1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2018 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_context.h" 9 #include "intel_engine_pm.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gpu_commands.h" 12 #include "intel_gt.h" 13 #include "intel_gt_ccs_mode.h" 14 #include "intel_gt_mcr.h" 15 #include "intel_gt_print.h" 16 #include "intel_gt_regs.h" 17 #include "intel_ring.h" 18 #include "intel_workarounds.h" 19 20 #include "display/intel_fbc_regs.h" 21 22 /** 23 * DOC: Hardware workarounds 24 * 25 * Hardware workarounds are register programming documented to be executed in 26 * the driver that fall outside of the normal programming sequences for a 27 * platform. There are some basic categories of workarounds, depending on 28 * how/when they are applied: 29 * 30 * - Context workarounds: workarounds that touch registers that are 31 * saved/restored to/from the HW context image. The list is emitted (via Load 32 * Register Immediate commands) once when initializing the device and saved in 33 * the default context. That default context is then used on every context 34 * creation to have a "primed golden context", i.e. a context image that 35 * already contains the changes needed to all the registers. 36 * 37 * Context workarounds should be implemented in the \*_ctx_workarounds_init() 38 * variants respective to the targeted platforms. 39 * 40 * - Engine workarounds: the list of these WAs is applied whenever the specific 41 * engine is reset. It's also possible that a set of engine classes share a 42 * common power domain and they are reset together. This happens on some 43 * platforms with render and compute engines. In this case (at least) one of 44 * them need to keeep the workaround programming: the approach taken in the 45 * driver is to tie those workarounds to the first compute/render engine that 46 * is registered. When executing with GuC submission, engine resets are 47 * outside of kernel driver control, hence the list of registers involved in 48 * written once, on engine initialization, and then passed to GuC, that 49 * saves/restores their values before/after the reset takes place. See 50 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. 51 * 52 * Workarounds for registers specific to RCS and CCS should be implemented in 53 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for 54 * registers belonging to BCS, VCS or VECS should be implemented in 55 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific 56 * engine's MMIO range but that are part of of the common RCS/CCS reset domain 57 * should be implemented in general_render_compute_wa_init(). The settings 58 * about the CCS load balancing should be added in ccs_engine_wa_mode(). 59 * 60 * - GT workarounds: the list of these WAs is applied whenever these registers 61 * revert to their default values: on GPU reset, suspend/resume [1]_, etc. 62 * 63 * GT workarounds should be implemented in the \*_gt_workarounds_init() 64 * variants respective to the targeted platforms. 65 * 66 * - Register whitelist: some workarounds need to be implemented in userspace, 67 * but need to touch privileged registers. The whitelist in the kernel 68 * instructs the hardware to allow the access to happen. From the kernel side, 69 * this is just a special case of a MMIO workaround (as we write the list of 70 * these to/be-whitelisted registers to some special HW registers). 71 * 72 * Register whitelisting should be done in the \*_whitelist_build() variants 73 * respective to the targeted platforms. 74 * 75 * - Workaround batchbuffers: buffers that get executed automatically by the 76 * hardware on every HW context restore. These buffers are created and 77 * programmed in the default context so the hardware always go through those 78 * programming sequences when switching contexts. The support for workaround 79 * batchbuffers is enabled these hardware mechanisms: 80 * 81 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default 82 * context, pointing the hardware to jump to that location when that offset 83 * is reached in the context restore. Workaround batchbuffer in the driver 84 * currently uses this mechanism for all platforms. 85 * 86 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, 87 * pointing the hardware to a buffer to continue executing after the 88 * engine registers are restored in a context restore sequence. This is 89 * currently not used in the driver. 90 * 91 * - Other: There are WAs that, due to their nature, cannot be applied from a 92 * central place. Those are peppered around the rest of the code, as needed. 93 * Workarounds related to the display IP are the main example. 94 * 95 * .. [1] Technically, some registers are powercontext saved & restored, so they 96 * survive a suspend/resume. In practice, writing them again is not too 97 * costly and simplifies things, so it's the approach taken in the driver. 98 */ 99 100 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, 101 const char *name, const char *engine_name) 102 { 103 wal->gt = gt; 104 wal->name = name; 105 wal->engine_name = engine_name; 106 } 107 108 #define WA_LIST_CHUNK (1 << 4) 109 110 static void wa_init_finish(struct i915_wa_list *wal) 111 { 112 /* Trim unused entries. */ 113 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { 114 struct i915_wa *list = kmemdup_array(wal->list, wal->count, 115 sizeof(*list), GFP_KERNEL); 116 117 if (list) { 118 kfree(wal->list); 119 wal->list = list; 120 } 121 } 122 123 if (!wal->count) 124 return; 125 126 gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n", 127 wal->wa_count, wal->name, wal->engine_name); 128 } 129 130 static enum forcewake_domains 131 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) 132 { 133 enum forcewake_domains fw = 0; 134 struct i915_wa *wa; 135 unsigned int i; 136 137 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 138 fw |= intel_uncore_forcewake_for_reg(uncore, 139 wa->reg, 140 FW_REG_READ | 141 FW_REG_WRITE); 142 143 return fw; 144 } 145 146 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) 147 { 148 unsigned int addr = i915_mmio_reg_offset(wa->reg); 149 struct drm_i915_private *i915 = wal->gt->i915; 150 unsigned int start = 0, end = wal->count; 151 const unsigned int grow = WA_LIST_CHUNK; 152 struct i915_wa *wa_; 153 154 GEM_BUG_ON(!is_power_of_2(grow)); 155 156 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ 157 struct i915_wa *list; 158 159 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), 160 GFP_KERNEL); 161 if (!list) { 162 drm_err(&i915->drm, "No space for workaround init!\n"); 163 return; 164 } 165 166 if (wal->list) { 167 memcpy(list, wal->list, sizeof(*wa) * wal->count); 168 kfree(wal->list); 169 } 170 171 wal->list = list; 172 } 173 174 while (start < end) { 175 unsigned int mid = start + (end - start) / 2; 176 177 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { 178 start = mid + 1; 179 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { 180 end = mid; 181 } else { 182 wa_ = &wal->list[mid]; 183 184 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { 185 drm_err(&i915->drm, 186 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", 187 i915_mmio_reg_offset(wa_->reg), 188 wa_->clr, wa_->set); 189 190 wa_->set &= ~wa->clr; 191 } 192 193 wal->wa_count++; 194 wa_->set |= wa->set; 195 wa_->clr |= wa->clr; 196 wa_->read |= wa->read; 197 return; 198 } 199 } 200 201 wal->wa_count++; 202 wa_ = &wal->list[wal->count++]; 203 *wa_ = *wa; 204 205 while (wa_-- > wal->list) { 206 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == 207 i915_mmio_reg_offset(wa_[1].reg)); 208 if (i915_mmio_reg_offset(wa_[1].reg) > 209 i915_mmio_reg_offset(wa_[0].reg)) 210 break; 211 212 swap(wa_[1], wa_[0]); 213 } 214 } 215 216 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, 217 u32 clear, u32 set, u32 read_mask, bool masked_reg) 218 { 219 struct i915_wa wa = { 220 .reg = reg, 221 .clr = clear, 222 .set = set, 223 .read = read_mask, 224 .masked_reg = masked_reg, 225 }; 226 227 _wa_add(wal, &wa); 228 } 229 230 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, 231 u32 clear, u32 set, u32 read_mask, bool masked_reg) 232 { 233 struct i915_wa wa = { 234 .mcr_reg = reg, 235 .clr = clear, 236 .set = set, 237 .read = read_mask, 238 .masked_reg = masked_reg, 239 .is_mcr = 1, 240 }; 241 242 _wa_add(wal, &wa); 243 } 244 245 static void 246 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) 247 { 248 wa_add(wal, reg, clear, set, clear | set, false); 249 } 250 251 static void 252 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) 253 { 254 wa_mcr_add(wal, reg, clear, set, clear | set, false); 255 } 256 257 static void 258 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 259 { 260 wa_write_clr_set(wal, reg, ~0, set); 261 } 262 263 static void 264 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 265 { 266 wa_write_clr_set(wal, reg, set, set); 267 } 268 269 static void 270 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 271 { 272 wa_mcr_write_clr_set(wal, reg, set, set); 273 } 274 275 static void 276 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) 277 { 278 wa_write_clr_set(wal, reg, clr, 0); 279 } 280 281 static void 282 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) 283 { 284 wa_mcr_write_clr_set(wal, reg, clr, 0); 285 } 286 287 /* 288 * WA operations on "masked register". A masked register has the upper 16 bits 289 * documented as "masked" in b-spec. Its purpose is to allow writing to just a 290 * portion of the register without a rmw: you simply write in the upper 16 bits 291 * the mask of bits you are going to modify. 292 * 293 * The wa_masked_* family of functions already does the necessary operations to 294 * calculate the mask based on the parameters passed, so user only has to 295 * provide the lower 16 bits of that register. 296 */ 297 298 static void 299 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 300 { 301 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 302 } 303 304 static void 305 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 306 { 307 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 308 } 309 310 static void 311 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 312 { 313 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 314 } 315 316 static void 317 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 318 { 319 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 320 } 321 322 static void 323 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, 324 u32 mask, u32 val) 325 { 326 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 327 } 328 329 static void 330 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, 331 u32 mask, u32 val) 332 { 333 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 334 } 335 336 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, 337 struct i915_wa_list *wal) 338 { 339 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 340 } 341 342 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, 343 struct i915_wa_list *wal) 344 { 345 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 346 } 347 348 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, 349 struct i915_wa_list *wal) 350 { 351 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 352 353 /* WaDisableAsyncFlipPerfMode:bdw,chv */ 354 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); 355 356 /* WaDisablePartialInstShootdown:bdw,chv */ 357 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 358 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 359 360 /* Use Force Non-Coherent whenever executing a 3D context. This is a 361 * workaround for a possible hang in the unlikely event a TLB 362 * invalidation occurs during a PSD flush. 363 */ 364 /* WaForceEnableNonCoherent:bdw,chv */ 365 /* WaHdcDisableFetchWhenMasked:bdw,chv */ 366 wa_masked_en(wal, HDC_CHICKEN0, 367 HDC_DONOT_FETCH_MEM_WHEN_MASKED | 368 HDC_FORCE_NON_COHERENT); 369 370 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: 371 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping 372 * polygons in the same 8x4 pixel/sample area to be processed without 373 * stalling waiting for the earlier ones to write to Hierarchical Z 374 * buffer." 375 * 376 * This optimization is off by default for BDW and CHV; turn it on. 377 */ 378 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); 379 380 /* Wa4x4STCOptimizationDisable:bdw,chv */ 381 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); 382 383 /* 384 * BSpec recommends 8x4 when MSAA is used, 385 * however in practice 16x4 seems fastest. 386 * 387 * Note that PS/WM thread counts depend on the WIZ hashing 388 * disable bit, which we don't touch here, but it's good 389 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 390 */ 391 wa_masked_field_set(wal, GEN7_GT_MODE, 392 GEN6_WIZ_HASHING_MASK, 393 GEN6_WIZ_HASHING_16x4); 394 } 395 396 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, 397 struct i915_wa_list *wal) 398 { 399 struct drm_i915_private *i915 = engine->i915; 400 401 gen8_ctx_workarounds_init(engine, wal); 402 403 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ 404 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 405 406 /* WaDisableDopClockGating:bdw 407 * 408 * Also see the related UCGTCL1 write in bdw_init_clock_gating() 409 * to disable EUTC clock gating. 410 */ 411 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 412 DOP_CLOCK_GATING_DISABLE); 413 414 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 415 GEN8_SAMPLER_POWER_BYPASS_DIS); 416 417 wa_masked_en(wal, HDC_CHICKEN0, 418 /* WaForceContextSaveRestoreNonCoherent:bdw */ 419 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 420 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ 421 (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); 422 } 423 424 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, 425 struct i915_wa_list *wal) 426 { 427 gen8_ctx_workarounds_init(engine, wal); 428 429 /* WaDisableThreadStallDopClockGating:chv */ 430 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 431 432 /* Improve HiZ throughput on CHV. */ 433 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); 434 } 435 436 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, 437 struct i915_wa_list *wal) 438 { 439 struct drm_i915_private *i915 = engine->i915; 440 441 if (HAS_LLC(i915)) { 442 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 443 * 444 * Must match Display Engine. See 445 * WaCompressedResourceDisplayNewHashMode. 446 */ 447 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 448 GEN9_PBE_COMPRESSED_HASH_SELECTION); 449 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 450 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); 451 } 452 453 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ 454 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ 455 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 456 FLOW_CONTROL_ENABLE | 457 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 458 459 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ 460 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ 461 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 462 GEN9_ENABLE_YV12_BUGFIX | 463 GEN9_ENABLE_GPGPU_PREEMPTION); 464 465 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ 466 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ 467 wa_masked_en(wal, CACHE_MODE_1, 468 GEN8_4x4_STC_OPTIMIZATION_DISABLE | 469 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); 470 471 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ 472 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, 473 GEN9_CCS_TLB_PREFETCH_ENABLE); 474 475 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ 476 wa_masked_en(wal, HDC_CHICKEN0, 477 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 478 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); 479 480 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are 481 * both tied to WaForceContextSaveRestoreNonCoherent 482 * in some hsds for skl. We keep the tie for all gen9. The 483 * documentation is a bit hazy and so we want to get common behaviour, 484 * even though there is no clear evidence we would need both on kbl/bxt. 485 * This area has been source of system hangs so we play it safe 486 * and mimic the skl regardless of what bspec says. 487 * 488 * Use Force Non-Coherent whenever executing a 3D context. This 489 * is a workaround for a possible hang in the unlikely event 490 * a TLB invalidation occurs during a PSD flush. 491 */ 492 493 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ 494 wa_masked_en(wal, HDC_CHICKEN0, 495 HDC_FORCE_NON_COHERENT); 496 497 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ 498 if (IS_SKYLAKE(i915) || 499 IS_KABYLAKE(i915) || 500 IS_COFFEELAKE(i915) || 501 IS_COMETLAKE(i915)) 502 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 503 GEN8_SAMPLER_POWER_BYPASS_DIS); 504 505 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ 506 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); 507 508 /* 509 * Supporting preemption with fine-granularity requires changes in the 510 * batch buffer programming. Since we can't break old userspace, we 511 * need to set our default preemption level to safe value. Userspace is 512 * still able to use more fine-grained preemption levels, since in 513 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the 514 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are 515 * not real HW workarounds, but merely a way to start using preemption 516 * while maintaining old contract with userspace. 517 */ 518 519 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ 520 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); 521 522 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ 523 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 524 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 525 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); 526 527 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ 528 if (IS_GEN9_LP(i915)) 529 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); 530 } 531 532 static void skl_tune_iz_hashing(struct intel_engine_cs *engine, 533 struct i915_wa_list *wal) 534 { 535 struct intel_gt *gt = engine->gt; 536 u8 vals[3] = { 0, 0, 0 }; 537 unsigned int i; 538 539 for (i = 0; i < 3; i++) { 540 u8 ss; 541 542 /* 543 * Only consider slices where one, and only one, subslice has 7 544 * EUs 545 */ 546 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) 547 continue; 548 549 /* 550 * subslice_7eu[i] != 0 (because of the check above) and 551 * ss_max == 4 (maximum number of subslices possible per slice) 552 * 553 * -> 0 <= ss <= 3; 554 */ 555 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; 556 vals[i] = 3 - ss; 557 } 558 559 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) 560 return; 561 562 /* Tune IZ hashing. See intel_device_info_runtime_init() */ 563 wa_masked_field_set(wal, GEN7_GT_MODE, 564 GEN9_IZ_HASHING_MASK(2) | 565 GEN9_IZ_HASHING_MASK(1) | 566 GEN9_IZ_HASHING_MASK(0), 567 GEN9_IZ_HASHING(2, vals[2]) | 568 GEN9_IZ_HASHING(1, vals[1]) | 569 GEN9_IZ_HASHING(0, vals[0])); 570 } 571 572 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, 573 struct i915_wa_list *wal) 574 { 575 gen9_ctx_workarounds_init(engine, wal); 576 skl_tune_iz_hashing(engine, wal); 577 } 578 579 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, 580 struct i915_wa_list *wal) 581 { 582 gen9_ctx_workarounds_init(engine, wal); 583 584 /* WaDisableThreadStallDopClockGating:bxt */ 585 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 586 STALL_DOP_GATING_DISABLE); 587 588 /* WaToEnableHwFixForPushConstHWBug:bxt */ 589 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 590 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 591 } 592 593 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, 594 struct i915_wa_list *wal) 595 { 596 struct drm_i915_private *i915 = engine->i915; 597 598 gen9_ctx_workarounds_init(engine, wal); 599 600 /* WaToEnableHwFixForPushConstHWBug:kbl */ 601 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) 602 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 603 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 604 605 /* WaDisableSbeCacheDispatchPortSharing:kbl */ 606 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 607 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 608 } 609 610 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, 611 struct i915_wa_list *wal) 612 { 613 gen9_ctx_workarounds_init(engine, wal); 614 615 /* WaToEnableHwFixForPushConstHWBug:glk */ 616 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 617 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 618 } 619 620 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, 621 struct i915_wa_list *wal) 622 { 623 gen9_ctx_workarounds_init(engine, wal); 624 625 /* WaToEnableHwFixForPushConstHWBug:cfl */ 626 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 627 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 628 629 /* WaDisableSbeCacheDispatchPortSharing:cfl */ 630 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 631 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 632 } 633 634 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, 635 struct i915_wa_list *wal) 636 { 637 /* Wa_1406697149 (WaDisableBankHangMode:icl) */ 638 wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL); 639 640 /* WaForceEnableNonCoherent:icl 641 * This is not the same workaround as in early Gen9 platforms, where 642 * lacking this could cause system hangs, but coherency performance 643 * overhead is high and only a few compute workloads really need it 644 * (the register is whitelisted in hardware now, so UMDs can opt in 645 * for coherency if they have a good reason). 646 */ 647 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); 648 649 /* WaEnableFloatBlendOptimization:icl */ 650 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 651 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 652 0 /* write-only, so skip validation */, 653 true); 654 655 /* WaDisableGPGPUMidThreadPreemption:icl */ 656 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 657 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 658 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 659 660 /* allow headerless messages for preemptible GPGPU context */ 661 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 662 GEN11_SAMPLER_ENABLE_HEADLESS_MSG); 663 664 /* Wa_1604278689:icl,ehl */ 665 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); 666 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 667 0, 668 0xFFFFFFFF); 669 670 /* Wa_1406306137:icl,ehl */ 671 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); 672 } 673 674 /* 675 * These settings aren't actually workarounds, but general tuning settings that 676 * need to be programmed on dg2 platform. 677 */ 678 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, 679 struct i915_wa_list *wal) 680 { 681 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); 682 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, 683 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); 684 wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK, 685 FF_MODE2_TDS_TIMER_128); 686 } 687 688 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, 689 struct i915_wa_list *wal) 690 { 691 struct drm_i915_private *i915 = engine->i915; 692 693 /* 694 * Wa_1409142259:tgl,dg1,adl-p 695 * Wa_1409347922:tgl,dg1,adl-p 696 * Wa_1409252684:tgl,dg1,adl-p 697 * Wa_1409217633:tgl,dg1,adl-p 698 * Wa_1409207793:tgl,dg1,adl-p 699 * Wa_1409178076:tgl,dg1,adl-p 700 * Wa_1408979724:tgl,dg1,adl-p 701 * Wa_14010443199:tgl,rkl,dg1,adl-p 702 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p 703 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p 704 */ 705 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, 706 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 707 708 /* WaDisableGPGPUMidThreadPreemption:gen12 */ 709 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 710 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 711 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 712 713 /* 714 * Wa_16011163337 - GS_TIMER 715 * 716 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we 717 * need to program it even on those that don't explicitly list that 718 * workaround. 719 * 720 * Note that the programming of GEN12_FF_MODE2 is further modified 721 * according to the FF_MODE2 guidance given by Wa_1608008084. 722 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong 723 * value when read from the CPU. 724 * 725 * The default value for this register is zero for all fields. 726 * So instead of doing a RMW we should just write the desired values 727 * for TDS and GS timers. Note that since the readback can't be trusted, 728 * the clear mask is just set to ~0 to make sure other bits are not 729 * inadvertently set. For the same reason read verification is ignored. 730 */ 731 wa_add(wal, 732 GEN12_FF_MODE2, 733 ~0, 734 FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224, 735 0, false); 736 737 if (!IS_DG1(i915)) { 738 /* Wa_1806527549 */ 739 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); 740 741 /* Wa_1606376872 */ 742 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC); 743 } 744 } 745 746 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, 747 struct i915_wa_list *wal) 748 { 749 gen12_ctx_workarounds_init(engine, wal); 750 751 /* Wa_1409044764 */ 752 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, 753 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); 754 755 /* Wa_22010493298 */ 756 wa_masked_en(wal, HIZ_CHICKEN, 757 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); 758 } 759 760 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, 761 struct i915_wa_list *wal) 762 { 763 dg2_ctx_gt_tuning_init(engine, wal); 764 765 /* Wa_16013271637:dg2 */ 766 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 767 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 768 769 /* Wa_14014947963:dg2 */ 770 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); 771 772 /* Wa_18018764978:dg2 */ 773 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 774 775 /* Wa_18019271663:dg2 */ 776 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 777 778 /* Wa_14019877138:dg2 */ 779 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT); 780 } 781 782 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine, 783 struct i915_wa_list *wal) 784 { 785 struct intel_gt *gt = engine->gt; 786 787 dg2_ctx_gt_tuning_init(engine, wal); 788 789 /* 790 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in 791 * gen12_emit_indirect_ctx_rcs() rather than here on some early 792 * steppings. 793 */ 794 if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 795 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))) 796 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false); 797 } 798 799 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine, 800 struct i915_wa_list *wal) 801 { 802 struct intel_gt *gt = engine->gt; 803 804 xelpg_ctx_gt_tuning_init(engine, wal); 805 806 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 807 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 808 /* Wa_14014947963 */ 809 wa_masked_field_set(wal, VF_PREEMPTION, 810 PREEMPTION_VERTEX_COUNT, 0x4000); 811 812 /* Wa_16013271637 */ 813 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 814 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 815 816 /* Wa_18019627453 */ 817 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS); 818 819 /* Wa_18018764978 */ 820 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 821 } 822 823 /* Wa_18019271663 */ 824 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 825 826 /* Wa_14019877138 */ 827 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT); 828 } 829 830 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, 831 struct i915_wa_list *wal) 832 { 833 /* 834 * This is a "fake" workaround defined by software to ensure we 835 * maintain reliable, backward-compatible behavior for userspace with 836 * regards to how nested MI_BATCH_BUFFER_START commands are handled. 837 * 838 * The per-context setting of MI_MODE[12] determines whether the bits 839 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted 840 * in the traditional manner or whether they should instead use a new 841 * tgl+ meaning that breaks backward compatibility, but allows nesting 842 * into 3rd-level batchbuffers. When this new capability was first 843 * added in TGL, it remained off by default unless a context 844 * intentionally opted in to the new behavior. However Xe_HPG now 845 * flips this on by default and requires that we explicitly opt out if 846 * we don't want the new behavior. 847 * 848 * From a SW perspective, we want to maintain the backward-compatible 849 * behavior for userspace, so we'll apply a fake workaround to set it 850 * back to the legacy behavior on platforms where the hardware default 851 * is to break compatibility. At the moment there is no Linux 852 * userspace that utilizes third-level batchbuffers, so this will avoid 853 * userspace from needing to make any changes. using the legacy 854 * meaning is the correct thing to do. If/when we have userspace 855 * consumers that want to utilize third-level batch nesting, we can 856 * provide a context parameter to allow them to opt-in. 857 */ 858 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); 859 } 860 861 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, 862 struct i915_wa_list *wal) 863 { 864 u8 mocs; 865 866 /* 867 * Some blitter commands do not have a field for MOCS, those 868 * commands will use MOCS index pointed by BLIT_CCTL. 869 * BLIT_CCTL registers are needed to be programmed to un-cached. 870 */ 871 if (engine->class == COPY_ENGINE_CLASS) { 872 mocs = engine->gt->mocs.uc_index; 873 wa_write_clr_set(wal, 874 BLIT_CCTL(engine->mmio_base), 875 BLIT_CCTL_MASK, 876 BLIT_CCTL_MOCS(mocs, mocs)); 877 } 878 } 879 880 /* 881 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround 882 * defined by the hardware team, but it programming general context registers. 883 * Adding those context register programming in context workaround 884 * allow us to use the wa framework for proper application and validation. 885 */ 886 static void 887 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, 888 struct i915_wa_list *wal) 889 { 890 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 891 fakewa_disable_nestedbb_mode(engine, wal); 892 893 gen12_ctx_gt_mocs_init(engine, wal); 894 } 895 896 static void 897 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, 898 struct i915_wa_list *wal, 899 const char *name) 900 { 901 struct drm_i915_private *i915 = engine->i915; 902 903 wa_init_start(wal, engine->gt, name, engine->name); 904 905 /* Applies to all engines */ 906 /* 907 * Fake workarounds are not the actual workaround but 908 * programming of context registers using workaround framework. 909 */ 910 if (GRAPHICS_VER(i915) >= 12) 911 gen12_ctx_gt_fake_wa_init(engine, wal); 912 913 if (engine->class != RENDER_CLASS) 914 goto done; 915 916 if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 917 xelpg_ctx_workarounds_init(engine, wal); 918 else if (IS_DG2(i915)) 919 dg2_ctx_workarounds_init(engine, wal); 920 else if (IS_DG1(i915)) 921 dg1_ctx_workarounds_init(engine, wal); 922 else if (GRAPHICS_VER(i915) == 12) 923 gen12_ctx_workarounds_init(engine, wal); 924 else if (GRAPHICS_VER(i915) == 11) 925 icl_ctx_workarounds_init(engine, wal); 926 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 927 cfl_ctx_workarounds_init(engine, wal); 928 else if (IS_GEMINILAKE(i915)) 929 glk_ctx_workarounds_init(engine, wal); 930 else if (IS_KABYLAKE(i915)) 931 kbl_ctx_workarounds_init(engine, wal); 932 else if (IS_BROXTON(i915)) 933 bxt_ctx_workarounds_init(engine, wal); 934 else if (IS_SKYLAKE(i915)) 935 skl_ctx_workarounds_init(engine, wal); 936 else if (IS_CHERRYVIEW(i915)) 937 chv_ctx_workarounds_init(engine, wal); 938 else if (IS_BROADWELL(i915)) 939 bdw_ctx_workarounds_init(engine, wal); 940 else if (GRAPHICS_VER(i915) == 7) 941 gen7_ctx_workarounds_init(engine, wal); 942 else if (GRAPHICS_VER(i915) == 6) 943 gen6_ctx_workarounds_init(engine, wal); 944 else if (GRAPHICS_VER(i915) < 8) 945 ; 946 else 947 MISSING_CASE(GRAPHICS_VER(i915)); 948 949 done: 950 wa_init_finish(wal); 951 } 952 953 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) 954 { 955 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); 956 } 957 958 int intel_engine_emit_ctx_wa(struct i915_request *rq) 959 { 960 struct i915_wa_list *wal = &rq->engine->ctx_wa_list; 961 struct intel_uncore *uncore = rq->engine->uncore; 962 enum forcewake_domains fw; 963 unsigned long flags; 964 struct i915_wa *wa; 965 unsigned int i; 966 u32 *cs; 967 int ret; 968 969 if (wal->count == 0) 970 return 0; 971 972 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 973 if (ret) 974 return ret; 975 976 if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) || 977 IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) 978 cs = intel_ring_begin(rq, (wal->count * 2 + 6)); 979 else 980 cs = intel_ring_begin(rq, (wal->count * 2 + 2)); 981 982 if (IS_ERR(cs)) 983 return PTR_ERR(cs); 984 985 fw = wal_get_fw_for_rmw(uncore, wal); 986 987 intel_gt_mcr_lock(wal->gt, &flags); 988 spin_lock(&uncore->lock); 989 intel_uncore_forcewake_get__locked(uncore, fw); 990 991 *cs++ = MI_LOAD_REGISTER_IMM(wal->count); 992 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 993 u32 val; 994 995 /* Skip reading the register if it's not really needed */ 996 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) { 997 val = wa->set; 998 } else { 999 val = wa->is_mcr ? 1000 intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) : 1001 intel_uncore_read_fw(uncore, wa->reg); 1002 val &= ~wa->clr; 1003 val |= wa->set; 1004 } 1005 1006 *cs++ = i915_mmio_reg_offset(wa->reg); 1007 *cs++ = val; 1008 } 1009 *cs++ = MI_NOOP; 1010 1011 /* Wa_14019789679 */ 1012 if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) || 1013 IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) { 1014 *cs++ = CMD_3DSTATE_MESH_CONTROL; 1015 *cs++ = 0; 1016 *cs++ = 0; 1017 *cs++ = MI_NOOP; 1018 } 1019 1020 intel_uncore_forcewake_put__locked(uncore, fw); 1021 spin_unlock(&uncore->lock); 1022 intel_gt_mcr_unlock(wal->gt, flags); 1023 1024 intel_ring_advance(rq, cs); 1025 1026 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 1027 if (ret) 1028 return ret; 1029 1030 return 0; 1031 } 1032 1033 static void 1034 gen4_gt_workarounds_init(struct intel_gt *gt, 1035 struct i915_wa_list *wal) 1036 { 1037 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ 1038 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 1039 } 1040 1041 static void 1042 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1043 { 1044 gen4_gt_workarounds_init(gt, wal); 1045 1046 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ 1047 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); 1048 } 1049 1050 static void 1051 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1052 { 1053 g4x_gt_workarounds_init(gt, wal); 1054 1055 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); 1056 } 1057 1058 static void 1059 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1060 { 1061 } 1062 1063 static void 1064 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1065 { 1066 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ 1067 wa_masked_dis(wal, 1068 GEN7_COMMON_SLICE_CHICKEN1, 1069 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 1070 1071 /* WaApplyL3ControlAndL3ChickenMode:ivb */ 1072 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); 1073 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); 1074 1075 /* WaForceL3Serialization:ivb */ 1076 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1077 } 1078 1079 static void 1080 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1081 { 1082 /* WaForceL3Serialization:vlv */ 1083 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1084 1085 /* 1086 * WaIncreaseL3CreditsForVLVB0:vlv 1087 * This is the hardware default actually. 1088 */ 1089 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); 1090 } 1091 1092 static void 1093 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1094 { 1095 /* L3 caching of data atomics doesn't work -- disable it. */ 1096 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); 1097 1098 wa_add(wal, 1099 HSW_ROW_CHICKEN3, 0, 1100 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 1101 0 /* XXX does this reg exist? */, true); 1102 1103 /* WaVSRefCountFullforceMissDisable:hsw */ 1104 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); 1105 } 1106 1107 static void 1108 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) 1109 { 1110 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; 1111 unsigned int slice, subslice; 1112 u32 mcr, mcr_mask; 1113 1114 GEM_BUG_ON(GRAPHICS_VER(i915) != 9); 1115 1116 /* 1117 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml 1118 * Before any MMIO read into slice/subslice specific registers, MCR 1119 * packet control register needs to be programmed to point to any 1120 * enabled s/ss pair. Otherwise, incorrect values will be returned. 1121 * This means each subsequent MMIO read will be forwarded to an 1122 * specific s/ss combination, but this is OK since these registers 1123 * are consistent across s/ss in almost all cases. In the rare 1124 * occasions, such as INSTDONE, where this value is dependent 1125 * on s/ss combo, the read should be done with read_subslice_reg. 1126 */ 1127 slice = ffs(sseu->slice_mask) - 1; 1128 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); 1129 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); 1130 GEM_BUG_ON(!subslice); 1131 subslice--; 1132 1133 /* 1134 * We use GEN8_MCR..() macros to calculate the |mcr| value for 1135 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads 1136 */ 1137 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1138 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1139 1140 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); 1141 1142 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); 1143 } 1144 1145 static void 1146 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1147 { 1148 struct drm_i915_private *i915 = gt->i915; 1149 1150 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ 1151 gen9_wa_init_mcr(i915, wal); 1152 1153 /* WaDisableKillLogic:bxt,skl,kbl */ 1154 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) 1155 wa_write_or(wal, 1156 GAM_ECOCHK, 1157 ECOCHK_DIS_TLB); 1158 1159 if (HAS_LLC(i915)) { 1160 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 1161 * 1162 * Must match Display Engine. See 1163 * WaCompressedResourceDisplayNewHashMode. 1164 */ 1165 wa_write_or(wal, 1166 MMCD_MISC_CTRL, 1167 MMCD_PCLA | MMCD_HOTSPOT_EN); 1168 } 1169 1170 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ 1171 wa_write_or(wal, 1172 GAM_ECOCHK, 1173 BDW_DISABLE_HDC_INVALIDATION); 1174 } 1175 1176 static void 1177 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1178 { 1179 gen9_gt_workarounds_init(gt, wal); 1180 1181 /* WaDisableGafsUnitClkGating:skl */ 1182 wa_write_or(wal, 1183 GEN7_UCGCTL4, 1184 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1185 1186 /* WaInPlaceDecompressionHang:skl */ 1187 if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) 1188 wa_write_or(wal, 1189 GEN9_GAMT_ECO_REG_RW_IA, 1190 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1191 } 1192 1193 static void 1194 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1195 { 1196 gen9_gt_workarounds_init(gt, wal); 1197 1198 /* WaDisableDynamicCreditSharing:kbl */ 1199 if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) 1200 wa_write_or(wal, 1201 GAMT_CHKN_BIT_REG, 1202 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); 1203 1204 /* WaDisableGafsUnitClkGating:kbl */ 1205 wa_write_or(wal, 1206 GEN7_UCGCTL4, 1207 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1208 1209 /* WaInPlaceDecompressionHang:kbl */ 1210 wa_write_or(wal, 1211 GEN9_GAMT_ECO_REG_RW_IA, 1212 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1213 } 1214 1215 static void 1216 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1217 { 1218 gen9_gt_workarounds_init(gt, wal); 1219 } 1220 1221 static void 1222 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1223 { 1224 gen9_gt_workarounds_init(gt, wal); 1225 1226 /* WaDisableGafsUnitClkGating:cfl */ 1227 wa_write_or(wal, 1228 GEN7_UCGCTL4, 1229 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1230 1231 /* WaInPlaceDecompressionHang:cfl */ 1232 wa_write_or(wal, 1233 GEN9_GAMT_ECO_REG_RW_IA, 1234 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1235 } 1236 1237 static void __set_mcr_steering(struct i915_wa_list *wal, 1238 i915_reg_t steering_reg, 1239 unsigned int slice, unsigned int subslice) 1240 { 1241 u32 mcr, mcr_mask; 1242 1243 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1244 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1245 1246 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); 1247 } 1248 1249 static void debug_dump_steering(struct intel_gt *gt) 1250 { 1251 struct drm_printer p = drm_dbg_printer(>->i915->drm, DRM_UT_DRIVER, 1252 "MCR Steering:"); 1253 1254 if (drm_debug_enabled(DRM_UT_DRIVER)) 1255 intel_gt_mcr_report_steering(&p, gt, false); 1256 } 1257 1258 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, 1259 unsigned int slice, unsigned int subslice) 1260 { 1261 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); 1262 1263 gt->default_steering.groupid = slice; 1264 gt->default_steering.instanceid = subslice; 1265 1266 debug_dump_steering(gt); 1267 } 1268 1269 static void 1270 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1271 { 1272 const struct sseu_dev_info *sseu = >->info.sseu; 1273 unsigned int subslice; 1274 1275 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); 1276 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); 1277 1278 /* 1279 * Although a platform may have subslices, we need to always steer 1280 * reads to the lowest instance that isn't fused off. When Render 1281 * Power Gating is enabled, grabbing forcewake will only power up a 1282 * single subslice (the "minconfig") if there isn't a real workload 1283 * that needs to be run; this means that if we steer register reads to 1284 * one of the higher subslices, we run the risk of reading back 0's or 1285 * random garbage. 1286 */ 1287 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); 1288 1289 /* 1290 * If the subslice we picked above also steers us to a valid L3 bank, 1291 * then we can just rely on the default steering and won't need to 1292 * worry about explicitly re-steering L3BANK reads later. 1293 */ 1294 if (gt->info.l3bank_mask & BIT(subslice)) 1295 gt->steering_table[L3BANK] = NULL; 1296 1297 __add_mcr_wa(gt, wal, 0, subslice); 1298 } 1299 1300 static void 1301 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1302 { 1303 const struct sseu_dev_info *sseu = >->info.sseu; 1304 unsigned long slice, subslice = 0, slice_mask = 0; 1305 u32 lncf_mask = 0; 1306 int i; 1307 1308 /* 1309 * On Xe_HP the steering increases in complexity. There are now several 1310 * more units that require steering and we're not guaranteed to be able 1311 * to find a common setting for all of them. These are: 1312 * - GSLICE (fusable) 1313 * - DSS (sub-unit within gslice; fusable) 1314 * - L3 Bank (fusable) 1315 * - MSLICE (fusable) 1316 * - LNCF (sub-unit within mslice; always present if mslice is present) 1317 * 1318 * We'll do our default/implicit steering based on GSLICE (in the 1319 * sliceid field) and DSS (in the subsliceid field). If we can 1320 * find overlap between the valid MSLICE and/or LNCF values with 1321 * a suitable GSLICE, then we can just re-use the default value and 1322 * skip and explicit steering at runtime. 1323 * 1324 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find 1325 * a valid sliceid value. DSS steering is the only type of steering 1326 * that utilizes the 'subsliceid' bits. 1327 * 1328 * Also note that, even though the steering domain is called "GSlice" 1329 * and it is encoded in the register using the gslice format, the spec 1330 * says that the combined (geometry | compute) fuse should be used to 1331 * select the steering. 1332 */ 1333 1334 /* Find the potential gslice candidates */ 1335 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, 1336 GEN_DSS_PER_GSLICE); 1337 1338 /* 1339 * Find the potential LNCF candidates. Either LNCF within a valid 1340 * mslice is fine. 1341 */ 1342 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES) 1343 lncf_mask |= (0x3 << (i * 2)); 1344 1345 /* 1346 * Are there any sliceid values that work for both GSLICE and LNCF 1347 * steering? 1348 */ 1349 if (slice_mask & lncf_mask) { 1350 slice_mask &= lncf_mask; 1351 gt->steering_table[LNCF] = NULL; 1352 } 1353 1354 /* How about sliceid values that also work for MSLICE steering? */ 1355 if (slice_mask & gt->info.mslice_mask) { 1356 slice_mask &= gt->info.mslice_mask; 1357 gt->steering_table[MSLICE] = NULL; 1358 } 1359 1360 slice = __ffs(slice_mask); 1361 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % 1362 GEN_DSS_PER_GSLICE; 1363 1364 __add_mcr_wa(gt, wal, slice, subslice); 1365 1366 /* 1367 * SQIDI ranges are special because they use different steering 1368 * registers than everything else we work with. On XeHP SDV and 1369 * DG2-G10, any value in the steering registers will work fine since 1370 * all instances are present, but DG2-G11 only has SQIDI instances at 1371 * ID's 2 and 3, so we need to steer to one of those. For simplicity 1372 * we'll just steer to a hardcoded "2" since that value will work 1373 * everywhere. 1374 */ 1375 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); 1376 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); 1377 1378 /* 1379 * On DG2, GAM registers have a dedicated steering control register 1380 * and must always be programmed to a hardcoded groupid of "1." 1381 */ 1382 if (IS_DG2(gt->i915)) 1383 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); 1384 } 1385 1386 static void 1387 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1388 { 1389 struct drm_i915_private *i915 = gt->i915; 1390 1391 icl_wa_init_mcr(gt, wal); 1392 1393 /* WaModifyGamTlbPartitioning:icl */ 1394 wa_write_clr_set(wal, 1395 GEN11_GACB_PERF_CTRL, 1396 GEN11_HASH_CTRL_MASK, 1397 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); 1398 1399 /* Wa_1405766107:icl 1400 * Formerly known as WaCL2SFHalfMaxAlloc 1401 */ 1402 wa_write_or(wal, 1403 GEN11_LSN_UNSLCVC, 1404 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | 1405 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); 1406 1407 /* Wa_220166154:icl 1408 * Formerly known as WaDisCtxReload 1409 */ 1410 wa_write_or(wal, 1411 GEN8_GAMW_ECO_DEV_RW_IA, 1412 GAMW_ECO_DEV_CTX_RELOAD_DISABLE); 1413 1414 /* Wa_1406463099:icl 1415 * Formerly known as WaGamTlbPendError 1416 */ 1417 wa_write_or(wal, 1418 GAMT_CHKN_BIT_REG, 1419 GAMT_CHKN_DISABLE_L3_COH_PIPE); 1420 1421 /* 1422 * Wa_1408615072:icl,ehl (vsunit) 1423 * Wa_1407596294:icl,ehl (hsunit) 1424 */ 1425 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1426 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); 1427 1428 /* Wa_1407352427:icl,ehl */ 1429 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1430 PSDUNIT_CLKGATE_DIS); 1431 1432 /* Wa_1406680159:icl,ehl */ 1433 wa_mcr_write_or(wal, 1434 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1435 GWUNIT_CLKGATE_DIS); 1436 1437 /* Wa_1607087056:icl,ehl,jsl */ 1438 if (IS_ICELAKE(i915) || 1439 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && 1440 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))) 1441 wa_write_or(wal, 1442 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1443 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1444 1445 /* 1446 * This is not a documented workaround, but rather an optimization 1447 * to reduce sampler power. 1448 */ 1449 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1450 } 1451 1452 /* 1453 * Though there are per-engine instances of these registers, 1454 * they retain their value through engine resets and should 1455 * only be provided on the GT workaround list rather than 1456 * the engine-specific workaround list. 1457 */ 1458 static void 1459 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) 1460 { 1461 struct intel_engine_cs *engine; 1462 int id; 1463 1464 for_each_engine(engine, gt, id) { 1465 if (engine->class != VIDEO_DECODE_CLASS || 1466 (engine->instance % 2)) 1467 continue; 1468 1469 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), 1470 IECPUNIT_CLKGATE_DIS); 1471 } 1472 } 1473 1474 static void 1475 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1476 { 1477 icl_wa_init_mcr(gt, wal); 1478 1479 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ 1480 wa_14011060649(gt, wal); 1481 1482 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ 1483 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1484 1485 /* 1486 * Wa_14015795083 1487 * 1488 * Firmware on some gen12 platforms locks the MISCCPCTL register, 1489 * preventing i915 from modifying it for this workaround. Skip the 1490 * readback verification for this workaround on debug builds; if the 1491 * workaround doesn't stick due to firmware behavior, it's not an error 1492 * that we want CI to flag. 1493 */ 1494 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 1495 0, 0, false); 1496 } 1497 1498 static void 1499 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1500 { 1501 gen12_gt_workarounds_init(gt, wal); 1502 1503 /* Wa_1409420604:dg1 */ 1504 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2, 1505 CPSSUNIT_CLKGATE_DIS); 1506 1507 /* Wa_1408615072:dg1 */ 1508 /* Empirical testing shows this register is unaffected by engine reset. */ 1509 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL); 1510 } 1511 1512 static void 1513 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1514 { 1515 xehp_init_mcr(gt, wal); 1516 1517 /* Wa_14011060649:dg2 */ 1518 wa_14011060649(gt, wal); 1519 1520 if (IS_DG2_G10(gt->i915)) { 1521 /* Wa_22010523718:dg2 */ 1522 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1523 CG3DDISCFEG_CLKGATE_DIS); 1524 1525 /* Wa_14011006942:dg2 */ 1526 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1527 DSS_ROUTER_CLKGATE_DIS); 1528 } 1529 1530 /* Wa_14014830051:dg2 */ 1531 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1532 1533 /* 1534 * Wa_14015795083 1535 * Skip verification for possibly locked register. 1536 */ 1537 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 1538 0, 0, false); 1539 1540 /* Wa_18018781329 */ 1541 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1542 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1543 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1544 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1545 1546 /* Wa_1509235366:dg2 */ 1547 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1548 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1549 1550 /* Wa_14010648519:dg2 */ 1551 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 1552 } 1553 1554 static void 1555 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1556 { 1557 /* Wa_14018575942 / Wa_18018781329 */ 1558 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1559 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1560 1561 /* Wa_22016670082 */ 1562 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); 1563 1564 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 1565 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 1566 /* Wa_14014830051 */ 1567 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1568 1569 /* Wa_14015795083 */ 1570 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1571 } 1572 1573 /* 1574 * Unlike older platforms, we no longer setup implicit steering here; 1575 * all MCR accesses are explicitly steered. 1576 */ 1577 debug_dump_steering(gt); 1578 } 1579 1580 static void 1581 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal) 1582 { 1583 struct intel_engine_cs *engine; 1584 int id; 1585 1586 for_each_engine(engine, gt, id) 1587 if (engine->class == VIDEO_DECODE_CLASS) 1588 wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base), 1589 MFXPIPE_CLKGATE_DIS); 1590 } 1591 1592 static void 1593 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1594 { 1595 wa_16021867713(gt, wal); 1596 1597 /* 1598 * Wa_14018778641 1599 * Wa_18018781329 1600 * 1601 * Note that although these registers are MCR on the primary 1602 * GT, the media GT's versions are regular singleton registers. 1603 */ 1604 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB); 1605 1606 /* 1607 * Wa_14018575942 1608 * 1609 * Issue is seen on media KPI test running on VDBOX engine 1610 * especially VP9 encoding WLs 1611 */ 1612 wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1613 1614 /* Wa_22016670082 */ 1615 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); 1616 1617 debug_dump_steering(gt); 1618 } 1619 1620 /* 1621 * The bspec performance guide has recommended MMIO tuning settings. These 1622 * aren't truly "workarounds" but we want to program them through the 1623 * workaround infrastructure to make sure they're (re)applied at the proper 1624 * times. 1625 * 1626 * The programming in this function is for settings that persist through 1627 * engine resets and also are not part of any engine's register state context. 1628 * I.e., settings that only need to be re-applied in the event of a full GT 1629 * reset. 1630 */ 1631 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal) 1632 { 1633 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { 1634 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 1635 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1636 } 1637 1638 if (IS_DG2(gt->i915)) { 1639 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 1640 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1641 } 1642 } 1643 1644 static void 1645 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) 1646 { 1647 struct drm_i915_private *i915 = gt->i915; 1648 1649 gt_tuning_settings(gt, wal); 1650 1651 if (gt->type == GT_MEDIA) { 1652 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) 1653 xelpmp_gt_workarounds_init(gt, wal); 1654 else 1655 MISSING_CASE(MEDIA_VER_FULL(i915)); 1656 1657 return; 1658 } 1659 1660 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) 1661 xelpg_gt_workarounds_init(gt, wal); 1662 else if (IS_DG2(i915)) 1663 dg2_gt_workarounds_init(gt, wal); 1664 else if (IS_DG1(i915)) 1665 dg1_gt_workarounds_init(gt, wal); 1666 else if (GRAPHICS_VER(i915) == 12) 1667 gen12_gt_workarounds_init(gt, wal); 1668 else if (GRAPHICS_VER(i915) == 11) 1669 icl_gt_workarounds_init(gt, wal); 1670 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 1671 cfl_gt_workarounds_init(gt, wal); 1672 else if (IS_GEMINILAKE(i915)) 1673 glk_gt_workarounds_init(gt, wal); 1674 else if (IS_KABYLAKE(i915)) 1675 kbl_gt_workarounds_init(gt, wal); 1676 else if (IS_BROXTON(i915)) 1677 gen9_gt_workarounds_init(gt, wal); 1678 else if (IS_SKYLAKE(i915)) 1679 skl_gt_workarounds_init(gt, wal); 1680 else if (IS_HASWELL(i915)) 1681 hsw_gt_workarounds_init(gt, wal); 1682 else if (IS_VALLEYVIEW(i915)) 1683 vlv_gt_workarounds_init(gt, wal); 1684 else if (IS_IVYBRIDGE(i915)) 1685 ivb_gt_workarounds_init(gt, wal); 1686 else if (GRAPHICS_VER(i915) == 6) 1687 snb_gt_workarounds_init(gt, wal); 1688 else if (GRAPHICS_VER(i915) == 5) 1689 ilk_gt_workarounds_init(gt, wal); 1690 else if (IS_G4X(i915)) 1691 g4x_gt_workarounds_init(gt, wal); 1692 else if (GRAPHICS_VER(i915) == 4) 1693 gen4_gt_workarounds_init(gt, wal); 1694 else if (GRAPHICS_VER(i915) <= 8) 1695 ; 1696 else 1697 MISSING_CASE(GRAPHICS_VER(i915)); 1698 } 1699 1700 void intel_gt_init_workarounds(struct intel_gt *gt) 1701 { 1702 struct i915_wa_list *wal = >->wa_list; 1703 1704 wa_init_start(wal, gt, "GT", "global"); 1705 gt_init_workarounds(gt, wal); 1706 wa_init_finish(wal); 1707 } 1708 1709 static bool 1710 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, 1711 const char *name, const char *from) 1712 { 1713 if ((cur ^ wa->set) & wa->read) { 1714 gt_err(gt, 1715 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", 1716 name, from, i915_mmio_reg_offset(wa->reg), 1717 cur, cur & wa->read, wa->set & wa->read); 1718 1719 return false; 1720 } 1721 1722 return true; 1723 } 1724 1725 static void wa_list_apply(const struct i915_wa_list *wal) 1726 { 1727 struct intel_gt *gt = wal->gt; 1728 struct intel_uncore *uncore = gt->uncore; 1729 enum forcewake_domains fw; 1730 unsigned long flags; 1731 struct i915_wa *wa; 1732 unsigned int i; 1733 1734 if (!wal->count) 1735 return; 1736 1737 fw = wal_get_fw_for_rmw(uncore, wal); 1738 1739 intel_gt_mcr_lock(gt, &flags); 1740 spin_lock(&uncore->lock); 1741 intel_uncore_forcewake_get__locked(uncore, fw); 1742 1743 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 1744 u32 val, old = 0; 1745 1746 /* open-coded rmw due to steering */ 1747 if (wa->clr) 1748 old = wa->is_mcr ? 1749 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1750 intel_uncore_read_fw(uncore, wa->reg); 1751 val = (old & ~wa->clr) | wa->set; 1752 if (val != old || !wa->clr) { 1753 if (wa->is_mcr) 1754 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); 1755 else 1756 intel_uncore_write_fw(uncore, wa->reg, val); 1757 } 1758 1759 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 1760 u32 val = wa->is_mcr ? 1761 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1762 intel_uncore_read_fw(uncore, wa->reg); 1763 1764 wa_verify(gt, wa, val, wal->name, "application"); 1765 } 1766 } 1767 1768 intel_uncore_forcewake_put__locked(uncore, fw); 1769 spin_unlock(&uncore->lock); 1770 intel_gt_mcr_unlock(gt, flags); 1771 } 1772 1773 void intel_gt_apply_workarounds(struct intel_gt *gt) 1774 { 1775 wa_list_apply(>->wa_list); 1776 } 1777 1778 static bool wa_list_verify(struct intel_gt *gt, 1779 const struct i915_wa_list *wal, 1780 const char *from) 1781 { 1782 struct intel_uncore *uncore = gt->uncore; 1783 struct i915_wa *wa; 1784 enum forcewake_domains fw; 1785 unsigned long flags; 1786 unsigned int i; 1787 bool ok = true; 1788 1789 fw = wal_get_fw_for_rmw(uncore, wal); 1790 1791 intel_gt_mcr_lock(gt, &flags); 1792 spin_lock(&uncore->lock); 1793 intel_uncore_forcewake_get__locked(uncore, fw); 1794 1795 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1796 ok &= wa_verify(wal->gt, wa, wa->is_mcr ? 1797 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1798 intel_uncore_read_fw(uncore, wa->reg), 1799 wal->name, from); 1800 1801 intel_uncore_forcewake_put__locked(uncore, fw); 1802 spin_unlock(&uncore->lock); 1803 intel_gt_mcr_unlock(gt, flags); 1804 1805 return ok; 1806 } 1807 1808 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) 1809 { 1810 return wa_list_verify(gt, >->wa_list, from); 1811 } 1812 1813 __maybe_unused 1814 static bool is_nonpriv_flags_valid(u32 flags) 1815 { 1816 /* Check only valid flag bits are set */ 1817 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) 1818 return false; 1819 1820 /* NB: Only 3 out of 4 enum values are valid for access field */ 1821 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == 1822 RING_FORCE_TO_NONPRIV_ACCESS_INVALID) 1823 return false; 1824 1825 return true; 1826 } 1827 1828 static void 1829 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) 1830 { 1831 struct i915_wa wa = { 1832 .reg = reg 1833 }; 1834 1835 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1836 return; 1837 1838 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1839 return; 1840 1841 wa.reg.reg |= flags; 1842 _wa_add(wal, &wa); 1843 } 1844 1845 static void 1846 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) 1847 { 1848 struct i915_wa wa = { 1849 .mcr_reg = reg, 1850 .is_mcr = 1, 1851 }; 1852 1853 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1854 return; 1855 1856 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1857 return; 1858 1859 wa.mcr_reg.reg |= flags; 1860 _wa_add(wal, &wa); 1861 } 1862 1863 static void 1864 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) 1865 { 1866 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1867 } 1868 1869 static void 1870 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) 1871 { 1872 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1873 } 1874 1875 static void gen9_whitelist_build(struct i915_wa_list *w) 1876 { 1877 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ 1878 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 1879 1880 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ 1881 whitelist_reg(w, GEN8_CS_CHICKEN1); 1882 1883 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ 1884 whitelist_reg(w, GEN8_HDC_CHICKEN1); 1885 1886 /* WaSendPushConstantsFromMMIO:skl,bxt */ 1887 whitelist_reg(w, COMMON_SLICE_CHICKEN2); 1888 } 1889 1890 static void skl_whitelist_build(struct intel_engine_cs *engine) 1891 { 1892 struct i915_wa_list *w = &engine->whitelist; 1893 1894 if (engine->class != RENDER_CLASS) 1895 return; 1896 1897 gen9_whitelist_build(w); 1898 1899 /* WaDisableLSQCROPERFforOCL:skl */ 1900 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1901 } 1902 1903 static void bxt_whitelist_build(struct intel_engine_cs *engine) 1904 { 1905 if (engine->class != RENDER_CLASS) 1906 return; 1907 1908 gen9_whitelist_build(&engine->whitelist); 1909 } 1910 1911 static void kbl_whitelist_build(struct intel_engine_cs *engine) 1912 { 1913 struct i915_wa_list *w = &engine->whitelist; 1914 1915 if (engine->class != RENDER_CLASS) 1916 return; 1917 1918 gen9_whitelist_build(w); 1919 1920 /* WaDisableLSQCROPERFforOCL:kbl */ 1921 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1922 } 1923 1924 static void glk_whitelist_build(struct intel_engine_cs *engine) 1925 { 1926 struct i915_wa_list *w = &engine->whitelist; 1927 1928 if (engine->class != RENDER_CLASS) 1929 return; 1930 1931 gen9_whitelist_build(w); 1932 1933 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ 1934 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 1935 } 1936 1937 static void cfl_whitelist_build(struct intel_engine_cs *engine) 1938 { 1939 struct i915_wa_list *w = &engine->whitelist; 1940 1941 if (engine->class != RENDER_CLASS) 1942 return; 1943 1944 gen9_whitelist_build(w); 1945 1946 /* 1947 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml 1948 * 1949 * This covers 4 register which are next to one another : 1950 * - PS_INVOCATION_COUNT 1951 * - PS_INVOCATION_COUNT_UDW 1952 * - PS_DEPTH_COUNT 1953 * - PS_DEPTH_COUNT_UDW 1954 */ 1955 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 1956 RING_FORCE_TO_NONPRIV_ACCESS_RD | 1957 RING_FORCE_TO_NONPRIV_RANGE_4); 1958 } 1959 1960 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) 1961 { 1962 struct i915_wa_list *w = &engine->whitelist; 1963 1964 if (engine->class != RENDER_CLASS) 1965 whitelist_reg_ext(w, 1966 RING_CTX_TIMESTAMP(engine->mmio_base), 1967 RING_FORCE_TO_NONPRIV_ACCESS_RD); 1968 } 1969 1970 static void cml_whitelist_build(struct intel_engine_cs *engine) 1971 { 1972 allow_read_ctx_timestamp(engine); 1973 1974 cfl_whitelist_build(engine); 1975 } 1976 1977 static void icl_whitelist_build(struct intel_engine_cs *engine) 1978 { 1979 struct i915_wa_list *w = &engine->whitelist; 1980 1981 allow_read_ctx_timestamp(engine); 1982 1983 switch (engine->class) { 1984 case RENDER_CLASS: 1985 /* WaAllowUMDToModifyHalfSliceChicken7:icl */ 1986 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); 1987 1988 /* WaAllowUMDToModifySamplerMode:icl */ 1989 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); 1990 1991 /* WaEnableStateCacheRedirectToCS:icl */ 1992 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 1993 1994 /* 1995 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl 1996 * 1997 * This covers 4 register which are next to one another : 1998 * - PS_INVOCATION_COUNT 1999 * - PS_INVOCATION_COUNT_UDW 2000 * - PS_DEPTH_COUNT 2001 * - PS_DEPTH_COUNT_UDW 2002 */ 2003 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2004 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2005 RING_FORCE_TO_NONPRIV_RANGE_4); 2006 break; 2007 2008 case VIDEO_DECODE_CLASS: 2009 /* hucStatusRegOffset */ 2010 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), 2011 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2012 /* hucUKernelHdrInfoRegOffset */ 2013 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), 2014 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2015 /* hucStatus2RegOffset */ 2016 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), 2017 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2018 break; 2019 2020 default: 2021 break; 2022 } 2023 } 2024 2025 static void tgl_whitelist_build(struct intel_engine_cs *engine) 2026 { 2027 struct i915_wa_list *w = &engine->whitelist; 2028 2029 allow_read_ctx_timestamp(engine); 2030 2031 switch (engine->class) { 2032 case RENDER_CLASS: 2033 /* 2034 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl 2035 * Wa_1408556865:tgl 2036 * 2037 * This covers 4 registers which are next to one another : 2038 * - PS_INVOCATION_COUNT 2039 * - PS_INVOCATION_COUNT_UDW 2040 * - PS_DEPTH_COUNT 2041 * - PS_DEPTH_COUNT_UDW 2042 */ 2043 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2044 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2045 RING_FORCE_TO_NONPRIV_RANGE_4); 2046 2047 /* 2048 * Wa_1808121037:tgl 2049 * Wa_14012131227:dg1 2050 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p 2051 */ 2052 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2053 2054 /* Wa_1806527549:tgl */ 2055 whitelist_reg(w, HIZ_CHICKEN); 2056 2057 /* Required by recommended tuning setting (not a workaround) */ 2058 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3); 2059 2060 break; 2061 default: 2062 break; 2063 } 2064 } 2065 2066 static void dg2_whitelist_build(struct intel_engine_cs *engine) 2067 { 2068 struct i915_wa_list *w = &engine->whitelist; 2069 2070 switch (engine->class) { 2071 case RENDER_CLASS: 2072 /* Required by recommended tuning setting (not a workaround) */ 2073 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2074 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2075 break; 2076 default: 2077 break; 2078 } 2079 } 2080 2081 static void xelpg_whitelist_build(struct intel_engine_cs *engine) 2082 { 2083 struct i915_wa_list *w = &engine->whitelist; 2084 2085 switch (engine->class) { 2086 case RENDER_CLASS: 2087 /* Required by recommended tuning setting (not a workaround) */ 2088 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2089 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2090 break; 2091 default: 2092 break; 2093 } 2094 } 2095 2096 void intel_engine_init_whitelist(struct intel_engine_cs *engine) 2097 { 2098 struct drm_i915_private *i915 = engine->i915; 2099 struct i915_wa_list *w = &engine->whitelist; 2100 2101 wa_init_start(w, engine->gt, "whitelist", engine->name); 2102 2103 if (engine->gt->type == GT_MEDIA) 2104 ; /* none yet */ 2105 else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 2106 xelpg_whitelist_build(engine); 2107 else if (IS_DG2(i915)) 2108 dg2_whitelist_build(engine); 2109 else if (GRAPHICS_VER(i915) == 12) 2110 tgl_whitelist_build(engine); 2111 else if (GRAPHICS_VER(i915) == 11) 2112 icl_whitelist_build(engine); 2113 else if (IS_COMETLAKE(i915)) 2114 cml_whitelist_build(engine); 2115 else if (IS_COFFEELAKE(i915)) 2116 cfl_whitelist_build(engine); 2117 else if (IS_GEMINILAKE(i915)) 2118 glk_whitelist_build(engine); 2119 else if (IS_KABYLAKE(i915)) 2120 kbl_whitelist_build(engine); 2121 else if (IS_BROXTON(i915)) 2122 bxt_whitelist_build(engine); 2123 else if (IS_SKYLAKE(i915)) 2124 skl_whitelist_build(engine); 2125 else if (GRAPHICS_VER(i915) <= 8) 2126 ; 2127 else 2128 MISSING_CASE(GRAPHICS_VER(i915)); 2129 2130 wa_init_finish(w); 2131 } 2132 2133 void intel_engine_apply_whitelist(struct intel_engine_cs *engine) 2134 { 2135 const struct i915_wa_list *wal = &engine->whitelist; 2136 struct intel_uncore *uncore = engine->uncore; 2137 const u32 base = engine->mmio_base; 2138 struct i915_wa *wa; 2139 unsigned int i; 2140 2141 if (!wal->count) 2142 return; 2143 2144 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 2145 intel_uncore_write(uncore, 2146 RING_FORCE_TO_NONPRIV(base, i), 2147 i915_mmio_reg_offset(wa->reg)); 2148 2149 /* And clear the rest just in case of garbage */ 2150 for (; i < RING_MAX_NONPRIV_SLOTS; i++) 2151 intel_uncore_write(uncore, 2152 RING_FORCE_TO_NONPRIV(base, i), 2153 i915_mmio_reg_offset(RING_NOPID(base))); 2154 } 2155 2156 /* 2157 * engine_fake_wa_init(), a place holder to program the registers 2158 * which are not part of an official workaround defined by the 2159 * hardware team. 2160 * Adding programming of those register inside workaround will 2161 * allow utilizing wa framework to proper application and verification. 2162 */ 2163 static void 2164 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2165 { 2166 u8 mocs_w, mocs_r; 2167 2168 /* 2169 * RING_CMD_CCTL specifies the default MOCS entry that will be used 2170 * by the command streamer when executing commands that don't have 2171 * a way to explicitly specify a MOCS setting. The default should 2172 * usually reference whichever MOCS entry corresponds to uncached 2173 * behavior, although use of a WB cached entry is recommended by the 2174 * spec in certain circumstances on specific platforms. 2175 */ 2176 if (GRAPHICS_VER(engine->i915) >= 12) { 2177 mocs_r = engine->gt->mocs.uc_index; 2178 mocs_w = engine->gt->mocs.uc_index; 2179 2180 if (HAS_L3_CCS_READ(engine->i915) && 2181 engine->class == COMPUTE_CLASS) { 2182 mocs_r = engine->gt->mocs.wb_index; 2183 2184 /* 2185 * Even on the few platforms where MOCS 0 is a 2186 * legitimate table entry, it's never the correct 2187 * setting to use here; we can assume the MOCS init 2188 * just forgot to initialize wb_index. 2189 */ 2190 drm_WARN_ON(&engine->i915->drm, mocs_r == 0); 2191 } 2192 2193 wa_masked_field_set(wal, 2194 RING_CMD_CCTL(engine->mmio_base), 2195 CMD_CCTL_MOCS_MASK, 2196 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); 2197 } 2198 } 2199 2200 static void 2201 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2202 { 2203 struct drm_i915_private *i915 = engine->i915; 2204 struct intel_gt *gt = engine->gt; 2205 2206 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2207 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 2208 /* Wa_22014600077 */ 2209 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2210 ENABLE_EU_COUNT_FOR_TDL_FLUSH); 2211 } 2212 2213 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2214 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2215 IS_DG2(i915)) { 2216 /* Wa_1509727124 */ 2217 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2218 SC_DISABLE_POWER_OPTIMIZATION_EBB); 2219 } 2220 2221 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2222 IS_DG2(i915)) { 2223 /* Wa_22012856258 */ 2224 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2225 GEN12_DISABLE_READ_SUPPRESSION); 2226 } 2227 2228 if (IS_DG2(i915)) { 2229 /* 2230 * Wa_22010960976:dg2 2231 * Wa_14013347512:dg2 2232 */ 2233 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, 2234 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); 2235 } 2236 2237 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) || 2238 IS_DG2(i915)) { 2239 /* Wa_14015150844 */ 2240 wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0, 2241 _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES), 2242 0, true); 2243 } 2244 2245 if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2246 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2247 /* 2248 * Wa_1606700617:tgl,dg1,adl-p 2249 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p 2250 * Wa_14010826681:tgl,dg1,rkl,adl-p 2251 * Wa_18019627453:dg2 2252 */ 2253 wa_masked_en(wal, 2254 GEN9_CS_DEBUG_MODE1, 2255 FF_DOP_CLOCK_GATE_DISABLE); 2256 } 2257 2258 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || 2259 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2260 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ 2261 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); 2262 2263 /* 2264 * Wa_1407928979:tgl A* 2265 * Wa_18011464164:tgl[B0+],dg1[B0+] 2266 * Wa_22010931296:tgl[B0+],dg1[B0+] 2267 * Wa_14010919138:rkl,dg1,adl-s,adl-p 2268 */ 2269 wa_write_or(wal, GEN7_FF_THREAD_MODE, 2270 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2271 2272 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ 2273 wa_mcr_masked_en(wal, 2274 GEN10_SAMPLER_MODE, 2275 ENABLE_SMALLPL); 2276 } 2277 2278 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2279 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2280 /* Wa_1409804808 */ 2281 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2282 GEN12_PUSH_CONST_DEREF_HOLD_DIS); 2283 2284 /* Wa_14010229206 */ 2285 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); 2286 } 2287 2288 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { 2289 /* 2290 * Wa_1607297627 2291 * 2292 * On TGL and RKL there are multiple entries for this WA in the 2293 * BSpec; some indicate this is an A0-only WA, others indicate 2294 * it applies to all steppings so we trust the "all steppings." 2295 */ 2296 wa_masked_en(wal, 2297 RING_PSMI_CTL(RENDER_RING_BASE), 2298 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | 2299 GEN8_RC_SEMA_IDLE_MSG_DISABLE); 2300 } 2301 2302 if (GRAPHICS_VER(i915) == 11) { 2303 /* This is not an Wa. Enable for better image quality */ 2304 wa_masked_en(wal, 2305 _3D_CHICKEN3, 2306 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); 2307 2308 /* 2309 * Wa_1405543622:icl 2310 * Formerly known as WaGAPZPriorityScheme 2311 */ 2312 wa_write_or(wal, 2313 GEN8_GARBCNTL, 2314 GEN11_ARBITRATION_PRIO_ORDER_MASK); 2315 2316 /* 2317 * Wa_1604223664:icl 2318 * Formerly known as WaL3BankAddressHashing 2319 */ 2320 wa_write_clr_set(wal, 2321 GEN8_GARBCNTL, 2322 GEN11_HASH_CTRL_EXCL_MASK, 2323 GEN11_HASH_CTRL_EXCL_BIT0); 2324 wa_write_clr_set(wal, 2325 GEN11_GLBLINVL, 2326 GEN11_BANK_HASH_ADDR_EXCL_MASK, 2327 GEN11_BANK_HASH_ADDR_EXCL_BIT0); 2328 2329 /* 2330 * Wa_1405733216:icl 2331 * Formerly known as WaDisableCleanEvicts 2332 */ 2333 wa_mcr_write_or(wal, 2334 GEN8_L3SQCREG4, 2335 GEN11_LQSC_CLEAN_EVICT_DISABLE); 2336 2337 /* Wa_1606682166:icl */ 2338 wa_write_or(wal, 2339 GEN7_SARCHKMD, 2340 GEN7_DISABLE_SAMPLER_PREFETCH); 2341 2342 /* Wa_1409178092:icl */ 2343 wa_mcr_write_clr_set(wal, 2344 GEN11_SCRATCH2, 2345 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 2346 0); 2347 2348 /* WaEnable32PlaneMode:icl */ 2349 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, 2350 GEN11_ENABLE_32_PLANE_MODE); 2351 2352 /* 2353 * Wa_1408767742:icl[a2..forever],ehl[all] 2354 * Wa_1605460711:icl[a0..c0] 2355 */ 2356 wa_write_or(wal, 2357 GEN7_FF_THREAD_MODE, 2358 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2359 2360 /* Wa_22010271021 */ 2361 wa_masked_en(wal, 2362 GEN9_CS_DEBUG_MODE1, 2363 FF_DOP_CLOCK_GATE_DISABLE); 2364 } 2365 2366 /* 2367 * Intel platforms that support fine-grained preemption (i.e., gen9 and 2368 * beyond) allow the kernel-mode driver to choose between two different 2369 * options for controlling preemption granularity and behavior. 2370 * 2371 * Option 1 (hardware default): 2372 * Preemption settings are controlled in a global manner via 2373 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity 2374 * and settings chosen by the kernel-mode driver will apply to all 2375 * userspace clients. 2376 * 2377 * Option 2: 2378 * Preemption settings are controlled on a per-context basis via 2379 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on 2380 * context switch and is writable by userspace (e.g., via 2381 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) 2382 * which allows different userspace drivers/clients to select 2383 * different settings, or to change those settings on the fly in 2384 * response to runtime needs. This option was known by name 2385 * "FtrPerCtxtPreemptionGranularityControl" at one time, although 2386 * that name is somewhat misleading as other non-granularity 2387 * preemption settings are also impacted by this decision. 2388 * 2389 * On Linux, our policy has always been to let userspace drivers 2390 * control preemption granularity/settings (Option 2). This was 2391 * originally mandatory on gen9 to prevent ABI breakage (old gen9 2392 * userspace developed before object-level preemption was enabled would 2393 * not behave well if i915 were to go with Option 1 and enable that 2394 * preemption in a global manner). On gen9 each context would have 2395 * object-level preemption disabled by default (see 2396 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but 2397 * userspace drivers could opt-in to object-level preemption as they 2398 * saw fit. For post-gen9 platforms, we continue to utilize Option 2; 2399 * even though it is no longer necessary for ABI compatibility when 2400 * enabling a new platform, it does ensure that userspace will be able 2401 * to implement any workarounds that show up requiring temporary 2402 * adjustments to preemption behavior at runtime. 2403 * 2404 * Notes/Workarounds: 2405 * - Wa_14015141709: On DG2 and early steppings of MTL, 2406 * CS_CHICKEN1[0] does not disable object-level preemption as 2407 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been 2408 * using Option 1). Effectively this means userspace is unable 2409 * to disable object-level preemption on these platforms/steppings 2410 * despite the setting here. 2411 * 2412 * - Wa_16013994831: May require that userspace program 2413 * CS_CHICKEN1[10] when certain runtime conditions are true. 2414 * Userspace requires Option 2 to be in effect for their update of 2415 * CS_CHICKEN1[10] to be effective. 2416 * 2417 * Other workarounds may appear in the future that will also require 2418 * Option 2 behavior to allow proper userspace implementation. 2419 */ 2420 if (GRAPHICS_VER(i915) >= 9) 2421 wa_masked_en(wal, 2422 GEN7_FF_SLICE_CS_CHICKEN1, 2423 GEN9_FFSC_PERCTX_PREEMPT_CTRL); 2424 2425 if (IS_SKYLAKE(i915) || 2426 IS_KABYLAKE(i915) || 2427 IS_COFFEELAKE(i915) || 2428 IS_COMETLAKE(i915)) { 2429 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ 2430 wa_write_or(wal, 2431 GEN8_GARBCNTL, 2432 GEN9_GAPS_TSV_CREDIT_DISABLE); 2433 } 2434 2435 if (IS_BROXTON(i915)) { 2436 /* WaDisablePooledEuLoadBalancingFix:bxt */ 2437 wa_masked_en(wal, 2438 FF_SLICE_CS_CHICKEN2, 2439 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); 2440 } 2441 2442 if (GRAPHICS_VER(i915) == 9) { 2443 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ 2444 wa_masked_en(wal, 2445 GEN9_CSFE_CHICKEN1_RCS, 2446 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); 2447 2448 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ 2449 wa_mcr_write_or(wal, 2450 BDW_SCRATCH1, 2451 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); 2452 2453 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ 2454 if (IS_GEN9_LP(i915)) 2455 wa_mcr_write_clr_set(wal, 2456 GEN8_L3SQCREG1, 2457 L3_PRIO_CREDITS_MASK, 2458 L3_GENERAL_PRIO_CREDITS(62) | 2459 L3_HIGH_PRIO_CREDITS(2)); 2460 2461 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ 2462 wa_mcr_write_or(wal, 2463 GEN8_L3SQCREG4, 2464 GEN8_LQSC_FLUSH_COHERENT_LINES); 2465 2466 /* Disable atomics in L3 to prevent unrecoverable hangs */ 2467 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, 2468 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2469 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, 2470 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2471 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, 2472 EVICTION_PERF_FIX_ENABLE, 0); 2473 } 2474 2475 if (IS_HASWELL(i915)) { 2476 /* WaSampleCChickenBitEnable:hsw */ 2477 wa_masked_en(wal, 2478 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); 2479 2480 wa_masked_dis(wal, 2481 CACHE_MODE_0_GEN7, 2482 /* enable HiZ Raw Stall Optimization */ 2483 HIZ_RAW_STALL_OPT_DISABLE); 2484 } 2485 2486 if (IS_VALLEYVIEW(i915)) { 2487 /* WaDisableEarlyCull:vlv */ 2488 wa_masked_en(wal, 2489 _3D_CHICKEN3, 2490 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2491 2492 /* 2493 * WaVSThreadDispatchOverride:ivb,vlv 2494 * 2495 * This actually overrides the dispatch 2496 * mode for all thread types. 2497 */ 2498 wa_write_clr_set(wal, 2499 GEN7_FF_THREAD_MODE, 2500 GEN7_FF_SCHED_MASK, 2501 GEN7_FF_TS_SCHED_HW | 2502 GEN7_FF_VS_SCHED_HW | 2503 GEN7_FF_DS_SCHED_HW); 2504 2505 /* WaPsdDispatchEnable:vlv */ 2506 /* WaDisablePSDDualDispatchEnable:vlv */ 2507 wa_masked_en(wal, 2508 GEN7_HALF_SLICE_CHICKEN1, 2509 GEN7_MAX_PS_THREAD_DEP | 2510 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2511 } 2512 2513 if (IS_IVYBRIDGE(i915)) { 2514 /* WaDisableEarlyCull:ivb */ 2515 wa_masked_en(wal, 2516 _3D_CHICKEN3, 2517 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2518 2519 if (0) { /* causes HiZ corruption on ivb:gt1 */ 2520 /* enable HiZ Raw Stall Optimization */ 2521 wa_masked_dis(wal, 2522 CACHE_MODE_0_GEN7, 2523 HIZ_RAW_STALL_OPT_DISABLE); 2524 } 2525 2526 /* 2527 * WaVSThreadDispatchOverride:ivb,vlv 2528 * 2529 * This actually overrides the dispatch 2530 * mode for all thread types. 2531 */ 2532 wa_write_clr_set(wal, 2533 GEN7_FF_THREAD_MODE, 2534 GEN7_FF_SCHED_MASK, 2535 GEN7_FF_TS_SCHED_HW | 2536 GEN7_FF_VS_SCHED_HW | 2537 GEN7_FF_DS_SCHED_HW); 2538 2539 /* WaDisablePSDDualDispatchEnable:ivb */ 2540 if (IS_IVB_GT1(i915)) 2541 wa_masked_en(wal, 2542 GEN7_HALF_SLICE_CHICKEN1, 2543 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2544 } 2545 2546 if (GRAPHICS_VER(i915) == 7) { 2547 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 2548 wa_masked_en(wal, 2549 RING_MODE_GEN7(RENDER_RING_BASE), 2550 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); 2551 2552 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ 2553 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); 2554 2555 /* 2556 * BSpec says this must be set, even though 2557 * WaDisable4x2SubspanOptimization:ivb,hsw 2558 * WaDisable4x2SubspanOptimization isn't listed for VLV. 2559 */ 2560 wa_masked_en(wal, 2561 CACHE_MODE_1, 2562 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); 2563 2564 /* 2565 * BSpec recommends 8x4 when MSAA is used, 2566 * however in practice 16x4 seems fastest. 2567 * 2568 * Note that PS/WM thread counts depend on the WIZ hashing 2569 * disable bit, which we don't touch here, but it's good 2570 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2571 */ 2572 wa_masked_field_set(wal, 2573 GEN7_GT_MODE, 2574 GEN6_WIZ_HASHING_MASK, 2575 GEN6_WIZ_HASHING_16x4); 2576 } 2577 2578 if (IS_GRAPHICS_VER(i915, 6, 7)) 2579 /* 2580 * We need to disable the AsyncFlip performance optimisations in 2581 * order to use MI_WAIT_FOR_EVENT within the CS. It should 2582 * already be programmed to '1' on all products. 2583 * 2584 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 2585 */ 2586 wa_masked_en(wal, 2587 RING_MI_MODE(RENDER_RING_BASE), 2588 ASYNC_FLIP_PERF_DISABLE); 2589 2590 if (GRAPHICS_VER(i915) == 6) { 2591 /* 2592 * Required for the hardware to program scanline values for 2593 * waiting 2594 * WaEnableFlushTlbInvalidationMode:snb 2595 */ 2596 wa_masked_en(wal, 2597 GFX_MODE, 2598 GFX_TLB_INVALIDATE_EXPLICIT); 2599 2600 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ 2601 wa_masked_en(wal, 2602 _3D_CHICKEN, 2603 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); 2604 2605 wa_masked_en(wal, 2606 _3D_CHICKEN3, 2607 /* WaStripsFansDisableFastClipPerformanceFix:snb */ 2608 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | 2609 /* 2610 * Bspec says: 2611 * "This bit must be set if 3DSTATE_CLIP clip mode is set 2612 * to normal and 3DSTATE_SF number of SF output attributes 2613 * is more than 16." 2614 */ 2615 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); 2616 2617 /* 2618 * BSpec recommends 8x4 when MSAA is used, 2619 * however in practice 16x4 seems fastest. 2620 * 2621 * Note that PS/WM thread counts depend on the WIZ hashing 2622 * disable bit, which we don't touch here, but it's good 2623 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2624 */ 2625 wa_masked_field_set(wal, 2626 GEN6_GT_MODE, 2627 GEN6_WIZ_HASHING_MASK, 2628 GEN6_WIZ_HASHING_16x4); 2629 2630 /* WaDisable_RenderCache_OperationalFlush:snb */ 2631 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 2632 2633 /* 2634 * From the Sandybridge PRM, volume 1 part 3, page 24: 2635 * "If this bit is set, STCunit will have LRA as replacement 2636 * policy. [...] This bit must be reset. LRA replacement 2637 * policy is not supported." 2638 */ 2639 wa_masked_dis(wal, 2640 CACHE_MODE_0, 2641 CM0_STC_EVICT_DISABLE_LRA_SNB); 2642 } 2643 2644 if (IS_GRAPHICS_VER(i915, 4, 6)) 2645 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 2646 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 2647 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), 2648 /* XXX bit doesn't stick on Broadwater */ 2649 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); 2650 2651 if (GRAPHICS_VER(i915) == 4) 2652 /* 2653 * Disable CONSTANT_BUFFER before it is loaded from the context 2654 * image. For as it is loaded, it is executed and the stored 2655 * address may no longer be valid, leading to a GPU hang. 2656 * 2657 * This imposes the requirement that userspace reload their 2658 * CONSTANT_BUFFER on every batch, fortunately a requirement 2659 * they are already accustomed to from before contexts were 2660 * enabled. 2661 */ 2662 wa_add(wal, ECOSKPD(RENDER_RING_BASE), 2663 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 2664 0 /* XXX bit doesn't stick on Broadwater */, 2665 true); 2666 } 2667 2668 static void 2669 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2670 { 2671 struct drm_i915_private *i915 = engine->i915; 2672 2673 /* WaKBLVECSSemaphoreWaitPoll:kbl */ 2674 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { 2675 wa_write(wal, 2676 RING_SEMA_WAIT_POLL(engine->mmio_base), 2677 1); 2678 } 2679 /* Wa_16018031267, Wa_16018063123 */ 2680 if (NEEDS_FASTCOLOR_BLT_WABB(engine)) 2681 wa_masked_field_set(wal, ECOSKPD(engine->mmio_base), 2682 XEHP_BLITTER_SCHEDULING_MODE_MASK, 2683 XEHP_BLITTER_ROUND_ROBIN_MODE); 2684 } 2685 2686 static void 2687 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2688 { 2689 /* boilerplate for any CCS engine workaround */ 2690 } 2691 2692 /* 2693 * The bspec performance guide has recommended MMIO tuning settings. These 2694 * aren't truly "workarounds" but we want to program them with the same 2695 * workaround infrastructure to ensure that they're automatically added to 2696 * the GuC save/restore lists, re-applied at the right times, and checked for 2697 * any conflicting programming requested by real workarounds. 2698 * 2699 * Programming settings should be added here only if their registers are not 2700 * part of an engine's register state context. If a register is part of a 2701 * context, then any tuning settings should be programmed in an appropriate 2702 * function invoked by __intel_engine_init_ctx_wa(). 2703 */ 2704 static void 2705 add_render_compute_tuning_settings(struct intel_gt *gt, 2706 struct i915_wa_list *wal) 2707 { 2708 struct drm_i915_private *i915 = gt->i915; 2709 2710 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915)) 2711 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); 2712 2713 /* 2714 * This tuning setting proves beneficial only on ATS-M designs; the 2715 * default "age based" setting is optimal on regular DG2 and other 2716 * platforms. 2717 */ 2718 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) 2719 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, 2720 THREAD_EX_ARB_MODE_RR_AFTER_DEP); 2721 2722 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55)) 2723 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC); 2724 } 2725 2726 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2727 { 2728 struct intel_gt *gt = engine->gt; 2729 u32 mode; 2730 2731 if (!IS_DG2(gt->i915)) 2732 return; 2733 2734 /* 2735 * Wa_14019159160: This workaround, along with others, leads to 2736 * significant challenges in utilizing load balancing among the 2737 * CCS slices. Consequently, an architectural decision has been 2738 * made to completely disable automatic CCS load balancing. 2739 */ 2740 wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE); 2741 2742 /* 2743 * After having disabled automatic load balancing we need to 2744 * assign all slices to a single CCS. We will call it CCS mode 1 2745 */ 2746 mode = intel_gt_apply_ccs_mode(gt); 2747 wa_masked_en(wal, XEHP_CCS_MODE, mode); 2748 } 2749 2750 /* 2751 * The workarounds in this function apply to shared registers in 2752 * the general render reset domain that aren't tied to a 2753 * specific engine. Since all render+compute engines get reset 2754 * together, and the contents of these registers are lost during 2755 * the shared render domain reset, we'll define such workarounds 2756 * here and then add them to just a single RCS or CCS engine's 2757 * workaround list (whichever engine has the XXXX flag). 2758 */ 2759 static void 2760 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2761 { 2762 struct drm_i915_private *i915 = engine->i915; 2763 struct intel_gt *gt = engine->gt; 2764 2765 add_render_compute_tuning_settings(gt, wal); 2766 2767 if (GRAPHICS_VER(i915) >= 11) { 2768 /* This is not a Wa (although referred to as 2769 * WaSetInidrectStateOverride in places), this allows 2770 * applications that reference sampler states through 2771 * the BindlessSamplerStateBaseAddress to have their 2772 * border color relative to DynamicStateBaseAddress 2773 * rather than BindlessSamplerStateBaseAddress. 2774 * 2775 * Otherwise SAMPLER_STATE border colors have to be 2776 * copied in multiple heaps (DynamicStateBaseAddress & 2777 * BindlessSamplerStateBaseAddress) 2778 * 2779 * BSpec: 46052 2780 */ 2781 wa_mcr_masked_en(wal, 2782 GEN10_SAMPLER_MODE, 2783 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE); 2784 } 2785 2786 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) || 2787 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) || 2788 IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) { 2789 /* Wa_14017856879 */ 2790 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH); 2791 2792 /* Wa_14020495402 */ 2793 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING); 2794 } 2795 2796 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2797 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) 2798 /* 2799 * Wa_14017066071 2800 * Wa_14017654203 2801 */ 2802 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2803 MTL_DISABLE_SAMPLER_SC_OOO); 2804 2805 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) 2806 /* Wa_22015279794 */ 2807 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2808 DISABLE_PREFETCH_INTO_IC); 2809 2810 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2811 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2812 IS_DG2(i915)) { 2813 /* Wa_22013037850 */ 2814 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, 2815 DISABLE_128B_EVICTION_COMMAND_UDW); 2816 2817 /* Wa_18017747507 */ 2818 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); 2819 } 2820 2821 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2822 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2823 IS_DG2(i915)) { 2824 /* Wa_22014226127 */ 2825 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); 2826 } 2827 2828 if (IS_DG2(i915)) { 2829 /* Wa_14015227452:dg2,pvc */ 2830 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); 2831 2832 /* 2833 * Wa_16011620976:dg2_g11 2834 * Wa_22015475538:dg2 2835 */ 2836 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); 2837 2838 /* Wa_18028616096 */ 2839 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3); 2840 } 2841 2842 if (IS_DG2_G11(i915)) { 2843 /* 2844 * Wa_22012826095:dg2 2845 * Wa_22013059131:dg2 2846 */ 2847 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, 2848 MAXREQS_PER_BANK, 2849 REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); 2850 2851 /* Wa_22013059131:dg2 */ 2852 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, 2853 FORCE_1_SUB_MESSAGE_PER_FRAGMENT); 2854 2855 /* 2856 * Wa_22012654132 2857 * 2858 * Note that register 0xE420 is write-only and cannot be read 2859 * back for verification on DG2 (due to Wa_14012342262), so 2860 * we need to explicitly skip the readback. 2861 */ 2862 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2863 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 2864 0 /* write-only, so skip validation */, 2865 true); 2866 } 2867 } 2868 2869 static void 2870 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2871 { 2872 if (GRAPHICS_VER(engine->i915) < 4) 2873 return; 2874 2875 engine_fake_wa_init(engine, wal); 2876 2877 /* 2878 * These are common workarounds that just need to applied 2879 * to a single RCS/CCS engine's workaround list since 2880 * they're reset as part of the general render domain reset. 2881 */ 2882 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) { 2883 general_render_compute_wa_init(engine, wal); 2884 ccs_engine_wa_mode(engine, wal); 2885 } 2886 2887 if (engine->class == COMPUTE_CLASS) 2888 ccs_engine_wa_init(engine, wal); 2889 else if (engine->class == RENDER_CLASS) 2890 rcs_engine_wa_init(engine, wal); 2891 else 2892 xcs_engine_wa_init(engine, wal); 2893 } 2894 2895 void intel_engine_init_workarounds(struct intel_engine_cs *engine) 2896 { 2897 struct i915_wa_list *wal = &engine->wa_list; 2898 2899 wa_init_start(wal, engine->gt, "engine", engine->name); 2900 engine_init_workarounds(engine, wal); 2901 wa_init_finish(wal); 2902 } 2903 2904 void intel_engine_apply_workarounds(struct intel_engine_cs *engine) 2905 { 2906 wa_list_apply(&engine->wa_list); 2907 } 2908 2909 static const struct i915_range mcr_ranges_gen8[] = { 2910 { .start = 0x5500, .end = 0x55ff }, 2911 { .start = 0x7000, .end = 0x7fff }, 2912 { .start = 0x9400, .end = 0x97ff }, 2913 { .start = 0xb000, .end = 0xb3ff }, 2914 { .start = 0xe000, .end = 0xe7ff }, 2915 {}, 2916 }; 2917 2918 static const struct i915_range mcr_ranges_gen12[] = { 2919 { .start = 0x8150, .end = 0x815f }, 2920 { .start = 0x9520, .end = 0x955f }, 2921 { .start = 0xb100, .end = 0xb3ff }, 2922 { .start = 0xde80, .end = 0xe8ff }, 2923 { .start = 0x24a00, .end = 0x24a7f }, 2924 {}, 2925 }; 2926 2927 static const struct i915_range mcr_ranges_xehp[] = { 2928 { .start = 0x4000, .end = 0x4aff }, 2929 { .start = 0x5200, .end = 0x52ff }, 2930 { .start = 0x5400, .end = 0x7fff }, 2931 { .start = 0x8140, .end = 0x815f }, 2932 { .start = 0x8c80, .end = 0x8dff }, 2933 { .start = 0x94d0, .end = 0x955f }, 2934 { .start = 0x9680, .end = 0x96ff }, 2935 { .start = 0xb000, .end = 0xb3ff }, 2936 { .start = 0xc800, .end = 0xcfff }, 2937 { .start = 0xd800, .end = 0xd8ff }, 2938 { .start = 0xdc00, .end = 0xffff }, 2939 { .start = 0x17000, .end = 0x17fff }, 2940 { .start = 0x24a00, .end = 0x24a7f }, 2941 {}, 2942 }; 2943 2944 static bool mcr_range(struct drm_i915_private *i915, u32 offset) 2945 { 2946 const struct i915_range *mcr_ranges; 2947 int i; 2948 2949 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 2950 mcr_ranges = mcr_ranges_xehp; 2951 else if (GRAPHICS_VER(i915) >= 12) 2952 mcr_ranges = mcr_ranges_gen12; 2953 else if (GRAPHICS_VER(i915) >= 8) 2954 mcr_ranges = mcr_ranges_gen8; 2955 else 2956 return false; 2957 2958 /* 2959 * Registers in these ranges are affected by the MCR selector 2960 * which only controls CPU initiated MMIO. Routing does not 2961 * work for CS access so we cannot verify them on this path. 2962 */ 2963 for (i = 0; mcr_ranges[i].start; i++) 2964 if (offset >= mcr_ranges[i].start && 2965 offset <= mcr_ranges[i].end) 2966 return true; 2967 2968 return false; 2969 } 2970 2971 static int 2972 wa_list_srm(struct i915_request *rq, 2973 const struct i915_wa_list *wal, 2974 struct i915_vma *vma) 2975 { 2976 struct drm_i915_private *i915 = rq->i915; 2977 unsigned int i, count = 0; 2978 const struct i915_wa *wa; 2979 u32 srm, *cs; 2980 2981 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 2982 if (GRAPHICS_VER(i915) >= 8) 2983 srm++; 2984 2985 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 2986 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) 2987 count++; 2988 } 2989 2990 cs = intel_ring_begin(rq, 4 * count); 2991 if (IS_ERR(cs)) 2992 return PTR_ERR(cs); 2993 2994 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 2995 u32 offset = i915_mmio_reg_offset(wa->reg); 2996 2997 if (mcr_range(i915, offset)) 2998 continue; 2999 3000 *cs++ = srm; 3001 *cs++ = offset; 3002 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; 3003 *cs++ = 0; 3004 } 3005 intel_ring_advance(rq, cs); 3006 3007 return 0; 3008 } 3009 3010 static int engine_wa_list_verify(struct intel_context *ce, 3011 const struct i915_wa_list * const wal, 3012 const char *from) 3013 { 3014 const struct i915_wa *wa; 3015 struct i915_request *rq; 3016 struct i915_vma *vma; 3017 struct i915_gem_ww_ctx ww; 3018 unsigned int i; 3019 u32 *results; 3020 int err; 3021 3022 if (!wal->count) 3023 return 0; 3024 3025 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, 3026 wal->count * sizeof(u32)); 3027 if (IS_ERR(vma)) 3028 return PTR_ERR(vma); 3029 3030 intel_engine_pm_get(ce->engine); 3031 i915_gem_ww_ctx_init(&ww, false); 3032 retry: 3033 err = i915_gem_object_lock(vma->obj, &ww); 3034 if (err == 0) 3035 err = intel_context_pin_ww(ce, &ww); 3036 if (err) 3037 goto err_pm; 3038 3039 err = i915_vma_pin_ww(vma, &ww, 0, 0, 3040 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 3041 if (err) 3042 goto err_unpin; 3043 3044 rq = i915_request_create(ce); 3045 if (IS_ERR(rq)) { 3046 err = PTR_ERR(rq); 3047 goto err_vma; 3048 } 3049 3050 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 3051 if (err == 0) 3052 err = wa_list_srm(rq, wal, vma); 3053 3054 i915_request_get(rq); 3055 if (err) 3056 i915_request_set_error_once(rq, err); 3057 i915_request_add(rq); 3058 3059 if (err) 3060 goto err_rq; 3061 3062 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 3063 err = -ETIME; 3064 goto err_rq; 3065 } 3066 3067 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 3068 if (IS_ERR(results)) { 3069 err = PTR_ERR(results); 3070 goto err_rq; 3071 } 3072 3073 err = 0; 3074 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3075 if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg))) 3076 continue; 3077 3078 if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) 3079 err = -ENXIO; 3080 } 3081 3082 i915_gem_object_unpin_map(vma->obj); 3083 3084 err_rq: 3085 i915_request_put(rq); 3086 err_vma: 3087 i915_vma_unpin(vma); 3088 err_unpin: 3089 intel_context_unpin(ce); 3090 err_pm: 3091 if (err == -EDEADLK) { 3092 err = i915_gem_ww_ctx_backoff(&ww); 3093 if (!err) 3094 goto retry; 3095 } 3096 i915_gem_ww_ctx_fini(&ww); 3097 intel_engine_pm_put(ce->engine); 3098 i915_vma_put(vma); 3099 return err; 3100 } 3101 3102 int intel_engine_verify_workarounds(struct intel_engine_cs *engine, 3103 const char *from) 3104 { 3105 return engine_wa_list_verify(engine->kernel_context, 3106 &engine->wa_list, 3107 from); 3108 } 3109 3110 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3111 #include "selftest_workarounds.c" 3112 #endif 3113