xref: /linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_print.h"
15 #include "intel_gt_regs.h"
16 #include "intel_ring.h"
17 #include "intel_workarounds.h"
18 
19 /**
20  * DOC: Hardware workarounds
21  *
22  * Hardware workarounds are register programming documented to be executed in
23  * the driver that fall outside of the normal programming sequences for a
24  * platform. There are some basic categories of workarounds, depending on
25  * how/when they are applied:
26  *
27  * - Context workarounds: workarounds that touch registers that are
28  *   saved/restored to/from the HW context image. The list is emitted (via Load
29  *   Register Immediate commands) once when initializing the device and saved in
30  *   the default context. That default context is then used on every context
31  *   creation to have a "primed golden context", i.e. a context image that
32  *   already contains the changes needed to all the registers.
33  *
34  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
35  *   variants respective to the targeted platforms.
36  *
37  * - Engine workarounds: the list of these WAs is applied whenever the specific
38  *   engine is reset. It's also possible that a set of engine classes share a
39  *   common power domain and they are reset together. This happens on some
40  *   platforms with render and compute engines. In this case (at least) one of
41  *   them need to keeep the workaround programming: the approach taken in the
42  *   driver is to tie those workarounds to the first compute/render engine that
43  *   is registered.  When executing with GuC submission, engine resets are
44  *   outside of kernel driver control, hence the list of registers involved in
45  *   written once, on engine initialization, and then passed to GuC, that
46  *   saves/restores their values before/after the reset takes place. See
47  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
48  *
49  *   Workarounds for registers specific to RCS and CCS should be implemented in
50  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
51  *   registers belonging to BCS, VCS or VECS should be implemented in
52  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
53  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
54  *   should be implemented in general_render_compute_wa_init().
55  *
56  * - GT workarounds: the list of these WAs is applied whenever these registers
57  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
58  *
59  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
60  *   variants respective to the targeted platforms.
61  *
62  * - Register whitelist: some workarounds need to be implemented in userspace,
63  *   but need to touch privileged registers. The whitelist in the kernel
64  *   instructs the hardware to allow the access to happen. From the kernel side,
65  *   this is just a special case of a MMIO workaround (as we write the list of
66  *   these to/be-whitelisted registers to some special HW registers).
67  *
68  *   Register whitelisting should be done in the \*_whitelist_build() variants
69  *   respective to the targeted platforms.
70  *
71  * - Workaround batchbuffers: buffers that get executed automatically by the
72  *   hardware on every HW context restore. These buffers are created and
73  *   programmed in the default context so the hardware always go through those
74  *   programming sequences when switching contexts. The support for workaround
75  *   batchbuffers is enabled these hardware mechanisms:
76  *
77  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
78  *      context, pointing the hardware to jump to that location when that offset
79  *      is reached in the context restore. Workaround batchbuffer in the driver
80  *      currently uses this mechanism for all platforms.
81  *
82  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
83  *      pointing the hardware to a buffer to continue executing after the
84  *      engine registers are restored in a context restore sequence. This is
85  *      currently not used in the driver.
86  *
87  * - Other:  There are WAs that, due to their nature, cannot be applied from a
88  *   central place. Those are peppered around the rest of the code, as needed.
89  *   Workarounds related to the display IP are the main example.
90  *
91  * .. [1] Technically, some registers are powercontext saved & restored, so they
92  *    survive a suspend/resume. In practice, writing them again is not too
93  *    costly and simplifies things, so it's the approach taken in the driver.
94  */
95 
96 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
97 			  const char *name, const char *engine_name)
98 {
99 	wal->gt = gt;
100 	wal->name = name;
101 	wal->engine_name = engine_name;
102 }
103 
104 #define WA_LIST_CHUNK (1 << 4)
105 
106 static void wa_init_finish(struct i915_wa_list *wal)
107 {
108 	/* Trim unused entries. */
109 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
110 		struct i915_wa *list = kmemdup(wal->list,
111 					       wal->count * sizeof(*list),
112 					       GFP_KERNEL);
113 
114 		if (list) {
115 			kfree(wal->list);
116 			wal->list = list;
117 		}
118 	}
119 
120 	if (!wal->count)
121 		return;
122 
123 	gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
124 	       wal->wa_count, wal->name, wal->engine_name);
125 }
126 
127 static enum forcewake_domains
128 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
129 {
130 	enum forcewake_domains fw = 0;
131 	struct i915_wa *wa;
132 	unsigned int i;
133 
134 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
135 		fw |= intel_uncore_forcewake_for_reg(uncore,
136 						     wa->reg,
137 						     FW_REG_READ |
138 						     FW_REG_WRITE);
139 
140 	return fw;
141 }
142 
143 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
144 {
145 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
146 	struct drm_i915_private *i915 = wal->gt->i915;
147 	unsigned int start = 0, end = wal->count;
148 	const unsigned int grow = WA_LIST_CHUNK;
149 	struct i915_wa *wa_;
150 
151 	GEM_BUG_ON(!is_power_of_2(grow));
152 
153 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
154 		struct i915_wa *list;
155 
156 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
157 				     GFP_KERNEL);
158 		if (!list) {
159 			drm_err(&i915->drm, "No space for workaround init!\n");
160 			return;
161 		}
162 
163 		if (wal->list) {
164 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
165 			kfree(wal->list);
166 		}
167 
168 		wal->list = list;
169 	}
170 
171 	while (start < end) {
172 		unsigned int mid = start + (end - start) / 2;
173 
174 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
175 			start = mid + 1;
176 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
177 			end = mid;
178 		} else {
179 			wa_ = &wal->list[mid];
180 
181 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
182 				drm_err(&i915->drm,
183 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
184 					i915_mmio_reg_offset(wa_->reg),
185 					wa_->clr, wa_->set);
186 
187 				wa_->set &= ~wa->clr;
188 			}
189 
190 			wal->wa_count++;
191 			wa_->set |= wa->set;
192 			wa_->clr |= wa->clr;
193 			wa_->read |= wa->read;
194 			return;
195 		}
196 	}
197 
198 	wal->wa_count++;
199 	wa_ = &wal->list[wal->count++];
200 	*wa_ = *wa;
201 
202 	while (wa_-- > wal->list) {
203 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
204 			   i915_mmio_reg_offset(wa_[1].reg));
205 		if (i915_mmio_reg_offset(wa_[1].reg) >
206 		    i915_mmio_reg_offset(wa_[0].reg))
207 			break;
208 
209 		swap(wa_[1], wa_[0]);
210 	}
211 }
212 
213 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
214 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
215 {
216 	struct i915_wa wa = {
217 		.reg  = reg,
218 		.clr  = clear,
219 		.set  = set,
220 		.read = read_mask,
221 		.masked_reg = masked_reg,
222 	};
223 
224 	_wa_add(wal, &wa);
225 }
226 
227 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
228 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
229 {
230 	struct i915_wa wa = {
231 		.mcr_reg = reg,
232 		.clr  = clear,
233 		.set  = set,
234 		.read = read_mask,
235 		.masked_reg = masked_reg,
236 		.is_mcr = 1,
237 	};
238 
239 	_wa_add(wal, &wa);
240 }
241 
242 static void
243 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
244 {
245 	wa_add(wal, reg, clear, set, clear | set, false);
246 }
247 
248 static void
249 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
250 {
251 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
252 }
253 
254 static void
255 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
256 {
257 	wa_write_clr_set(wal, reg, ~0, set);
258 }
259 
260 static void
261 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
262 {
263 	wa_mcr_write_clr_set(wal, reg, ~0, set);
264 }
265 
266 static void
267 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
268 {
269 	wa_write_clr_set(wal, reg, set, set);
270 }
271 
272 static void
273 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
274 {
275 	wa_mcr_write_clr_set(wal, reg, set, set);
276 }
277 
278 static void
279 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
280 {
281 	wa_write_clr_set(wal, reg, clr, 0);
282 }
283 
284 static void
285 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
286 {
287 	wa_mcr_write_clr_set(wal, reg, clr, 0);
288 }
289 
290 /*
291  * WA operations on "masked register". A masked register has the upper 16 bits
292  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
293  * portion of the register without a rmw: you simply write in the upper 16 bits
294  * the mask of bits you are going to modify.
295  *
296  * The wa_masked_* family of functions already does the necessary operations to
297  * calculate the mask based on the parameters passed, so user only has to
298  * provide the lower 16 bits of that register.
299  */
300 
301 static void
302 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
303 {
304 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
305 }
306 
307 static void
308 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
309 {
310 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
311 }
312 
313 static void
314 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
315 {
316 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
317 }
318 
319 static void
320 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
321 {
322 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
323 }
324 
325 static void
326 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
327 		    u32 mask, u32 val)
328 {
329 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
330 }
331 
332 static void
333 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
334 			u32 mask, u32 val)
335 {
336 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
337 }
338 
339 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
340 				      struct i915_wa_list *wal)
341 {
342 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
343 }
344 
345 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
346 				      struct i915_wa_list *wal)
347 {
348 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
349 }
350 
351 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
352 				      struct i915_wa_list *wal)
353 {
354 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
355 
356 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
357 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
358 
359 	/* WaDisablePartialInstShootdown:bdw,chv */
360 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
361 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
362 
363 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
364 	 * workaround for a possible hang in the unlikely event a TLB
365 	 * invalidation occurs during a PSD flush.
366 	 */
367 	/* WaForceEnableNonCoherent:bdw,chv */
368 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
369 	wa_masked_en(wal, HDC_CHICKEN0,
370 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
371 		     HDC_FORCE_NON_COHERENT);
372 
373 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
374 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
375 	 *  polygons in the same 8x4 pixel/sample area to be processed without
376 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
377 	 *  buffer."
378 	 *
379 	 * This optimization is off by default for BDW and CHV; turn it on.
380 	 */
381 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
382 
383 	/* Wa4x4STCOptimizationDisable:bdw,chv */
384 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
385 
386 	/*
387 	 * BSpec recommends 8x4 when MSAA is used,
388 	 * however in practice 16x4 seems fastest.
389 	 *
390 	 * Note that PS/WM thread counts depend on the WIZ hashing
391 	 * disable bit, which we don't touch here, but it's good
392 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
393 	 */
394 	wa_masked_field_set(wal, GEN7_GT_MODE,
395 			    GEN6_WIZ_HASHING_MASK,
396 			    GEN6_WIZ_HASHING_16x4);
397 }
398 
399 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
400 				     struct i915_wa_list *wal)
401 {
402 	struct drm_i915_private *i915 = engine->i915;
403 
404 	gen8_ctx_workarounds_init(engine, wal);
405 
406 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
407 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
408 
409 	/* WaDisableDopClockGating:bdw
410 	 *
411 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
412 	 * to disable EUTC clock gating.
413 	 */
414 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
415 			 DOP_CLOCK_GATING_DISABLE);
416 
417 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
418 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
419 
420 	wa_masked_en(wal, HDC_CHICKEN0,
421 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
422 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
423 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
424 		     (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
425 }
426 
427 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
428 				     struct i915_wa_list *wal)
429 {
430 	gen8_ctx_workarounds_init(engine, wal);
431 
432 	/* WaDisableThreadStallDopClockGating:chv */
433 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
434 
435 	/* Improve HiZ throughput on CHV. */
436 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
437 }
438 
439 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
440 				      struct i915_wa_list *wal)
441 {
442 	struct drm_i915_private *i915 = engine->i915;
443 
444 	if (HAS_LLC(i915)) {
445 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
446 		 *
447 		 * Must match Display Engine. See
448 		 * WaCompressedResourceDisplayNewHashMode.
449 		 */
450 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
451 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
452 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
453 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
454 	}
455 
456 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
457 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
458 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
459 			 FLOW_CONTROL_ENABLE |
460 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
461 
462 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
463 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
464 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
465 			 GEN9_ENABLE_YV12_BUGFIX |
466 			 GEN9_ENABLE_GPGPU_PREEMPTION);
467 
468 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
469 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
470 	wa_masked_en(wal, CACHE_MODE_1,
471 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
472 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
473 
474 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
475 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
476 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
477 
478 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
479 	wa_masked_en(wal, HDC_CHICKEN0,
480 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
481 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
482 
483 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
484 	 * both tied to WaForceContextSaveRestoreNonCoherent
485 	 * in some hsds for skl. We keep the tie for all gen9. The
486 	 * documentation is a bit hazy and so we want to get common behaviour,
487 	 * even though there is no clear evidence we would need both on kbl/bxt.
488 	 * This area has been source of system hangs so we play it safe
489 	 * and mimic the skl regardless of what bspec says.
490 	 *
491 	 * Use Force Non-Coherent whenever executing a 3D context. This
492 	 * is a workaround for a possible hang in the unlikely event
493 	 * a TLB invalidation occurs during a PSD flush.
494 	 */
495 
496 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
497 	wa_masked_en(wal, HDC_CHICKEN0,
498 		     HDC_FORCE_NON_COHERENT);
499 
500 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
501 	if (IS_SKYLAKE(i915) ||
502 	    IS_KABYLAKE(i915) ||
503 	    IS_COFFEELAKE(i915) ||
504 	    IS_COMETLAKE(i915))
505 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
506 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
507 
508 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
509 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
510 
511 	/*
512 	 * Supporting preemption with fine-granularity requires changes in the
513 	 * batch buffer programming. Since we can't break old userspace, we
514 	 * need to set our default preemption level to safe value. Userspace is
515 	 * still able to use more fine-grained preemption levels, since in
516 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
517 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
518 	 * not real HW workarounds, but merely a way to start using preemption
519 	 * while maintaining old contract with userspace.
520 	 */
521 
522 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
523 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
524 
525 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
526 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
527 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
528 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
529 
530 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
531 	if (IS_GEN9_LP(i915))
532 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
533 }
534 
535 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
536 				struct i915_wa_list *wal)
537 {
538 	struct intel_gt *gt = engine->gt;
539 	u8 vals[3] = { 0, 0, 0 };
540 	unsigned int i;
541 
542 	for (i = 0; i < 3; i++) {
543 		u8 ss;
544 
545 		/*
546 		 * Only consider slices where one, and only one, subslice has 7
547 		 * EUs
548 		 */
549 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
550 			continue;
551 
552 		/*
553 		 * subslice_7eu[i] != 0 (because of the check above) and
554 		 * ss_max == 4 (maximum number of subslices possible per slice)
555 		 *
556 		 * ->    0 <= ss <= 3;
557 		 */
558 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
559 		vals[i] = 3 - ss;
560 	}
561 
562 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
563 		return;
564 
565 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
566 	wa_masked_field_set(wal, GEN7_GT_MODE,
567 			    GEN9_IZ_HASHING_MASK(2) |
568 			    GEN9_IZ_HASHING_MASK(1) |
569 			    GEN9_IZ_HASHING_MASK(0),
570 			    GEN9_IZ_HASHING(2, vals[2]) |
571 			    GEN9_IZ_HASHING(1, vals[1]) |
572 			    GEN9_IZ_HASHING(0, vals[0]));
573 }
574 
575 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
576 				     struct i915_wa_list *wal)
577 {
578 	gen9_ctx_workarounds_init(engine, wal);
579 	skl_tune_iz_hashing(engine, wal);
580 }
581 
582 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
583 				     struct i915_wa_list *wal)
584 {
585 	gen9_ctx_workarounds_init(engine, wal);
586 
587 	/* WaDisableThreadStallDopClockGating:bxt */
588 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
589 			 STALL_DOP_GATING_DISABLE);
590 
591 	/* WaToEnableHwFixForPushConstHWBug:bxt */
592 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
593 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
594 }
595 
596 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
597 				     struct i915_wa_list *wal)
598 {
599 	struct drm_i915_private *i915 = engine->i915;
600 
601 	gen9_ctx_workarounds_init(engine, wal);
602 
603 	/* WaToEnableHwFixForPushConstHWBug:kbl */
604 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
605 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
606 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
607 
608 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
609 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
610 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
611 }
612 
613 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
614 				     struct i915_wa_list *wal)
615 {
616 	gen9_ctx_workarounds_init(engine, wal);
617 
618 	/* WaToEnableHwFixForPushConstHWBug:glk */
619 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
620 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
621 }
622 
623 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
624 				     struct i915_wa_list *wal)
625 {
626 	gen9_ctx_workarounds_init(engine, wal);
627 
628 	/* WaToEnableHwFixForPushConstHWBug:cfl */
629 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
630 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
631 
632 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
633 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
634 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
635 }
636 
637 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
638 				     struct i915_wa_list *wal)
639 {
640 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
641 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
642 
643 	/* WaForceEnableNonCoherent:icl
644 	 * This is not the same workaround as in early Gen9 platforms, where
645 	 * lacking this could cause system hangs, but coherency performance
646 	 * overhead is high and only a few compute workloads really need it
647 	 * (the register is whitelisted in hardware now, so UMDs can opt in
648 	 * for coherency if they have a good reason).
649 	 */
650 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
651 
652 	/* WaEnableFloatBlendOptimization:icl */
653 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
654 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
655 		   0 /* write-only, so skip validation */,
656 		   true);
657 
658 	/* WaDisableGPGPUMidThreadPreemption:icl */
659 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
660 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
661 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
662 
663 	/* allow headerless messages for preemptible GPGPU context */
664 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
665 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
666 
667 	/* Wa_1604278689:icl,ehl */
668 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
669 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
670 			 0,
671 			 0xFFFFFFFF);
672 
673 	/* Wa_1406306137:icl,ehl */
674 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
675 }
676 
677 /*
678  * These settings aren't actually workarounds, but general tuning settings that
679  * need to be programmed on dg2 platform.
680  */
681 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
682 				   struct i915_wa_list *wal)
683 {
684 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
685 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
686 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
687 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
688 			     FF_MODE2_TDS_TIMER_128);
689 }
690 
691 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
692 				       struct i915_wa_list *wal)
693 {
694 	struct drm_i915_private *i915 = engine->i915;
695 
696 	/*
697 	 * Wa_1409142259:tgl,dg1,adl-p
698 	 * Wa_1409347922:tgl,dg1,adl-p
699 	 * Wa_1409252684:tgl,dg1,adl-p
700 	 * Wa_1409217633:tgl,dg1,adl-p
701 	 * Wa_1409207793:tgl,dg1,adl-p
702 	 * Wa_1409178076:tgl,dg1,adl-p
703 	 * Wa_1408979724:tgl,dg1,adl-p
704 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
705 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
706 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
707 	 */
708 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
709 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
710 
711 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
712 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
713 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
714 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
715 
716 	/*
717 	 * Wa_16011163337 - GS_TIMER
718 	 *
719 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
720 	 * need to program it even on those that don't explicitly list that
721 	 * workaround.
722 	 *
723 	 * Note that the programming of GEN12_FF_MODE2 is further modified
724 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
725 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
726 	 * value when read from the CPU.
727 	 *
728 	 * The default value for this register is zero for all fields.
729 	 * So instead of doing a RMW we should just write the desired values
730 	 * for TDS and GS timers. Note that since the readback can't be trusted,
731 	 * the clear mask is just set to ~0 to make sure other bits are not
732 	 * inadvertently set. For the same reason read verification is ignored.
733 	 */
734 	wa_add(wal,
735 	       GEN12_FF_MODE2,
736 	       ~0,
737 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
738 	       0, false);
739 
740 	if (!IS_DG1(i915)) {
741 		/* Wa_1806527549 */
742 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
743 
744 		/* Wa_1606376872 */
745 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
746 	}
747 }
748 
749 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
750 				     struct i915_wa_list *wal)
751 {
752 	gen12_ctx_workarounds_init(engine, wal);
753 
754 	/* Wa_1409044764 */
755 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
756 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
757 
758 	/* Wa_22010493298 */
759 	wa_masked_en(wal, HIZ_CHICKEN,
760 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
761 }
762 
763 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
764 				     struct i915_wa_list *wal)
765 {
766 	dg2_ctx_gt_tuning_init(engine, wal);
767 
768 	/* Wa_16013271637:dg2 */
769 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
770 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
771 
772 	/* Wa_14014947963:dg2 */
773 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
774 
775 	/* Wa_18018764978:dg2 */
776 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
777 
778 	/* Wa_18019271663:dg2 */
779 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
780 
781 	/* Wa_14019877138:dg2 */
782 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
783 }
784 
785 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
786 				     struct i915_wa_list *wal)
787 {
788 	struct intel_gt *gt = engine->gt;
789 
790 	dg2_ctx_gt_tuning_init(engine, wal);
791 
792 	/*
793 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
794 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
795 	 * steppings.
796 	 */
797 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
798 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
799 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
800 }
801 
802 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
803 				       struct i915_wa_list *wal)
804 {
805 	struct intel_gt *gt = engine->gt;
806 
807 	xelpg_ctx_gt_tuning_init(engine, wal);
808 
809 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
810 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
811 		/* Wa_14014947963 */
812 		wa_masked_field_set(wal, VF_PREEMPTION,
813 				    PREEMPTION_VERTEX_COUNT, 0x4000);
814 
815 		/* Wa_16013271637 */
816 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
817 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
818 
819 		/* Wa_18019627453 */
820 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
821 
822 		/* Wa_18018764978 */
823 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
824 	}
825 
826 	/* Wa_18019271663 */
827 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
828 
829 	/* Wa_14019877138 */
830 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
831 }
832 
833 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
834 					 struct i915_wa_list *wal)
835 {
836 	/*
837 	 * This is a "fake" workaround defined by software to ensure we
838 	 * maintain reliable, backward-compatible behavior for userspace with
839 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
840 	 *
841 	 * The per-context setting of MI_MODE[12] determines whether the bits
842 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
843 	 * in the traditional manner or whether they should instead use a new
844 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
845 	 * into 3rd-level batchbuffers.  When this new capability was first
846 	 * added in TGL, it remained off by default unless a context
847 	 * intentionally opted in to the new behavior.  However Xe_HPG now
848 	 * flips this on by default and requires that we explicitly opt out if
849 	 * we don't want the new behavior.
850 	 *
851 	 * From a SW perspective, we want to maintain the backward-compatible
852 	 * behavior for userspace, so we'll apply a fake workaround to set it
853 	 * back to the legacy behavior on platforms where the hardware default
854 	 * is to break compatibility.  At the moment there is no Linux
855 	 * userspace that utilizes third-level batchbuffers, so this will avoid
856 	 * userspace from needing to make any changes.  using the legacy
857 	 * meaning is the correct thing to do.  If/when we have userspace
858 	 * consumers that want to utilize third-level batch nesting, we can
859 	 * provide a context parameter to allow them to opt-in.
860 	 */
861 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
862 }
863 
864 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
865 				   struct i915_wa_list *wal)
866 {
867 	u8 mocs;
868 
869 	/*
870 	 * Some blitter commands do not have a field for MOCS, those
871 	 * commands will use MOCS index pointed by BLIT_CCTL.
872 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
873 	 */
874 	if (engine->class == COPY_ENGINE_CLASS) {
875 		mocs = engine->gt->mocs.uc_index;
876 		wa_write_clr_set(wal,
877 				 BLIT_CCTL(engine->mmio_base),
878 				 BLIT_CCTL_MASK,
879 				 BLIT_CCTL_MOCS(mocs, mocs));
880 	}
881 }
882 
883 /*
884  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
885  * defined by the hardware team, but it programming general context registers.
886  * Adding those context register programming in context workaround
887  * allow us to use the wa framework for proper application and validation.
888  */
889 static void
890 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
891 			  struct i915_wa_list *wal)
892 {
893 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
894 		fakewa_disable_nestedbb_mode(engine, wal);
895 
896 	gen12_ctx_gt_mocs_init(engine, wal);
897 }
898 
899 static void
900 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
901 			   struct i915_wa_list *wal,
902 			   const char *name)
903 {
904 	struct drm_i915_private *i915 = engine->i915;
905 
906 	wa_init_start(wal, engine->gt, name, engine->name);
907 
908 	/* Applies to all engines */
909 	/*
910 	 * Fake workarounds are not the actual workaround but
911 	 * programming of context registers using workaround framework.
912 	 */
913 	if (GRAPHICS_VER(i915) >= 12)
914 		gen12_ctx_gt_fake_wa_init(engine, wal);
915 
916 	if (engine->class != RENDER_CLASS)
917 		goto done;
918 
919 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
920 		xelpg_ctx_workarounds_init(engine, wal);
921 	else if (IS_PONTEVECCHIO(i915))
922 		; /* noop; none at this time */
923 	else if (IS_DG2(i915))
924 		dg2_ctx_workarounds_init(engine, wal);
925 	else if (IS_XEHPSDV(i915))
926 		; /* noop; none at this time */
927 	else if (IS_DG1(i915))
928 		dg1_ctx_workarounds_init(engine, wal);
929 	else if (GRAPHICS_VER(i915) == 12)
930 		gen12_ctx_workarounds_init(engine, wal);
931 	else if (GRAPHICS_VER(i915) == 11)
932 		icl_ctx_workarounds_init(engine, wal);
933 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
934 		cfl_ctx_workarounds_init(engine, wal);
935 	else if (IS_GEMINILAKE(i915))
936 		glk_ctx_workarounds_init(engine, wal);
937 	else if (IS_KABYLAKE(i915))
938 		kbl_ctx_workarounds_init(engine, wal);
939 	else if (IS_BROXTON(i915))
940 		bxt_ctx_workarounds_init(engine, wal);
941 	else if (IS_SKYLAKE(i915))
942 		skl_ctx_workarounds_init(engine, wal);
943 	else if (IS_CHERRYVIEW(i915))
944 		chv_ctx_workarounds_init(engine, wal);
945 	else if (IS_BROADWELL(i915))
946 		bdw_ctx_workarounds_init(engine, wal);
947 	else if (GRAPHICS_VER(i915) == 7)
948 		gen7_ctx_workarounds_init(engine, wal);
949 	else if (GRAPHICS_VER(i915) == 6)
950 		gen6_ctx_workarounds_init(engine, wal);
951 	else if (GRAPHICS_VER(i915) < 8)
952 		;
953 	else
954 		MISSING_CASE(GRAPHICS_VER(i915));
955 
956 done:
957 	wa_init_finish(wal);
958 }
959 
960 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
961 {
962 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
963 }
964 
965 int intel_engine_emit_ctx_wa(struct i915_request *rq)
966 {
967 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
968 	struct intel_uncore *uncore = rq->engine->uncore;
969 	enum forcewake_domains fw;
970 	unsigned long flags;
971 	struct i915_wa *wa;
972 	unsigned int i;
973 	u32 *cs;
974 	int ret;
975 
976 	if (wal->count == 0)
977 		return 0;
978 
979 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
980 	if (ret)
981 		return ret;
982 
983 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
984 	if (IS_ERR(cs))
985 		return PTR_ERR(cs);
986 
987 	fw = wal_get_fw_for_rmw(uncore, wal);
988 
989 	intel_gt_mcr_lock(wal->gt, &flags);
990 	spin_lock(&uncore->lock);
991 	intel_uncore_forcewake_get__locked(uncore, fw);
992 
993 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
994 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
995 		u32 val;
996 
997 		/* Skip reading the register if it's not really needed */
998 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
999 			val = wa->set;
1000 		} else {
1001 			val = wa->is_mcr ?
1002 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1003 				intel_uncore_read_fw(uncore, wa->reg);
1004 			val &= ~wa->clr;
1005 			val |= wa->set;
1006 		}
1007 
1008 		*cs++ = i915_mmio_reg_offset(wa->reg);
1009 		*cs++ = val;
1010 	}
1011 	*cs++ = MI_NOOP;
1012 
1013 	intel_uncore_forcewake_put__locked(uncore, fw);
1014 	spin_unlock(&uncore->lock);
1015 	intel_gt_mcr_unlock(wal->gt, flags);
1016 
1017 	intel_ring_advance(rq, cs);
1018 
1019 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1020 	if (ret)
1021 		return ret;
1022 
1023 	return 0;
1024 }
1025 
1026 static void
1027 gen4_gt_workarounds_init(struct intel_gt *gt,
1028 			 struct i915_wa_list *wal)
1029 {
1030 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1031 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1032 }
1033 
1034 static void
1035 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1036 {
1037 	gen4_gt_workarounds_init(gt, wal);
1038 
1039 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1040 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1041 }
1042 
1043 static void
1044 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1045 {
1046 	g4x_gt_workarounds_init(gt, wal);
1047 
1048 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1049 }
1050 
1051 static void
1052 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1053 {
1054 }
1055 
1056 static void
1057 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1058 {
1059 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1060 	wa_masked_dis(wal,
1061 		      GEN7_COMMON_SLICE_CHICKEN1,
1062 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1063 
1064 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1065 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1066 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1067 
1068 	/* WaForceL3Serialization:ivb */
1069 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1070 }
1071 
1072 static void
1073 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1074 {
1075 	/* WaForceL3Serialization:vlv */
1076 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1077 
1078 	/*
1079 	 * WaIncreaseL3CreditsForVLVB0:vlv
1080 	 * This is the hardware default actually.
1081 	 */
1082 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1083 }
1084 
1085 static void
1086 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1087 {
1088 	/* L3 caching of data atomics doesn't work -- disable it. */
1089 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1090 
1091 	wa_add(wal,
1092 	       HSW_ROW_CHICKEN3, 0,
1093 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1094 	       0 /* XXX does this reg exist? */, true);
1095 
1096 	/* WaVSRefCountFullforceMissDisable:hsw */
1097 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1098 }
1099 
1100 static void
1101 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1102 {
1103 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1104 	unsigned int slice, subslice;
1105 	u32 mcr, mcr_mask;
1106 
1107 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1108 
1109 	/*
1110 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1111 	 * Before any MMIO read into slice/subslice specific registers, MCR
1112 	 * packet control register needs to be programmed to point to any
1113 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1114 	 * This means each subsequent MMIO read will be forwarded to an
1115 	 * specific s/ss combination, but this is OK since these registers
1116 	 * are consistent across s/ss in almost all cases. In the rare
1117 	 * occasions, such as INSTDONE, where this value is dependent
1118 	 * on s/ss combo, the read should be done with read_subslice_reg.
1119 	 */
1120 	slice = ffs(sseu->slice_mask) - 1;
1121 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1122 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1123 	GEM_BUG_ON(!subslice);
1124 	subslice--;
1125 
1126 	/*
1127 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1128 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1129 	 */
1130 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1131 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1132 
1133 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1134 
1135 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1136 }
1137 
1138 static void
1139 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1140 {
1141 	struct drm_i915_private *i915 = gt->i915;
1142 
1143 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1144 	gen9_wa_init_mcr(i915, wal);
1145 
1146 	/* WaDisableKillLogic:bxt,skl,kbl */
1147 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1148 		wa_write_or(wal,
1149 			    GAM_ECOCHK,
1150 			    ECOCHK_DIS_TLB);
1151 
1152 	if (HAS_LLC(i915)) {
1153 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1154 		 *
1155 		 * Must match Display Engine. See
1156 		 * WaCompressedResourceDisplayNewHashMode.
1157 		 */
1158 		wa_write_or(wal,
1159 			    MMCD_MISC_CTRL,
1160 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1161 	}
1162 
1163 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1164 	wa_write_or(wal,
1165 		    GAM_ECOCHK,
1166 		    BDW_DISABLE_HDC_INVALIDATION);
1167 }
1168 
1169 static void
1170 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1171 {
1172 	gen9_gt_workarounds_init(gt, wal);
1173 
1174 	/* WaDisableGafsUnitClkGating:skl */
1175 	wa_write_or(wal,
1176 		    GEN7_UCGCTL4,
1177 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1178 
1179 	/* WaInPlaceDecompressionHang:skl */
1180 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1181 		wa_write_or(wal,
1182 			    GEN9_GAMT_ECO_REG_RW_IA,
1183 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1184 }
1185 
1186 static void
1187 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1188 {
1189 	gen9_gt_workarounds_init(gt, wal);
1190 
1191 	/* WaDisableDynamicCreditSharing:kbl */
1192 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1193 		wa_write_or(wal,
1194 			    GAMT_CHKN_BIT_REG,
1195 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1196 
1197 	/* WaDisableGafsUnitClkGating:kbl */
1198 	wa_write_or(wal,
1199 		    GEN7_UCGCTL4,
1200 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1201 
1202 	/* WaInPlaceDecompressionHang:kbl */
1203 	wa_write_or(wal,
1204 		    GEN9_GAMT_ECO_REG_RW_IA,
1205 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1206 }
1207 
1208 static void
1209 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1210 {
1211 	gen9_gt_workarounds_init(gt, wal);
1212 }
1213 
1214 static void
1215 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1216 {
1217 	gen9_gt_workarounds_init(gt, wal);
1218 
1219 	/* WaDisableGafsUnitClkGating:cfl */
1220 	wa_write_or(wal,
1221 		    GEN7_UCGCTL4,
1222 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1223 
1224 	/* WaInPlaceDecompressionHang:cfl */
1225 	wa_write_or(wal,
1226 		    GEN9_GAMT_ECO_REG_RW_IA,
1227 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1228 }
1229 
1230 static void __set_mcr_steering(struct i915_wa_list *wal,
1231 			       i915_reg_t steering_reg,
1232 			       unsigned int slice, unsigned int subslice)
1233 {
1234 	u32 mcr, mcr_mask;
1235 
1236 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1237 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1238 
1239 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1240 }
1241 
1242 static void debug_dump_steering(struct intel_gt *gt)
1243 {
1244 	struct drm_printer p = drm_dbg_printer(&gt->i915->drm, DRM_UT_DRIVER,
1245 					       "MCR Steering:");
1246 
1247 	if (drm_debug_enabled(DRM_UT_DRIVER))
1248 		intel_gt_mcr_report_steering(&p, gt, false);
1249 }
1250 
1251 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1252 			 unsigned int slice, unsigned int subslice)
1253 {
1254 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1255 
1256 	gt->default_steering.groupid = slice;
1257 	gt->default_steering.instanceid = subslice;
1258 
1259 	debug_dump_steering(gt);
1260 }
1261 
1262 static void
1263 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1264 {
1265 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1266 	unsigned int subslice;
1267 
1268 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1269 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1270 
1271 	/*
1272 	 * Although a platform may have subslices, we need to always steer
1273 	 * reads to the lowest instance that isn't fused off.  When Render
1274 	 * Power Gating is enabled, grabbing forcewake will only power up a
1275 	 * single subslice (the "minconfig") if there isn't a real workload
1276 	 * that needs to be run; this means that if we steer register reads to
1277 	 * one of the higher subslices, we run the risk of reading back 0's or
1278 	 * random garbage.
1279 	 */
1280 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1281 
1282 	/*
1283 	 * If the subslice we picked above also steers us to a valid L3 bank,
1284 	 * then we can just rely on the default steering and won't need to
1285 	 * worry about explicitly re-steering L3BANK reads later.
1286 	 */
1287 	if (gt->info.l3bank_mask & BIT(subslice))
1288 		gt->steering_table[L3BANK] = NULL;
1289 
1290 	__add_mcr_wa(gt, wal, 0, subslice);
1291 }
1292 
1293 static void
1294 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1295 {
1296 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1297 	unsigned long slice, subslice = 0, slice_mask = 0;
1298 	u32 lncf_mask = 0;
1299 	int i;
1300 
1301 	/*
1302 	 * On Xe_HP the steering increases in complexity. There are now several
1303 	 * more units that require steering and we're not guaranteed to be able
1304 	 * to find a common setting for all of them. These are:
1305 	 * - GSLICE (fusable)
1306 	 * - DSS (sub-unit within gslice; fusable)
1307 	 * - L3 Bank (fusable)
1308 	 * - MSLICE (fusable)
1309 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1310 	 *
1311 	 * We'll do our default/implicit steering based on GSLICE (in the
1312 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1313 	 * find overlap between the valid MSLICE and/or LNCF values with
1314 	 * a suitable GSLICE, then we can just re-use the default value and
1315 	 * skip and explicit steering at runtime.
1316 	 *
1317 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1318 	 * a valid sliceid value.  DSS steering is the only type of steering
1319 	 * that utilizes the 'subsliceid' bits.
1320 	 *
1321 	 * Also note that, even though the steering domain is called "GSlice"
1322 	 * and it is encoded in the register using the gslice format, the spec
1323 	 * says that the combined (geometry | compute) fuse should be used to
1324 	 * select the steering.
1325 	 */
1326 
1327 	/* Find the potential gslice candidates */
1328 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1329 						       GEN_DSS_PER_GSLICE);
1330 
1331 	/*
1332 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1333 	 * mslice is fine.
1334 	 */
1335 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1336 		lncf_mask |= (0x3 << (i * 2));
1337 
1338 	/*
1339 	 * Are there any sliceid values that work for both GSLICE and LNCF
1340 	 * steering?
1341 	 */
1342 	if (slice_mask & lncf_mask) {
1343 		slice_mask &= lncf_mask;
1344 		gt->steering_table[LNCF] = NULL;
1345 	}
1346 
1347 	/* How about sliceid values that also work for MSLICE steering? */
1348 	if (slice_mask & gt->info.mslice_mask) {
1349 		slice_mask &= gt->info.mslice_mask;
1350 		gt->steering_table[MSLICE] = NULL;
1351 	}
1352 
1353 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1354 		gt->steering_table[GAM] = NULL;
1355 
1356 	slice = __ffs(slice_mask);
1357 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1358 		GEN_DSS_PER_GSLICE;
1359 
1360 	__add_mcr_wa(gt, wal, slice, subslice);
1361 
1362 	/*
1363 	 * SQIDI ranges are special because they use different steering
1364 	 * registers than everything else we work with.  On XeHP SDV and
1365 	 * DG2-G10, any value in the steering registers will work fine since
1366 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1367 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1368 	 * we'll just steer to a hardcoded "2" since that value will work
1369 	 * everywhere.
1370 	 */
1371 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1372 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1373 
1374 	/*
1375 	 * On DG2, GAM registers have a dedicated steering control register
1376 	 * and must always be programmed to a hardcoded groupid of "1."
1377 	 */
1378 	if (IS_DG2(gt->i915))
1379 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1380 }
1381 
1382 static void
1383 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1384 {
1385 	unsigned int dss;
1386 
1387 	/*
1388 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1389 	 * non-fused-off DSS.  All other types of MCR registers will be
1390 	 * explicitly steered.
1391 	 */
1392 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1393 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1394 }
1395 
1396 static void
1397 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1398 {
1399 	struct drm_i915_private *i915 = gt->i915;
1400 
1401 	icl_wa_init_mcr(gt, wal);
1402 
1403 	/* WaModifyGamTlbPartitioning:icl */
1404 	wa_write_clr_set(wal,
1405 			 GEN11_GACB_PERF_CTRL,
1406 			 GEN11_HASH_CTRL_MASK,
1407 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1408 
1409 	/* Wa_1405766107:icl
1410 	 * Formerly known as WaCL2SFHalfMaxAlloc
1411 	 */
1412 	wa_write_or(wal,
1413 		    GEN11_LSN_UNSLCVC,
1414 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1415 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1416 
1417 	/* Wa_220166154:icl
1418 	 * Formerly known as WaDisCtxReload
1419 	 */
1420 	wa_write_or(wal,
1421 		    GEN8_GAMW_ECO_DEV_RW_IA,
1422 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1423 
1424 	/* Wa_1406463099:icl
1425 	 * Formerly known as WaGamTlbPendError
1426 	 */
1427 	wa_write_or(wal,
1428 		    GAMT_CHKN_BIT_REG,
1429 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1430 
1431 	/*
1432 	 * Wa_1408615072:icl,ehl  (vsunit)
1433 	 * Wa_1407596294:icl,ehl  (hsunit)
1434 	 */
1435 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1436 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1437 
1438 	/* Wa_1407352427:icl,ehl */
1439 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1440 		    PSDUNIT_CLKGATE_DIS);
1441 
1442 	/* Wa_1406680159:icl,ehl */
1443 	wa_mcr_write_or(wal,
1444 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1445 			GWUNIT_CLKGATE_DIS);
1446 
1447 	/* Wa_1607087056:icl,ehl,jsl */
1448 	if (IS_ICELAKE(i915) ||
1449 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1450 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1451 		wa_write_or(wal,
1452 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1453 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1454 
1455 	/*
1456 	 * This is not a documented workaround, but rather an optimization
1457 	 * to reduce sampler power.
1458 	 */
1459 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1460 }
1461 
1462 /*
1463  * Though there are per-engine instances of these registers,
1464  * they retain their value through engine resets and should
1465  * only be provided on the GT workaround list rather than
1466  * the engine-specific workaround list.
1467  */
1468 static void
1469 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1470 {
1471 	struct intel_engine_cs *engine;
1472 	int id;
1473 
1474 	for_each_engine(engine, gt, id) {
1475 		if (engine->class != VIDEO_DECODE_CLASS ||
1476 		    (engine->instance % 2))
1477 			continue;
1478 
1479 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1480 			    IECPUNIT_CLKGATE_DIS);
1481 	}
1482 }
1483 
1484 static void
1485 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1486 {
1487 	icl_wa_init_mcr(gt, wal);
1488 
1489 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1490 	wa_14011060649(gt, wal);
1491 
1492 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1493 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1494 
1495 	/*
1496 	 * Wa_14015795083
1497 	 *
1498 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1499 	 * preventing i915 from modifying it for this workaround.  Skip the
1500 	 * readback verification for this workaround on debug builds; if the
1501 	 * workaround doesn't stick due to firmware behavior, it's not an error
1502 	 * that we want CI to flag.
1503 	 */
1504 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1505 	       0, 0, false);
1506 }
1507 
1508 static void
1509 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1510 {
1511 	gen12_gt_workarounds_init(gt, wal);
1512 
1513 	/* Wa_1409420604:dg1 */
1514 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1515 			CPSSUNIT_CLKGATE_DIS);
1516 
1517 	/* Wa_1408615072:dg1 */
1518 	/* Empirical testing shows this register is unaffected by engine reset. */
1519 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1520 }
1521 
1522 static void
1523 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1524 {
1525 	struct drm_i915_private *i915 = gt->i915;
1526 
1527 	xehp_init_mcr(gt, wal);
1528 
1529 	/* Wa_1409757795:xehpsdv */
1530 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1531 
1532 	/* Wa_18011725039:xehpsdv */
1533 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1534 		wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1535 		wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1536 	}
1537 
1538 	/* Wa_16011155590:xehpsdv */
1539 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1540 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1541 			    TSGUNIT_CLKGATE_DIS);
1542 
1543 	/* Wa_14011780169:xehpsdv */
1544 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1545 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1546 			    GAMTLBVDBOX7_CLKGATE_DIS |
1547 			    GAMTLBVDBOX6_CLKGATE_DIS |
1548 			    GAMTLBVDBOX5_CLKGATE_DIS |
1549 			    GAMTLBVDBOX4_CLKGATE_DIS |
1550 			    GAMTLBVDBOX3_CLKGATE_DIS |
1551 			    GAMTLBVDBOX2_CLKGATE_DIS |
1552 			    GAMTLBVDBOX1_CLKGATE_DIS |
1553 			    GAMTLBVDBOX0_CLKGATE_DIS |
1554 			    GAMTLBKCR_CLKGATE_DIS |
1555 			    GAMTLBGUC_CLKGATE_DIS |
1556 			    GAMTLBBLT_CLKGATE_DIS);
1557 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1558 			    GAMTLBGFXA1_CLKGATE_DIS |
1559 			    GAMTLBCOMPA0_CLKGATE_DIS |
1560 			    GAMTLBCOMPA1_CLKGATE_DIS |
1561 			    GAMTLBCOMPB0_CLKGATE_DIS |
1562 			    GAMTLBCOMPB1_CLKGATE_DIS |
1563 			    GAMTLBCOMPC0_CLKGATE_DIS |
1564 			    GAMTLBCOMPC1_CLKGATE_DIS |
1565 			    GAMTLBCOMPD0_CLKGATE_DIS |
1566 			    GAMTLBCOMPD1_CLKGATE_DIS |
1567 			    GAMTLBMERT_CLKGATE_DIS   |
1568 			    GAMTLBVEBOX3_CLKGATE_DIS |
1569 			    GAMTLBVEBOX2_CLKGATE_DIS |
1570 			    GAMTLBVEBOX1_CLKGATE_DIS |
1571 			    GAMTLBVEBOX0_CLKGATE_DIS);
1572 	}
1573 
1574 	/* Wa_16012725990:xehpsdv */
1575 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1576 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1577 
1578 	/* Wa_14011060649:xehpsdv */
1579 	wa_14011060649(gt, wal);
1580 
1581 	/* Wa_14012362059:xehpsdv */
1582 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1583 
1584 	/* Wa_14014368820:xehpsdv */
1585 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1586 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1587 
1588 	/* Wa_14010670810:xehpsdv */
1589 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1590 }
1591 
1592 static void
1593 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1594 {
1595 	xehp_init_mcr(gt, wal);
1596 
1597 	/* Wa_14011060649:dg2 */
1598 	wa_14011060649(gt, wal);
1599 
1600 	if (IS_DG2_G10(gt->i915)) {
1601 		/* Wa_22010523718:dg2 */
1602 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1603 			    CG3DDISCFEG_CLKGATE_DIS);
1604 
1605 		/* Wa_14011006942:dg2 */
1606 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1607 				DSS_ROUTER_CLKGATE_DIS);
1608 	}
1609 
1610 	/* Wa_14014830051:dg2 */
1611 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1612 
1613 	/*
1614 	 * Wa_14015795083
1615 	 * Skip verification for possibly locked register.
1616 	 */
1617 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1618 	       0, 0, false);
1619 
1620 	/* Wa_18018781329 */
1621 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1622 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1623 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1624 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1625 
1626 	/* Wa_1509235366:dg2 */
1627 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1628 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1629 
1630 	/* Wa_14010648519:dg2 */
1631 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1632 }
1633 
1634 static void
1635 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1636 {
1637 	pvc_init_mcr(gt, wal);
1638 
1639 	/* Wa_14015795083 */
1640 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1641 
1642 	/* Wa_18018781329 */
1643 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1644 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1645 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1646 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1647 
1648 	/* Wa_16016694945 */
1649 	wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1650 }
1651 
1652 static void
1653 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1654 {
1655 	/* Wa_14018575942 / Wa_18018781329 */
1656 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1657 
1658 	/* Wa_22016670082 */
1659 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1660 
1661 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1662 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1663 		/* Wa_14014830051 */
1664 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1665 
1666 		/* Wa_14015795083 */
1667 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1668 	}
1669 
1670 	/*
1671 	 * Unlike older platforms, we no longer setup implicit steering here;
1672 	 * all MCR accesses are explicitly steered.
1673 	 */
1674 	debug_dump_steering(gt);
1675 }
1676 
1677 static void
1678 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1679 {
1680 	struct intel_engine_cs *engine;
1681 	int id;
1682 
1683 	for_each_engine(engine, gt, id)
1684 		if (engine->class == VIDEO_DECODE_CLASS)
1685 			wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1686 				    MFXPIPE_CLKGATE_DIS);
1687 }
1688 
1689 static void
1690 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1691 {
1692 	wa_16021867713(gt, wal);
1693 
1694 	/*
1695 	 * Wa_14018778641
1696 	 * Wa_18018781329
1697 	 *
1698 	 * Note that although these registers are MCR on the primary
1699 	 * GT, the media GT's versions are regular singleton registers.
1700 	 */
1701 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1702 
1703 	/* Wa_22016670082 */
1704 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1705 
1706 	debug_dump_steering(gt);
1707 }
1708 
1709 /*
1710  * The bspec performance guide has recommended MMIO tuning settings.  These
1711  * aren't truly "workarounds" but we want to program them through the
1712  * workaround infrastructure to make sure they're (re)applied at the proper
1713  * times.
1714  *
1715  * The programming in this function is for settings that persist through
1716  * engine resets and also are not part of any engine's register state context.
1717  * I.e., settings that only need to be re-applied in the event of a full GT
1718  * reset.
1719  */
1720 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1721 {
1722 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1723 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1724 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1725 	}
1726 
1727 	if (IS_PONTEVECCHIO(gt->i915)) {
1728 		wa_mcr_write(wal, XEHPC_L3SCRUB,
1729 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1730 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1731 	}
1732 
1733 	if (IS_DG2(gt->i915)) {
1734 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1735 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1736 	}
1737 }
1738 
1739 static void
1740 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1741 {
1742 	struct drm_i915_private *i915 = gt->i915;
1743 
1744 	gt_tuning_settings(gt, wal);
1745 
1746 	if (gt->type == GT_MEDIA) {
1747 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1748 			xelpmp_gt_workarounds_init(gt, wal);
1749 		else
1750 			MISSING_CASE(MEDIA_VER_FULL(i915));
1751 
1752 		return;
1753 	}
1754 
1755 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1756 		xelpg_gt_workarounds_init(gt, wal);
1757 	else if (IS_PONTEVECCHIO(i915))
1758 		pvc_gt_workarounds_init(gt, wal);
1759 	else if (IS_DG2(i915))
1760 		dg2_gt_workarounds_init(gt, wal);
1761 	else if (IS_XEHPSDV(i915))
1762 		xehpsdv_gt_workarounds_init(gt, wal);
1763 	else if (IS_DG1(i915))
1764 		dg1_gt_workarounds_init(gt, wal);
1765 	else if (GRAPHICS_VER(i915) == 12)
1766 		gen12_gt_workarounds_init(gt, wal);
1767 	else if (GRAPHICS_VER(i915) == 11)
1768 		icl_gt_workarounds_init(gt, wal);
1769 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1770 		cfl_gt_workarounds_init(gt, wal);
1771 	else if (IS_GEMINILAKE(i915))
1772 		glk_gt_workarounds_init(gt, wal);
1773 	else if (IS_KABYLAKE(i915))
1774 		kbl_gt_workarounds_init(gt, wal);
1775 	else if (IS_BROXTON(i915))
1776 		gen9_gt_workarounds_init(gt, wal);
1777 	else if (IS_SKYLAKE(i915))
1778 		skl_gt_workarounds_init(gt, wal);
1779 	else if (IS_HASWELL(i915))
1780 		hsw_gt_workarounds_init(gt, wal);
1781 	else if (IS_VALLEYVIEW(i915))
1782 		vlv_gt_workarounds_init(gt, wal);
1783 	else if (IS_IVYBRIDGE(i915))
1784 		ivb_gt_workarounds_init(gt, wal);
1785 	else if (GRAPHICS_VER(i915) == 6)
1786 		snb_gt_workarounds_init(gt, wal);
1787 	else if (GRAPHICS_VER(i915) == 5)
1788 		ilk_gt_workarounds_init(gt, wal);
1789 	else if (IS_G4X(i915))
1790 		g4x_gt_workarounds_init(gt, wal);
1791 	else if (GRAPHICS_VER(i915) == 4)
1792 		gen4_gt_workarounds_init(gt, wal);
1793 	else if (GRAPHICS_VER(i915) <= 8)
1794 		;
1795 	else
1796 		MISSING_CASE(GRAPHICS_VER(i915));
1797 }
1798 
1799 void intel_gt_init_workarounds(struct intel_gt *gt)
1800 {
1801 	struct i915_wa_list *wal = &gt->wa_list;
1802 
1803 	wa_init_start(wal, gt, "GT", "global");
1804 	gt_init_workarounds(gt, wal);
1805 	wa_init_finish(wal);
1806 }
1807 
1808 static bool
1809 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1810 	  const char *name, const char *from)
1811 {
1812 	if ((cur ^ wa->set) & wa->read) {
1813 		gt_err(gt,
1814 		       "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1815 		       name, from, i915_mmio_reg_offset(wa->reg),
1816 		       cur, cur & wa->read, wa->set & wa->read);
1817 
1818 		return false;
1819 	}
1820 
1821 	return true;
1822 }
1823 
1824 static void wa_list_apply(const struct i915_wa_list *wal)
1825 {
1826 	struct intel_gt *gt = wal->gt;
1827 	struct intel_uncore *uncore = gt->uncore;
1828 	enum forcewake_domains fw;
1829 	unsigned long flags;
1830 	struct i915_wa *wa;
1831 	unsigned int i;
1832 
1833 	if (!wal->count)
1834 		return;
1835 
1836 	fw = wal_get_fw_for_rmw(uncore, wal);
1837 
1838 	intel_gt_mcr_lock(gt, &flags);
1839 	spin_lock(&uncore->lock);
1840 	intel_uncore_forcewake_get__locked(uncore, fw);
1841 
1842 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1843 		u32 val, old = 0;
1844 
1845 		/* open-coded rmw due to steering */
1846 		if (wa->clr)
1847 			old = wa->is_mcr ?
1848 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1849 				intel_uncore_read_fw(uncore, wa->reg);
1850 		val = (old & ~wa->clr) | wa->set;
1851 		if (val != old || !wa->clr) {
1852 			if (wa->is_mcr)
1853 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1854 			else
1855 				intel_uncore_write_fw(uncore, wa->reg, val);
1856 		}
1857 
1858 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1859 			u32 val = wa->is_mcr ?
1860 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1861 				intel_uncore_read_fw(uncore, wa->reg);
1862 
1863 			wa_verify(gt, wa, val, wal->name, "application");
1864 		}
1865 	}
1866 
1867 	intel_uncore_forcewake_put__locked(uncore, fw);
1868 	spin_unlock(&uncore->lock);
1869 	intel_gt_mcr_unlock(gt, flags);
1870 }
1871 
1872 void intel_gt_apply_workarounds(struct intel_gt *gt)
1873 {
1874 	wa_list_apply(&gt->wa_list);
1875 }
1876 
1877 static bool wa_list_verify(struct intel_gt *gt,
1878 			   const struct i915_wa_list *wal,
1879 			   const char *from)
1880 {
1881 	struct intel_uncore *uncore = gt->uncore;
1882 	struct i915_wa *wa;
1883 	enum forcewake_domains fw;
1884 	unsigned long flags;
1885 	unsigned int i;
1886 	bool ok = true;
1887 
1888 	fw = wal_get_fw_for_rmw(uncore, wal);
1889 
1890 	intel_gt_mcr_lock(gt, &flags);
1891 	spin_lock(&uncore->lock);
1892 	intel_uncore_forcewake_get__locked(uncore, fw);
1893 
1894 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1895 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1896 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1897 				intel_uncore_read_fw(uncore, wa->reg),
1898 				wal->name, from);
1899 
1900 	intel_uncore_forcewake_put__locked(uncore, fw);
1901 	spin_unlock(&uncore->lock);
1902 	intel_gt_mcr_unlock(gt, flags);
1903 
1904 	return ok;
1905 }
1906 
1907 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1908 {
1909 	return wa_list_verify(gt, &gt->wa_list, from);
1910 }
1911 
1912 __maybe_unused
1913 static bool is_nonpriv_flags_valid(u32 flags)
1914 {
1915 	/* Check only valid flag bits are set */
1916 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1917 		return false;
1918 
1919 	/* NB: Only 3 out of 4 enum values are valid for access field */
1920 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1921 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1922 		return false;
1923 
1924 	return true;
1925 }
1926 
1927 static void
1928 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1929 {
1930 	struct i915_wa wa = {
1931 		.reg = reg
1932 	};
1933 
1934 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1935 		return;
1936 
1937 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1938 		return;
1939 
1940 	wa.reg.reg |= flags;
1941 	_wa_add(wal, &wa);
1942 }
1943 
1944 static void
1945 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1946 {
1947 	struct i915_wa wa = {
1948 		.mcr_reg = reg,
1949 		.is_mcr = 1,
1950 	};
1951 
1952 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1953 		return;
1954 
1955 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1956 		return;
1957 
1958 	wa.mcr_reg.reg |= flags;
1959 	_wa_add(wal, &wa);
1960 }
1961 
1962 static void
1963 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1964 {
1965 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1966 }
1967 
1968 static void
1969 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1970 {
1971 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1972 }
1973 
1974 static void gen9_whitelist_build(struct i915_wa_list *w)
1975 {
1976 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1977 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1978 
1979 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1980 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1981 
1982 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1983 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1984 
1985 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1986 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1987 }
1988 
1989 static void skl_whitelist_build(struct intel_engine_cs *engine)
1990 {
1991 	struct i915_wa_list *w = &engine->whitelist;
1992 
1993 	if (engine->class != RENDER_CLASS)
1994 		return;
1995 
1996 	gen9_whitelist_build(w);
1997 
1998 	/* WaDisableLSQCROPERFforOCL:skl */
1999 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2000 }
2001 
2002 static void bxt_whitelist_build(struct intel_engine_cs *engine)
2003 {
2004 	if (engine->class != RENDER_CLASS)
2005 		return;
2006 
2007 	gen9_whitelist_build(&engine->whitelist);
2008 }
2009 
2010 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2011 {
2012 	struct i915_wa_list *w = &engine->whitelist;
2013 
2014 	if (engine->class != RENDER_CLASS)
2015 		return;
2016 
2017 	gen9_whitelist_build(w);
2018 
2019 	/* WaDisableLSQCROPERFforOCL:kbl */
2020 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2021 }
2022 
2023 static void glk_whitelist_build(struct intel_engine_cs *engine)
2024 {
2025 	struct i915_wa_list *w = &engine->whitelist;
2026 
2027 	if (engine->class != RENDER_CLASS)
2028 		return;
2029 
2030 	gen9_whitelist_build(w);
2031 
2032 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2033 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2034 }
2035 
2036 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2037 {
2038 	struct i915_wa_list *w = &engine->whitelist;
2039 
2040 	if (engine->class != RENDER_CLASS)
2041 		return;
2042 
2043 	gen9_whitelist_build(w);
2044 
2045 	/*
2046 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2047 	 *
2048 	 * This covers 4 register which are next to one another :
2049 	 *   - PS_INVOCATION_COUNT
2050 	 *   - PS_INVOCATION_COUNT_UDW
2051 	 *   - PS_DEPTH_COUNT
2052 	 *   - PS_DEPTH_COUNT_UDW
2053 	 */
2054 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2055 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2056 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2057 }
2058 
2059 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2060 {
2061 	struct i915_wa_list *w = &engine->whitelist;
2062 
2063 	if (engine->class != RENDER_CLASS)
2064 		whitelist_reg_ext(w,
2065 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2066 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2067 }
2068 
2069 static void cml_whitelist_build(struct intel_engine_cs *engine)
2070 {
2071 	allow_read_ctx_timestamp(engine);
2072 
2073 	cfl_whitelist_build(engine);
2074 }
2075 
2076 static void icl_whitelist_build(struct intel_engine_cs *engine)
2077 {
2078 	struct i915_wa_list *w = &engine->whitelist;
2079 
2080 	allow_read_ctx_timestamp(engine);
2081 
2082 	switch (engine->class) {
2083 	case RENDER_CLASS:
2084 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2085 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2086 
2087 		/* WaAllowUMDToModifySamplerMode:icl */
2088 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2089 
2090 		/* WaEnableStateCacheRedirectToCS:icl */
2091 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2092 
2093 		/*
2094 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2095 		 *
2096 		 * This covers 4 register which are next to one another :
2097 		 *   - PS_INVOCATION_COUNT
2098 		 *   - PS_INVOCATION_COUNT_UDW
2099 		 *   - PS_DEPTH_COUNT
2100 		 *   - PS_DEPTH_COUNT_UDW
2101 		 */
2102 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2103 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2104 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2105 		break;
2106 
2107 	case VIDEO_DECODE_CLASS:
2108 		/* hucStatusRegOffset */
2109 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2110 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2111 		/* hucUKernelHdrInfoRegOffset */
2112 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2113 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2114 		/* hucStatus2RegOffset */
2115 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2116 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2117 		break;
2118 
2119 	default:
2120 		break;
2121 	}
2122 }
2123 
2124 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2125 {
2126 	struct i915_wa_list *w = &engine->whitelist;
2127 
2128 	allow_read_ctx_timestamp(engine);
2129 
2130 	switch (engine->class) {
2131 	case RENDER_CLASS:
2132 		/*
2133 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2134 		 * Wa_1408556865:tgl
2135 		 *
2136 		 * This covers 4 registers which are next to one another :
2137 		 *   - PS_INVOCATION_COUNT
2138 		 *   - PS_INVOCATION_COUNT_UDW
2139 		 *   - PS_DEPTH_COUNT
2140 		 *   - PS_DEPTH_COUNT_UDW
2141 		 */
2142 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2143 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2144 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2145 
2146 		/*
2147 		 * Wa_1808121037:tgl
2148 		 * Wa_14012131227:dg1
2149 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2150 		 */
2151 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2152 
2153 		/* Wa_1806527549:tgl */
2154 		whitelist_reg(w, HIZ_CHICKEN);
2155 
2156 		/* Required by recommended tuning setting (not a workaround) */
2157 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2158 
2159 		break;
2160 	default:
2161 		break;
2162 	}
2163 }
2164 
2165 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2166 {
2167 	struct i915_wa_list *w = &engine->whitelist;
2168 
2169 	switch (engine->class) {
2170 	case RENDER_CLASS:
2171 		/* Required by recommended tuning setting (not a workaround) */
2172 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2173 
2174 		break;
2175 	default:
2176 		break;
2177 	}
2178 }
2179 
2180 static void blacklist_trtt(struct intel_engine_cs *engine)
2181 {
2182 	struct i915_wa_list *w = &engine->whitelist;
2183 
2184 	/*
2185 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2186 	 * the TRTT range across all engines. Note that normally userspace
2187 	 * cannot access the other engines' trtt control, but for simplicity
2188 	 * we cover the entire range on each engine.
2189 	 */
2190 	whitelist_reg_ext(w, _MMIO(0x4400),
2191 			  RING_FORCE_TO_NONPRIV_DENY |
2192 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2193 	whitelist_reg_ext(w, _MMIO(0x4500),
2194 			  RING_FORCE_TO_NONPRIV_DENY |
2195 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2196 }
2197 
2198 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2199 {
2200 	/* Wa_16014440446:pvc */
2201 	blacklist_trtt(engine);
2202 }
2203 
2204 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2205 {
2206 	struct i915_wa_list *w = &engine->whitelist;
2207 
2208 	switch (engine->class) {
2209 	case RENDER_CLASS:
2210 		/* Required by recommended tuning setting (not a workaround) */
2211 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2212 
2213 		break;
2214 	default:
2215 		break;
2216 	}
2217 }
2218 
2219 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2220 {
2221 	struct drm_i915_private *i915 = engine->i915;
2222 	struct i915_wa_list *w = &engine->whitelist;
2223 
2224 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2225 
2226 	if (engine->gt->type == GT_MEDIA)
2227 		; /* none yet */
2228 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2229 		xelpg_whitelist_build(engine);
2230 	else if (IS_PONTEVECCHIO(i915))
2231 		pvc_whitelist_build(engine);
2232 	else if (IS_DG2(i915))
2233 		dg2_whitelist_build(engine);
2234 	else if (IS_XEHPSDV(i915))
2235 		; /* none needed */
2236 	else if (GRAPHICS_VER(i915) == 12)
2237 		tgl_whitelist_build(engine);
2238 	else if (GRAPHICS_VER(i915) == 11)
2239 		icl_whitelist_build(engine);
2240 	else if (IS_COMETLAKE(i915))
2241 		cml_whitelist_build(engine);
2242 	else if (IS_COFFEELAKE(i915))
2243 		cfl_whitelist_build(engine);
2244 	else if (IS_GEMINILAKE(i915))
2245 		glk_whitelist_build(engine);
2246 	else if (IS_KABYLAKE(i915))
2247 		kbl_whitelist_build(engine);
2248 	else if (IS_BROXTON(i915))
2249 		bxt_whitelist_build(engine);
2250 	else if (IS_SKYLAKE(i915))
2251 		skl_whitelist_build(engine);
2252 	else if (GRAPHICS_VER(i915) <= 8)
2253 		;
2254 	else
2255 		MISSING_CASE(GRAPHICS_VER(i915));
2256 
2257 	wa_init_finish(w);
2258 }
2259 
2260 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2261 {
2262 	const struct i915_wa_list *wal = &engine->whitelist;
2263 	struct intel_uncore *uncore = engine->uncore;
2264 	const u32 base = engine->mmio_base;
2265 	struct i915_wa *wa;
2266 	unsigned int i;
2267 
2268 	if (!wal->count)
2269 		return;
2270 
2271 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2272 		intel_uncore_write(uncore,
2273 				   RING_FORCE_TO_NONPRIV(base, i),
2274 				   i915_mmio_reg_offset(wa->reg));
2275 
2276 	/* And clear the rest just in case of garbage */
2277 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2278 		intel_uncore_write(uncore,
2279 				   RING_FORCE_TO_NONPRIV(base, i),
2280 				   i915_mmio_reg_offset(RING_NOPID(base)));
2281 }
2282 
2283 /*
2284  * engine_fake_wa_init(), a place holder to program the registers
2285  * which are not part of an official workaround defined by the
2286  * hardware team.
2287  * Adding programming of those register inside workaround will
2288  * allow utilizing wa framework to proper application and verification.
2289  */
2290 static void
2291 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2292 {
2293 	u8 mocs_w, mocs_r;
2294 
2295 	/*
2296 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2297 	 * by the command streamer when executing commands that don't have
2298 	 * a way to explicitly specify a MOCS setting.  The default should
2299 	 * usually reference whichever MOCS entry corresponds to uncached
2300 	 * behavior, although use of a WB cached entry is recommended by the
2301 	 * spec in certain circumstances on specific platforms.
2302 	 */
2303 	if (GRAPHICS_VER(engine->i915) >= 12) {
2304 		mocs_r = engine->gt->mocs.uc_index;
2305 		mocs_w = engine->gt->mocs.uc_index;
2306 
2307 		if (HAS_L3_CCS_READ(engine->i915) &&
2308 		    engine->class == COMPUTE_CLASS) {
2309 			mocs_r = engine->gt->mocs.wb_index;
2310 
2311 			/*
2312 			 * Even on the few platforms where MOCS 0 is a
2313 			 * legitimate table entry, it's never the correct
2314 			 * setting to use here; we can assume the MOCS init
2315 			 * just forgot to initialize wb_index.
2316 			 */
2317 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2318 		}
2319 
2320 		wa_masked_field_set(wal,
2321 				    RING_CMD_CCTL(engine->mmio_base),
2322 				    CMD_CCTL_MOCS_MASK,
2323 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2324 	}
2325 }
2326 
2327 static void
2328 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2329 {
2330 	struct drm_i915_private *i915 = engine->i915;
2331 	struct intel_gt *gt = engine->gt;
2332 
2333 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2334 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2335 		/* Wa_22014600077 */
2336 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2337 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2338 	}
2339 
2340 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2341 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2342 	    IS_DG2(i915)) {
2343 		/* Wa_1509727124 */
2344 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2345 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2346 	}
2347 
2348 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2349 	    IS_DG2(i915)) {
2350 		/* Wa_22012856258 */
2351 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2352 				 GEN12_DISABLE_READ_SUPPRESSION);
2353 	}
2354 
2355 	if (IS_DG2(i915)) {
2356 		/*
2357 		 * Wa_22010960976:dg2
2358 		 * Wa_14013347512:dg2
2359 		 */
2360 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2361 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2362 	}
2363 
2364 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2365 	    IS_DG2(i915)) {
2366 		/* Wa_14015150844 */
2367 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2368 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2369 			   0, true);
2370 	}
2371 
2372 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2373 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2374 		/*
2375 		 * Wa_1606700617:tgl,dg1,adl-p
2376 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2377 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2378 		 * Wa_18019627453:dg2
2379 		 */
2380 		wa_masked_en(wal,
2381 			     GEN9_CS_DEBUG_MODE1,
2382 			     FF_DOP_CLOCK_GATE_DISABLE);
2383 	}
2384 
2385 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2386 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2387 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2388 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2389 
2390 		/*
2391 		 * Wa_1407928979:tgl A*
2392 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2393 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2394 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2395 		 */
2396 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2397 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2398 
2399 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2400 		wa_mcr_masked_en(wal,
2401 				 GEN10_SAMPLER_MODE,
2402 				 ENABLE_SMALLPL);
2403 	}
2404 
2405 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2406 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2407 		/* Wa_1409804808 */
2408 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2409 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2410 
2411 		/* Wa_14010229206 */
2412 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2413 	}
2414 
2415 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2416 		/*
2417 		 * Wa_1607297627
2418 		 *
2419 		 * On TGL and RKL there are multiple entries for this WA in the
2420 		 * BSpec; some indicate this is an A0-only WA, others indicate
2421 		 * it applies to all steppings so we trust the "all steppings."
2422 		 */
2423 		wa_masked_en(wal,
2424 			     RING_PSMI_CTL(RENDER_RING_BASE),
2425 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2426 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2427 	}
2428 
2429 	if (GRAPHICS_VER(i915) == 11) {
2430 		/* This is not an Wa. Enable for better image quality */
2431 		wa_masked_en(wal,
2432 			     _3D_CHICKEN3,
2433 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2434 
2435 		/*
2436 		 * Wa_1405543622:icl
2437 		 * Formerly known as WaGAPZPriorityScheme
2438 		 */
2439 		wa_write_or(wal,
2440 			    GEN8_GARBCNTL,
2441 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2442 
2443 		/*
2444 		 * Wa_1604223664:icl
2445 		 * Formerly known as WaL3BankAddressHashing
2446 		 */
2447 		wa_write_clr_set(wal,
2448 				 GEN8_GARBCNTL,
2449 				 GEN11_HASH_CTRL_EXCL_MASK,
2450 				 GEN11_HASH_CTRL_EXCL_BIT0);
2451 		wa_write_clr_set(wal,
2452 				 GEN11_GLBLINVL,
2453 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2454 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2455 
2456 		/*
2457 		 * Wa_1405733216:icl
2458 		 * Formerly known as WaDisableCleanEvicts
2459 		 */
2460 		wa_mcr_write_or(wal,
2461 				GEN8_L3SQCREG4,
2462 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2463 
2464 		/* Wa_1606682166:icl */
2465 		wa_write_or(wal,
2466 			    GEN7_SARCHKMD,
2467 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2468 
2469 		/* Wa_1409178092:icl */
2470 		wa_mcr_write_clr_set(wal,
2471 				     GEN11_SCRATCH2,
2472 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2473 				     0);
2474 
2475 		/* WaEnable32PlaneMode:icl */
2476 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2477 			     GEN11_ENABLE_32_PLANE_MODE);
2478 
2479 		/*
2480 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2481 		 * Wa_1605460711:icl[a0..c0]
2482 		 */
2483 		wa_write_or(wal,
2484 			    GEN7_FF_THREAD_MODE,
2485 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2486 
2487 		/* Wa_22010271021 */
2488 		wa_masked_en(wal,
2489 			     GEN9_CS_DEBUG_MODE1,
2490 			     FF_DOP_CLOCK_GATE_DISABLE);
2491 	}
2492 
2493 	/*
2494 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2495 	 * beyond) allow the kernel-mode driver to choose between two different
2496 	 * options for controlling preemption granularity and behavior.
2497 	 *
2498 	 * Option 1 (hardware default):
2499 	 *   Preemption settings are controlled in a global manner via
2500 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2501 	 *   and settings chosen by the kernel-mode driver will apply to all
2502 	 *   userspace clients.
2503 	 *
2504 	 * Option 2:
2505 	 *   Preemption settings are controlled on a per-context basis via
2506 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2507 	 *   context switch and is writable by userspace (e.g., via
2508 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2509 	 *   which allows different userspace drivers/clients to select
2510 	 *   different settings, or to change those settings on the fly in
2511 	 *   response to runtime needs.  This option was known by name
2512 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2513 	 *   that name is somewhat misleading as other non-granularity
2514 	 *   preemption settings are also impacted by this decision.
2515 	 *
2516 	 * On Linux, our policy has always been to let userspace drivers
2517 	 * control preemption granularity/settings (Option 2).  This was
2518 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2519 	 * userspace developed before object-level preemption was enabled would
2520 	 * not behave well if i915 were to go with Option 1 and enable that
2521 	 * preemption in a global manner).  On gen9 each context would have
2522 	 * object-level preemption disabled by default (see
2523 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2524 	 * userspace drivers could opt-in to object-level preemption as they
2525 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2526 	 * even though it is no longer necessary for ABI compatibility when
2527 	 * enabling a new platform, it does ensure that userspace will be able
2528 	 * to implement any workarounds that show up requiring temporary
2529 	 * adjustments to preemption behavior at runtime.
2530 	 *
2531 	 * Notes/Workarounds:
2532 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2533 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2534 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2535 	 *      using Option 1).  Effectively this means userspace is unable
2536 	 *      to disable object-level preemption on these platforms/steppings
2537 	 *      despite the setting here.
2538 	 *
2539 	 *  - Wa_16013994831:  May require that userspace program
2540 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2541 	 *      Userspace requires Option 2 to be in effect for their update of
2542 	 *      CS_CHICKEN1[10] to be effective.
2543 	 *
2544 	 * Other workarounds may appear in the future that will also require
2545 	 * Option 2 behavior to allow proper userspace implementation.
2546 	 */
2547 	if (GRAPHICS_VER(i915) >= 9)
2548 		wa_masked_en(wal,
2549 			     GEN7_FF_SLICE_CS_CHICKEN1,
2550 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2551 
2552 	if (IS_SKYLAKE(i915) ||
2553 	    IS_KABYLAKE(i915) ||
2554 	    IS_COFFEELAKE(i915) ||
2555 	    IS_COMETLAKE(i915)) {
2556 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2557 		wa_write_or(wal,
2558 			    GEN8_GARBCNTL,
2559 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2560 	}
2561 
2562 	if (IS_BROXTON(i915)) {
2563 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2564 		wa_masked_en(wal,
2565 			     FF_SLICE_CS_CHICKEN2,
2566 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2567 	}
2568 
2569 	if (GRAPHICS_VER(i915) == 9) {
2570 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2571 		wa_masked_en(wal,
2572 			     GEN9_CSFE_CHICKEN1_RCS,
2573 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2574 
2575 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2576 		wa_mcr_write_or(wal,
2577 				BDW_SCRATCH1,
2578 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2579 
2580 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2581 		if (IS_GEN9_LP(i915))
2582 			wa_mcr_write_clr_set(wal,
2583 					     GEN8_L3SQCREG1,
2584 					     L3_PRIO_CREDITS_MASK,
2585 					     L3_GENERAL_PRIO_CREDITS(62) |
2586 					     L3_HIGH_PRIO_CREDITS(2));
2587 
2588 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2589 		wa_mcr_write_or(wal,
2590 				GEN8_L3SQCREG4,
2591 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2592 
2593 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2594 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2595 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2596 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2597 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2598 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2599 				     EVICTION_PERF_FIX_ENABLE, 0);
2600 	}
2601 
2602 	if (IS_HASWELL(i915)) {
2603 		/* WaSampleCChickenBitEnable:hsw */
2604 		wa_masked_en(wal,
2605 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2606 
2607 		wa_masked_dis(wal,
2608 			      CACHE_MODE_0_GEN7,
2609 			      /* enable HiZ Raw Stall Optimization */
2610 			      HIZ_RAW_STALL_OPT_DISABLE);
2611 	}
2612 
2613 	if (IS_VALLEYVIEW(i915)) {
2614 		/* WaDisableEarlyCull:vlv */
2615 		wa_masked_en(wal,
2616 			     _3D_CHICKEN3,
2617 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2618 
2619 		/*
2620 		 * WaVSThreadDispatchOverride:ivb,vlv
2621 		 *
2622 		 * This actually overrides the dispatch
2623 		 * mode for all thread types.
2624 		 */
2625 		wa_write_clr_set(wal,
2626 				 GEN7_FF_THREAD_MODE,
2627 				 GEN7_FF_SCHED_MASK,
2628 				 GEN7_FF_TS_SCHED_HW |
2629 				 GEN7_FF_VS_SCHED_HW |
2630 				 GEN7_FF_DS_SCHED_HW);
2631 
2632 		/* WaPsdDispatchEnable:vlv */
2633 		/* WaDisablePSDDualDispatchEnable:vlv */
2634 		wa_masked_en(wal,
2635 			     GEN7_HALF_SLICE_CHICKEN1,
2636 			     GEN7_MAX_PS_THREAD_DEP |
2637 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2638 	}
2639 
2640 	if (IS_IVYBRIDGE(i915)) {
2641 		/* WaDisableEarlyCull:ivb */
2642 		wa_masked_en(wal,
2643 			     _3D_CHICKEN3,
2644 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2645 
2646 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2647 			/* enable HiZ Raw Stall Optimization */
2648 			wa_masked_dis(wal,
2649 				      CACHE_MODE_0_GEN7,
2650 				      HIZ_RAW_STALL_OPT_DISABLE);
2651 		}
2652 
2653 		/*
2654 		 * WaVSThreadDispatchOverride:ivb,vlv
2655 		 *
2656 		 * This actually overrides the dispatch
2657 		 * mode for all thread types.
2658 		 */
2659 		wa_write_clr_set(wal,
2660 				 GEN7_FF_THREAD_MODE,
2661 				 GEN7_FF_SCHED_MASK,
2662 				 GEN7_FF_TS_SCHED_HW |
2663 				 GEN7_FF_VS_SCHED_HW |
2664 				 GEN7_FF_DS_SCHED_HW);
2665 
2666 		/* WaDisablePSDDualDispatchEnable:ivb */
2667 		if (IS_IVB_GT1(i915))
2668 			wa_masked_en(wal,
2669 				     GEN7_HALF_SLICE_CHICKEN1,
2670 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2671 	}
2672 
2673 	if (GRAPHICS_VER(i915) == 7) {
2674 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2675 		wa_masked_en(wal,
2676 			     RING_MODE_GEN7(RENDER_RING_BASE),
2677 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2678 
2679 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2680 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2681 
2682 		/*
2683 		 * BSpec says this must be set, even though
2684 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2685 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2686 		 */
2687 		wa_masked_en(wal,
2688 			     CACHE_MODE_1,
2689 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2690 
2691 		/*
2692 		 * BSpec recommends 8x4 when MSAA is used,
2693 		 * however in practice 16x4 seems fastest.
2694 		 *
2695 		 * Note that PS/WM thread counts depend on the WIZ hashing
2696 		 * disable bit, which we don't touch here, but it's good
2697 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2698 		 */
2699 		wa_masked_field_set(wal,
2700 				    GEN7_GT_MODE,
2701 				    GEN6_WIZ_HASHING_MASK,
2702 				    GEN6_WIZ_HASHING_16x4);
2703 	}
2704 
2705 	if (IS_GRAPHICS_VER(i915, 6, 7))
2706 		/*
2707 		 * We need to disable the AsyncFlip performance optimisations in
2708 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2709 		 * already be programmed to '1' on all products.
2710 		 *
2711 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2712 		 */
2713 		wa_masked_en(wal,
2714 			     RING_MI_MODE(RENDER_RING_BASE),
2715 			     ASYNC_FLIP_PERF_DISABLE);
2716 
2717 	if (GRAPHICS_VER(i915) == 6) {
2718 		/*
2719 		 * Required for the hardware to program scanline values for
2720 		 * waiting
2721 		 * WaEnableFlushTlbInvalidationMode:snb
2722 		 */
2723 		wa_masked_en(wal,
2724 			     GFX_MODE,
2725 			     GFX_TLB_INVALIDATE_EXPLICIT);
2726 
2727 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2728 		wa_masked_en(wal,
2729 			     _3D_CHICKEN,
2730 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2731 
2732 		wa_masked_en(wal,
2733 			     _3D_CHICKEN3,
2734 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2735 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2736 			     /*
2737 			      * Bspec says:
2738 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2739 			      * to normal and 3DSTATE_SF number of SF output attributes
2740 			      * is more than 16."
2741 			      */
2742 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2743 
2744 		/*
2745 		 * BSpec recommends 8x4 when MSAA is used,
2746 		 * however in practice 16x4 seems fastest.
2747 		 *
2748 		 * Note that PS/WM thread counts depend on the WIZ hashing
2749 		 * disable bit, which we don't touch here, but it's good
2750 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2751 		 */
2752 		wa_masked_field_set(wal,
2753 				    GEN6_GT_MODE,
2754 				    GEN6_WIZ_HASHING_MASK,
2755 				    GEN6_WIZ_HASHING_16x4);
2756 
2757 		/* WaDisable_RenderCache_OperationalFlush:snb */
2758 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2759 
2760 		/*
2761 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2762 		 * "If this bit is set, STCunit will have LRA as replacement
2763 		 *  policy. [...] This bit must be reset. LRA replacement
2764 		 *  policy is not supported."
2765 		 */
2766 		wa_masked_dis(wal,
2767 			      CACHE_MODE_0,
2768 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2769 	}
2770 
2771 	if (IS_GRAPHICS_VER(i915, 4, 6))
2772 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2773 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2774 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2775 		       /* XXX bit doesn't stick on Broadwater */
2776 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2777 
2778 	if (GRAPHICS_VER(i915) == 4)
2779 		/*
2780 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2781 		 * image. For as it is loaded, it is executed and the stored
2782 		 * address may no longer be valid, leading to a GPU hang.
2783 		 *
2784 		 * This imposes the requirement that userspace reload their
2785 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2786 		 * they are already accustomed to from before contexts were
2787 		 * enabled.
2788 		 */
2789 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2790 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2791 		       0 /* XXX bit doesn't stick on Broadwater */,
2792 		       true);
2793 }
2794 
2795 static void
2796 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2797 {
2798 	struct drm_i915_private *i915 = engine->i915;
2799 
2800 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2801 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2802 		wa_write(wal,
2803 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2804 			 1);
2805 	}
2806 	/* Wa_16018031267, Wa_16018063123 */
2807 	if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2808 		wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2809 				    XEHP_BLITTER_SCHEDULING_MODE_MASK,
2810 				    XEHP_BLITTER_ROUND_ROBIN_MODE);
2811 }
2812 
2813 static void
2814 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2815 {
2816 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2817 		/* Wa_14014999345:pvc */
2818 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2819 	}
2820 }
2821 
2822 /*
2823  * The bspec performance guide has recommended MMIO tuning settings.  These
2824  * aren't truly "workarounds" but we want to program them with the same
2825  * workaround infrastructure to ensure that they're automatically added to
2826  * the GuC save/restore lists, re-applied at the right times, and checked for
2827  * any conflicting programming requested by real workarounds.
2828  *
2829  * Programming settings should be added here only if their registers are not
2830  * part of an engine's register state context.  If a register is part of a
2831  * context, then any tuning settings should be programmed in an appropriate
2832  * function invoked by __intel_engine_init_ctx_wa().
2833  */
2834 static void
2835 add_render_compute_tuning_settings(struct intel_gt *gt,
2836 				   struct i915_wa_list *wal)
2837 {
2838 	struct drm_i915_private *i915 = gt->i915;
2839 
2840 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2841 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2842 
2843 	/*
2844 	 * This tuning setting proves beneficial only on ATS-M designs; the
2845 	 * default "age based" setting is optimal on regular DG2 and other
2846 	 * platforms.
2847 	 */
2848 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2849 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2850 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2851 
2852 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2853 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2854 }
2855 
2856 /*
2857  * The workarounds in this function apply to shared registers in
2858  * the general render reset domain that aren't tied to a
2859  * specific engine.  Since all render+compute engines get reset
2860  * together, and the contents of these registers are lost during
2861  * the shared render domain reset, we'll define such workarounds
2862  * here and then add them to just a single RCS or CCS engine's
2863  * workaround list (whichever engine has the XXXX flag).
2864  */
2865 static void
2866 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2867 {
2868 	struct drm_i915_private *i915 = engine->i915;
2869 	struct intel_gt *gt = engine->gt;
2870 
2871 	add_render_compute_tuning_settings(gt, wal);
2872 
2873 	if (GRAPHICS_VER(i915) >= 11) {
2874 		/* This is not a Wa (although referred to as
2875 		 * WaSetInidrectStateOverride in places), this allows
2876 		 * applications that reference sampler states through
2877 		 * the BindlessSamplerStateBaseAddress to have their
2878 		 * border color relative to DynamicStateBaseAddress
2879 		 * rather than BindlessSamplerStateBaseAddress.
2880 		 *
2881 		 * Otherwise SAMPLER_STATE border colors have to be
2882 		 * copied in multiple heaps (DynamicStateBaseAddress &
2883 		 * BindlessSamplerStateBaseAddress)
2884 		 *
2885 		 * BSpec: 46052
2886 		 */
2887 		wa_mcr_masked_en(wal,
2888 				 GEN10_SAMPLER_MODE,
2889 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2890 	}
2891 
2892 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2893 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2894 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74)))
2895 		/* Wa_14017856879 */
2896 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2897 
2898 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2899 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2900 		/*
2901 		 * Wa_14017066071
2902 		 * Wa_14017654203
2903 		 */
2904 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2905 				 MTL_DISABLE_SAMPLER_SC_OOO);
2906 
2907 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2908 		/* Wa_22015279794 */
2909 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2910 				 DISABLE_PREFETCH_INTO_IC);
2911 
2912 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2913 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2914 	    IS_DG2(i915)) {
2915 		/* Wa_22013037850 */
2916 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2917 				DISABLE_128B_EVICTION_COMMAND_UDW);
2918 
2919 		/* Wa_18017747507 */
2920 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2921 	}
2922 
2923 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2924 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2925 	    IS_PONTEVECCHIO(i915) ||
2926 	    IS_DG2(i915)) {
2927 		/* Wa_22014226127 */
2928 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2929 	}
2930 
2931 	if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2932 		/* Wa_14015227452:dg2,pvc */
2933 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2934 
2935 		/* Wa_16015675438:dg2,pvc */
2936 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2937 	}
2938 
2939 	if (IS_DG2(i915)) {
2940 		/*
2941 		 * Wa_16011620976:dg2_g11
2942 		 * Wa_22015475538:dg2
2943 		 */
2944 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2945 
2946 		/* Wa_18028616096 */
2947 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2948 	}
2949 
2950 	if (IS_DG2_G11(i915)) {
2951 		/*
2952 		 * Wa_22012826095:dg2
2953 		 * Wa_22013059131:dg2
2954 		 */
2955 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2956 				     MAXREQS_PER_BANK,
2957 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2958 
2959 		/* Wa_22013059131:dg2 */
2960 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2961 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2962 
2963 		/*
2964 		 * Wa_22012654132
2965 		 *
2966 		 * Note that register 0xE420 is write-only and cannot be read
2967 		 * back for verification on DG2 (due to Wa_14012342262), so
2968 		 * we need to explicitly skip the readback.
2969 		 */
2970 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2971 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2972 			   0 /* write-only, so skip validation */,
2973 			   true);
2974 	}
2975 
2976 	if (IS_XEHPSDV(i915)) {
2977 		/* Wa_1409954639 */
2978 		wa_mcr_masked_en(wal,
2979 				 GEN8_ROW_CHICKEN,
2980 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
2981 
2982 		/* Wa_1607196519 */
2983 		wa_mcr_masked_en(wal,
2984 				 GEN9_ROW_CHICKEN4,
2985 				 GEN12_DISABLE_GRF_CLEAR);
2986 
2987 		/* Wa_14010449647:xehpsdv */
2988 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
2989 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2990 	}
2991 }
2992 
2993 static void
2994 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2995 {
2996 	if (GRAPHICS_VER(engine->i915) < 4)
2997 		return;
2998 
2999 	engine_fake_wa_init(engine, wal);
3000 
3001 	/*
3002 	 * These are common workarounds that just need to applied
3003 	 * to a single RCS/CCS engine's workaround list since
3004 	 * they're reset as part of the general render domain reset.
3005 	 */
3006 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3007 		general_render_compute_wa_init(engine, wal);
3008 
3009 	if (engine->class == COMPUTE_CLASS)
3010 		ccs_engine_wa_init(engine, wal);
3011 	else if (engine->class == RENDER_CLASS)
3012 		rcs_engine_wa_init(engine, wal);
3013 	else
3014 		xcs_engine_wa_init(engine, wal);
3015 }
3016 
3017 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3018 {
3019 	struct i915_wa_list *wal = &engine->wa_list;
3020 
3021 	wa_init_start(wal, engine->gt, "engine", engine->name);
3022 	engine_init_workarounds(engine, wal);
3023 	wa_init_finish(wal);
3024 }
3025 
3026 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3027 {
3028 	wa_list_apply(&engine->wa_list);
3029 }
3030 
3031 static const struct i915_range mcr_ranges_gen8[] = {
3032 	{ .start = 0x5500, .end = 0x55ff },
3033 	{ .start = 0x7000, .end = 0x7fff },
3034 	{ .start = 0x9400, .end = 0x97ff },
3035 	{ .start = 0xb000, .end = 0xb3ff },
3036 	{ .start = 0xe000, .end = 0xe7ff },
3037 	{},
3038 };
3039 
3040 static const struct i915_range mcr_ranges_gen12[] = {
3041 	{ .start =  0x8150, .end =  0x815f },
3042 	{ .start =  0x9520, .end =  0x955f },
3043 	{ .start =  0xb100, .end =  0xb3ff },
3044 	{ .start =  0xde80, .end =  0xe8ff },
3045 	{ .start = 0x24a00, .end = 0x24a7f },
3046 	{},
3047 };
3048 
3049 static const struct i915_range mcr_ranges_xehp[] = {
3050 	{ .start =  0x4000, .end =  0x4aff },
3051 	{ .start =  0x5200, .end =  0x52ff },
3052 	{ .start =  0x5400, .end =  0x7fff },
3053 	{ .start =  0x8140, .end =  0x815f },
3054 	{ .start =  0x8c80, .end =  0x8dff },
3055 	{ .start =  0x94d0, .end =  0x955f },
3056 	{ .start =  0x9680, .end =  0x96ff },
3057 	{ .start =  0xb000, .end =  0xb3ff },
3058 	{ .start =  0xc800, .end =  0xcfff },
3059 	{ .start =  0xd800, .end =  0xd8ff },
3060 	{ .start =  0xdc00, .end =  0xffff },
3061 	{ .start = 0x17000, .end = 0x17fff },
3062 	{ .start = 0x24a00, .end = 0x24a7f },
3063 	{},
3064 };
3065 
3066 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3067 {
3068 	const struct i915_range *mcr_ranges;
3069 	int i;
3070 
3071 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3072 		mcr_ranges = mcr_ranges_xehp;
3073 	else if (GRAPHICS_VER(i915) >= 12)
3074 		mcr_ranges = mcr_ranges_gen12;
3075 	else if (GRAPHICS_VER(i915) >= 8)
3076 		mcr_ranges = mcr_ranges_gen8;
3077 	else
3078 		return false;
3079 
3080 	/*
3081 	 * Registers in these ranges are affected by the MCR selector
3082 	 * which only controls CPU initiated MMIO. Routing does not
3083 	 * work for CS access so we cannot verify them on this path.
3084 	 */
3085 	for (i = 0; mcr_ranges[i].start; i++)
3086 		if (offset >= mcr_ranges[i].start &&
3087 		    offset <= mcr_ranges[i].end)
3088 			return true;
3089 
3090 	return false;
3091 }
3092 
3093 static int
3094 wa_list_srm(struct i915_request *rq,
3095 	    const struct i915_wa_list *wal,
3096 	    struct i915_vma *vma)
3097 {
3098 	struct drm_i915_private *i915 = rq->i915;
3099 	unsigned int i, count = 0;
3100 	const struct i915_wa *wa;
3101 	u32 srm, *cs;
3102 
3103 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3104 	if (GRAPHICS_VER(i915) >= 8)
3105 		srm++;
3106 
3107 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3108 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3109 			count++;
3110 	}
3111 
3112 	cs = intel_ring_begin(rq, 4 * count);
3113 	if (IS_ERR(cs))
3114 		return PTR_ERR(cs);
3115 
3116 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3117 		u32 offset = i915_mmio_reg_offset(wa->reg);
3118 
3119 		if (mcr_range(i915, offset))
3120 			continue;
3121 
3122 		*cs++ = srm;
3123 		*cs++ = offset;
3124 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3125 		*cs++ = 0;
3126 	}
3127 	intel_ring_advance(rq, cs);
3128 
3129 	return 0;
3130 }
3131 
3132 static int engine_wa_list_verify(struct intel_context *ce,
3133 				 const struct i915_wa_list * const wal,
3134 				 const char *from)
3135 {
3136 	const struct i915_wa *wa;
3137 	struct i915_request *rq;
3138 	struct i915_vma *vma;
3139 	struct i915_gem_ww_ctx ww;
3140 	unsigned int i;
3141 	u32 *results;
3142 	int err;
3143 
3144 	if (!wal->count)
3145 		return 0;
3146 
3147 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3148 					   wal->count * sizeof(u32));
3149 	if (IS_ERR(vma))
3150 		return PTR_ERR(vma);
3151 
3152 	intel_engine_pm_get(ce->engine);
3153 	i915_gem_ww_ctx_init(&ww, false);
3154 retry:
3155 	err = i915_gem_object_lock(vma->obj, &ww);
3156 	if (err == 0)
3157 		err = intel_context_pin_ww(ce, &ww);
3158 	if (err)
3159 		goto err_pm;
3160 
3161 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3162 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3163 	if (err)
3164 		goto err_unpin;
3165 
3166 	rq = i915_request_create(ce);
3167 	if (IS_ERR(rq)) {
3168 		err = PTR_ERR(rq);
3169 		goto err_vma;
3170 	}
3171 
3172 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3173 	if (err == 0)
3174 		err = wa_list_srm(rq, wal, vma);
3175 
3176 	i915_request_get(rq);
3177 	if (err)
3178 		i915_request_set_error_once(rq, err);
3179 	i915_request_add(rq);
3180 
3181 	if (err)
3182 		goto err_rq;
3183 
3184 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3185 		err = -ETIME;
3186 		goto err_rq;
3187 	}
3188 
3189 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3190 	if (IS_ERR(results)) {
3191 		err = PTR_ERR(results);
3192 		goto err_rq;
3193 	}
3194 
3195 	err = 0;
3196 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3197 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3198 			continue;
3199 
3200 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3201 			err = -ENXIO;
3202 	}
3203 
3204 	i915_gem_object_unpin_map(vma->obj);
3205 
3206 err_rq:
3207 	i915_request_put(rq);
3208 err_vma:
3209 	i915_vma_unpin(vma);
3210 err_unpin:
3211 	intel_context_unpin(ce);
3212 err_pm:
3213 	if (err == -EDEADLK) {
3214 		err = i915_gem_ww_ctx_backoff(&ww);
3215 		if (!err)
3216 			goto retry;
3217 	}
3218 	i915_gem_ww_ctx_fini(&ww);
3219 	intel_engine_pm_put(ce->engine);
3220 	i915_vma_put(vma);
3221 	return err;
3222 }
3223 
3224 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3225 				    const char *from)
3226 {
3227 	return engine_wa_list_verify(engine->kernel_context,
3228 				     &engine->wa_list,
3229 				     from);
3230 }
3231 
3232 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3233 #include "selftest_workarounds.c"
3234 #endif
3235