xref: /linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 815e260a18a3af4dab59025ee99a7156c0e8b5e0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "i915_mmio_range.h"
9 #include "intel_context.h"
10 #include "intel_engine_pm.h"
11 #include "intel_engine_regs.h"
12 #include "intel_gpu_commands.h"
13 #include "intel_gt.h"
14 #include "intel_gt_ccs_mode.h"
15 #include "intel_gt_mcr.h"
16 #include "intel_gt_print.h"
17 #include "intel_gt_regs.h"
18 #include "intel_ring.h"
19 #include "intel_workarounds.h"
20 
21 #include "display/intel_fbc_regs.h"
22 
23 /**
24  * DOC: Hardware workarounds
25  *
26  * Hardware workarounds are register programming documented to be executed in
27  * the driver that fall outside of the normal programming sequences for a
28  * platform. There are some basic categories of workarounds, depending on
29  * how/when they are applied:
30  *
31  * - Context workarounds: workarounds that touch registers that are
32  *   saved/restored to/from the HW context image. The list is emitted (via Load
33  *   Register Immediate commands) once when initializing the device and saved in
34  *   the default context. That default context is then used on every context
35  *   creation to have a "primed golden context", i.e. a context image that
36  *   already contains the changes needed to all the registers.
37  *
38  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
39  *   variants respective to the targeted platforms.
40  *
41  * - Engine workarounds: the list of these WAs is applied whenever the specific
42  *   engine is reset. It's also possible that a set of engine classes share a
43  *   common power domain and they are reset together. This happens on some
44  *   platforms with render and compute engines. In this case (at least) one of
45  *   them need to keeep the workaround programming: the approach taken in the
46  *   driver is to tie those workarounds to the first compute/render engine that
47  *   is registered.  When executing with GuC submission, engine resets are
48  *   outside of kernel driver control, hence the list of registers involved in
49  *   written once, on engine initialization, and then passed to GuC, that
50  *   saves/restores their values before/after the reset takes place. See
51  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
52  *
53  *   Workarounds for registers specific to RCS and CCS should be implemented in
54  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
55  *   registers belonging to BCS, VCS or VECS should be implemented in
56  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
57  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
58  *   should be implemented in general_render_compute_wa_init(). The settings
59  *   about the CCS load balancing should be added in ccs_engine_wa_mode().
60  *
61  * - GT workarounds: the list of these WAs is applied whenever these registers
62  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
63  *
64  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
65  *   variants respective to the targeted platforms.
66  *
67  * - Register whitelist: some workarounds need to be implemented in userspace,
68  *   but need to touch privileged registers. The whitelist in the kernel
69  *   instructs the hardware to allow the access to happen. From the kernel side,
70  *   this is just a special case of a MMIO workaround (as we write the list of
71  *   these to/be-whitelisted registers to some special HW registers).
72  *
73  *   Register whitelisting should be done in the \*_whitelist_build() variants
74  *   respective to the targeted platforms.
75  *
76  * - Workaround batchbuffers: buffers that get executed automatically by the
77  *   hardware on every HW context restore. These buffers are created and
78  *   programmed in the default context so the hardware always go through those
79  *   programming sequences when switching contexts. The support for workaround
80  *   batchbuffers is enabled these hardware mechanisms:
81  *
82  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
83  *      context, pointing the hardware to jump to that location when that offset
84  *      is reached in the context restore. Workaround batchbuffer in the driver
85  *      currently uses this mechanism for all platforms.
86  *
87  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
88  *      pointing the hardware to a buffer to continue executing after the
89  *      engine registers are restored in a context restore sequence. This is
90  *      currently not used in the driver.
91  *
92  * - Other:  There are WAs that, due to their nature, cannot be applied from a
93  *   central place. Those are peppered around the rest of the code, as needed.
94  *   Workarounds related to the display IP are the main example.
95  *
96  * .. [1] Technically, some registers are powercontext saved & restored, so they
97  *    survive a suspend/resume. In practice, writing them again is not too
98  *    costly and simplifies things, so it's the approach taken in the driver.
99  */
100 
101 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
102 			  const char *name, const char *engine_name)
103 {
104 	wal->gt = gt;
105 	wal->name = name;
106 	wal->engine_name = engine_name;
107 }
108 
109 #define WA_LIST_CHUNK (1 << 4)
110 
111 static void wa_init_finish(struct i915_wa_list *wal)
112 {
113 	/* Trim unused entries. */
114 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
115 		struct i915_wa *list = kmemdup_array(wal->list, wal->count,
116 						     sizeof(*list), GFP_KERNEL);
117 
118 		if (list) {
119 			kfree(wal->list);
120 			wal->list = list;
121 		}
122 	}
123 
124 	if (!wal->count)
125 		return;
126 
127 	gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
128 	       wal->wa_count, wal->name, wal->engine_name);
129 }
130 
131 static enum forcewake_domains
132 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
133 {
134 	enum forcewake_domains fw = 0;
135 	struct i915_wa *wa;
136 	unsigned int i;
137 
138 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
139 		fw |= intel_uncore_forcewake_for_reg(uncore,
140 						     wa->reg,
141 						     FW_REG_READ |
142 						     FW_REG_WRITE);
143 
144 	return fw;
145 }
146 
147 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
148 {
149 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
150 	struct drm_i915_private *i915 = wal->gt->i915;
151 	unsigned int start = 0, end = wal->count;
152 	const unsigned int grow = WA_LIST_CHUNK;
153 	struct i915_wa *wa_;
154 
155 	GEM_BUG_ON(!is_power_of_2(grow));
156 
157 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
158 		struct i915_wa *list;
159 
160 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*list),
161 				     GFP_KERNEL);
162 		if (!list) {
163 			drm_err(&i915->drm, "No space for workaround init!\n");
164 			return;
165 		}
166 
167 		if (wal->list) {
168 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
169 			kfree(wal->list);
170 		}
171 
172 		wal->list = list;
173 	}
174 
175 	while (start < end) {
176 		unsigned int mid = start + (end - start) / 2;
177 
178 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
179 			start = mid + 1;
180 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
181 			end = mid;
182 		} else {
183 			wa_ = &wal->list[mid];
184 
185 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
186 				drm_err(&i915->drm,
187 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
188 					i915_mmio_reg_offset(wa_->reg),
189 					wa_->clr, wa_->set);
190 
191 				wa_->set &= ~wa->clr;
192 			}
193 
194 			wal->wa_count++;
195 			wa_->set |= wa->set;
196 			wa_->clr |= wa->clr;
197 			wa_->read |= wa->read;
198 			return;
199 		}
200 	}
201 
202 	wal->wa_count++;
203 	wa_ = &wal->list[wal->count++];
204 	*wa_ = *wa;
205 
206 	while (wa_-- > wal->list) {
207 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
208 			   i915_mmio_reg_offset(wa_[1].reg));
209 		if (i915_mmio_reg_offset(wa_[1].reg) >
210 		    i915_mmio_reg_offset(wa_[0].reg))
211 			break;
212 
213 		swap(wa_[1], wa_[0]);
214 	}
215 }
216 
217 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
218 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
219 {
220 	struct i915_wa wa = {
221 		.reg  = reg,
222 		.clr  = clear,
223 		.set  = set,
224 		.read = read_mask,
225 		.masked_reg = masked_reg,
226 	};
227 
228 	_wa_add(wal, &wa);
229 }
230 
231 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
232 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
233 {
234 	struct i915_wa wa = {
235 		.mcr_reg = reg,
236 		.clr  = clear,
237 		.set  = set,
238 		.read = read_mask,
239 		.masked_reg = masked_reg,
240 		.is_mcr = 1,
241 	};
242 
243 	_wa_add(wal, &wa);
244 }
245 
246 static void
247 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
248 {
249 	wa_add(wal, reg, clear, set, clear | set, false);
250 }
251 
252 static void
253 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
254 {
255 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
256 }
257 
258 static void
259 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
260 {
261 	wa_write_clr_set(wal, reg, ~0, set);
262 }
263 
264 static void
265 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
266 {
267 	wa_write_clr_set(wal, reg, set, set);
268 }
269 
270 static void
271 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
272 {
273 	wa_mcr_write_clr_set(wal, reg, set, set);
274 }
275 
276 static void
277 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
278 {
279 	wa_write_clr_set(wal, reg, clr, 0);
280 }
281 
282 static void
283 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
284 {
285 	wa_mcr_write_clr_set(wal, reg, clr, 0);
286 }
287 
288 /*
289  * WA operations on "masked register". A masked register has the upper 16 bits
290  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
291  * portion of the register without a rmw: you simply write in the upper 16 bits
292  * the mask of bits you are going to modify.
293  *
294  * The wa_masked_* family of functions already does the necessary operations to
295  * calculate the mask based on the parameters passed, so user only has to
296  * provide the lower 16 bits of that register.
297  */
298 
299 static void
300 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
301 {
302 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
303 }
304 
305 static void
306 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
307 {
308 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
309 }
310 
311 static void
312 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
313 {
314 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
315 }
316 
317 static void
318 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
319 {
320 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
321 }
322 
323 static void
324 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
325 		    u32 mask, u32 val)
326 {
327 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
328 }
329 
330 static void
331 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
332 			u32 mask, u32 val)
333 {
334 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
335 }
336 
337 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
338 				      struct i915_wa_list *wal)
339 {
340 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
341 
342 	/* WaDisable_RenderCache_OperationalFlush:snb */
343 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
344 }
345 
346 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
347 				      struct i915_wa_list *wal)
348 {
349 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
350 	/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
351 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
352 
353 	/*
354 	 * BSpec says this must be set, even though
355 	 * WaDisable4x2SubspanOptimization:ivb,hsw
356 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
357 	 */
358 	wa_masked_en(wal,
359 		     CACHE_MODE_1,
360 		     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
361 }
362 
363 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
364 				      struct i915_wa_list *wal)
365 {
366 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
367 
368 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
369 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
370 
371 	/* WaDisablePartialInstShootdown:bdw,chv */
372 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
373 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
374 
375 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
376 	 * workaround for a possible hang in the unlikely event a TLB
377 	 * invalidation occurs during a PSD flush.
378 	 */
379 	/* WaForceEnableNonCoherent:bdw,chv */
380 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
381 	wa_masked_en(wal, HDC_CHICKEN0,
382 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
383 		     HDC_FORCE_NON_COHERENT);
384 
385 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
386 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
387 	 *  polygons in the same 8x4 pixel/sample area to be processed without
388 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
389 	 *  buffer."
390 	 *
391 	 * This optimization is off by default for BDW and CHV; turn it on.
392 	 */
393 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
394 
395 	/* Wa4x4STCOptimizationDisable:bdw,chv */
396 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
397 
398 	/*
399 	 * BSpec recommends 8x4 when MSAA is used,
400 	 * however in practice 16x4 seems fastest.
401 	 *
402 	 * Note that PS/WM thread counts depend on the WIZ hashing
403 	 * disable bit, which we don't touch here, but it's good
404 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
405 	 */
406 	wa_masked_field_set(wal, GEN7_GT_MODE,
407 			    GEN6_WIZ_HASHING_MASK,
408 			    GEN6_WIZ_HASHING_16x4);
409 }
410 
411 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
412 				     struct i915_wa_list *wal)
413 {
414 	struct drm_i915_private *i915 = engine->i915;
415 
416 	gen8_ctx_workarounds_init(engine, wal);
417 
418 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
419 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
420 
421 	/* WaDisableDopClockGating:bdw
422 	 *
423 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
424 	 * to disable EUTC clock gating.
425 	 */
426 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
427 			 DOP_CLOCK_GATING_DISABLE);
428 
429 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
430 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
431 
432 	wa_masked_en(wal, HDC_CHICKEN0,
433 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
434 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
435 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
436 		     (INTEL_INFO(i915)->gt == 3 ? HDC_FENCE_DEST_SLM_DISABLE : 0));
437 }
438 
439 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
440 				     struct i915_wa_list *wal)
441 {
442 	gen8_ctx_workarounds_init(engine, wal);
443 
444 	/* WaDisableThreadStallDopClockGating:chv */
445 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
446 
447 	/* Improve HiZ throughput on CHV. */
448 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
449 }
450 
451 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
452 				      struct i915_wa_list *wal)
453 {
454 	struct drm_i915_private *i915 = engine->i915;
455 
456 	if (HAS_LLC(i915)) {
457 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
458 		 *
459 		 * Must match Display Engine. See
460 		 * WaCompressedResourceDisplayNewHashMode.
461 		 */
462 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
463 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
464 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
465 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
466 	}
467 
468 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
469 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
470 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
471 			 FLOW_CONTROL_ENABLE |
472 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
473 
474 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
475 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
476 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
477 			 GEN9_ENABLE_YV12_BUGFIX |
478 			 GEN9_ENABLE_GPGPU_PREEMPTION);
479 
480 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
481 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
482 	wa_masked_en(wal, CACHE_MODE_1,
483 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
484 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
485 
486 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
487 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
488 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
489 
490 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
491 	wa_masked_en(wal, HDC_CHICKEN0,
492 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
493 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
494 
495 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
496 	 * both tied to WaForceContextSaveRestoreNonCoherent
497 	 * in some hsds for skl. We keep the tie for all gen9. The
498 	 * documentation is a bit hazy and so we want to get common behaviour,
499 	 * even though there is no clear evidence we would need both on kbl/bxt.
500 	 * This area has been source of system hangs so we play it safe
501 	 * and mimic the skl regardless of what bspec says.
502 	 *
503 	 * Use Force Non-Coherent whenever executing a 3D context. This
504 	 * is a workaround for a possible hang in the unlikely event
505 	 * a TLB invalidation occurs during a PSD flush.
506 	 */
507 
508 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
509 	wa_masked_en(wal, HDC_CHICKEN0,
510 		     HDC_FORCE_NON_COHERENT);
511 
512 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
513 	if (IS_SKYLAKE(i915) ||
514 	    IS_KABYLAKE(i915) ||
515 	    IS_COFFEELAKE(i915) ||
516 	    IS_COMETLAKE(i915))
517 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
518 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
519 
520 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
521 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
522 
523 	/*
524 	 * Supporting preemption with fine-granularity requires changes in the
525 	 * batch buffer programming. Since we can't break old userspace, we
526 	 * need to set our default preemption level to safe value. Userspace is
527 	 * still able to use more fine-grained preemption levels, since in
528 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
529 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
530 	 * not real HW workarounds, but merely a way to start using preemption
531 	 * while maintaining old contract with userspace.
532 	 */
533 
534 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
535 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
536 
537 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
538 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
539 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
540 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
541 
542 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
543 	if (IS_GEN9_LP(i915))
544 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
545 }
546 
547 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
548 				struct i915_wa_list *wal)
549 {
550 	struct intel_gt *gt = engine->gt;
551 	u8 vals[3] = { 0, 0, 0 };
552 	unsigned int i;
553 
554 	for (i = 0; i < 3; i++) {
555 		u8 ss;
556 
557 		/*
558 		 * Only consider slices where one, and only one, subslice has 7
559 		 * EUs
560 		 */
561 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
562 			continue;
563 
564 		/*
565 		 * subslice_7eu[i] != 0 (because of the check above) and
566 		 * ss_max == 4 (maximum number of subslices possible per slice)
567 		 *
568 		 * ->    0 <= ss <= 3;
569 		 */
570 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
571 		vals[i] = 3 - ss;
572 	}
573 
574 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
575 		return;
576 
577 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
578 	wa_masked_field_set(wal, GEN7_GT_MODE,
579 			    GEN9_IZ_HASHING_MASK(2) |
580 			    GEN9_IZ_HASHING_MASK(1) |
581 			    GEN9_IZ_HASHING_MASK(0),
582 			    GEN9_IZ_HASHING(2, vals[2]) |
583 			    GEN9_IZ_HASHING(1, vals[1]) |
584 			    GEN9_IZ_HASHING(0, vals[0]));
585 }
586 
587 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
588 				     struct i915_wa_list *wal)
589 {
590 	gen9_ctx_workarounds_init(engine, wal);
591 	skl_tune_iz_hashing(engine, wal);
592 }
593 
594 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
595 				     struct i915_wa_list *wal)
596 {
597 	gen9_ctx_workarounds_init(engine, wal);
598 
599 	/* WaDisableThreadStallDopClockGating:bxt */
600 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
601 			 STALL_DOP_GATING_DISABLE);
602 
603 	/* WaToEnableHwFixForPushConstHWBug:bxt */
604 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
605 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
606 }
607 
608 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
609 				     struct i915_wa_list *wal)
610 {
611 	struct drm_i915_private *i915 = engine->i915;
612 
613 	gen9_ctx_workarounds_init(engine, wal);
614 
615 	/* WaToEnableHwFixForPushConstHWBug:kbl */
616 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
617 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
618 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
619 
620 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
621 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
622 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
623 }
624 
625 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
626 				     struct i915_wa_list *wal)
627 {
628 	gen9_ctx_workarounds_init(engine, wal);
629 
630 	/* WaToEnableHwFixForPushConstHWBug:glk */
631 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
632 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
633 }
634 
635 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
636 				     struct i915_wa_list *wal)
637 {
638 	gen9_ctx_workarounds_init(engine, wal);
639 
640 	/* WaToEnableHwFixForPushConstHWBug:cfl */
641 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
642 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
643 
644 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
645 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
646 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
647 }
648 
649 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
650 				     struct i915_wa_list *wal)
651 {
652 	struct drm_i915_private *i915 = engine->i915;
653 
654 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
655 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
656 
657 	/* WaForceEnableNonCoherent:icl
658 	 * This is not the same workaround as in early Gen9 platforms, where
659 	 * lacking this could cause system hangs, but coherency performance
660 	 * overhead is high and only a few compute workloads really need it
661 	 * (the register is whitelisted in hardware now, so UMDs can opt in
662 	 * for coherency if they have a good reason).
663 	 */
664 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
665 
666 	/* WaEnableFloatBlendOptimization:icl */
667 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
668 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
669 		   0 /* write-only, so skip validation */,
670 		   true);
671 
672 	/* WaDisableGPGPUMidThreadPreemption:icl */
673 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
674 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
675 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
676 
677 	/* allow headerless messages for preemptible GPGPU context */
678 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
679 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
680 
681 	/* Wa_1604278689:icl,ehl */
682 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
683 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
684 			 0,
685 			 0xFFFFFFFF);
686 
687 	/* Wa_1406306137:icl,ehl */
688 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
689 
690 	if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) {
691 		/*
692 		 * Disable Repacking for Compression (masked R/W access)
693 		 * before rendering compressed surfaces for display.
694 		 */
695 		wa_masked_en(wal, CACHE_MODE_0_GEN7,
696 			     DISABLE_REPACKING_FOR_COMPRESSION);
697 	}
698 }
699 
700 /*
701  * These settings aren't actually workarounds, but general tuning settings that
702  * need to be programmed on dg2 platform.
703  */
704 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
705 				   struct i915_wa_list *wal)
706 {
707 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
708 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
709 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
710 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
711 			     FF_MODE2_TDS_TIMER_128);
712 }
713 
714 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
715 				       struct i915_wa_list *wal)
716 {
717 	struct drm_i915_private *i915 = engine->i915;
718 
719 	/*
720 	 * Wa_1409142259:tgl,dg1,adl-p,adl-n
721 	 * Wa_1409347922:tgl,dg1,adl-p
722 	 * Wa_1409252684:tgl,dg1,adl-p
723 	 * Wa_1409217633:tgl,dg1,adl-p
724 	 * Wa_1409207793:tgl,dg1,adl-p
725 	 * Wa_1409178076:tgl,dg1,adl-p,adl-n
726 	 * Wa_1408979724:tgl,dg1,adl-p,adl-n
727 	 * Wa_14010443199:tgl,rkl,dg1,adl-p,adl-n
728 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p,adl-n
729 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p,adl-n
730 	 * Wa_22010465259:tgl,rkl,dg1,adl-s,adl-p,adl-n
731 	 */
732 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
733 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
734 
735 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
736 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
737 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
738 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
739 
740 	/*
741 	 * Wa_16011163337 - GS_TIMER
742 	 *
743 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
744 	 * need to program it even on those that don't explicitly list that
745 	 * workaround.
746 	 *
747 	 * Note that the programming of GEN12_FF_MODE2 is further modified
748 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
749 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
750 	 * value when read from the CPU.
751 	 *
752 	 * The default value for this register is zero for all fields.
753 	 * So instead of doing a RMW we should just write the desired values
754 	 * for TDS and GS timers. Note that since the readback can't be trusted,
755 	 * the clear mask is just set to ~0 to make sure other bits are not
756 	 * inadvertently set. For the same reason read verification is ignored.
757 	 */
758 	wa_add(wal,
759 	       GEN12_FF_MODE2,
760 	       ~0,
761 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
762 	       0, false);
763 
764 	if (!IS_DG1(i915)) {
765 		/* Wa_1806527549 */
766 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
767 
768 		/* Wa_1606376872 */
769 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
770 	}
771 
772 	/*
773 	 * This bit must be set to enable performance optimization for fast
774 	 * clears.
775 	 */
776 	wa_mcr_write_or(wal, GEN8_WM_CHICKEN2, WAIT_ON_DEPTH_STALL_DONE_DISABLE);
777 }
778 
779 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
780 				     struct i915_wa_list *wal)
781 {
782 	gen12_ctx_workarounds_init(engine, wal);
783 
784 	/* Wa_1409044764 */
785 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
786 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
787 
788 	/* Wa_22010493298 */
789 	wa_masked_en(wal, HIZ_CHICKEN,
790 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
791 }
792 
793 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
794 				     struct i915_wa_list *wal)
795 {
796 	dg2_ctx_gt_tuning_init(engine, wal);
797 
798 	/* Wa_16013271637:dg2 */
799 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
800 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
801 
802 	/* Wa_14014947963:dg2 */
803 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
804 
805 	/* Wa_18018764978:dg2 */
806 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
807 
808 	/* Wa_18019271663:dg2 */
809 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
810 
811 	/* Wa_14019877138:dg2 */
812 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
813 }
814 
815 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
816 				     struct i915_wa_list *wal)
817 {
818 	struct intel_gt *gt = engine->gt;
819 
820 	dg2_ctx_gt_tuning_init(engine, wal);
821 
822 	/*
823 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
824 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
825 	 * steppings.
826 	 */
827 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
828 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
829 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
830 }
831 
832 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
833 				       struct i915_wa_list *wal)
834 {
835 	struct intel_gt *gt = engine->gt;
836 
837 	xelpg_ctx_gt_tuning_init(engine, wal);
838 
839 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
840 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
841 		/* Wa_14014947963 */
842 		wa_masked_field_set(wal, VF_PREEMPTION,
843 				    PREEMPTION_VERTEX_COUNT, 0x4000);
844 
845 		/* Wa_16013271637 */
846 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
847 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
848 
849 		/* Wa_18019627453 */
850 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
851 
852 		/* Wa_18018764978 */
853 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
854 	}
855 
856 	/* Wa_18019271663 */
857 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
858 
859 	/* Wa_14019877138 */
860 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
861 }
862 
863 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
864 					 struct i915_wa_list *wal)
865 {
866 	/*
867 	 * This is a "fake" workaround defined by software to ensure we
868 	 * maintain reliable, backward-compatible behavior for userspace with
869 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
870 	 *
871 	 * The per-context setting of MI_MODE[12] determines whether the bits
872 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
873 	 * in the traditional manner or whether they should instead use a new
874 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
875 	 * into 3rd-level batchbuffers.  When this new capability was first
876 	 * added in TGL, it remained off by default unless a context
877 	 * intentionally opted in to the new behavior.  However Xe_HPG now
878 	 * flips this on by default and requires that we explicitly opt out if
879 	 * we don't want the new behavior.
880 	 *
881 	 * From a SW perspective, we want to maintain the backward-compatible
882 	 * behavior for userspace, so we'll apply a fake workaround to set it
883 	 * back to the legacy behavior on platforms where the hardware default
884 	 * is to break compatibility.  At the moment there is no Linux
885 	 * userspace that utilizes third-level batchbuffers, so this will avoid
886 	 * userspace from needing to make any changes.  using the legacy
887 	 * meaning is the correct thing to do.  If/when we have userspace
888 	 * consumers that want to utilize third-level batch nesting, we can
889 	 * provide a context parameter to allow them to opt-in.
890 	 */
891 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
892 }
893 
894 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
895 				   struct i915_wa_list *wal)
896 {
897 	u8 mocs;
898 
899 	/*
900 	 * Some blitter commands do not have a field for MOCS, those
901 	 * commands will use MOCS index pointed by BLIT_CCTL.
902 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
903 	 */
904 	if (engine->class == COPY_ENGINE_CLASS) {
905 		mocs = engine->gt->mocs.uc_index;
906 		wa_write_clr_set(wal,
907 				 BLIT_CCTL(engine->mmio_base),
908 				 BLIT_CCTL_MASK,
909 				 BLIT_CCTL_MOCS(mocs, mocs));
910 	}
911 }
912 
913 /*
914  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
915  * defined by the hardware team, but it programming general context registers.
916  * Adding those context register programming in context workaround
917  * allow us to use the wa framework for proper application and validation.
918  */
919 static void
920 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
921 			  struct i915_wa_list *wal)
922 {
923 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
924 		fakewa_disable_nestedbb_mode(engine, wal);
925 
926 	gen12_ctx_gt_mocs_init(engine, wal);
927 }
928 
929 static void
930 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
931 			   struct i915_wa_list *wal,
932 			   const char *name)
933 {
934 	struct drm_i915_private *i915 = engine->i915;
935 
936 	wa_init_start(wal, engine->gt, name, engine->name);
937 
938 	/* Applies to all engines */
939 	/*
940 	 * Fake workarounds are not the actual workaround but
941 	 * programming of context registers using workaround framework.
942 	 */
943 	if (GRAPHICS_VER(i915) >= 12)
944 		gen12_ctx_gt_fake_wa_init(engine, wal);
945 
946 	if (engine->class != RENDER_CLASS)
947 		goto done;
948 
949 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
950 		xelpg_ctx_workarounds_init(engine, wal);
951 	else if (IS_DG2(i915))
952 		dg2_ctx_workarounds_init(engine, wal);
953 	else if (IS_DG1(i915))
954 		dg1_ctx_workarounds_init(engine, wal);
955 	else if (GRAPHICS_VER(i915) == 12)
956 		gen12_ctx_workarounds_init(engine, wal);
957 	else if (GRAPHICS_VER(i915) == 11)
958 		icl_ctx_workarounds_init(engine, wal);
959 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
960 		cfl_ctx_workarounds_init(engine, wal);
961 	else if (IS_GEMINILAKE(i915))
962 		glk_ctx_workarounds_init(engine, wal);
963 	else if (IS_KABYLAKE(i915))
964 		kbl_ctx_workarounds_init(engine, wal);
965 	else if (IS_BROXTON(i915))
966 		bxt_ctx_workarounds_init(engine, wal);
967 	else if (IS_SKYLAKE(i915))
968 		skl_ctx_workarounds_init(engine, wal);
969 	else if (IS_CHERRYVIEW(i915))
970 		chv_ctx_workarounds_init(engine, wal);
971 	else if (IS_BROADWELL(i915))
972 		bdw_ctx_workarounds_init(engine, wal);
973 	else if (GRAPHICS_VER(i915) == 7)
974 		gen7_ctx_workarounds_init(engine, wal);
975 	else if (GRAPHICS_VER(i915) == 6)
976 		gen6_ctx_workarounds_init(engine, wal);
977 	else if (GRAPHICS_VER(i915) < 8)
978 		;
979 	else
980 		MISSING_CASE(GRAPHICS_VER(i915));
981 
982 done:
983 	wa_init_finish(wal);
984 }
985 
986 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
987 {
988 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
989 }
990 
991 int intel_engine_emit_ctx_wa(struct i915_request *rq)
992 {
993 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
994 	struct intel_uncore *uncore = rq->engine->uncore;
995 	enum forcewake_domains fw;
996 	unsigned long flags;
997 	struct i915_wa *wa;
998 	unsigned int i;
999 	u32 *cs;
1000 	int ret;
1001 
1002 	if (wal->count == 0)
1003 		return 0;
1004 
1005 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1006 	if (ret)
1007 		return ret;
1008 
1009 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
1010 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS)
1011 		cs = intel_ring_begin(rq, (wal->count * 2 + 6));
1012 	else
1013 		cs = intel_ring_begin(rq, (wal->count * 2 + 2));
1014 
1015 	if (IS_ERR(cs))
1016 		return PTR_ERR(cs);
1017 
1018 	fw = wal_get_fw_for_rmw(uncore, wal);
1019 
1020 	intel_gt_mcr_lock(wal->gt, &flags);
1021 	spin_lock(&uncore->lock);
1022 	intel_uncore_forcewake_get__locked(uncore, fw);
1023 
1024 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
1025 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1026 		u32 val;
1027 
1028 		/* Skip reading the register if it's not really needed */
1029 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1030 			val = wa->set;
1031 		} else {
1032 			val = wa->is_mcr ?
1033 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1034 				intel_uncore_read_fw(uncore, wa->reg);
1035 			val &= ~wa->clr;
1036 			val |= wa->set;
1037 		}
1038 
1039 		*cs++ = i915_mmio_reg_offset(wa->reg);
1040 		*cs++ = val;
1041 	}
1042 	*cs++ = MI_NOOP;
1043 
1044 	/* Wa_14019789679 */
1045 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
1046 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) {
1047 		*cs++ = CMD_3DSTATE_MESH_CONTROL;
1048 		*cs++ = 0;
1049 		*cs++ = 0;
1050 		*cs++ = MI_NOOP;
1051 	}
1052 
1053 	intel_uncore_forcewake_put__locked(uncore, fw);
1054 	spin_unlock(&uncore->lock);
1055 	intel_gt_mcr_unlock(wal->gt, flags);
1056 
1057 	intel_ring_advance(rq, cs);
1058 
1059 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1060 	if (ret)
1061 		return ret;
1062 
1063 	return 0;
1064 }
1065 
1066 static void
1067 gen4_gt_workarounds_init(struct intel_gt *gt,
1068 			 struct i915_wa_list *wal)
1069 {
1070 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1071 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1072 }
1073 
1074 static void
1075 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1076 {
1077 	gen4_gt_workarounds_init(gt, wal);
1078 
1079 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1080 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1081 }
1082 
1083 static void
1084 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1085 {
1086 	g4x_gt_workarounds_init(gt, wal);
1087 
1088 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1089 }
1090 
1091 static void
1092 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1093 {
1094 }
1095 
1096 static void
1097 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1098 {
1099 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1100 	wa_masked_dis(wal,
1101 		      GEN7_COMMON_SLICE_CHICKEN1,
1102 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1103 
1104 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1105 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1106 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1107 
1108 	/* WaForceL3Serialization:ivb */
1109 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1110 }
1111 
1112 static void
1113 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1114 {
1115 	/* WaForceL3Serialization:vlv */
1116 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1117 
1118 	/*
1119 	 * WaIncreaseL3CreditsForVLVB0:vlv
1120 	 * This is the hardware default actually.
1121 	 */
1122 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1123 }
1124 
1125 static void
1126 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1127 {
1128 	/* L3 caching of data atomics doesn't work -- disable it. */
1129 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1130 
1131 	wa_add(wal,
1132 	       HSW_ROW_CHICKEN3, 0,
1133 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1134 	       0 /* XXX does this reg exist? */, true);
1135 
1136 	/* WaVSRefCountFullforceMissDisable:hsw */
1137 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1138 }
1139 
1140 static void
1141 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1142 {
1143 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1144 	unsigned int slice, subslice;
1145 	u32 mcr, mcr_mask;
1146 
1147 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1148 
1149 	/*
1150 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1151 	 * Before any MMIO read into slice/subslice specific registers, MCR
1152 	 * packet control register needs to be programmed to point to any
1153 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1154 	 * This means each subsequent MMIO read will be forwarded to an
1155 	 * specific s/ss combination, but this is OK since these registers
1156 	 * are consistent across s/ss in almost all cases. In the rare
1157 	 * occasions, such as INSTDONE, where this value is dependent
1158 	 * on s/ss combo, the read should be done with read_subslice_reg.
1159 	 */
1160 	slice = ffs(sseu->slice_mask) - 1;
1161 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1162 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1163 	GEM_BUG_ON(!subslice);
1164 	subslice--;
1165 
1166 	/*
1167 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1168 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1169 	 */
1170 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1171 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1172 
1173 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1174 
1175 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1176 }
1177 
1178 static void
1179 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1180 {
1181 	struct drm_i915_private *i915 = gt->i915;
1182 
1183 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1184 	gen9_wa_init_mcr(i915, wal);
1185 
1186 	/* WaDisableKillLogic:bxt,skl,kbl */
1187 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1188 		wa_write_or(wal,
1189 			    GAM_ECOCHK,
1190 			    ECOCHK_DIS_TLB);
1191 
1192 	if (HAS_LLC(i915)) {
1193 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1194 		 *
1195 		 * Must match Display Engine. See
1196 		 * WaCompressedResourceDisplayNewHashMode.
1197 		 */
1198 		wa_write_or(wal,
1199 			    MMCD_MISC_CTRL,
1200 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1201 	}
1202 
1203 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1204 	wa_write_or(wal,
1205 		    GAM_ECOCHK,
1206 		    BDW_DISABLE_HDC_INVALIDATION);
1207 }
1208 
1209 static void
1210 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1211 {
1212 	gen9_gt_workarounds_init(gt, wal);
1213 
1214 	/* WaDisableGafsUnitClkGating:skl */
1215 	wa_write_or(wal,
1216 		    GEN7_UCGCTL4,
1217 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1218 
1219 	/* WaInPlaceDecompressionHang:skl */
1220 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1221 		wa_write_or(wal,
1222 			    GEN9_GAMT_ECO_REG_RW_IA,
1223 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1224 }
1225 
1226 static void
1227 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1228 {
1229 	gen9_gt_workarounds_init(gt, wal);
1230 
1231 	/* WaDisableDynamicCreditSharing:kbl */
1232 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1233 		wa_write_or(wal,
1234 			    GAMT_CHKN_BIT_REG,
1235 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1236 
1237 	/* WaDisableGafsUnitClkGating:kbl */
1238 	wa_write_or(wal,
1239 		    GEN7_UCGCTL4,
1240 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1241 
1242 	/* WaInPlaceDecompressionHang:kbl */
1243 	wa_write_or(wal,
1244 		    GEN9_GAMT_ECO_REG_RW_IA,
1245 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1246 }
1247 
1248 static void
1249 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1250 {
1251 	gen9_gt_workarounds_init(gt, wal);
1252 }
1253 
1254 static void
1255 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1256 {
1257 	gen9_gt_workarounds_init(gt, wal);
1258 
1259 	/* WaDisableGafsUnitClkGating:cfl */
1260 	wa_write_or(wal,
1261 		    GEN7_UCGCTL4,
1262 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1263 
1264 	/* WaInPlaceDecompressionHang:cfl */
1265 	wa_write_or(wal,
1266 		    GEN9_GAMT_ECO_REG_RW_IA,
1267 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1268 }
1269 
1270 static void __set_mcr_steering(struct i915_wa_list *wal,
1271 			       i915_reg_t steering_reg,
1272 			       unsigned int slice, unsigned int subslice)
1273 {
1274 	u32 mcr, mcr_mask;
1275 
1276 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1277 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1278 
1279 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1280 }
1281 
1282 static void debug_dump_steering(struct intel_gt *gt)
1283 {
1284 	struct drm_printer p = drm_dbg_printer(&gt->i915->drm, DRM_UT_DRIVER,
1285 					       "MCR Steering:");
1286 
1287 	if (drm_debug_enabled(DRM_UT_DRIVER))
1288 		intel_gt_mcr_report_steering(&p, gt, false);
1289 }
1290 
1291 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1292 			 unsigned int slice, unsigned int subslice)
1293 {
1294 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1295 
1296 	gt->default_steering.groupid = slice;
1297 	gt->default_steering.instanceid = subslice;
1298 
1299 	debug_dump_steering(gt);
1300 }
1301 
1302 static void
1303 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1304 {
1305 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1306 	unsigned int subslice;
1307 
1308 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1309 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1310 
1311 	/*
1312 	 * Although a platform may have subslices, we need to always steer
1313 	 * reads to the lowest instance that isn't fused off.  When Render
1314 	 * Power Gating is enabled, grabbing forcewake will only power up a
1315 	 * single subslice (the "minconfig") if there isn't a real workload
1316 	 * that needs to be run; this means that if we steer register reads to
1317 	 * one of the higher subslices, we run the risk of reading back 0's or
1318 	 * random garbage.
1319 	 */
1320 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1321 
1322 	/*
1323 	 * If the subslice we picked above also steers us to a valid L3 bank,
1324 	 * then we can just rely on the default steering and won't need to
1325 	 * worry about explicitly re-steering L3BANK reads later.
1326 	 */
1327 	if (gt->info.l3bank_mask & BIT(subslice))
1328 		gt->steering_table[L3BANK] = NULL;
1329 
1330 	__add_mcr_wa(gt, wal, 0, subslice);
1331 }
1332 
1333 static void
1334 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1335 {
1336 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1337 	unsigned long slice, subslice = 0, slice_mask = 0;
1338 	u32 lncf_mask = 0;
1339 	int i;
1340 
1341 	/*
1342 	 * On Xe_HP the steering increases in complexity. There are now several
1343 	 * more units that require steering and we're not guaranteed to be able
1344 	 * to find a common setting for all of them. These are:
1345 	 * - GSLICE (fusable)
1346 	 * - DSS (sub-unit within gslice; fusable)
1347 	 * - L3 Bank (fusable)
1348 	 * - MSLICE (fusable)
1349 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1350 	 *
1351 	 * We'll do our default/implicit steering based on GSLICE (in the
1352 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1353 	 * find overlap between the valid MSLICE and/or LNCF values with
1354 	 * a suitable GSLICE, then we can just reuse the default value and
1355 	 * skip and explicit steering at runtime.
1356 	 *
1357 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1358 	 * a valid sliceid value.  DSS steering is the only type of steering
1359 	 * that utilizes the 'subsliceid' bits.
1360 	 *
1361 	 * Also note that, even though the steering domain is called "GSlice"
1362 	 * and it is encoded in the register using the gslice format, the spec
1363 	 * says that the combined (geometry | compute) fuse should be used to
1364 	 * select the steering.
1365 	 */
1366 
1367 	/* Find the potential gslice candidates */
1368 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1369 						       GEN_DSS_PER_GSLICE);
1370 
1371 	/*
1372 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1373 	 * mslice is fine.
1374 	 */
1375 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1376 		lncf_mask |= (0x3 << (i * 2));
1377 
1378 	/*
1379 	 * Are there any sliceid values that work for both GSLICE and LNCF
1380 	 * steering?
1381 	 */
1382 	if (slice_mask & lncf_mask) {
1383 		slice_mask &= lncf_mask;
1384 		gt->steering_table[LNCF] = NULL;
1385 	}
1386 
1387 	/* How about sliceid values that also work for MSLICE steering? */
1388 	if (slice_mask & gt->info.mslice_mask) {
1389 		slice_mask &= gt->info.mslice_mask;
1390 		gt->steering_table[MSLICE] = NULL;
1391 	}
1392 
1393 	slice = __ffs(slice_mask);
1394 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1395 		GEN_DSS_PER_GSLICE;
1396 
1397 	__add_mcr_wa(gt, wal, slice, subslice);
1398 
1399 	/*
1400 	 * SQIDI ranges are special because they use different steering
1401 	 * registers than everything else we work with.  On XeHP SDV and
1402 	 * DG2-G10, any value in the steering registers will work fine since
1403 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1404 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1405 	 * we'll just steer to a hardcoded "2" since that value will work
1406 	 * everywhere.
1407 	 */
1408 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1409 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1410 
1411 	/*
1412 	 * On DG2, GAM registers have a dedicated steering control register
1413 	 * and must always be programmed to a hardcoded groupid of "1."
1414 	 */
1415 	if (IS_DG2(gt->i915))
1416 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1417 }
1418 
1419 static void
1420 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1421 {
1422 	struct drm_i915_private *i915 = gt->i915;
1423 
1424 	icl_wa_init_mcr(gt, wal);
1425 
1426 	/* WaModifyGamTlbPartitioning:icl */
1427 	wa_write_clr_set(wal,
1428 			 GEN11_GACB_PERF_CTRL,
1429 			 GEN11_HASH_CTRL_MASK,
1430 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1431 
1432 	/* Wa_1405766107:icl
1433 	 * Formerly known as WaCL2SFHalfMaxAlloc
1434 	 */
1435 	wa_write_or(wal,
1436 		    GEN11_LSN_UNSLCVC,
1437 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1438 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1439 
1440 	/* Wa_220166154:icl
1441 	 * Formerly known as WaDisCtxReload
1442 	 */
1443 	wa_write_or(wal,
1444 		    GEN8_GAMW_ECO_DEV_RW_IA,
1445 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1446 
1447 	/* Wa_1406463099:icl
1448 	 * Formerly known as WaGamTlbPendError
1449 	 */
1450 	wa_write_or(wal,
1451 		    GAMT_CHKN_BIT_REG,
1452 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1453 
1454 	/*
1455 	 * Wa_1408615072:icl,ehl  (vsunit)
1456 	 * Wa_1407596294:icl,ehl  (hsunit)
1457 	 */
1458 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1459 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1460 
1461 	/* Wa_1407352427:icl,ehl */
1462 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1463 		    PSDUNIT_CLKGATE_DIS);
1464 
1465 	/* Wa_1406680159:icl,ehl */
1466 	wa_mcr_write_or(wal,
1467 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1468 			GWUNIT_CLKGATE_DIS);
1469 
1470 	/* Wa_1607087056:icl,ehl,jsl */
1471 	if (IS_ICELAKE(i915) ||
1472 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1473 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1474 		wa_write_or(wal,
1475 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1476 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1477 
1478 	/*
1479 	 * This is not a documented workaround, but rather an optimization
1480 	 * to reduce sampler power.
1481 	 */
1482 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1483 }
1484 
1485 /*
1486  * Though there are per-engine instances of these registers,
1487  * they retain their value through engine resets and should
1488  * only be provided on the GT workaround list rather than
1489  * the engine-specific workaround list.
1490  */
1491 static void
1492 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1493 {
1494 	struct intel_engine_cs *engine;
1495 	int id;
1496 
1497 	for_each_engine(engine, gt, id) {
1498 		if (engine->class != VIDEO_DECODE_CLASS ||
1499 		    (engine->instance % 2))
1500 			continue;
1501 
1502 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1503 			    IECPUNIT_CLKGATE_DIS);
1504 	}
1505 }
1506 
1507 static void
1508 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1509 {
1510 	icl_wa_init_mcr(gt, wal);
1511 
1512 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1513 	wa_14011060649(gt, wal);
1514 
1515 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1516 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1517 
1518 	/*
1519 	 * Wa_14015795083
1520 	 *
1521 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1522 	 * preventing i915 from modifying it for this workaround.  Skip the
1523 	 * readback verification for this workaround on debug builds; if the
1524 	 * workaround doesn't stick due to firmware behavior, it's not an error
1525 	 * that we want CI to flag.
1526 	 */
1527 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1528 	       0, 0, false);
1529 }
1530 
1531 static void
1532 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1533 {
1534 	gen12_gt_workarounds_init(gt, wal);
1535 
1536 	/* Wa_1409420604:dg1 */
1537 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1538 			CPSSUNIT_CLKGATE_DIS);
1539 
1540 	/* Wa_1408615072:dg1 */
1541 	/* Empirical testing shows this register is unaffected by engine reset. */
1542 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1543 }
1544 
1545 static void
1546 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1547 {
1548 	xehp_init_mcr(gt, wal);
1549 
1550 	/* Wa_14011060649:dg2 */
1551 	wa_14011060649(gt, wal);
1552 
1553 	if (IS_DG2_G10(gt->i915)) {
1554 		/* Wa_22010523718:dg2 */
1555 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1556 			    CG3DDISCFEG_CLKGATE_DIS);
1557 
1558 		/* Wa_14011006942:dg2 */
1559 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1560 				DSS_ROUTER_CLKGATE_DIS);
1561 	}
1562 
1563 	/* Wa_14014830051:dg2 */
1564 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1565 
1566 	/*
1567 	 * Wa_14015795083
1568 	 * Skip verification for possibly locked register.
1569 	 */
1570 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1571 	       0, 0, false);
1572 
1573 	/* Wa_18018781329 */
1574 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1575 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1576 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1577 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1578 
1579 	/* Wa_1509235366:dg2 */
1580 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1581 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1582 
1583 	/* Wa_14010648519:dg2 */
1584 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1585 }
1586 
1587 static void
1588 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1589 {
1590 	/* Wa_14018575942 / Wa_18018781329 */
1591 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1592 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1593 
1594 	/* Wa_22016670082 */
1595 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1596 
1597 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1598 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1599 		/* Wa_14014830051 */
1600 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1601 
1602 		/* Wa_14015795083 */
1603 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1604 	}
1605 
1606 	/*
1607 	 * Unlike older platforms, we no longer setup implicit steering here;
1608 	 * all MCR accesses are explicitly steered.
1609 	 */
1610 	debug_dump_steering(gt);
1611 }
1612 
1613 static void
1614 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1615 {
1616 	struct intel_engine_cs *engine;
1617 	int id;
1618 
1619 	for_each_engine(engine, gt, id)
1620 		if (engine->class == VIDEO_DECODE_CLASS)
1621 			wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1622 				    MFXPIPE_CLKGATE_DIS);
1623 }
1624 
1625 static void
1626 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1627 {
1628 	wa_16021867713(gt, wal);
1629 
1630 	/*
1631 	 * Wa_14018778641
1632 	 * Wa_18018781329
1633 	 *
1634 	 * Note that although these registers are MCR on the primary
1635 	 * GT, the media GT's versions are regular singleton registers.
1636 	 */
1637 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1638 
1639 	/*
1640 	 * Wa_14018575942
1641 	 *
1642 	 * Issue is seen on media KPI test running on VDBOX engine
1643 	 * especially VP9 encoding WLs
1644 	 */
1645 	wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1646 
1647 	/* Wa_22016670082 */
1648 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1649 
1650 	debug_dump_steering(gt);
1651 }
1652 
1653 /*
1654  * The bspec performance guide has recommended MMIO tuning settings.  These
1655  * aren't truly "workarounds" but we want to program them through the
1656  * workaround infrastructure to make sure they're (re)applied at the proper
1657  * times.
1658  *
1659  * The programming in this function is for settings that persist through
1660  * engine resets and also are not part of any engine's register state context.
1661  * I.e., settings that only need to be re-applied in the event of a full GT
1662  * reset.
1663  */
1664 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1665 {
1666 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1667 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1668 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1669 	}
1670 
1671 	if (IS_DG2(gt->i915)) {
1672 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1673 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1674 	}
1675 }
1676 
1677 static void
1678 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1679 {
1680 	struct drm_i915_private *i915 = gt->i915;
1681 
1682 	gt_tuning_settings(gt, wal);
1683 
1684 	if (gt->type == GT_MEDIA) {
1685 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1686 			xelpmp_gt_workarounds_init(gt, wal);
1687 		else
1688 			MISSING_CASE(MEDIA_VER_FULL(i915));
1689 
1690 		return;
1691 	}
1692 
1693 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1694 		xelpg_gt_workarounds_init(gt, wal);
1695 	else if (IS_DG2(i915))
1696 		dg2_gt_workarounds_init(gt, wal);
1697 	else if (IS_DG1(i915))
1698 		dg1_gt_workarounds_init(gt, wal);
1699 	else if (GRAPHICS_VER(i915) == 12)
1700 		gen12_gt_workarounds_init(gt, wal);
1701 	else if (GRAPHICS_VER(i915) == 11)
1702 		icl_gt_workarounds_init(gt, wal);
1703 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1704 		cfl_gt_workarounds_init(gt, wal);
1705 	else if (IS_GEMINILAKE(i915))
1706 		glk_gt_workarounds_init(gt, wal);
1707 	else if (IS_KABYLAKE(i915))
1708 		kbl_gt_workarounds_init(gt, wal);
1709 	else if (IS_BROXTON(i915))
1710 		gen9_gt_workarounds_init(gt, wal);
1711 	else if (IS_SKYLAKE(i915))
1712 		skl_gt_workarounds_init(gt, wal);
1713 	else if (IS_HASWELL(i915))
1714 		hsw_gt_workarounds_init(gt, wal);
1715 	else if (IS_VALLEYVIEW(i915))
1716 		vlv_gt_workarounds_init(gt, wal);
1717 	else if (IS_IVYBRIDGE(i915))
1718 		ivb_gt_workarounds_init(gt, wal);
1719 	else if (GRAPHICS_VER(i915) == 6)
1720 		snb_gt_workarounds_init(gt, wal);
1721 	else if (GRAPHICS_VER(i915) == 5)
1722 		ilk_gt_workarounds_init(gt, wal);
1723 	else if (IS_G4X(i915))
1724 		g4x_gt_workarounds_init(gt, wal);
1725 	else if (GRAPHICS_VER(i915) == 4)
1726 		gen4_gt_workarounds_init(gt, wal);
1727 	else if (GRAPHICS_VER(i915) <= 8)
1728 		;
1729 	else
1730 		MISSING_CASE(GRAPHICS_VER(i915));
1731 }
1732 
1733 void intel_gt_init_workarounds(struct intel_gt *gt)
1734 {
1735 	struct i915_wa_list *wal = &gt->wa_list;
1736 
1737 	wa_init_start(wal, gt, "GT", "global");
1738 	gt_init_workarounds(gt, wal);
1739 	wa_init_finish(wal);
1740 }
1741 
1742 static bool
1743 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1744 	  const char *name, const char *from)
1745 {
1746 	if ((cur ^ wa->set) & wa->read) {
1747 		gt_err(gt,
1748 		       "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1749 		       name, from, i915_mmio_reg_offset(wa->reg),
1750 		       cur, cur & wa->read, wa->set & wa->read);
1751 
1752 		return false;
1753 	}
1754 
1755 	return true;
1756 }
1757 
1758 static void wa_list_apply(const struct i915_wa_list *wal)
1759 {
1760 	struct intel_gt *gt = wal->gt;
1761 	struct intel_uncore *uncore = gt->uncore;
1762 	enum forcewake_domains fw;
1763 	unsigned long flags;
1764 	struct i915_wa *wa;
1765 	unsigned int i;
1766 
1767 	if (!wal->count)
1768 		return;
1769 
1770 	fw = wal_get_fw_for_rmw(uncore, wal);
1771 
1772 	intel_gt_mcr_lock(gt, &flags);
1773 	spin_lock(&uncore->lock);
1774 	intel_uncore_forcewake_get__locked(uncore, fw);
1775 
1776 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1777 		u32 val, old = 0;
1778 
1779 		/* open-coded rmw due to steering */
1780 		if (wa->clr)
1781 			old = wa->is_mcr ?
1782 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1783 				intel_uncore_read_fw(uncore, wa->reg);
1784 		val = (old & ~wa->clr) | wa->set;
1785 		if (val != old || !wa->clr) {
1786 			if (wa->is_mcr)
1787 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1788 			else
1789 				intel_uncore_write_fw(uncore, wa->reg, val);
1790 		}
1791 
1792 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1793 			u32 val = wa->is_mcr ?
1794 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1795 				intel_uncore_read_fw(uncore, wa->reg);
1796 
1797 			wa_verify(gt, wa, val, wal->name, "application");
1798 		}
1799 	}
1800 
1801 	intel_uncore_forcewake_put__locked(uncore, fw);
1802 	spin_unlock(&uncore->lock);
1803 	intel_gt_mcr_unlock(gt, flags);
1804 }
1805 
1806 void intel_gt_apply_workarounds(struct intel_gt *gt)
1807 {
1808 	wa_list_apply(&gt->wa_list);
1809 }
1810 
1811 static bool wa_list_verify(struct intel_gt *gt,
1812 			   const struct i915_wa_list *wal,
1813 			   const char *from)
1814 {
1815 	struct intel_uncore *uncore = gt->uncore;
1816 	struct i915_wa *wa;
1817 	enum forcewake_domains fw;
1818 	unsigned long flags;
1819 	unsigned int i;
1820 	bool ok = true;
1821 
1822 	fw = wal_get_fw_for_rmw(uncore, wal);
1823 
1824 	intel_gt_mcr_lock(gt, &flags);
1825 	spin_lock(&uncore->lock);
1826 	intel_uncore_forcewake_get__locked(uncore, fw);
1827 
1828 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1829 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1830 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1831 				intel_uncore_read_fw(uncore, wa->reg),
1832 				wal->name, from);
1833 
1834 	intel_uncore_forcewake_put__locked(uncore, fw);
1835 	spin_unlock(&uncore->lock);
1836 	intel_gt_mcr_unlock(gt, flags);
1837 
1838 	return ok;
1839 }
1840 
1841 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1842 {
1843 	return wa_list_verify(gt, &gt->wa_list, from);
1844 }
1845 
1846 __maybe_unused
1847 static bool is_nonpriv_flags_valid(u32 flags)
1848 {
1849 	/* Check only valid flag bits are set */
1850 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1851 		return false;
1852 
1853 	/* NB: Only 3 out of 4 enum values are valid for access field */
1854 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1855 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1856 		return false;
1857 
1858 	return true;
1859 }
1860 
1861 static void
1862 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1863 {
1864 	struct i915_wa wa = {
1865 		.reg = reg
1866 	};
1867 
1868 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1869 		return;
1870 
1871 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1872 		return;
1873 
1874 	wa.reg.reg |= flags;
1875 	_wa_add(wal, &wa);
1876 }
1877 
1878 static void
1879 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1880 {
1881 	struct i915_wa wa = {
1882 		.mcr_reg = reg,
1883 		.is_mcr = 1,
1884 	};
1885 
1886 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1887 		return;
1888 
1889 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1890 		return;
1891 
1892 	wa.mcr_reg.reg |= flags;
1893 	_wa_add(wal, &wa);
1894 }
1895 
1896 static void
1897 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1898 {
1899 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1900 }
1901 
1902 static void
1903 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1904 {
1905 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1906 }
1907 
1908 static void gen9_whitelist_build(struct i915_wa_list *w)
1909 {
1910 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1911 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1912 
1913 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1914 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1915 
1916 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1917 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1918 
1919 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1920 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1921 }
1922 
1923 static void skl_whitelist_build(struct intel_engine_cs *engine)
1924 {
1925 	struct i915_wa_list *w = &engine->whitelist;
1926 
1927 	if (engine->class != RENDER_CLASS)
1928 		return;
1929 
1930 	gen9_whitelist_build(w);
1931 
1932 	/* WaDisableLSQCROPERFforOCL:skl */
1933 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1934 }
1935 
1936 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1937 {
1938 	if (engine->class != RENDER_CLASS)
1939 		return;
1940 
1941 	gen9_whitelist_build(&engine->whitelist);
1942 }
1943 
1944 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1945 {
1946 	struct i915_wa_list *w = &engine->whitelist;
1947 
1948 	if (engine->class != RENDER_CLASS)
1949 		return;
1950 
1951 	gen9_whitelist_build(w);
1952 
1953 	/* WaDisableLSQCROPERFforOCL:kbl */
1954 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1955 }
1956 
1957 static void glk_whitelist_build(struct intel_engine_cs *engine)
1958 {
1959 	struct i915_wa_list *w = &engine->whitelist;
1960 
1961 	if (engine->class != RENDER_CLASS)
1962 		return;
1963 
1964 	gen9_whitelist_build(w);
1965 
1966 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
1967 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1968 }
1969 
1970 static void cfl_whitelist_build(struct intel_engine_cs *engine)
1971 {
1972 	struct i915_wa_list *w = &engine->whitelist;
1973 
1974 	if (engine->class != RENDER_CLASS)
1975 		return;
1976 
1977 	gen9_whitelist_build(w);
1978 
1979 	/*
1980 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
1981 	 *
1982 	 * This covers 4 register which are next to one another :
1983 	 *   - PS_INVOCATION_COUNT
1984 	 *   - PS_INVOCATION_COUNT_UDW
1985 	 *   - PS_DEPTH_COUNT
1986 	 *   - PS_DEPTH_COUNT_UDW
1987 	 */
1988 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1989 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
1990 			  RING_FORCE_TO_NONPRIV_RANGE_4);
1991 }
1992 
1993 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
1994 {
1995 	struct i915_wa_list *w = &engine->whitelist;
1996 
1997 	if (engine->class != RENDER_CLASS)
1998 		whitelist_reg_ext(w,
1999 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2000 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2001 }
2002 
2003 static void cml_whitelist_build(struct intel_engine_cs *engine)
2004 {
2005 	allow_read_ctx_timestamp(engine);
2006 
2007 	cfl_whitelist_build(engine);
2008 }
2009 
2010 static void icl_whitelist_build(struct intel_engine_cs *engine)
2011 {
2012 	struct i915_wa_list *w = &engine->whitelist;
2013 
2014 	allow_read_ctx_timestamp(engine);
2015 
2016 	switch (engine->class) {
2017 	case RENDER_CLASS:
2018 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2019 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2020 
2021 		/* WaAllowUMDToModifySamplerMode:icl */
2022 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2023 
2024 		/* WaEnableStateCacheRedirectToCS:icl */
2025 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2026 
2027 		/*
2028 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2029 		 *
2030 		 * This covers 4 register which are next to one another :
2031 		 *   - PS_INVOCATION_COUNT
2032 		 *   - PS_INVOCATION_COUNT_UDW
2033 		 *   - PS_DEPTH_COUNT
2034 		 *   - PS_DEPTH_COUNT_UDW
2035 		 */
2036 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2037 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2038 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2039 		break;
2040 
2041 	case VIDEO_DECODE_CLASS:
2042 		/* hucStatusRegOffset */
2043 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2044 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2045 		/* hucUKernelHdrInfoRegOffset */
2046 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2047 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2048 		/* hucStatus2RegOffset */
2049 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2050 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2051 		break;
2052 
2053 	default:
2054 		break;
2055 	}
2056 }
2057 
2058 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2059 {
2060 	struct i915_wa_list *w = &engine->whitelist;
2061 
2062 	allow_read_ctx_timestamp(engine);
2063 
2064 	switch (engine->class) {
2065 	case RENDER_CLASS:
2066 		/*
2067 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2068 		 * Wa_1408556865:tgl
2069 		 *
2070 		 * This covers 4 registers which are next to one another :
2071 		 *   - PS_INVOCATION_COUNT
2072 		 *   - PS_INVOCATION_COUNT_UDW
2073 		 *   - PS_DEPTH_COUNT
2074 		 *   - PS_DEPTH_COUNT_UDW
2075 		 */
2076 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2077 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2078 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2079 
2080 		/*
2081 		 * Wa_1808121037:tgl
2082 		 * Wa_14012131227:dg1
2083 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2084 		 */
2085 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2086 
2087 		/* Wa_1806527549:tgl */
2088 		whitelist_reg(w, HIZ_CHICKEN);
2089 
2090 		/* Required by recommended tuning setting (not a workaround) */
2091 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2092 
2093 		break;
2094 	default:
2095 		break;
2096 	}
2097 }
2098 
2099 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2100 {
2101 	struct i915_wa_list *w = &engine->whitelist;
2102 
2103 	switch (engine->class) {
2104 	case RENDER_CLASS:
2105 		/* Required by recommended tuning setting (not a workaround) */
2106 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2107 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2108 		break;
2109 	default:
2110 		break;
2111 	}
2112 }
2113 
2114 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2115 {
2116 	struct i915_wa_list *w = &engine->whitelist;
2117 
2118 	switch (engine->class) {
2119 	case RENDER_CLASS:
2120 		/* Required by recommended tuning setting (not a workaround) */
2121 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2122 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2123 		break;
2124 	default:
2125 		break;
2126 	}
2127 }
2128 
2129 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2130 {
2131 	struct drm_i915_private *i915 = engine->i915;
2132 	struct i915_wa_list *w = &engine->whitelist;
2133 
2134 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2135 
2136 	if (engine->gt->type == GT_MEDIA)
2137 		; /* none yet */
2138 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2139 		xelpg_whitelist_build(engine);
2140 	else if (IS_DG2(i915))
2141 		dg2_whitelist_build(engine);
2142 	else if (GRAPHICS_VER(i915) == 12)
2143 		tgl_whitelist_build(engine);
2144 	else if (GRAPHICS_VER(i915) == 11)
2145 		icl_whitelist_build(engine);
2146 	else if (IS_COMETLAKE(i915))
2147 		cml_whitelist_build(engine);
2148 	else if (IS_COFFEELAKE(i915))
2149 		cfl_whitelist_build(engine);
2150 	else if (IS_GEMINILAKE(i915))
2151 		glk_whitelist_build(engine);
2152 	else if (IS_KABYLAKE(i915))
2153 		kbl_whitelist_build(engine);
2154 	else if (IS_BROXTON(i915))
2155 		bxt_whitelist_build(engine);
2156 	else if (IS_SKYLAKE(i915))
2157 		skl_whitelist_build(engine);
2158 	else if (GRAPHICS_VER(i915) <= 8)
2159 		;
2160 	else
2161 		MISSING_CASE(GRAPHICS_VER(i915));
2162 
2163 	wa_init_finish(w);
2164 }
2165 
2166 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2167 {
2168 	const struct i915_wa_list *wal = &engine->whitelist;
2169 	struct intel_uncore *uncore = engine->uncore;
2170 	const u32 base = engine->mmio_base;
2171 	struct i915_wa *wa;
2172 	unsigned int i;
2173 
2174 	if (!wal->count)
2175 		return;
2176 
2177 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2178 		intel_uncore_write(uncore,
2179 				   RING_FORCE_TO_NONPRIV(base, i),
2180 				   i915_mmio_reg_offset(wa->reg));
2181 
2182 	/* And clear the rest just in case of garbage */
2183 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2184 		intel_uncore_write(uncore,
2185 				   RING_FORCE_TO_NONPRIV(base, i),
2186 				   i915_mmio_reg_offset(RING_NOPID(base)));
2187 }
2188 
2189 /*
2190  * engine_fake_wa_init(), a place holder to program the registers
2191  * which are not part of an official workaround defined by the
2192  * hardware team.
2193  * Adding programming of those register inside workaround will
2194  * allow utilizing wa framework to proper application and verification.
2195  */
2196 static void
2197 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2198 {
2199 	u8 mocs_w, mocs_r;
2200 
2201 	/*
2202 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2203 	 * by the command streamer when executing commands that don't have
2204 	 * a way to explicitly specify a MOCS setting.  The default should
2205 	 * usually reference whichever MOCS entry corresponds to uncached
2206 	 * behavior, although use of a WB cached entry is recommended by the
2207 	 * spec in certain circumstances on specific platforms.
2208 	 */
2209 	if (GRAPHICS_VER(engine->i915) >= 12) {
2210 		mocs_r = engine->gt->mocs.uc_index;
2211 		mocs_w = engine->gt->mocs.uc_index;
2212 
2213 		if (HAS_L3_CCS_READ(engine->i915) &&
2214 		    engine->class == COMPUTE_CLASS) {
2215 			mocs_r = engine->gt->mocs.wb_index;
2216 
2217 			/*
2218 			 * Even on the few platforms where MOCS 0 is a
2219 			 * legitimate table entry, it's never the correct
2220 			 * setting to use here; we can assume the MOCS init
2221 			 * just forgot to initialize wb_index.
2222 			 */
2223 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2224 		}
2225 
2226 		wa_masked_field_set(wal,
2227 				    RING_CMD_CCTL(engine->mmio_base),
2228 				    CMD_CCTL_MOCS_MASK,
2229 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2230 	}
2231 }
2232 
2233 static void
2234 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2235 {
2236 	struct drm_i915_private *i915 = engine->i915;
2237 	struct intel_gt *gt = engine->gt;
2238 
2239 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2240 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2241 		/* Wa_22014600077 */
2242 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2243 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2244 	}
2245 
2246 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2247 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2248 	    IS_DG2(i915)) {
2249 		/* Wa_1509727124 */
2250 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2251 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2252 	}
2253 
2254 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2255 	    IS_DG2(i915)) {
2256 		/* Wa_22012856258 */
2257 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2258 				 GEN12_DISABLE_READ_SUPPRESSION);
2259 	}
2260 
2261 	if (IS_DG2(i915)) {
2262 		/*
2263 		 * Wa_22010960976:dg2
2264 		 * Wa_14013347512:dg2
2265 		 */
2266 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2267 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2268 	}
2269 
2270 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2271 	    IS_DG2(i915)) {
2272 		/* Wa_14015150844 */
2273 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2274 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2275 			   0, true);
2276 	}
2277 
2278 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2279 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2280 		/*
2281 		 * Wa_1606700617:tgl,dg1,adl-p
2282 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2283 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2284 		 * Wa_18019627453:dg2
2285 		 */
2286 		wa_masked_en(wal,
2287 			     GEN9_CS_DEBUG_MODE1,
2288 			     FF_DOP_CLOCK_GATE_DISABLE);
2289 	}
2290 
2291 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2292 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2293 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2294 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2295 
2296 		/*
2297 		 * Wa_1407928979:tgl A*
2298 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2299 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2300 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2301 		 */
2302 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2303 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2304 
2305 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2306 		wa_mcr_masked_en(wal,
2307 				 GEN10_SAMPLER_MODE,
2308 				 ENABLE_SMALLPL);
2309 	}
2310 
2311 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2312 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2313 		/* Wa_1409804808 */
2314 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2315 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2316 
2317 		/* Wa_14010229206 */
2318 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2319 	}
2320 
2321 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2322 		/*
2323 		 * Wa_1607297627
2324 		 *
2325 		 * On TGL and RKL there are multiple entries for this WA in the
2326 		 * BSpec; some indicate this is an A0-only WA, others indicate
2327 		 * it applies to all steppings so we trust the "all steppings."
2328 		 */
2329 		wa_masked_en(wal,
2330 			     RING_PSMI_CTL(RENDER_RING_BASE),
2331 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2332 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2333 	}
2334 
2335 	if (GRAPHICS_VER(i915) == 11) {
2336 		/* This is not an Wa. Enable for better image quality */
2337 		wa_masked_en(wal,
2338 			     _3D_CHICKEN3,
2339 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2340 
2341 		/*
2342 		 * Wa_1405543622:icl
2343 		 * Formerly known as WaGAPZPriorityScheme
2344 		 */
2345 		wa_write_or(wal,
2346 			    GEN8_GARBCNTL,
2347 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2348 
2349 		/*
2350 		 * Wa_1604223664:icl
2351 		 * Formerly known as WaL3BankAddressHashing
2352 		 */
2353 		wa_write_clr_set(wal,
2354 				 GEN8_GARBCNTL,
2355 				 GEN11_HASH_CTRL_EXCL_MASK,
2356 				 GEN11_HASH_CTRL_EXCL_BIT0);
2357 		wa_write_clr_set(wal,
2358 				 GEN11_GLBLINVL,
2359 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2360 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2361 
2362 		/*
2363 		 * Wa_1405733216:icl
2364 		 * Formerly known as WaDisableCleanEvicts
2365 		 */
2366 		wa_mcr_write_or(wal,
2367 				GEN8_L3SQCREG4,
2368 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2369 
2370 		/* Wa_1606682166:icl */
2371 		wa_write_or(wal,
2372 			    GEN7_SARCHKMD,
2373 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2374 
2375 		/* Wa_1409178092:icl */
2376 		wa_mcr_write_clr_set(wal,
2377 				     GEN11_SCRATCH2,
2378 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2379 				     0);
2380 
2381 		/* WaEnable32PlaneMode:icl */
2382 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2383 			     GEN11_ENABLE_32_PLANE_MODE);
2384 
2385 		/*
2386 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2387 		 * Wa_1605460711:icl[a0..c0]
2388 		 */
2389 		wa_write_or(wal,
2390 			    GEN7_FF_THREAD_MODE,
2391 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2392 
2393 		/* Wa_22010271021 */
2394 		wa_masked_en(wal,
2395 			     GEN9_CS_DEBUG_MODE1,
2396 			     FF_DOP_CLOCK_GATE_DISABLE);
2397 	}
2398 
2399 	/*
2400 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2401 	 * beyond) allow the kernel-mode driver to choose between two different
2402 	 * options for controlling preemption granularity and behavior.
2403 	 *
2404 	 * Option 1 (hardware default):
2405 	 *   Preemption settings are controlled in a global manner via
2406 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2407 	 *   and settings chosen by the kernel-mode driver will apply to all
2408 	 *   userspace clients.
2409 	 *
2410 	 * Option 2:
2411 	 *   Preemption settings are controlled on a per-context basis via
2412 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2413 	 *   context switch and is writable by userspace (e.g., via
2414 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2415 	 *   which allows different userspace drivers/clients to select
2416 	 *   different settings, or to change those settings on the fly in
2417 	 *   response to runtime needs.  This option was known by name
2418 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2419 	 *   that name is somewhat misleading as other non-granularity
2420 	 *   preemption settings are also impacted by this decision.
2421 	 *
2422 	 * On Linux, our policy has always been to let userspace drivers
2423 	 * control preemption granularity/settings (Option 2).  This was
2424 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2425 	 * userspace developed before object-level preemption was enabled would
2426 	 * not behave well if i915 were to go with Option 1 and enable that
2427 	 * preemption in a global manner).  On gen9 each context would have
2428 	 * object-level preemption disabled by default (see
2429 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2430 	 * userspace drivers could opt-in to object-level preemption as they
2431 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2432 	 * even though it is no longer necessary for ABI compatibility when
2433 	 * enabling a new platform, it does ensure that userspace will be able
2434 	 * to implement any workarounds that show up requiring temporary
2435 	 * adjustments to preemption behavior at runtime.
2436 	 *
2437 	 * Notes/Workarounds:
2438 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2439 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2440 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2441 	 *      using Option 1).  Effectively this means userspace is unable
2442 	 *      to disable object-level preemption on these platforms/steppings
2443 	 *      despite the setting here.
2444 	 *
2445 	 *  - Wa_16013994831:  May require that userspace program
2446 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2447 	 *      Userspace requires Option 2 to be in effect for their update of
2448 	 *      CS_CHICKEN1[10] to be effective.
2449 	 *
2450 	 * Other workarounds may appear in the future that will also require
2451 	 * Option 2 behavior to allow proper userspace implementation.
2452 	 */
2453 	if (GRAPHICS_VER(i915) >= 9)
2454 		wa_masked_en(wal,
2455 			     GEN7_FF_SLICE_CS_CHICKEN1,
2456 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2457 
2458 	if (IS_SKYLAKE(i915) ||
2459 	    IS_KABYLAKE(i915) ||
2460 	    IS_COFFEELAKE(i915) ||
2461 	    IS_COMETLAKE(i915)) {
2462 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2463 		wa_write_or(wal,
2464 			    GEN8_GARBCNTL,
2465 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2466 	}
2467 
2468 	if (IS_BROXTON(i915)) {
2469 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2470 		wa_masked_en(wal,
2471 			     FF_SLICE_CS_CHICKEN2,
2472 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2473 	}
2474 
2475 	if (GRAPHICS_VER(i915) == 9) {
2476 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2477 		wa_masked_en(wal,
2478 			     GEN9_CSFE_CHICKEN1_RCS,
2479 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2480 
2481 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2482 		wa_mcr_write_or(wal,
2483 				BDW_SCRATCH1,
2484 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2485 
2486 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2487 		if (IS_GEN9_LP(i915))
2488 			wa_mcr_write_clr_set(wal,
2489 					     GEN8_L3SQCREG1,
2490 					     L3_PRIO_CREDITS_MASK,
2491 					     L3_GENERAL_PRIO_CREDITS(62) |
2492 					     L3_HIGH_PRIO_CREDITS(2));
2493 
2494 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2495 		wa_mcr_write_or(wal,
2496 				GEN8_L3SQCREG4,
2497 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2498 
2499 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2500 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2501 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2502 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2503 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2504 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2505 				     EVICTION_PERF_FIX_ENABLE, 0);
2506 	}
2507 
2508 	if (IS_HASWELL(i915)) {
2509 		/* WaSampleCChickenBitEnable:hsw */
2510 		wa_masked_en(wal,
2511 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2512 
2513 		wa_masked_dis(wal,
2514 			      CACHE_MODE_0_GEN7,
2515 			      /* enable HiZ Raw Stall Optimization */
2516 			      HIZ_RAW_STALL_OPT_DISABLE);
2517 	}
2518 
2519 	if (IS_VALLEYVIEW(i915)) {
2520 		/* WaDisableEarlyCull:vlv */
2521 		wa_masked_en(wal,
2522 			     _3D_CHICKEN3,
2523 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2524 
2525 		/*
2526 		 * WaVSThreadDispatchOverride:ivb,vlv
2527 		 *
2528 		 * This actually overrides the dispatch
2529 		 * mode for all thread types.
2530 		 */
2531 		wa_write_clr_set(wal,
2532 				 GEN7_FF_THREAD_MODE,
2533 				 GEN7_FF_SCHED_MASK,
2534 				 GEN7_FF_TS_SCHED_HW |
2535 				 GEN7_FF_VS_SCHED_HW |
2536 				 GEN7_FF_DS_SCHED_HW);
2537 
2538 		/* WaPsdDispatchEnable:vlv */
2539 		/* WaDisablePSDDualDispatchEnable:vlv */
2540 		wa_masked_en(wal,
2541 			     GEN7_HALF_SLICE_CHICKEN1,
2542 			     GEN7_MAX_PS_THREAD_DEP |
2543 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2544 	}
2545 
2546 	if (IS_IVYBRIDGE(i915)) {
2547 		/* WaDisableEarlyCull:ivb */
2548 		wa_masked_en(wal,
2549 			     _3D_CHICKEN3,
2550 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2551 
2552 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2553 			/* enable HiZ Raw Stall Optimization */
2554 			wa_masked_dis(wal,
2555 				      CACHE_MODE_0_GEN7,
2556 				      HIZ_RAW_STALL_OPT_DISABLE);
2557 		}
2558 
2559 		/*
2560 		 * WaVSThreadDispatchOverride:ivb,vlv
2561 		 *
2562 		 * This actually overrides the dispatch
2563 		 * mode for all thread types.
2564 		 */
2565 		wa_write_clr_set(wal,
2566 				 GEN7_FF_THREAD_MODE,
2567 				 GEN7_FF_SCHED_MASK,
2568 				 GEN7_FF_TS_SCHED_HW |
2569 				 GEN7_FF_VS_SCHED_HW |
2570 				 GEN7_FF_DS_SCHED_HW);
2571 
2572 		/* WaDisablePSDDualDispatchEnable:ivb */
2573 		if (INTEL_INFO(i915)->gt == 1)
2574 			wa_masked_en(wal,
2575 				     GEN7_HALF_SLICE_CHICKEN1,
2576 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2577 	}
2578 
2579 	if (GRAPHICS_VER(i915) == 7) {
2580 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2581 		wa_masked_en(wal,
2582 			     RING_MODE_GEN7(RENDER_RING_BASE),
2583 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2584 
2585 		/*
2586 		 * BSpec recommends 8x4 when MSAA is used,
2587 		 * however in practice 16x4 seems fastest.
2588 		 *
2589 		 * Note that PS/WM thread counts depend on the WIZ hashing
2590 		 * disable bit, which we don't touch here, but it's good
2591 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2592 		 */
2593 		wa_masked_field_set(wal,
2594 				    GEN7_GT_MODE,
2595 				    GEN6_WIZ_HASHING_MASK,
2596 				    GEN6_WIZ_HASHING_16x4);
2597 	}
2598 
2599 	if (IS_GRAPHICS_VER(i915, 6, 7))
2600 		/*
2601 		 * We need to disable the AsyncFlip performance optimisations in
2602 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2603 		 * already be programmed to '1' on all products.
2604 		 *
2605 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2606 		 */
2607 		wa_masked_en(wal,
2608 			     RING_MI_MODE(RENDER_RING_BASE),
2609 			     ASYNC_FLIP_PERF_DISABLE);
2610 
2611 	if (GRAPHICS_VER(i915) == 6) {
2612 		/*
2613 		 * Required for the hardware to program scanline values for
2614 		 * waiting
2615 		 * WaEnableFlushTlbInvalidationMode:snb
2616 		 */
2617 		wa_masked_en(wal,
2618 			     GFX_MODE,
2619 			     GFX_TLB_INVALIDATE_EXPLICIT);
2620 
2621 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2622 		wa_masked_en(wal,
2623 			     _3D_CHICKEN,
2624 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2625 
2626 		wa_masked_en(wal,
2627 			     _3D_CHICKEN3,
2628 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2629 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2630 			     /*
2631 			      * Bspec says:
2632 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2633 			      * to normal and 3DSTATE_SF number of SF output attributes
2634 			      * is more than 16."
2635 			      */
2636 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2637 
2638 		/*
2639 		 * BSpec recommends 8x4 when MSAA is used,
2640 		 * however in practice 16x4 seems fastest.
2641 		 *
2642 		 * Note that PS/WM thread counts depend on the WIZ hashing
2643 		 * disable bit, which we don't touch here, but it's good
2644 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2645 		 */
2646 		wa_masked_field_set(wal,
2647 				    GEN6_GT_MODE,
2648 				    GEN6_WIZ_HASHING_MASK,
2649 				    GEN6_WIZ_HASHING_16x4);
2650 
2651 		/*
2652 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2653 		 * "If this bit is set, STCunit will have LRA as replacement
2654 		 *  policy. [...] This bit must be reset. LRA replacement
2655 		 *  policy is not supported."
2656 		 */
2657 		wa_masked_dis(wal,
2658 			      CACHE_MODE_0,
2659 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2660 	}
2661 
2662 	if (IS_GRAPHICS_VER(i915, 4, 6))
2663 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2664 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2665 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2666 		       /* XXX bit doesn't stick on Broadwater */
2667 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2668 
2669 	if (GRAPHICS_VER(i915) == 4)
2670 		/*
2671 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2672 		 * image. For as it is loaded, it is executed and the stored
2673 		 * address may no longer be valid, leading to a GPU hang.
2674 		 *
2675 		 * This imposes the requirement that userspace reload their
2676 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2677 		 * they are already accustomed to from before contexts were
2678 		 * enabled.
2679 		 */
2680 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2681 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2682 		       0 /* XXX bit doesn't stick on Broadwater */,
2683 		       true);
2684 }
2685 
2686 static void
2687 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2688 {
2689 	struct drm_i915_private *i915 = engine->i915;
2690 
2691 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2692 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2693 		wa_write(wal,
2694 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2695 			 1);
2696 	}
2697 	/* Wa_16018031267, Wa_16018063123 */
2698 	if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2699 		wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2700 				    XEHP_BLITTER_SCHEDULING_MODE_MASK,
2701 				    XEHP_BLITTER_ROUND_ROBIN_MODE);
2702 }
2703 
2704 static void
2705 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2706 {
2707 	/* boilerplate for any CCS engine workaround */
2708 }
2709 
2710 /*
2711  * The bspec performance guide has recommended MMIO tuning settings.  These
2712  * aren't truly "workarounds" but we want to program them with the same
2713  * workaround infrastructure to ensure that they're automatically added to
2714  * the GuC save/restore lists, re-applied at the right times, and checked for
2715  * any conflicting programming requested by real workarounds.
2716  *
2717  * Programming settings should be added here only if their registers are not
2718  * part of an engine's register state context.  If a register is part of a
2719  * context, then any tuning settings should be programmed in an appropriate
2720  * function invoked by __intel_engine_init_ctx_wa().
2721  */
2722 static void
2723 add_render_compute_tuning_settings(struct intel_gt *gt,
2724 				   struct i915_wa_list *wal)
2725 {
2726 	struct drm_i915_private *i915 = gt->i915;
2727 
2728 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2729 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2730 
2731 	/*
2732 	 * This tuning setting proves beneficial only on ATS-M designs; the
2733 	 * default "age based" setting is optimal on regular DG2 and other
2734 	 * platforms.
2735 	 */
2736 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2737 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2738 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2739 
2740 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55))
2741 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2742 }
2743 
2744 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2745 {
2746 	struct intel_gt *gt = engine->gt;
2747 	u32 mode;
2748 
2749 	if (!IS_DG2(gt->i915))
2750 		return;
2751 
2752 	/*
2753 	 * Wa_14019159160: This workaround, along with others, leads to
2754 	 * significant challenges in utilizing load balancing among the
2755 	 * CCS slices. Consequently, an architectural decision has been
2756 	 * made to completely disable automatic CCS load balancing.
2757 	 */
2758 	wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2759 
2760 	/*
2761 	 * After having disabled automatic load balancing we need to
2762 	 * assign all slices to a single CCS. We will call it CCS mode 1
2763 	 */
2764 	mode = intel_gt_apply_ccs_mode(gt);
2765 	wa_masked_en(wal, XEHP_CCS_MODE, mode);
2766 }
2767 
2768 /*
2769  * The workarounds in this function apply to shared registers in
2770  * the general render reset domain that aren't tied to a
2771  * specific engine.  Since all render+compute engines get reset
2772  * together, and the contents of these registers are lost during
2773  * the shared render domain reset, we'll define such workarounds
2774  * here and then add them to just a single RCS or CCS engine's
2775  * workaround list (whichever engine has the XXXX flag).
2776  */
2777 static void
2778 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2779 {
2780 	struct drm_i915_private *i915 = engine->i915;
2781 	struct intel_gt *gt = engine->gt;
2782 
2783 	add_render_compute_tuning_settings(gt, wal);
2784 
2785 	if (GRAPHICS_VER(i915) >= 11) {
2786 		/* This is not a Wa (although referred to as
2787 		 * WaSetInidrectStateOverride in places), this allows
2788 		 * applications that reference sampler states through
2789 		 * the BindlessSamplerStateBaseAddress to have their
2790 		 * border color relative to DynamicStateBaseAddress
2791 		 * rather than BindlessSamplerStateBaseAddress.
2792 		 *
2793 		 * Otherwise SAMPLER_STATE border colors have to be
2794 		 * copied in multiple heaps (DynamicStateBaseAddress &
2795 		 * BindlessSamplerStateBaseAddress)
2796 		 *
2797 		 * BSpec: 46052
2798 		 */
2799 		wa_mcr_masked_en(wal,
2800 				 GEN10_SAMPLER_MODE,
2801 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2802 	}
2803 
2804 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2805 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2806 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) {
2807 		/* Wa_14017856879 */
2808 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2809 
2810 		/* Wa_14020495402 */
2811 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING);
2812 	}
2813 
2814 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2815 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2816 		/*
2817 		 * Wa_14017066071
2818 		 * Wa_14017654203
2819 		 */
2820 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2821 				 MTL_DISABLE_SAMPLER_SC_OOO);
2822 
2823 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2824 		/* Wa_22015279794 */
2825 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2826 				 DISABLE_PREFETCH_INTO_IC);
2827 
2828 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2829 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2830 	    IS_DG2(i915)) {
2831 		/* Wa_22013037850 */
2832 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2833 				DISABLE_128B_EVICTION_COMMAND_UDW);
2834 
2835 		/* Wa_18017747507 */
2836 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2837 	}
2838 
2839 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2840 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2841 	    IS_DG2(i915)) {
2842 		/* Wa_22014226127 */
2843 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2844 	}
2845 
2846 	if (IS_DG2(i915)) {
2847 		/* Wa_14015227452:dg2,pvc */
2848 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2849 
2850 		/*
2851 		 * Wa_16011620976:dg2_g11
2852 		 * Wa_22015475538:dg2
2853 		 */
2854 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2855 
2856 		/* Wa_18028616096 */
2857 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2858 	}
2859 
2860 	if (IS_DG2_G11(i915)) {
2861 		/*
2862 		 * Wa_22012826095:dg2
2863 		 * Wa_22013059131:dg2
2864 		 */
2865 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2866 				     MAXREQS_PER_BANK,
2867 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2868 
2869 		/* Wa_22013059131:dg2 */
2870 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2871 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2872 
2873 		/*
2874 		 * Wa_22012654132
2875 		 *
2876 		 * Note that register 0xE420 is write-only and cannot be read
2877 		 * back for verification on DG2 (due to Wa_14012342262), so
2878 		 * we need to explicitly skip the readback.
2879 		 */
2880 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2881 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2882 			   0 /* write-only, so skip validation */,
2883 			   true);
2884 	}
2885 }
2886 
2887 static void
2888 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2889 {
2890 	if (GRAPHICS_VER(engine->i915) < 4)
2891 		return;
2892 
2893 	engine_fake_wa_init(engine, wal);
2894 
2895 	/*
2896 	 * These are common workarounds that just need to applied
2897 	 * to a single RCS/CCS engine's workaround list since
2898 	 * they're reset as part of the general render domain reset.
2899 	 */
2900 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
2901 		general_render_compute_wa_init(engine, wal);
2902 		ccs_engine_wa_mode(engine, wal);
2903 	}
2904 
2905 	if (engine->class == COMPUTE_CLASS)
2906 		ccs_engine_wa_init(engine, wal);
2907 	else if (engine->class == RENDER_CLASS)
2908 		rcs_engine_wa_init(engine, wal);
2909 	else
2910 		xcs_engine_wa_init(engine, wal);
2911 }
2912 
2913 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2914 {
2915 	struct i915_wa_list *wal = &engine->wa_list;
2916 
2917 	wa_init_start(wal, engine->gt, "engine", engine->name);
2918 	engine_init_workarounds(engine, wal);
2919 	wa_init_finish(wal);
2920 }
2921 
2922 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
2923 {
2924 	wa_list_apply(&engine->wa_list);
2925 }
2926 
2927 static const struct i915_mmio_range mcr_ranges_gen8[] = {
2928 	{ .start = 0x5500, .end = 0x55ff },
2929 	{ .start = 0x7000, .end = 0x7fff },
2930 	{ .start = 0x9400, .end = 0x97ff },
2931 	{ .start = 0xb000, .end = 0xb3ff },
2932 	{ .start = 0xe000, .end = 0xe7ff },
2933 	{},
2934 };
2935 
2936 static const struct i915_mmio_range mcr_ranges_gen12[] = {
2937 	{ .start =  0x8150, .end =  0x815f },
2938 	{ .start =  0x9520, .end =  0x955f },
2939 	{ .start =  0xb100, .end =  0xb3ff },
2940 	{ .start =  0xde80, .end =  0xe8ff },
2941 	{ .start = 0x24a00, .end = 0x24a7f },
2942 	{},
2943 };
2944 
2945 static const struct i915_mmio_range mcr_ranges_xehp[] = {
2946 	{ .start =  0x4000, .end =  0x4aff },
2947 	{ .start =  0x5200, .end =  0x52ff },
2948 	{ .start =  0x5400, .end =  0x7fff },
2949 	{ .start =  0x8140, .end =  0x815f },
2950 	{ .start =  0x8c80, .end =  0x8dff },
2951 	{ .start =  0x94d0, .end =  0x955f },
2952 	{ .start =  0x9680, .end =  0x96ff },
2953 	{ .start =  0xb000, .end =  0xb3ff },
2954 	{ .start =  0xc800, .end =  0xcfff },
2955 	{ .start =  0xd800, .end =  0xd8ff },
2956 	{ .start =  0xdc00, .end =  0xffff },
2957 	{ .start = 0x17000, .end = 0x17fff },
2958 	{ .start = 0x24a00, .end = 0x24a7f },
2959 	{},
2960 };
2961 
2962 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
2963 {
2964 	const struct i915_mmio_range *mcr_ranges;
2965 	int i;
2966 
2967 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
2968 		mcr_ranges = mcr_ranges_xehp;
2969 	else if (GRAPHICS_VER(i915) >= 12)
2970 		mcr_ranges = mcr_ranges_gen12;
2971 	else if (GRAPHICS_VER(i915) >= 8)
2972 		mcr_ranges = mcr_ranges_gen8;
2973 	else
2974 		return false;
2975 
2976 	/*
2977 	 * Registers in these ranges are affected by the MCR selector
2978 	 * which only controls CPU initiated MMIO. Routing does not
2979 	 * work for CS access so we cannot verify them on this path.
2980 	 */
2981 	for (i = 0; mcr_ranges[i].start; i++)
2982 		if (offset >= mcr_ranges[i].start &&
2983 		    offset <= mcr_ranges[i].end)
2984 			return true;
2985 
2986 	return false;
2987 }
2988 
2989 static int
2990 wa_list_srm(struct i915_request *rq,
2991 	    const struct i915_wa_list *wal,
2992 	    struct i915_vma *vma)
2993 {
2994 	struct drm_i915_private *i915 = rq->i915;
2995 	unsigned int i, count = 0;
2996 	const struct i915_wa *wa;
2997 	u32 srm, *cs;
2998 
2999 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3000 	if (GRAPHICS_VER(i915) >= 8)
3001 		srm++;
3002 
3003 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3004 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3005 			count++;
3006 	}
3007 
3008 	cs = intel_ring_begin(rq, 4 * count);
3009 	if (IS_ERR(cs))
3010 		return PTR_ERR(cs);
3011 
3012 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3013 		u32 offset = i915_mmio_reg_offset(wa->reg);
3014 
3015 		if (mcr_range(i915, offset))
3016 			continue;
3017 
3018 		*cs++ = srm;
3019 		*cs++ = offset;
3020 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3021 		*cs++ = 0;
3022 	}
3023 	intel_ring_advance(rq, cs);
3024 
3025 	return 0;
3026 }
3027 
3028 static int engine_wa_list_verify(struct intel_context *ce,
3029 				 const struct i915_wa_list * const wal,
3030 				 const char *from)
3031 {
3032 	const struct i915_wa *wa;
3033 	struct i915_request *rq;
3034 	struct i915_vma *vma;
3035 	struct i915_gem_ww_ctx ww;
3036 	unsigned int i;
3037 	u32 *results;
3038 	int err;
3039 
3040 	if (!wal->count)
3041 		return 0;
3042 
3043 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3044 					   wal->count * sizeof(u32));
3045 	if (IS_ERR(vma))
3046 		return PTR_ERR(vma);
3047 
3048 	intel_engine_pm_get(ce->engine);
3049 	i915_gem_ww_ctx_init(&ww, false);
3050 retry:
3051 	err = i915_gem_object_lock(vma->obj, &ww);
3052 	if (err == 0)
3053 		err = intel_context_pin_ww(ce, &ww);
3054 	if (err)
3055 		goto err_pm;
3056 
3057 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3058 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3059 	if (err)
3060 		goto err_unpin;
3061 
3062 	rq = i915_request_create(ce);
3063 	if (IS_ERR(rq)) {
3064 		err = PTR_ERR(rq);
3065 		goto err_vma;
3066 	}
3067 
3068 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3069 	if (err == 0)
3070 		err = wa_list_srm(rq, wal, vma);
3071 
3072 	i915_request_get(rq);
3073 	if (err)
3074 		i915_request_set_error_once(rq, err);
3075 	i915_request_add(rq);
3076 
3077 	if (err)
3078 		goto err_rq;
3079 
3080 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3081 		err = -ETIME;
3082 		goto err_rq;
3083 	}
3084 
3085 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3086 	if (IS_ERR(results)) {
3087 		err = PTR_ERR(results);
3088 		goto err_rq;
3089 	}
3090 
3091 	err = 0;
3092 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3093 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3094 			continue;
3095 
3096 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3097 			err = -ENXIO;
3098 	}
3099 
3100 	i915_gem_object_unpin_map(vma->obj);
3101 
3102 err_rq:
3103 	i915_request_put(rq);
3104 err_vma:
3105 	i915_vma_unpin(vma);
3106 err_unpin:
3107 	intel_context_unpin(ce);
3108 err_pm:
3109 	if (err == -EDEADLK) {
3110 		err = i915_gem_ww_ctx_backoff(&ww);
3111 		if (!err)
3112 			goto retry;
3113 	}
3114 	i915_gem_ww_ctx_fini(&ww);
3115 	intel_engine_pm_put(ce->engine);
3116 	i915_vma_put(vma);
3117 	return err;
3118 }
3119 
3120 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3121 				    const char *from)
3122 {
3123 	return engine_wa_list_verify(engine->kernel_context,
3124 				     &engine->wa_list,
3125 				     from);
3126 }
3127 
3128 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3129 #include "selftest_workarounds.c"
3130 #endif
3131