHICS_VER(engine->i915) == 11) 179 d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */ 180 else 181 d_ring *= engine->gt->clock_frequency; 182 183 if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) { 184 pr_err("%s Mismatch between ring and context timestamps!\n", 185 engine->name); 186 return -EINVAL; 187 } 188 189 return 0; 190 } 191 192 static int live_engine_timestamps(void *arg) 193 { 194 struct intel_gt *gt = arg; 195 struct intel_engine_cs *engine; 196 enum intel_engine_id id; 197 198 /* 199 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share 200 * the same CS clock. 201 */ 202 203 if (GRAPHICS_VER(gt->i915) < 8) 204 return 0; 205 206 for_each_engine(engine, gt, id) { 207 int err; 208 209 st_engine_heartbeat_disable(engine); 210 err = __live_engine_timestamps(engine); 211 st_engine_heartbeat_enable(engine); 212 if (err) 213 return err; 214 } 215 216 return 0; 217 } 218 219 static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness) 220 { 221 ktime_t start, unused, dt; 222 223 if (!intel_engine_uses_guc(engine)) 224 return 0; 225 226 /* 227 * In GuC mode of submission, the busyness stats may get updated after 228 * the batch starts running. Poll for a change in busyness and timeout 229 * after 500 us. 230 */ 231 start = ktime_get(); 232 while (intel_engine_get_busy_time(engine, &unused) == busyness) { 233 dt = ktime_get() - start; 234 if (dt > 10000000) { 235 pr_err("active wait timed out %lld\n", dt); 236 ENGINE_TRACE(engine, "active wait time out %lld\n", dt); 237 return -ETIME; 238 } 239 } 240 241 return 0; 242 } 243 244 static int live_engine_busy_stats(void *arg) 245 { 246 struct intel_gt *gt = arg; 247 struct intel_engine_cs *engine; 248 enum intel_engine_id id; 249 struct igt_spinner spin; 250 int err = 0; 251 252 /* 253 * Check that if an engine supports busy-stats, they tell the truth. 254 */ 255 256 if (igt_spinner_init(&spin, gt)) 257 return -ENOMEM; 258 259 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 260 for_each_engine(engine, gt, id) { 261 struct i915_request *rq; 262 ktime_t busyness, dummy; 263 ktime_t de, dt; 264 ktime_t t[2]; 265 266 if (!intel_engine_supports_stats(engine)) 267 continue; 268 269 if (!intel_engine_can_store_dword(engine)) 270 continue; 271 272 if (intel_gt_pm_wait_for_idle(gt)) { 273 err = -EBUSY; 274 break; 275 } 276 277 st_engine_heartbeat_disable(engine); 278 279 ENGINE_TRACE(engine, "measuring idle time\n"); 280 preempt_disable(); 281 de = intel_engine_get_busy_time(engine, &t[0]); 282 udelay(100); 283 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); 284 preempt_enable(); 285 dt = ktime_sub(t[1], t[0]); 286 if (de < 0 || de > 10) { 287 pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n", 288 engine->name, 289 de, (int)div64_u64(100 * de, dt), dt); 290 GEM_TRACE_DUMP(); 291 err = -EINVAL; 292 goto end; 293 } 294 295 /* 100% busy */ 296 rq = igt_spinner_create_request(&spin, 297 engine->kernel_context, 298 MI_NOOP); 299 if (IS_ERR(rq)) { 300 err = PTR_ERR(rq); 301 goto end; 302 } 303 i915_request_add(rq); 304 305 busyness = intel_engine_get_busy_time(engine, &dummy); 306 if (!igt_wait_for_spinner(&spin, rq)) { 307 intel_gt_set_wedged(engine->gt); 308 err = -ETIME; 309 goto end; 310 } 311 312 err = __spin_until_busier(engine, busyness); 313 if (err) { 314 GEM_TRACE_DUMP(); 315 goto end; 316 } 317 318 ENGINE_TRACE(engine, "measuring busy time\n"); 319 preempt_disable(); 320 de = intel_engine_get_busy_time(engine, &t[0]); 321 mdelay(100); 322 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); 323 preempt_enable(); 324 dt = ktime_sub(t[1], t[0]); 325 if (100 * de < 95 * dt || 95 * de > 100 * dt) { 326 pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n", 327 engine->name, 328 de, (int)div64_u64(100 * de, dt), dt); 329 GEM_TRACE_DUMP(); 330 err = -EINVAL; 331 goto end; 332 } 333 334 end: 335 st_engine_heartbeat_enable(engine); 336 igt_spinner_end(&spin); 337 if (igt_flush_test(gt->i915)) 338 err = -EIO; 339 if (err) 340 break; 341 } 342 343 igt_spinner_fini(&spin); 344 if (igt_flush_test(gt->i915)) 345 err = -EIO; 346 return err; 347 } 348 349 static int live_engine_pm(void *arg) 350 { 351 struct intel_gt *gt = arg; 352 struct intel_engine_cs *engine; 353 enum intel_engine_id id; 354 355 /* 356 * Check we can call intel_engine_pm_put from any context. No 357 * failures are reported directly, but if we mess up lockdep should 358 * tell us. 359 */ 360 if (intel_gt_pm_wait_for_idle(gt)) { 361 pr_err("Unable to flush GT pm before test\n"); 362 return -EBUSY; 363 } 364 365 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 366 for_each_engine(engine, gt, id) { 367 const typeof(*igt_atomic_phases) *p; 368 369 for (p = igt_atomic_phases; p->name; p++) { 370 /* 371 * Acquisition is always synchronous, except if we 372 * know that the engine is already awake, in which 373 * case we should use intel_engine_pm_get_if_awake() 374 * to atomically grab the wakeref. 375 * 376 * In practice, 377 * intel_engine_pm_get(); 378 * intel_engine_pm_put(); 379 * occurs in one thread, while simultaneously 380 * intel_engine_pm_get_if_awake(); 381 * intel_engine_pm_put(); 382 * occurs from atomic context in another. 383 */ 384 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 385 intel_engine_pm_get(engine); 386 387 p->critical_section_begin(); 388 if (!intel_engine_pm_get_if_awake(engine)) 389 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n", 390 engine->name, p->name); 391 else 392 intel_engine_pm_put_async(engine); 393 intel_engine_pm_put_async(engine); 394 p->critical_section_end(); 395 396 intel_engine_pm_flush(engine); 397 398 if (intel_engine_pm_is_awake(engine)) { 399 pr_err("%s is still awake after flushing pm\n", 400 engine->name); 401 return -EINVAL; 402 } 403 404 /* gt wakeref is async (deferred to workqueue) */ 405 if (intel_gt_pm_wait_for_idle(gt)) { 406 gt_err(gt, "GT failed to idle\n"); 407 return -EINVAL; 408 } 409 } 410 } 411 412 return 0; 413 } 414 415 int live_engine_pm_selftests(struct intel_gt *gt) 416 { 417 static const struct i915_subtest tests[] = { 418 SUBTEST(live_engine_timestamps), 419 SUBTEST(live_engine_busy_stats), 420 SUBTEST(live_engine_pm), 421 }; 422 423 return intel_gt_live_subtests(tests, gt); 424 } 425