xref: /linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_ccs_mode.h"
14 #include "intel_gt_mcr.h"
15 #include "intel_gt_print.h"
16 #include "intel_gt_regs.h"
17 #include "intel_ring.h"
18 #include "intel_workarounds.h"
19 
20 #include "display/intel_fbc_regs.h"
21 
22 /**
23  * DOC: Hardware workarounds
24  *
25  * Hardware workarounds are register programming documented to be executed in
26  * the driver that fall outside of the normal programming sequences for a
27  * platform. There are some basic categories of workarounds, depending on
28  * how/when they are applied:
29  *
30  * - Context workarounds: workarounds that touch registers that are
31  *   saved/restored to/from the HW context image. The list is emitted (via Load
32  *   Register Immediate commands) once when initializing the device and saved in
33  *   the default context. That default context is then used on every context
34  *   creation to have a "primed golden context", i.e. a context image that
35  *   already contains the changes needed to all the registers.
36  *
37  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
38  *   variants respective to the targeted platforms.
39  *
40  * - Engine workarounds: the list of these WAs is applied whenever the specific
41  *   engine is reset. It's also possible that a set of engine classes share a
42  *   common power domain and they are reset together. This happens on some
43  *   platforms with render and compute engines. In this case (at least) one of
44  *   them need to keeep the workaround programming: the approach taken in the
45  *   driver is to tie those workarounds to the first compute/render engine that
46  *   is registered.  When executing with GuC submission, engine resets are
47  *   outside of kernel driver control, hence the list of registers involved in
48  *   written once, on engine initialization, and then passed to GuC, that
49  *   saves/restores their values before/after the reset takes place. See
50  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
51  *
52  *   Workarounds for registers specific to RCS and CCS should be implemented in
53  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
54  *   registers belonging to BCS, VCS or VECS should be implemented in
55  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
56  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
57  *   should be implemented in general_render_compute_wa_init(). The settings
58  *   about the CCS load balancing should be added in ccs_engine_wa_mode().
59  *
60  * - GT workarounds: the list of these WAs is applied whenever these registers
61  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
62  *
63  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
64  *   variants respective to the targeted platforms.
65  *
66  * - Register whitelist: some workarounds need to be implemented in userspace,
67  *   but need to touch privileged registers. The whitelist in the kernel
68  *   instructs the hardware to allow the access to happen. From the kernel side,
69  *   this is just a special case of a MMIO workaround (as we write the list of
70  *   these to/be-whitelisted registers to some special HW registers).
71  *
72  *   Register whitelisting should be done in the \*_whitelist_build() variants
73  *   respective to the targeted platforms.
74  *
75  * - Workaround batchbuffers: buffers that get executed automatically by the
76  *   hardware on every HW context restore. These buffers are created and
77  *   programmed in the default context so the hardware always go through those
78  *   programming sequences when switching contexts. The support for workaround
79  *   batchbuffers is enabled these hardware mechanisms:
80  *
81  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
82  *      context, pointing the hardware to jump to that location when that offset
83  *      is reached in the context restore. Workaround batchbuffer in the driver
84  *      currently uses this mechanism for all platforms.
85  *
86  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
87  *      pointing the hardware to a buffer to continue executing after the
88  *      engine registers are restored in a context restore sequence. This is
89  *      currently not used in the driver.
90  *
91  * - Other:  There are WAs that, due to their nature, cannot be applied from a
92  *   central place. Those are peppered around the rest of the code, as needed.
93  *   Workarounds related to the display IP are the main example.
94  *
95  * .. [1] Technically, some registers are powercontext saved & restored, so they
96  *    survive a suspend/resume. In practice, writing them again is not too
97  *    costly and simplifies things, so it's the approach taken in the driver.
98  */
99 
100 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
101 			  const char *name, const char *engine_name)
102 {
103 	wal->gt = gt;
104 	wal->name = name;
105 	wal->engine_name = engine_name;
106 }
107 
108 #define WA_LIST_CHUNK (1 << 4)
109 
110 static void wa_init_finish(struct i915_wa_list *wal)
111 {
112 	/* Trim unused entries. */
113 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
114 		struct i915_wa *list = kmemdup_array(wal->list, wal->count,
115 						     sizeof(*list), GFP_KERNEL);
116 
117 		if (list) {
118 			kfree(wal->list);
119 			wal->list = list;
120 		}
121 	}
122 
123 	if (!wal->count)
124 		return;
125 
126 	gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
127 	       wal->wa_count, wal->name, wal->engine_name);
128 }
129 
130 static enum forcewake_domains
131 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
132 {
133 	enum forcewake_domains fw = 0;
134 	struct i915_wa *wa;
135 	unsigned int i;
136 
137 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
138 		fw |= intel_uncore_forcewake_for_reg(uncore,
139 						     wa->reg,
140 						     FW_REG_READ |
141 						     FW_REG_WRITE);
142 
143 	return fw;
144 }
145 
146 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
147 {
148 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
149 	struct drm_i915_private *i915 = wal->gt->i915;
150 	unsigned int start = 0, end = wal->count;
151 	const unsigned int grow = WA_LIST_CHUNK;
152 	struct i915_wa *wa_;
153 
154 	GEM_BUG_ON(!is_power_of_2(grow));
155 
156 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
157 		struct i915_wa *list;
158 
159 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
160 				     GFP_KERNEL);
161 		if (!list) {
162 			drm_err(&i915->drm, "No space for workaround init!\n");
163 			return;
164 		}
165 
166 		if (wal->list) {
167 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
168 			kfree(wal->list);
169 		}
170 
171 		wal->list = list;
172 	}
173 
174 	while (start < end) {
175 		unsigned int mid = start + (end - start) / 2;
176 
177 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
178 			start = mid + 1;
179 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
180 			end = mid;
181 		} else {
182 			wa_ = &wal->list[mid];
183 
184 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
185 				drm_err(&i915->drm,
186 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
187 					i915_mmio_reg_offset(wa_->reg),
188 					wa_->clr, wa_->set);
189 
190 				wa_->set &= ~wa->clr;
191 			}
192 
193 			wal->wa_count++;
194 			wa_->set |= wa->set;
195 			wa_->clr |= wa->clr;
196 			wa_->read |= wa->read;
197 			return;
198 		}
199 	}
200 
201 	wal->wa_count++;
202 	wa_ = &wal->list[wal->count++];
203 	*wa_ = *wa;
204 
205 	while (wa_-- > wal->list) {
206 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
207 			   i915_mmio_reg_offset(wa_[1].reg));
208 		if (i915_mmio_reg_offset(wa_[1].reg) >
209 		    i915_mmio_reg_offset(wa_[0].reg))
210 			break;
211 
212 		swap(wa_[1], wa_[0]);
213 	}
214 }
215 
216 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
217 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
218 {
219 	struct i915_wa wa = {
220 		.reg  = reg,
221 		.clr  = clear,
222 		.set  = set,
223 		.read = read_mask,
224 		.masked_reg = masked_reg,
225 	};
226 
227 	_wa_add(wal, &wa);
228 }
229 
230 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
231 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
232 {
233 	struct i915_wa wa = {
234 		.mcr_reg = reg,
235 		.clr  = clear,
236 		.set  = set,
237 		.read = read_mask,
238 		.masked_reg = masked_reg,
239 		.is_mcr = 1,
240 	};
241 
242 	_wa_add(wal, &wa);
243 }
244 
245 static void
246 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
247 {
248 	wa_add(wal, reg, clear, set, clear | set, false);
249 }
250 
251 static void
252 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
253 {
254 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
255 }
256 
257 static void
258 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
259 {
260 	wa_write_clr_set(wal, reg, ~0, set);
261 }
262 
263 static void
264 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
265 {
266 	wa_write_clr_set(wal, reg, set, set);
267 }
268 
269 static void
270 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
271 {
272 	wa_mcr_write_clr_set(wal, reg, set, set);
273 }
274 
275 static void
276 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
277 {
278 	wa_write_clr_set(wal, reg, clr, 0);
279 }
280 
281 static void
282 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
283 {
284 	wa_mcr_write_clr_set(wal, reg, clr, 0);
285 }
286 
287 /*
288  * WA operations on "masked register". A masked register has the upper 16 bits
289  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
290  * portion of the register without a rmw: you simply write in the upper 16 bits
291  * the mask of bits you are going to modify.
292  *
293  * The wa_masked_* family of functions already does the necessary operations to
294  * calculate the mask based on the parameters passed, so user only has to
295  * provide the lower 16 bits of that register.
296  */
297 
298 static void
299 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
300 {
301 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
302 }
303 
304 static void
305 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
306 {
307 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
308 }
309 
310 static void
311 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
312 {
313 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
314 }
315 
316 static void
317 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
318 {
319 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
320 }
321 
322 static void
323 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
324 		    u32 mask, u32 val)
325 {
326 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
327 }
328 
329 static void
330 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
331 			u32 mask, u32 val)
332 {
333 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
334 }
335 
336 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
337 				      struct i915_wa_list *wal)
338 {
339 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
340 }
341 
342 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
343 				      struct i915_wa_list *wal)
344 {
345 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
346 }
347 
348 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
349 				      struct i915_wa_list *wal)
350 {
351 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
352 
353 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
354 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
355 
356 	/* WaDisablePartialInstShootdown:bdw,chv */
357 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
358 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
359 
360 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
361 	 * workaround for a possible hang in the unlikely event a TLB
362 	 * invalidation occurs during a PSD flush.
363 	 */
364 	/* WaForceEnableNonCoherent:bdw,chv */
365 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
366 	wa_masked_en(wal, HDC_CHICKEN0,
367 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
368 		     HDC_FORCE_NON_COHERENT);
369 
370 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
371 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
372 	 *  polygons in the same 8x4 pixel/sample area to be processed without
373 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
374 	 *  buffer."
375 	 *
376 	 * This optimization is off by default for BDW and CHV; turn it on.
377 	 */
378 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
379 
380 	/* Wa4x4STCOptimizationDisable:bdw,chv */
381 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
382 
383 	/*
384 	 * BSpec recommends 8x4 when MSAA is used,
385 	 * however in practice 16x4 seems fastest.
386 	 *
387 	 * Note that PS/WM thread counts depend on the WIZ hashing
388 	 * disable bit, which we don't touch here, but it's good
389 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
390 	 */
391 	wa_masked_field_set(wal, GEN7_GT_MODE,
392 			    GEN6_WIZ_HASHING_MASK,
393 			    GEN6_WIZ_HASHING_16x4);
394 }
395 
396 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
397 				     struct i915_wa_list *wal)
398 {
399 	struct drm_i915_private *i915 = engine->i915;
400 
401 	gen8_ctx_workarounds_init(engine, wal);
402 
403 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
404 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
405 
406 	/* WaDisableDopClockGating:bdw
407 	 *
408 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
409 	 * to disable EUTC clock gating.
410 	 */
411 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
412 			 DOP_CLOCK_GATING_DISABLE);
413 
414 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
415 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
416 
417 	wa_masked_en(wal, HDC_CHICKEN0,
418 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
419 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
420 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
421 		     (INTEL_INFO(i915)->gt == 3 ? HDC_FENCE_DEST_SLM_DISABLE : 0));
422 }
423 
424 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
425 				     struct i915_wa_list *wal)
426 {
427 	gen8_ctx_workarounds_init(engine, wal);
428 
429 	/* WaDisableThreadStallDopClockGating:chv */
430 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
431 
432 	/* Improve HiZ throughput on CHV. */
433 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
434 }
435 
436 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
437 				      struct i915_wa_list *wal)
438 {
439 	struct drm_i915_private *i915 = engine->i915;
440 
441 	if (HAS_LLC(i915)) {
442 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
443 		 *
444 		 * Must match Display Engine. See
445 		 * WaCompressedResourceDisplayNewHashMode.
446 		 */
447 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
448 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
449 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
450 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
451 	}
452 
453 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
454 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
455 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
456 			 FLOW_CONTROL_ENABLE |
457 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
458 
459 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
460 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
461 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
462 			 GEN9_ENABLE_YV12_BUGFIX |
463 			 GEN9_ENABLE_GPGPU_PREEMPTION);
464 
465 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
466 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
467 	wa_masked_en(wal, CACHE_MODE_1,
468 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
469 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
470 
471 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
472 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
473 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
474 
475 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
476 	wa_masked_en(wal, HDC_CHICKEN0,
477 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
478 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
479 
480 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
481 	 * both tied to WaForceContextSaveRestoreNonCoherent
482 	 * in some hsds for skl. We keep the tie for all gen9. The
483 	 * documentation is a bit hazy and so we want to get common behaviour,
484 	 * even though there is no clear evidence we would need both on kbl/bxt.
485 	 * This area has been source of system hangs so we play it safe
486 	 * and mimic the skl regardless of what bspec says.
487 	 *
488 	 * Use Force Non-Coherent whenever executing a 3D context. This
489 	 * is a workaround for a possible hang in the unlikely event
490 	 * a TLB invalidation occurs during a PSD flush.
491 	 */
492 
493 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
494 	wa_masked_en(wal, HDC_CHICKEN0,
495 		     HDC_FORCE_NON_COHERENT);
496 
497 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
498 	if (IS_SKYLAKE(i915) ||
499 	    IS_KABYLAKE(i915) ||
500 	    IS_COFFEELAKE(i915) ||
501 	    IS_COMETLAKE(i915))
502 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
503 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
504 
505 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
506 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
507 
508 	/*
509 	 * Supporting preemption with fine-granularity requires changes in the
510 	 * batch buffer programming. Since we can't break old userspace, we
511 	 * need to set our default preemption level to safe value. Userspace is
512 	 * still able to use more fine-grained preemption levels, since in
513 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
514 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
515 	 * not real HW workarounds, but merely a way to start using preemption
516 	 * while maintaining old contract with userspace.
517 	 */
518 
519 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
520 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
521 
522 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
523 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
524 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
525 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
526 
527 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
528 	if (IS_GEN9_LP(i915))
529 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
530 }
531 
532 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
533 				struct i915_wa_list *wal)
534 {
535 	struct intel_gt *gt = engine->gt;
536 	u8 vals[3] = { 0, 0, 0 };
537 	unsigned int i;
538 
539 	for (i = 0; i < 3; i++) {
540 		u8 ss;
541 
542 		/*
543 		 * Only consider slices where one, and only one, subslice has 7
544 		 * EUs
545 		 */
546 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
547 			continue;
548 
549 		/*
550 		 * subslice_7eu[i] != 0 (because of the check above) and
551 		 * ss_max == 4 (maximum number of subslices possible per slice)
552 		 *
553 		 * ->    0 <= ss <= 3;
554 		 */
555 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
556 		vals[i] = 3 - ss;
557 	}
558 
559 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
560 		return;
561 
562 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
563 	wa_masked_field_set(wal, GEN7_GT_MODE,
564 			    GEN9_IZ_HASHING_MASK(2) |
565 			    GEN9_IZ_HASHING_MASK(1) |
566 			    GEN9_IZ_HASHING_MASK(0),
567 			    GEN9_IZ_HASHING(2, vals[2]) |
568 			    GEN9_IZ_HASHING(1, vals[1]) |
569 			    GEN9_IZ_HASHING(0, vals[0]));
570 }
571 
572 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
573 				     struct i915_wa_list *wal)
574 {
575 	gen9_ctx_workarounds_init(engine, wal);
576 	skl_tune_iz_hashing(engine, wal);
577 }
578 
579 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
580 				     struct i915_wa_list *wal)
581 {
582 	gen9_ctx_workarounds_init(engine, wal);
583 
584 	/* WaDisableThreadStallDopClockGating:bxt */
585 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
586 			 STALL_DOP_GATING_DISABLE);
587 
588 	/* WaToEnableHwFixForPushConstHWBug:bxt */
589 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
590 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
591 }
592 
593 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
594 				     struct i915_wa_list *wal)
595 {
596 	struct drm_i915_private *i915 = engine->i915;
597 
598 	gen9_ctx_workarounds_init(engine, wal);
599 
600 	/* WaToEnableHwFixForPushConstHWBug:kbl */
601 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
602 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
603 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
604 
605 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
606 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
607 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
608 }
609 
610 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
611 				     struct i915_wa_list *wal)
612 {
613 	gen9_ctx_workarounds_init(engine, wal);
614 
615 	/* WaToEnableHwFixForPushConstHWBug:glk */
616 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
617 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
618 }
619 
620 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
621 				     struct i915_wa_list *wal)
622 {
623 	gen9_ctx_workarounds_init(engine, wal);
624 
625 	/* WaToEnableHwFixForPushConstHWBug:cfl */
626 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
627 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
628 
629 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
630 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
631 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
632 }
633 
634 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
635 				     struct i915_wa_list *wal)
636 {
637 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
638 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
639 
640 	/* WaForceEnableNonCoherent:icl
641 	 * This is not the same workaround as in early Gen9 platforms, where
642 	 * lacking this could cause system hangs, but coherency performance
643 	 * overhead is high and only a few compute workloads really need it
644 	 * (the register is whitelisted in hardware now, so UMDs can opt in
645 	 * for coherency if they have a good reason).
646 	 */
647 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
648 
649 	/* WaEnableFloatBlendOptimization:icl */
650 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
651 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
652 		   0 /* write-only, so skip validation */,
653 		   true);
654 
655 	/* WaDisableGPGPUMidThreadPreemption:icl */
656 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
657 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
658 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
659 
660 	/* allow headerless messages for preemptible GPGPU context */
661 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
662 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
663 
664 	/* Wa_1604278689:icl,ehl */
665 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
666 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
667 			 0,
668 			 0xFFFFFFFF);
669 
670 	/* Wa_1406306137:icl,ehl */
671 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
672 }
673 
674 /*
675  * These settings aren't actually workarounds, but general tuning settings that
676  * need to be programmed on dg2 platform.
677  */
678 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
679 				   struct i915_wa_list *wal)
680 {
681 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
682 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
683 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
684 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
685 			     FF_MODE2_TDS_TIMER_128);
686 }
687 
688 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
689 				       struct i915_wa_list *wal)
690 {
691 	struct drm_i915_private *i915 = engine->i915;
692 
693 	/*
694 	 * Wa_1409142259:tgl,dg1,adl-p
695 	 * Wa_1409347922:tgl,dg1,adl-p
696 	 * Wa_1409252684:tgl,dg1,adl-p
697 	 * Wa_1409217633:tgl,dg1,adl-p
698 	 * Wa_1409207793:tgl,dg1,adl-p
699 	 * Wa_1409178076:tgl,dg1,adl-p
700 	 * Wa_1408979724:tgl,dg1,adl-p
701 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
702 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
703 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
704 	 */
705 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
706 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
707 
708 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
709 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
710 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
711 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
712 
713 	/*
714 	 * Wa_16011163337 - GS_TIMER
715 	 *
716 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
717 	 * need to program it even on those that don't explicitly list that
718 	 * workaround.
719 	 *
720 	 * Note that the programming of GEN12_FF_MODE2 is further modified
721 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
722 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
723 	 * value when read from the CPU.
724 	 *
725 	 * The default value for this register is zero for all fields.
726 	 * So instead of doing a RMW we should just write the desired values
727 	 * for TDS and GS timers. Note that since the readback can't be trusted,
728 	 * the clear mask is just set to ~0 to make sure other bits are not
729 	 * inadvertently set. For the same reason read verification is ignored.
730 	 */
731 	wa_add(wal,
732 	       GEN12_FF_MODE2,
733 	       ~0,
734 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
735 	       0, false);
736 
737 	if (!IS_DG1(i915)) {
738 		/* Wa_1806527549 */
739 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
740 
741 		/* Wa_1606376872 */
742 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
743 	}
744 }
745 
746 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
747 				     struct i915_wa_list *wal)
748 {
749 	gen12_ctx_workarounds_init(engine, wal);
750 
751 	/* Wa_1409044764 */
752 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
753 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
754 
755 	/* Wa_22010493298 */
756 	wa_masked_en(wal, HIZ_CHICKEN,
757 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
758 }
759 
760 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
761 				     struct i915_wa_list *wal)
762 {
763 	dg2_ctx_gt_tuning_init(engine, wal);
764 
765 	/* Wa_16013271637:dg2 */
766 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
767 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
768 
769 	/* Wa_14014947963:dg2 */
770 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
771 
772 	/* Wa_18018764978:dg2 */
773 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
774 
775 	/* Wa_18019271663:dg2 */
776 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
777 
778 	/* Wa_14019877138:dg2 */
779 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
780 }
781 
782 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
783 				     struct i915_wa_list *wal)
784 {
785 	struct intel_gt *gt = engine->gt;
786 
787 	dg2_ctx_gt_tuning_init(engine, wal);
788 
789 	/*
790 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
791 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
792 	 * steppings.
793 	 */
794 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
795 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
796 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
797 }
798 
799 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
800 				       struct i915_wa_list *wal)
801 {
802 	struct intel_gt *gt = engine->gt;
803 
804 	xelpg_ctx_gt_tuning_init(engine, wal);
805 
806 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
807 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
808 		/* Wa_14014947963 */
809 		wa_masked_field_set(wal, VF_PREEMPTION,
810 				    PREEMPTION_VERTEX_COUNT, 0x4000);
811 
812 		/* Wa_16013271637 */
813 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
814 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
815 
816 		/* Wa_18019627453 */
817 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
818 
819 		/* Wa_18018764978 */
820 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
821 	}
822 
823 	/* Wa_18019271663 */
824 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
825 
826 	/* Wa_14019877138 */
827 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
828 }
829 
830 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
831 					 struct i915_wa_list *wal)
832 {
833 	/*
834 	 * This is a "fake" workaround defined by software to ensure we
835 	 * maintain reliable, backward-compatible behavior for userspace with
836 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
837 	 *
838 	 * The per-context setting of MI_MODE[12] determines whether the bits
839 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
840 	 * in the traditional manner or whether they should instead use a new
841 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
842 	 * into 3rd-level batchbuffers.  When this new capability was first
843 	 * added in TGL, it remained off by default unless a context
844 	 * intentionally opted in to the new behavior.  However Xe_HPG now
845 	 * flips this on by default and requires that we explicitly opt out if
846 	 * we don't want the new behavior.
847 	 *
848 	 * From a SW perspective, we want to maintain the backward-compatible
849 	 * behavior for userspace, so we'll apply a fake workaround to set it
850 	 * back to the legacy behavior on platforms where the hardware default
851 	 * is to break compatibility.  At the moment there is no Linux
852 	 * userspace that utilizes third-level batchbuffers, so this will avoid
853 	 * userspace from needing to make any changes.  using the legacy
854 	 * meaning is the correct thing to do.  If/when we have userspace
855 	 * consumers that want to utilize third-level batch nesting, we can
856 	 * provide a context parameter to allow them to opt-in.
857 	 */
858 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
859 }
860 
861 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
862 				   struct i915_wa_list *wal)
863 {
864 	u8 mocs;
865 
866 	/*
867 	 * Some blitter commands do not have a field for MOCS, those
868 	 * commands will use MOCS index pointed by BLIT_CCTL.
869 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
870 	 */
871 	if (engine->class == COPY_ENGINE_CLASS) {
872 		mocs = engine->gt->mocs.uc_index;
873 		wa_write_clr_set(wal,
874 				 BLIT_CCTL(engine->mmio_base),
875 				 BLIT_CCTL_MASK,
876 				 BLIT_CCTL_MOCS(mocs, mocs));
877 	}
878 }
879 
880 /*
881  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
882  * defined by the hardware team, but it programming general context registers.
883  * Adding those context register programming in context workaround
884  * allow us to use the wa framework for proper application and validation.
885  */
886 static void
887 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
888 			  struct i915_wa_list *wal)
889 {
890 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
891 		fakewa_disable_nestedbb_mode(engine, wal);
892 
893 	gen12_ctx_gt_mocs_init(engine, wal);
894 }
895 
896 static void
897 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
898 			   struct i915_wa_list *wal,
899 			   const char *name)
900 {
901 	struct drm_i915_private *i915 = engine->i915;
902 
903 	wa_init_start(wal, engine->gt, name, engine->name);
904 
905 	/* Applies to all engines */
906 	/*
907 	 * Fake workarounds are not the actual workaround but
908 	 * programming of context registers using workaround framework.
909 	 */
910 	if (GRAPHICS_VER(i915) >= 12)
911 		gen12_ctx_gt_fake_wa_init(engine, wal);
912 
913 	if (engine->class != RENDER_CLASS)
914 		goto done;
915 
916 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
917 		xelpg_ctx_workarounds_init(engine, wal);
918 	else if (IS_DG2(i915))
919 		dg2_ctx_workarounds_init(engine, wal);
920 	else if (IS_DG1(i915))
921 		dg1_ctx_workarounds_init(engine, wal);
922 	else if (GRAPHICS_VER(i915) == 12)
923 		gen12_ctx_workarounds_init(engine, wal);
924 	else if (GRAPHICS_VER(i915) == 11)
925 		icl_ctx_workarounds_init(engine, wal);
926 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
927 		cfl_ctx_workarounds_init(engine, wal);
928 	else if (IS_GEMINILAKE(i915))
929 		glk_ctx_workarounds_init(engine, wal);
930 	else if (IS_KABYLAKE(i915))
931 		kbl_ctx_workarounds_init(engine, wal);
932 	else if (IS_BROXTON(i915))
933 		bxt_ctx_workarounds_init(engine, wal);
934 	else if (IS_SKYLAKE(i915))
935 		skl_ctx_workarounds_init(engine, wal);
936 	else if (IS_CHERRYVIEW(i915))
937 		chv_ctx_workarounds_init(engine, wal);
938 	else if (IS_BROADWELL(i915))
939 		bdw_ctx_workarounds_init(engine, wal);
940 	else if (GRAPHICS_VER(i915) == 7)
941 		gen7_ctx_workarounds_init(engine, wal);
942 	else if (GRAPHICS_VER(i915) == 6)
943 		gen6_ctx_workarounds_init(engine, wal);
944 	else if (GRAPHICS_VER(i915) < 8)
945 		;
946 	else
947 		MISSING_CASE(GRAPHICS_VER(i915));
948 
949 done:
950 	wa_init_finish(wal);
951 }
952 
953 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
954 {
955 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
956 }
957 
958 int intel_engine_emit_ctx_wa(struct i915_request *rq)
959 {
960 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
961 	struct intel_uncore *uncore = rq->engine->uncore;
962 	enum forcewake_domains fw;
963 	unsigned long flags;
964 	struct i915_wa *wa;
965 	unsigned int i;
966 	u32 *cs;
967 	int ret;
968 
969 	if (wal->count == 0)
970 		return 0;
971 
972 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
973 	if (ret)
974 		return ret;
975 
976 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
977 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS)
978 		cs = intel_ring_begin(rq, (wal->count * 2 + 6));
979 	else
980 		cs = intel_ring_begin(rq, (wal->count * 2 + 2));
981 
982 	if (IS_ERR(cs))
983 		return PTR_ERR(cs);
984 
985 	fw = wal_get_fw_for_rmw(uncore, wal);
986 
987 	intel_gt_mcr_lock(wal->gt, &flags);
988 	spin_lock(&uncore->lock);
989 	intel_uncore_forcewake_get__locked(uncore, fw);
990 
991 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
992 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
993 		u32 val;
994 
995 		/* Skip reading the register if it's not really needed */
996 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
997 			val = wa->set;
998 		} else {
999 			val = wa->is_mcr ?
1000 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1001 				intel_uncore_read_fw(uncore, wa->reg);
1002 			val &= ~wa->clr;
1003 			val |= wa->set;
1004 		}
1005 
1006 		*cs++ = i915_mmio_reg_offset(wa->reg);
1007 		*cs++ = val;
1008 	}
1009 	*cs++ = MI_NOOP;
1010 
1011 	/* Wa_14019789679 */
1012 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
1013 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) {
1014 		*cs++ = CMD_3DSTATE_MESH_CONTROL;
1015 		*cs++ = 0;
1016 		*cs++ = 0;
1017 		*cs++ = MI_NOOP;
1018 	}
1019 
1020 	intel_uncore_forcewake_put__locked(uncore, fw);
1021 	spin_unlock(&uncore->lock);
1022 	intel_gt_mcr_unlock(wal->gt, flags);
1023 
1024 	intel_ring_advance(rq, cs);
1025 
1026 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1027 	if (ret)
1028 		return ret;
1029 
1030 	return 0;
1031 }
1032 
1033 static void
1034 gen4_gt_workarounds_init(struct intel_gt *gt,
1035 			 struct i915_wa_list *wal)
1036 {
1037 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1038 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1039 }
1040 
1041 static void
1042 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1043 {
1044 	gen4_gt_workarounds_init(gt, wal);
1045 
1046 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1047 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1048 }
1049 
1050 static void
1051 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1052 {
1053 	g4x_gt_workarounds_init(gt, wal);
1054 
1055 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1056 }
1057 
1058 static void
1059 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1060 {
1061 }
1062 
1063 static void
1064 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1065 {
1066 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1067 	wa_masked_dis(wal,
1068 		      GEN7_COMMON_SLICE_CHICKEN1,
1069 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1070 
1071 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1072 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1073 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1074 
1075 	/* WaForceL3Serialization:ivb */
1076 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1077 }
1078 
1079 static void
1080 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1081 {
1082 	/* WaForceL3Serialization:vlv */
1083 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1084 
1085 	/*
1086 	 * WaIncreaseL3CreditsForVLVB0:vlv
1087 	 * This is the hardware default actually.
1088 	 */
1089 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1090 }
1091 
1092 static void
1093 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1094 {
1095 	/* L3 caching of data atomics doesn't work -- disable it. */
1096 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1097 
1098 	wa_add(wal,
1099 	       HSW_ROW_CHICKEN3, 0,
1100 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1101 	       0 /* XXX does this reg exist? */, true);
1102 
1103 	/* WaVSRefCountFullforceMissDisable:hsw */
1104 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1105 }
1106 
1107 static void
1108 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1109 {
1110 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1111 	unsigned int slice, subslice;
1112 	u32 mcr, mcr_mask;
1113 
1114 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1115 
1116 	/*
1117 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1118 	 * Before any MMIO read into slice/subslice specific registers, MCR
1119 	 * packet control register needs to be programmed to point to any
1120 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1121 	 * This means each subsequent MMIO read will be forwarded to an
1122 	 * specific s/ss combination, but this is OK since these registers
1123 	 * are consistent across s/ss in almost all cases. In the rare
1124 	 * occasions, such as INSTDONE, where this value is dependent
1125 	 * on s/ss combo, the read should be done with read_subslice_reg.
1126 	 */
1127 	slice = ffs(sseu->slice_mask) - 1;
1128 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1129 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1130 	GEM_BUG_ON(!subslice);
1131 	subslice--;
1132 
1133 	/*
1134 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1135 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1136 	 */
1137 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1138 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1139 
1140 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1141 
1142 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1143 }
1144 
1145 static void
1146 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1147 {
1148 	struct drm_i915_private *i915 = gt->i915;
1149 
1150 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1151 	gen9_wa_init_mcr(i915, wal);
1152 
1153 	/* WaDisableKillLogic:bxt,skl,kbl */
1154 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1155 		wa_write_or(wal,
1156 			    GAM_ECOCHK,
1157 			    ECOCHK_DIS_TLB);
1158 
1159 	if (HAS_LLC(i915)) {
1160 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1161 		 *
1162 		 * Must match Display Engine. See
1163 		 * WaCompressedResourceDisplayNewHashMode.
1164 		 */
1165 		wa_write_or(wal,
1166 			    MMCD_MISC_CTRL,
1167 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1168 	}
1169 
1170 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1171 	wa_write_or(wal,
1172 		    GAM_ECOCHK,
1173 		    BDW_DISABLE_HDC_INVALIDATION);
1174 }
1175 
1176 static void
1177 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1178 {
1179 	gen9_gt_workarounds_init(gt, wal);
1180 
1181 	/* WaDisableGafsUnitClkGating:skl */
1182 	wa_write_or(wal,
1183 		    GEN7_UCGCTL4,
1184 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1185 
1186 	/* WaInPlaceDecompressionHang:skl */
1187 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1188 		wa_write_or(wal,
1189 			    GEN9_GAMT_ECO_REG_RW_IA,
1190 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1191 }
1192 
1193 static void
1194 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1195 {
1196 	gen9_gt_workarounds_init(gt, wal);
1197 
1198 	/* WaDisableDynamicCreditSharing:kbl */
1199 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1200 		wa_write_or(wal,
1201 			    GAMT_CHKN_BIT_REG,
1202 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1203 
1204 	/* WaDisableGafsUnitClkGating:kbl */
1205 	wa_write_or(wal,
1206 		    GEN7_UCGCTL4,
1207 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1208 
1209 	/* WaInPlaceDecompressionHang:kbl */
1210 	wa_write_or(wal,
1211 		    GEN9_GAMT_ECO_REG_RW_IA,
1212 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1213 }
1214 
1215 static void
1216 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1217 {
1218 	gen9_gt_workarounds_init(gt, wal);
1219 }
1220 
1221 static void
1222 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1223 {
1224 	gen9_gt_workarounds_init(gt, wal);
1225 
1226 	/* WaDisableGafsUnitClkGating:cfl */
1227 	wa_write_or(wal,
1228 		    GEN7_UCGCTL4,
1229 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1230 
1231 	/* WaInPlaceDecompressionHang:cfl */
1232 	wa_write_or(wal,
1233 		    GEN9_GAMT_ECO_REG_RW_IA,
1234 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1235 }
1236 
1237 static void __set_mcr_steering(struct i915_wa_list *wal,
1238 			       i915_reg_t steering_reg,
1239 			       unsigned int slice, unsigned int subslice)
1240 {
1241 	u32 mcr, mcr_mask;
1242 
1243 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1244 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1245 
1246 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1247 }
1248 
1249 static void debug_dump_steering(struct intel_gt *gt)
1250 {
1251 	struct drm_printer p = drm_dbg_printer(&gt->i915->drm, DRM_UT_DRIVER,
1252 					       "MCR Steering:");
1253 
1254 	if (drm_debug_enabled(DRM_UT_DRIVER))
1255 		intel_gt_mcr_report_steering(&p, gt, false);
1256 }
1257 
1258 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1259 			 unsigned int slice, unsigned int subslice)
1260 {
1261 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1262 
1263 	gt->default_steering.groupid = slice;
1264 	gt->default_steering.instanceid = subslice;
1265 
1266 	debug_dump_steering(gt);
1267 }
1268 
1269 static void
1270 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1271 {
1272 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1273 	unsigned int subslice;
1274 
1275 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1276 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1277 
1278 	/*
1279 	 * Although a platform may have subslices, we need to always steer
1280 	 * reads to the lowest instance that isn't fused off.  When Render
1281 	 * Power Gating is enabled, grabbing forcewake will only power up a
1282 	 * single subslice (the "minconfig") if there isn't a real workload
1283 	 * that needs to be run; this means that if we steer register reads to
1284 	 * one of the higher subslices, we run the risk of reading back 0's or
1285 	 * random garbage.
1286 	 */
1287 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1288 
1289 	/*
1290 	 * If the subslice we picked above also steers us to a valid L3 bank,
1291 	 * then we can just rely on the default steering and won't need to
1292 	 * worry about explicitly re-steering L3BANK reads later.
1293 	 */
1294 	if (gt->info.l3bank_mask & BIT(subslice))
1295 		gt->steering_table[L3BANK] = NULL;
1296 
1297 	__add_mcr_wa(gt, wal, 0, subslice);
1298 }
1299 
1300 static void
1301 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1302 {
1303 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1304 	unsigned long slice, subslice = 0, slice_mask = 0;
1305 	u32 lncf_mask = 0;
1306 	int i;
1307 
1308 	/*
1309 	 * On Xe_HP the steering increases in complexity. There are now several
1310 	 * more units that require steering and we're not guaranteed to be able
1311 	 * to find a common setting for all of them. These are:
1312 	 * - GSLICE (fusable)
1313 	 * - DSS (sub-unit within gslice; fusable)
1314 	 * - L3 Bank (fusable)
1315 	 * - MSLICE (fusable)
1316 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1317 	 *
1318 	 * We'll do our default/implicit steering based on GSLICE (in the
1319 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1320 	 * find overlap between the valid MSLICE and/or LNCF values with
1321 	 * a suitable GSLICE, then we can just re-use the default value and
1322 	 * skip and explicit steering at runtime.
1323 	 *
1324 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1325 	 * a valid sliceid value.  DSS steering is the only type of steering
1326 	 * that utilizes the 'subsliceid' bits.
1327 	 *
1328 	 * Also note that, even though the steering domain is called "GSlice"
1329 	 * and it is encoded in the register using the gslice format, the spec
1330 	 * says that the combined (geometry | compute) fuse should be used to
1331 	 * select the steering.
1332 	 */
1333 
1334 	/* Find the potential gslice candidates */
1335 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1336 						       GEN_DSS_PER_GSLICE);
1337 
1338 	/*
1339 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1340 	 * mslice is fine.
1341 	 */
1342 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1343 		lncf_mask |= (0x3 << (i * 2));
1344 
1345 	/*
1346 	 * Are there any sliceid values that work for both GSLICE and LNCF
1347 	 * steering?
1348 	 */
1349 	if (slice_mask & lncf_mask) {
1350 		slice_mask &= lncf_mask;
1351 		gt->steering_table[LNCF] = NULL;
1352 	}
1353 
1354 	/* How about sliceid values that also work for MSLICE steering? */
1355 	if (slice_mask & gt->info.mslice_mask) {
1356 		slice_mask &= gt->info.mslice_mask;
1357 		gt->steering_table[MSLICE] = NULL;
1358 	}
1359 
1360 	slice = __ffs(slice_mask);
1361 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1362 		GEN_DSS_PER_GSLICE;
1363 
1364 	__add_mcr_wa(gt, wal, slice, subslice);
1365 
1366 	/*
1367 	 * SQIDI ranges are special because they use different steering
1368 	 * registers than everything else we work with.  On XeHP SDV and
1369 	 * DG2-G10, any value in the steering registers will work fine since
1370 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1371 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1372 	 * we'll just steer to a hardcoded "2" since that value will work
1373 	 * everywhere.
1374 	 */
1375 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1376 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1377 
1378 	/*
1379 	 * On DG2, GAM registers have a dedicated steering control register
1380 	 * and must always be programmed to a hardcoded groupid of "1."
1381 	 */
1382 	if (IS_DG2(gt->i915))
1383 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1384 }
1385 
1386 static void
1387 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1388 {
1389 	struct drm_i915_private *i915 = gt->i915;
1390 
1391 	icl_wa_init_mcr(gt, wal);
1392 
1393 	/* WaModifyGamTlbPartitioning:icl */
1394 	wa_write_clr_set(wal,
1395 			 GEN11_GACB_PERF_CTRL,
1396 			 GEN11_HASH_CTRL_MASK,
1397 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1398 
1399 	/* Wa_1405766107:icl
1400 	 * Formerly known as WaCL2SFHalfMaxAlloc
1401 	 */
1402 	wa_write_or(wal,
1403 		    GEN11_LSN_UNSLCVC,
1404 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1405 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1406 
1407 	/* Wa_220166154:icl
1408 	 * Formerly known as WaDisCtxReload
1409 	 */
1410 	wa_write_or(wal,
1411 		    GEN8_GAMW_ECO_DEV_RW_IA,
1412 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1413 
1414 	/* Wa_1406463099:icl
1415 	 * Formerly known as WaGamTlbPendError
1416 	 */
1417 	wa_write_or(wal,
1418 		    GAMT_CHKN_BIT_REG,
1419 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1420 
1421 	/*
1422 	 * Wa_1408615072:icl,ehl  (vsunit)
1423 	 * Wa_1407596294:icl,ehl  (hsunit)
1424 	 */
1425 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1426 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1427 
1428 	/* Wa_1407352427:icl,ehl */
1429 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1430 		    PSDUNIT_CLKGATE_DIS);
1431 
1432 	/* Wa_1406680159:icl,ehl */
1433 	wa_mcr_write_or(wal,
1434 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1435 			GWUNIT_CLKGATE_DIS);
1436 
1437 	/* Wa_1607087056:icl,ehl,jsl */
1438 	if (IS_ICELAKE(i915) ||
1439 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1440 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1441 		wa_write_or(wal,
1442 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1443 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1444 
1445 	/*
1446 	 * This is not a documented workaround, but rather an optimization
1447 	 * to reduce sampler power.
1448 	 */
1449 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1450 }
1451 
1452 /*
1453  * Though there are per-engine instances of these registers,
1454  * they retain their value through engine resets and should
1455  * only be provided on the GT workaround list rather than
1456  * the engine-specific workaround list.
1457  */
1458 static void
1459 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1460 {
1461 	struct intel_engine_cs *engine;
1462 	int id;
1463 
1464 	for_each_engine(engine, gt, id) {
1465 		if (engine->class != VIDEO_DECODE_CLASS ||
1466 		    (engine->instance % 2))
1467 			continue;
1468 
1469 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1470 			    IECPUNIT_CLKGATE_DIS);
1471 	}
1472 }
1473 
1474 static void
1475 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1476 {
1477 	icl_wa_init_mcr(gt, wal);
1478 
1479 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1480 	wa_14011060649(gt, wal);
1481 
1482 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1483 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1484 
1485 	/*
1486 	 * Wa_14015795083
1487 	 *
1488 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1489 	 * preventing i915 from modifying it for this workaround.  Skip the
1490 	 * readback verification for this workaround on debug builds; if the
1491 	 * workaround doesn't stick due to firmware behavior, it's not an error
1492 	 * that we want CI to flag.
1493 	 */
1494 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1495 	       0, 0, false);
1496 }
1497 
1498 static void
1499 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1500 {
1501 	gen12_gt_workarounds_init(gt, wal);
1502 
1503 	/* Wa_1409420604:dg1 */
1504 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1505 			CPSSUNIT_CLKGATE_DIS);
1506 
1507 	/* Wa_1408615072:dg1 */
1508 	/* Empirical testing shows this register is unaffected by engine reset. */
1509 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1510 }
1511 
1512 static void
1513 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1514 {
1515 	xehp_init_mcr(gt, wal);
1516 
1517 	/* Wa_14011060649:dg2 */
1518 	wa_14011060649(gt, wal);
1519 
1520 	if (IS_DG2_G10(gt->i915)) {
1521 		/* Wa_22010523718:dg2 */
1522 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1523 			    CG3DDISCFEG_CLKGATE_DIS);
1524 
1525 		/* Wa_14011006942:dg2 */
1526 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1527 				DSS_ROUTER_CLKGATE_DIS);
1528 	}
1529 
1530 	/* Wa_14014830051:dg2 */
1531 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1532 
1533 	/*
1534 	 * Wa_14015795083
1535 	 * Skip verification for possibly locked register.
1536 	 */
1537 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1538 	       0, 0, false);
1539 
1540 	/* Wa_18018781329 */
1541 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1542 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1543 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1544 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1545 
1546 	/* Wa_1509235366:dg2 */
1547 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1548 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1549 
1550 	/* Wa_14010648519:dg2 */
1551 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1552 }
1553 
1554 static void
1555 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1556 {
1557 	/* Wa_14018575942 / Wa_18018781329 */
1558 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1559 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1560 
1561 	/* Wa_22016670082 */
1562 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1563 
1564 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1565 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1566 		/* Wa_14014830051 */
1567 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1568 
1569 		/* Wa_14015795083 */
1570 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1571 	}
1572 
1573 	/*
1574 	 * Unlike older platforms, we no longer setup implicit steering here;
1575 	 * all MCR accesses are explicitly steered.
1576 	 */
1577 	debug_dump_steering(gt);
1578 }
1579 
1580 static void
1581 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1582 {
1583 	struct intel_engine_cs *engine;
1584 	int id;
1585 
1586 	for_each_engine(engine, gt, id)
1587 		if (engine->class == VIDEO_DECODE_CLASS)
1588 			wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1589 				    MFXPIPE_CLKGATE_DIS);
1590 }
1591 
1592 static void
1593 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1594 {
1595 	wa_16021867713(gt, wal);
1596 
1597 	/*
1598 	 * Wa_14018778641
1599 	 * Wa_18018781329
1600 	 *
1601 	 * Note that although these registers are MCR on the primary
1602 	 * GT, the media GT's versions are regular singleton registers.
1603 	 */
1604 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1605 
1606 	/*
1607 	 * Wa_14018575942
1608 	 *
1609 	 * Issue is seen on media KPI test running on VDBOX engine
1610 	 * especially VP9 encoding WLs
1611 	 */
1612 	wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1613 
1614 	/* Wa_22016670082 */
1615 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1616 
1617 	debug_dump_steering(gt);
1618 }
1619 
1620 /*
1621  * The bspec performance guide has recommended MMIO tuning settings.  These
1622  * aren't truly "workarounds" but we want to program them through the
1623  * workaround infrastructure to make sure they're (re)applied at the proper
1624  * times.
1625  *
1626  * The programming in this function is for settings that persist through
1627  * engine resets and also are not part of any engine's register state context.
1628  * I.e., settings that only need to be re-applied in the event of a full GT
1629  * reset.
1630  */
1631 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1632 {
1633 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1634 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1635 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1636 	}
1637 
1638 	if (IS_DG2(gt->i915)) {
1639 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1640 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1641 	}
1642 }
1643 
1644 static void
1645 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1646 {
1647 	struct drm_i915_private *i915 = gt->i915;
1648 
1649 	gt_tuning_settings(gt, wal);
1650 
1651 	if (gt->type == GT_MEDIA) {
1652 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1653 			xelpmp_gt_workarounds_init(gt, wal);
1654 		else
1655 			MISSING_CASE(MEDIA_VER_FULL(i915));
1656 
1657 		return;
1658 	}
1659 
1660 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1661 		xelpg_gt_workarounds_init(gt, wal);
1662 	else if (IS_DG2(i915))
1663 		dg2_gt_workarounds_init(gt, wal);
1664 	else if (IS_DG1(i915))
1665 		dg1_gt_workarounds_init(gt, wal);
1666 	else if (GRAPHICS_VER(i915) == 12)
1667 		gen12_gt_workarounds_init(gt, wal);
1668 	else if (GRAPHICS_VER(i915) == 11)
1669 		icl_gt_workarounds_init(gt, wal);
1670 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1671 		cfl_gt_workarounds_init(gt, wal);
1672 	else if (IS_GEMINILAKE(i915))
1673 		glk_gt_workarounds_init(gt, wal);
1674 	else if (IS_KABYLAKE(i915))
1675 		kbl_gt_workarounds_init(gt, wal);
1676 	else if (IS_BROXTON(i915))
1677 		gen9_gt_workarounds_init(gt, wal);
1678 	else if (IS_SKYLAKE(i915))
1679 		skl_gt_workarounds_init(gt, wal);
1680 	else if (IS_HASWELL(i915))
1681 		hsw_gt_workarounds_init(gt, wal);
1682 	else if (IS_VALLEYVIEW(i915))
1683 		vlv_gt_workarounds_init(gt, wal);
1684 	else if (IS_IVYBRIDGE(i915))
1685 		ivb_gt_workarounds_init(gt, wal);
1686 	else if (GRAPHICS_VER(i915) == 6)
1687 		snb_gt_workarounds_init(gt, wal);
1688 	else if (GRAPHICS_VER(i915) == 5)
1689 		ilk_gt_workarounds_init(gt, wal);
1690 	else if (IS_G4X(i915))
1691 		g4x_gt_workarounds_init(gt, wal);
1692 	else if (GRAPHICS_VER(i915) == 4)
1693 		gen4_gt_workarounds_init(gt, wal);
1694 	else if (GRAPHICS_VER(i915) <= 8)
1695 		;
1696 	else
1697 		MISSING_CASE(GRAPHICS_VER(i915));
1698 }
1699 
1700 void intel_gt_init_workarounds(struct intel_gt *gt)
1701 {
1702 	struct i915_wa_list *wal = &gt->wa_list;
1703 
1704 	wa_init_start(wal, gt, "GT", "global");
1705 	gt_init_workarounds(gt, wal);
1706 	wa_init_finish(wal);
1707 }
1708 
1709 static bool
1710 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1711 	  const char *name, const char *from)
1712 {
1713 	if ((cur ^ wa->set) & wa->read) {
1714 		gt_err(gt,
1715 		       "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1716 		       name, from, i915_mmio_reg_offset(wa->reg),
1717 		       cur, cur & wa->read, wa->set & wa->read);
1718 
1719 		return false;
1720 	}
1721 
1722 	return true;
1723 }
1724 
1725 static void wa_list_apply(const struct i915_wa_list *wal)
1726 {
1727 	struct intel_gt *gt = wal->gt;
1728 	struct intel_uncore *uncore = gt->uncore;
1729 	enum forcewake_domains fw;
1730 	unsigned long flags;
1731 	struct i915_wa *wa;
1732 	unsigned int i;
1733 
1734 	if (!wal->count)
1735 		return;
1736 
1737 	fw = wal_get_fw_for_rmw(uncore, wal);
1738 
1739 	intel_gt_mcr_lock(gt, &flags);
1740 	spin_lock(&uncore->lock);
1741 	intel_uncore_forcewake_get__locked(uncore, fw);
1742 
1743 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1744 		u32 val, old = 0;
1745 
1746 		/* open-coded rmw due to steering */
1747 		if (wa->clr)
1748 			old = wa->is_mcr ?
1749 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1750 				intel_uncore_read_fw(uncore, wa->reg);
1751 		val = (old & ~wa->clr) | wa->set;
1752 		if (val != old || !wa->clr) {
1753 			if (wa->is_mcr)
1754 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1755 			else
1756 				intel_uncore_write_fw(uncore, wa->reg, val);
1757 		}
1758 
1759 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1760 			u32 val = wa->is_mcr ?
1761 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1762 				intel_uncore_read_fw(uncore, wa->reg);
1763 
1764 			wa_verify(gt, wa, val, wal->name, "application");
1765 		}
1766 	}
1767 
1768 	intel_uncore_forcewake_put__locked(uncore, fw);
1769 	spin_unlock(&uncore->lock);
1770 	intel_gt_mcr_unlock(gt, flags);
1771 }
1772 
1773 void intel_gt_apply_workarounds(struct intel_gt *gt)
1774 {
1775 	wa_list_apply(&gt->wa_list);
1776 }
1777 
1778 static bool wa_list_verify(struct intel_gt *gt,
1779 			   const struct i915_wa_list *wal,
1780 			   const char *from)
1781 {
1782 	struct intel_uncore *uncore = gt->uncore;
1783 	struct i915_wa *wa;
1784 	enum forcewake_domains fw;
1785 	unsigned long flags;
1786 	unsigned int i;
1787 	bool ok = true;
1788 
1789 	fw = wal_get_fw_for_rmw(uncore, wal);
1790 
1791 	intel_gt_mcr_lock(gt, &flags);
1792 	spin_lock(&uncore->lock);
1793 	intel_uncore_forcewake_get__locked(uncore, fw);
1794 
1795 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1796 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1797 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1798 				intel_uncore_read_fw(uncore, wa->reg),
1799 				wal->name, from);
1800 
1801 	intel_uncore_forcewake_put__locked(uncore, fw);
1802 	spin_unlock(&uncore->lock);
1803 	intel_gt_mcr_unlock(gt, flags);
1804 
1805 	return ok;
1806 }
1807 
1808 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1809 {
1810 	return wa_list_verify(gt, &gt->wa_list, from);
1811 }
1812 
1813 __maybe_unused
1814 static bool is_nonpriv_flags_valid(u32 flags)
1815 {
1816 	/* Check only valid flag bits are set */
1817 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1818 		return false;
1819 
1820 	/* NB: Only 3 out of 4 enum values are valid for access field */
1821 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1822 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1823 		return false;
1824 
1825 	return true;
1826 }
1827 
1828 static void
1829 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1830 {
1831 	struct i915_wa wa = {
1832 		.reg = reg
1833 	};
1834 
1835 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1836 		return;
1837 
1838 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1839 		return;
1840 
1841 	wa.reg.reg |= flags;
1842 	_wa_add(wal, &wa);
1843 }
1844 
1845 static void
1846 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1847 {
1848 	struct i915_wa wa = {
1849 		.mcr_reg = reg,
1850 		.is_mcr = 1,
1851 	};
1852 
1853 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1854 		return;
1855 
1856 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1857 		return;
1858 
1859 	wa.mcr_reg.reg |= flags;
1860 	_wa_add(wal, &wa);
1861 }
1862 
1863 static void
1864 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1865 {
1866 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1867 }
1868 
1869 static void
1870 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1871 {
1872 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1873 }
1874 
1875 static void gen9_whitelist_build(struct i915_wa_list *w)
1876 {
1877 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1878 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1879 
1880 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1881 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1882 
1883 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1884 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1885 
1886 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1887 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1888 }
1889 
1890 static void skl_whitelist_build(struct intel_engine_cs *engine)
1891 {
1892 	struct i915_wa_list *w = &engine->whitelist;
1893 
1894 	if (engine->class != RENDER_CLASS)
1895 		return;
1896 
1897 	gen9_whitelist_build(w);
1898 
1899 	/* WaDisableLSQCROPERFforOCL:skl */
1900 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1901 }
1902 
1903 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1904 {
1905 	if (engine->class != RENDER_CLASS)
1906 		return;
1907 
1908 	gen9_whitelist_build(&engine->whitelist);
1909 }
1910 
1911 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1912 {
1913 	struct i915_wa_list *w = &engine->whitelist;
1914 
1915 	if (engine->class != RENDER_CLASS)
1916 		return;
1917 
1918 	gen9_whitelist_build(w);
1919 
1920 	/* WaDisableLSQCROPERFforOCL:kbl */
1921 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1922 }
1923 
1924 static void glk_whitelist_build(struct intel_engine_cs *engine)
1925 {
1926 	struct i915_wa_list *w = &engine->whitelist;
1927 
1928 	if (engine->class != RENDER_CLASS)
1929 		return;
1930 
1931 	gen9_whitelist_build(w);
1932 
1933 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
1934 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1935 }
1936 
1937 static void cfl_whitelist_build(struct intel_engine_cs *engine)
1938 {
1939 	struct i915_wa_list *w = &engine->whitelist;
1940 
1941 	if (engine->class != RENDER_CLASS)
1942 		return;
1943 
1944 	gen9_whitelist_build(w);
1945 
1946 	/*
1947 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
1948 	 *
1949 	 * This covers 4 register which are next to one another :
1950 	 *   - PS_INVOCATION_COUNT
1951 	 *   - PS_INVOCATION_COUNT_UDW
1952 	 *   - PS_DEPTH_COUNT
1953 	 *   - PS_DEPTH_COUNT_UDW
1954 	 */
1955 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1956 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
1957 			  RING_FORCE_TO_NONPRIV_RANGE_4);
1958 }
1959 
1960 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
1961 {
1962 	struct i915_wa_list *w = &engine->whitelist;
1963 
1964 	if (engine->class != RENDER_CLASS)
1965 		whitelist_reg_ext(w,
1966 				  RING_CTX_TIMESTAMP(engine->mmio_base),
1967 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
1968 }
1969 
1970 static void cml_whitelist_build(struct intel_engine_cs *engine)
1971 {
1972 	allow_read_ctx_timestamp(engine);
1973 
1974 	cfl_whitelist_build(engine);
1975 }
1976 
1977 static void icl_whitelist_build(struct intel_engine_cs *engine)
1978 {
1979 	struct i915_wa_list *w = &engine->whitelist;
1980 
1981 	allow_read_ctx_timestamp(engine);
1982 
1983 	switch (engine->class) {
1984 	case RENDER_CLASS:
1985 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
1986 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
1987 
1988 		/* WaAllowUMDToModifySamplerMode:icl */
1989 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
1990 
1991 		/* WaEnableStateCacheRedirectToCS:icl */
1992 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1993 
1994 		/*
1995 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
1996 		 *
1997 		 * This covers 4 register which are next to one another :
1998 		 *   - PS_INVOCATION_COUNT
1999 		 *   - PS_INVOCATION_COUNT_UDW
2000 		 *   - PS_DEPTH_COUNT
2001 		 *   - PS_DEPTH_COUNT_UDW
2002 		 */
2003 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2004 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2005 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2006 		break;
2007 
2008 	case VIDEO_DECODE_CLASS:
2009 		/* hucStatusRegOffset */
2010 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2011 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2012 		/* hucUKernelHdrInfoRegOffset */
2013 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2014 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2015 		/* hucStatus2RegOffset */
2016 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2017 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2018 		break;
2019 
2020 	default:
2021 		break;
2022 	}
2023 }
2024 
2025 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2026 {
2027 	struct i915_wa_list *w = &engine->whitelist;
2028 
2029 	allow_read_ctx_timestamp(engine);
2030 
2031 	switch (engine->class) {
2032 	case RENDER_CLASS:
2033 		/*
2034 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2035 		 * Wa_1408556865:tgl
2036 		 *
2037 		 * This covers 4 registers which are next to one another :
2038 		 *   - PS_INVOCATION_COUNT
2039 		 *   - PS_INVOCATION_COUNT_UDW
2040 		 *   - PS_DEPTH_COUNT
2041 		 *   - PS_DEPTH_COUNT_UDW
2042 		 */
2043 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2044 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2045 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2046 
2047 		/*
2048 		 * Wa_1808121037:tgl
2049 		 * Wa_14012131227:dg1
2050 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2051 		 */
2052 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2053 
2054 		/* Wa_1806527549:tgl */
2055 		whitelist_reg(w, HIZ_CHICKEN);
2056 
2057 		/* Required by recommended tuning setting (not a workaround) */
2058 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2059 
2060 		break;
2061 	default:
2062 		break;
2063 	}
2064 }
2065 
2066 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2067 {
2068 	struct i915_wa_list *w = &engine->whitelist;
2069 
2070 	switch (engine->class) {
2071 	case RENDER_CLASS:
2072 		/* Required by recommended tuning setting (not a workaround) */
2073 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2074 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2075 		break;
2076 	default:
2077 		break;
2078 	}
2079 }
2080 
2081 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2082 {
2083 	struct i915_wa_list *w = &engine->whitelist;
2084 
2085 	switch (engine->class) {
2086 	case RENDER_CLASS:
2087 		/* Required by recommended tuning setting (not a workaround) */
2088 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2089 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2090 		break;
2091 	default:
2092 		break;
2093 	}
2094 }
2095 
2096 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2097 {
2098 	struct drm_i915_private *i915 = engine->i915;
2099 	struct i915_wa_list *w = &engine->whitelist;
2100 
2101 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2102 
2103 	if (engine->gt->type == GT_MEDIA)
2104 		; /* none yet */
2105 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2106 		xelpg_whitelist_build(engine);
2107 	else if (IS_DG2(i915))
2108 		dg2_whitelist_build(engine);
2109 	else if (GRAPHICS_VER(i915) == 12)
2110 		tgl_whitelist_build(engine);
2111 	else if (GRAPHICS_VER(i915) == 11)
2112 		icl_whitelist_build(engine);
2113 	else if (IS_COMETLAKE(i915))
2114 		cml_whitelist_build(engine);
2115 	else if (IS_COFFEELAKE(i915))
2116 		cfl_whitelist_build(engine);
2117 	else if (IS_GEMINILAKE(i915))
2118 		glk_whitelist_build(engine);
2119 	else if (IS_KABYLAKE(i915))
2120 		kbl_whitelist_build(engine);
2121 	else if (IS_BROXTON(i915))
2122 		bxt_whitelist_build(engine);
2123 	else if (IS_SKYLAKE(i915))
2124 		skl_whitelist_build(engine);
2125 	else if (GRAPHICS_VER(i915) <= 8)
2126 		;
2127 	else
2128 		MISSING_CASE(GRAPHICS_VER(i915));
2129 
2130 	wa_init_finish(w);
2131 }
2132 
2133 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2134 {
2135 	const struct i915_wa_list *wal = &engine->whitelist;
2136 	struct intel_uncore *uncore = engine->uncore;
2137 	const u32 base = engine->mmio_base;
2138 	struct i915_wa *wa;
2139 	unsigned int i;
2140 
2141 	if (!wal->count)
2142 		return;
2143 
2144 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2145 		intel_uncore_write(uncore,
2146 				   RING_FORCE_TO_NONPRIV(base, i),
2147 				   i915_mmio_reg_offset(wa->reg));
2148 
2149 	/* And clear the rest just in case of garbage */
2150 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2151 		intel_uncore_write(uncore,
2152 				   RING_FORCE_TO_NONPRIV(base, i),
2153 				   i915_mmio_reg_offset(RING_NOPID(base)));
2154 }
2155 
2156 /*
2157  * engine_fake_wa_init(), a place holder to program the registers
2158  * which are not part of an official workaround defined by the
2159  * hardware team.
2160  * Adding programming of those register inside workaround will
2161  * allow utilizing wa framework to proper application and verification.
2162  */
2163 static void
2164 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2165 {
2166 	u8 mocs_w, mocs_r;
2167 
2168 	/*
2169 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2170 	 * by the command streamer when executing commands that don't have
2171 	 * a way to explicitly specify a MOCS setting.  The default should
2172 	 * usually reference whichever MOCS entry corresponds to uncached
2173 	 * behavior, although use of a WB cached entry is recommended by the
2174 	 * spec in certain circumstances on specific platforms.
2175 	 */
2176 	if (GRAPHICS_VER(engine->i915) >= 12) {
2177 		mocs_r = engine->gt->mocs.uc_index;
2178 		mocs_w = engine->gt->mocs.uc_index;
2179 
2180 		if (HAS_L3_CCS_READ(engine->i915) &&
2181 		    engine->class == COMPUTE_CLASS) {
2182 			mocs_r = engine->gt->mocs.wb_index;
2183 
2184 			/*
2185 			 * Even on the few platforms where MOCS 0 is a
2186 			 * legitimate table entry, it's never the correct
2187 			 * setting to use here; we can assume the MOCS init
2188 			 * just forgot to initialize wb_index.
2189 			 */
2190 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2191 		}
2192 
2193 		wa_masked_field_set(wal,
2194 				    RING_CMD_CCTL(engine->mmio_base),
2195 				    CMD_CCTL_MOCS_MASK,
2196 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2197 	}
2198 }
2199 
2200 static void
2201 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2202 {
2203 	struct drm_i915_private *i915 = engine->i915;
2204 	struct intel_gt *gt = engine->gt;
2205 
2206 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2207 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2208 		/* Wa_22014600077 */
2209 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2210 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2211 	}
2212 
2213 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2214 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2215 	    IS_DG2(i915)) {
2216 		/* Wa_1509727124 */
2217 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2218 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2219 	}
2220 
2221 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2222 	    IS_DG2(i915)) {
2223 		/* Wa_22012856258 */
2224 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2225 				 GEN12_DISABLE_READ_SUPPRESSION);
2226 	}
2227 
2228 	if (IS_DG2(i915)) {
2229 		/*
2230 		 * Wa_22010960976:dg2
2231 		 * Wa_14013347512:dg2
2232 		 */
2233 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2234 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2235 	}
2236 
2237 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2238 	    IS_DG2(i915)) {
2239 		/* Wa_14015150844 */
2240 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2241 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2242 			   0, true);
2243 	}
2244 
2245 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2246 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2247 		/*
2248 		 * Wa_1606700617:tgl,dg1,adl-p
2249 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2250 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2251 		 * Wa_18019627453:dg2
2252 		 */
2253 		wa_masked_en(wal,
2254 			     GEN9_CS_DEBUG_MODE1,
2255 			     FF_DOP_CLOCK_GATE_DISABLE);
2256 	}
2257 
2258 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2259 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2260 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2261 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2262 
2263 		/*
2264 		 * Wa_1407928979:tgl A*
2265 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2266 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2267 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2268 		 */
2269 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2270 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2271 
2272 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2273 		wa_mcr_masked_en(wal,
2274 				 GEN10_SAMPLER_MODE,
2275 				 ENABLE_SMALLPL);
2276 	}
2277 
2278 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2279 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2280 		/* Wa_1409804808 */
2281 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2282 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2283 
2284 		/* Wa_14010229206 */
2285 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2286 	}
2287 
2288 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2289 		/*
2290 		 * Wa_1607297627
2291 		 *
2292 		 * On TGL and RKL there are multiple entries for this WA in the
2293 		 * BSpec; some indicate this is an A0-only WA, others indicate
2294 		 * it applies to all steppings so we trust the "all steppings."
2295 		 */
2296 		wa_masked_en(wal,
2297 			     RING_PSMI_CTL(RENDER_RING_BASE),
2298 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2299 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2300 	}
2301 
2302 	if (IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) {
2303 		/*
2304 		 * "Disable Repacking for Compression (masked R/W access)
2305 		 *  before rendering compressed surfaces for display."
2306 		 */
2307 		wa_masked_en(wal, CACHE_MODE_0_GEN7,
2308 			     DISABLE_REPACKING_FOR_COMPRESSION);
2309 	}
2310 
2311 	if (GRAPHICS_VER(i915) == 11) {
2312 		/* This is not an Wa. Enable for better image quality */
2313 		wa_masked_en(wal,
2314 			     _3D_CHICKEN3,
2315 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2316 
2317 		/*
2318 		 * Wa_1405543622:icl
2319 		 * Formerly known as WaGAPZPriorityScheme
2320 		 */
2321 		wa_write_or(wal,
2322 			    GEN8_GARBCNTL,
2323 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2324 
2325 		/*
2326 		 * Wa_1604223664:icl
2327 		 * Formerly known as WaL3BankAddressHashing
2328 		 */
2329 		wa_write_clr_set(wal,
2330 				 GEN8_GARBCNTL,
2331 				 GEN11_HASH_CTRL_EXCL_MASK,
2332 				 GEN11_HASH_CTRL_EXCL_BIT0);
2333 		wa_write_clr_set(wal,
2334 				 GEN11_GLBLINVL,
2335 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2336 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2337 
2338 		/*
2339 		 * Wa_1405733216:icl
2340 		 * Formerly known as WaDisableCleanEvicts
2341 		 */
2342 		wa_mcr_write_or(wal,
2343 				GEN8_L3SQCREG4,
2344 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2345 
2346 		/* Wa_1606682166:icl */
2347 		wa_write_or(wal,
2348 			    GEN7_SARCHKMD,
2349 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2350 
2351 		/* Wa_1409178092:icl */
2352 		wa_mcr_write_clr_set(wal,
2353 				     GEN11_SCRATCH2,
2354 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2355 				     0);
2356 
2357 		/* WaEnable32PlaneMode:icl */
2358 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2359 			     GEN11_ENABLE_32_PLANE_MODE);
2360 
2361 		/*
2362 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2363 		 * Wa_1605460711:icl[a0..c0]
2364 		 */
2365 		wa_write_or(wal,
2366 			    GEN7_FF_THREAD_MODE,
2367 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2368 
2369 		/* Wa_22010271021 */
2370 		wa_masked_en(wal,
2371 			     GEN9_CS_DEBUG_MODE1,
2372 			     FF_DOP_CLOCK_GATE_DISABLE);
2373 	}
2374 
2375 	/*
2376 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2377 	 * beyond) allow the kernel-mode driver to choose between two different
2378 	 * options for controlling preemption granularity and behavior.
2379 	 *
2380 	 * Option 1 (hardware default):
2381 	 *   Preemption settings are controlled in a global manner via
2382 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2383 	 *   and settings chosen by the kernel-mode driver will apply to all
2384 	 *   userspace clients.
2385 	 *
2386 	 * Option 2:
2387 	 *   Preemption settings are controlled on a per-context basis via
2388 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2389 	 *   context switch and is writable by userspace (e.g., via
2390 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2391 	 *   which allows different userspace drivers/clients to select
2392 	 *   different settings, or to change those settings on the fly in
2393 	 *   response to runtime needs.  This option was known by name
2394 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2395 	 *   that name is somewhat misleading as other non-granularity
2396 	 *   preemption settings are also impacted by this decision.
2397 	 *
2398 	 * On Linux, our policy has always been to let userspace drivers
2399 	 * control preemption granularity/settings (Option 2).  This was
2400 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2401 	 * userspace developed before object-level preemption was enabled would
2402 	 * not behave well if i915 were to go with Option 1 and enable that
2403 	 * preemption in a global manner).  On gen9 each context would have
2404 	 * object-level preemption disabled by default (see
2405 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2406 	 * userspace drivers could opt-in to object-level preemption as they
2407 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2408 	 * even though it is no longer necessary for ABI compatibility when
2409 	 * enabling a new platform, it does ensure that userspace will be able
2410 	 * to implement any workarounds that show up requiring temporary
2411 	 * adjustments to preemption behavior at runtime.
2412 	 *
2413 	 * Notes/Workarounds:
2414 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2415 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2416 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2417 	 *      using Option 1).  Effectively this means userspace is unable
2418 	 *      to disable object-level preemption on these platforms/steppings
2419 	 *      despite the setting here.
2420 	 *
2421 	 *  - Wa_16013994831:  May require that userspace program
2422 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2423 	 *      Userspace requires Option 2 to be in effect for their update of
2424 	 *      CS_CHICKEN1[10] to be effective.
2425 	 *
2426 	 * Other workarounds may appear in the future that will also require
2427 	 * Option 2 behavior to allow proper userspace implementation.
2428 	 */
2429 	if (GRAPHICS_VER(i915) >= 9)
2430 		wa_masked_en(wal,
2431 			     GEN7_FF_SLICE_CS_CHICKEN1,
2432 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2433 
2434 	if (IS_SKYLAKE(i915) ||
2435 	    IS_KABYLAKE(i915) ||
2436 	    IS_COFFEELAKE(i915) ||
2437 	    IS_COMETLAKE(i915)) {
2438 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2439 		wa_write_or(wal,
2440 			    GEN8_GARBCNTL,
2441 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2442 	}
2443 
2444 	if (IS_BROXTON(i915)) {
2445 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2446 		wa_masked_en(wal,
2447 			     FF_SLICE_CS_CHICKEN2,
2448 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2449 	}
2450 
2451 	if (GRAPHICS_VER(i915) == 9) {
2452 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2453 		wa_masked_en(wal,
2454 			     GEN9_CSFE_CHICKEN1_RCS,
2455 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2456 
2457 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2458 		wa_mcr_write_or(wal,
2459 				BDW_SCRATCH1,
2460 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2461 
2462 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2463 		if (IS_GEN9_LP(i915))
2464 			wa_mcr_write_clr_set(wal,
2465 					     GEN8_L3SQCREG1,
2466 					     L3_PRIO_CREDITS_MASK,
2467 					     L3_GENERAL_PRIO_CREDITS(62) |
2468 					     L3_HIGH_PRIO_CREDITS(2));
2469 
2470 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2471 		wa_mcr_write_or(wal,
2472 				GEN8_L3SQCREG4,
2473 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2474 
2475 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2476 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2477 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2478 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2479 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2480 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2481 				     EVICTION_PERF_FIX_ENABLE, 0);
2482 	}
2483 
2484 	if (IS_HASWELL(i915)) {
2485 		/* WaSampleCChickenBitEnable:hsw */
2486 		wa_masked_en(wal,
2487 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2488 
2489 		wa_masked_dis(wal,
2490 			      CACHE_MODE_0_GEN7,
2491 			      /* enable HiZ Raw Stall Optimization */
2492 			      HIZ_RAW_STALL_OPT_DISABLE);
2493 	}
2494 
2495 	if (IS_VALLEYVIEW(i915)) {
2496 		/* WaDisableEarlyCull:vlv */
2497 		wa_masked_en(wal,
2498 			     _3D_CHICKEN3,
2499 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2500 
2501 		/*
2502 		 * WaVSThreadDispatchOverride:ivb,vlv
2503 		 *
2504 		 * This actually overrides the dispatch
2505 		 * mode for all thread types.
2506 		 */
2507 		wa_write_clr_set(wal,
2508 				 GEN7_FF_THREAD_MODE,
2509 				 GEN7_FF_SCHED_MASK,
2510 				 GEN7_FF_TS_SCHED_HW |
2511 				 GEN7_FF_VS_SCHED_HW |
2512 				 GEN7_FF_DS_SCHED_HW);
2513 
2514 		/* WaPsdDispatchEnable:vlv */
2515 		/* WaDisablePSDDualDispatchEnable:vlv */
2516 		wa_masked_en(wal,
2517 			     GEN7_HALF_SLICE_CHICKEN1,
2518 			     GEN7_MAX_PS_THREAD_DEP |
2519 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2520 	}
2521 
2522 	if (IS_IVYBRIDGE(i915)) {
2523 		/* WaDisableEarlyCull:ivb */
2524 		wa_masked_en(wal,
2525 			     _3D_CHICKEN3,
2526 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2527 
2528 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2529 			/* enable HiZ Raw Stall Optimization */
2530 			wa_masked_dis(wal,
2531 				      CACHE_MODE_0_GEN7,
2532 				      HIZ_RAW_STALL_OPT_DISABLE);
2533 		}
2534 
2535 		/*
2536 		 * WaVSThreadDispatchOverride:ivb,vlv
2537 		 *
2538 		 * This actually overrides the dispatch
2539 		 * mode for all thread types.
2540 		 */
2541 		wa_write_clr_set(wal,
2542 				 GEN7_FF_THREAD_MODE,
2543 				 GEN7_FF_SCHED_MASK,
2544 				 GEN7_FF_TS_SCHED_HW |
2545 				 GEN7_FF_VS_SCHED_HW |
2546 				 GEN7_FF_DS_SCHED_HW);
2547 
2548 		/* WaDisablePSDDualDispatchEnable:ivb */
2549 		if (INTEL_INFO(i915)->gt == 1)
2550 			wa_masked_en(wal,
2551 				     GEN7_HALF_SLICE_CHICKEN1,
2552 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2553 	}
2554 
2555 	if (GRAPHICS_VER(i915) == 7) {
2556 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2557 		wa_masked_en(wal,
2558 			     RING_MODE_GEN7(RENDER_RING_BASE),
2559 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2560 
2561 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2562 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2563 
2564 		/*
2565 		 * BSpec says this must be set, even though
2566 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2567 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2568 		 */
2569 		wa_masked_en(wal,
2570 			     CACHE_MODE_1,
2571 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2572 
2573 		/*
2574 		 * BSpec recommends 8x4 when MSAA is used,
2575 		 * however in practice 16x4 seems fastest.
2576 		 *
2577 		 * Note that PS/WM thread counts depend on the WIZ hashing
2578 		 * disable bit, which we don't touch here, but it's good
2579 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2580 		 */
2581 		wa_masked_field_set(wal,
2582 				    GEN7_GT_MODE,
2583 				    GEN6_WIZ_HASHING_MASK,
2584 				    GEN6_WIZ_HASHING_16x4);
2585 	}
2586 
2587 	if (IS_GRAPHICS_VER(i915, 6, 7))
2588 		/*
2589 		 * We need to disable the AsyncFlip performance optimisations in
2590 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2591 		 * already be programmed to '1' on all products.
2592 		 *
2593 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2594 		 */
2595 		wa_masked_en(wal,
2596 			     RING_MI_MODE(RENDER_RING_BASE),
2597 			     ASYNC_FLIP_PERF_DISABLE);
2598 
2599 	if (GRAPHICS_VER(i915) == 6) {
2600 		/*
2601 		 * Required for the hardware to program scanline values for
2602 		 * waiting
2603 		 * WaEnableFlushTlbInvalidationMode:snb
2604 		 */
2605 		wa_masked_en(wal,
2606 			     GFX_MODE,
2607 			     GFX_TLB_INVALIDATE_EXPLICIT);
2608 
2609 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2610 		wa_masked_en(wal,
2611 			     _3D_CHICKEN,
2612 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2613 
2614 		wa_masked_en(wal,
2615 			     _3D_CHICKEN3,
2616 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2617 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2618 			     /*
2619 			      * Bspec says:
2620 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2621 			      * to normal and 3DSTATE_SF number of SF output attributes
2622 			      * is more than 16."
2623 			      */
2624 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2625 
2626 		/*
2627 		 * BSpec recommends 8x4 when MSAA is used,
2628 		 * however in practice 16x4 seems fastest.
2629 		 *
2630 		 * Note that PS/WM thread counts depend on the WIZ hashing
2631 		 * disable bit, which we don't touch here, but it's good
2632 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2633 		 */
2634 		wa_masked_field_set(wal,
2635 				    GEN6_GT_MODE,
2636 				    GEN6_WIZ_HASHING_MASK,
2637 				    GEN6_WIZ_HASHING_16x4);
2638 
2639 		/* WaDisable_RenderCache_OperationalFlush:snb */
2640 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2641 
2642 		/*
2643 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2644 		 * "If this bit is set, STCunit will have LRA as replacement
2645 		 *  policy. [...] This bit must be reset. LRA replacement
2646 		 *  policy is not supported."
2647 		 */
2648 		wa_masked_dis(wal,
2649 			      CACHE_MODE_0,
2650 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2651 	}
2652 
2653 	if (IS_GRAPHICS_VER(i915, 4, 6))
2654 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2655 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2656 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2657 		       /* XXX bit doesn't stick on Broadwater */
2658 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2659 
2660 	if (GRAPHICS_VER(i915) == 4)
2661 		/*
2662 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2663 		 * image. For as it is loaded, it is executed and the stored
2664 		 * address may no longer be valid, leading to a GPU hang.
2665 		 *
2666 		 * This imposes the requirement that userspace reload their
2667 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2668 		 * they are already accustomed to from before contexts were
2669 		 * enabled.
2670 		 */
2671 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2672 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2673 		       0 /* XXX bit doesn't stick on Broadwater */,
2674 		       true);
2675 }
2676 
2677 static void
2678 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2679 {
2680 	struct drm_i915_private *i915 = engine->i915;
2681 
2682 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2683 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2684 		wa_write(wal,
2685 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2686 			 1);
2687 	}
2688 	/* Wa_16018031267, Wa_16018063123 */
2689 	if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2690 		wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2691 				    XEHP_BLITTER_SCHEDULING_MODE_MASK,
2692 				    XEHP_BLITTER_ROUND_ROBIN_MODE);
2693 }
2694 
2695 static void
2696 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2697 {
2698 	/* boilerplate for any CCS engine workaround */
2699 }
2700 
2701 /*
2702  * The bspec performance guide has recommended MMIO tuning settings.  These
2703  * aren't truly "workarounds" but we want to program them with the same
2704  * workaround infrastructure to ensure that they're automatically added to
2705  * the GuC save/restore lists, re-applied at the right times, and checked for
2706  * any conflicting programming requested by real workarounds.
2707  *
2708  * Programming settings should be added here only if their registers are not
2709  * part of an engine's register state context.  If a register is part of a
2710  * context, then any tuning settings should be programmed in an appropriate
2711  * function invoked by __intel_engine_init_ctx_wa().
2712  */
2713 static void
2714 add_render_compute_tuning_settings(struct intel_gt *gt,
2715 				   struct i915_wa_list *wal)
2716 {
2717 	struct drm_i915_private *i915 = gt->i915;
2718 
2719 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2720 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2721 
2722 	/*
2723 	 * This tuning setting proves beneficial only on ATS-M designs; the
2724 	 * default "age based" setting is optimal on regular DG2 and other
2725 	 * platforms.
2726 	 */
2727 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2728 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2729 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2730 
2731 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55))
2732 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2733 }
2734 
2735 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2736 {
2737 	struct intel_gt *gt = engine->gt;
2738 	u32 mode;
2739 
2740 	if (!IS_DG2(gt->i915))
2741 		return;
2742 
2743 	/*
2744 	 * Wa_14019159160: This workaround, along with others, leads to
2745 	 * significant challenges in utilizing load balancing among the
2746 	 * CCS slices. Consequently, an architectural decision has been
2747 	 * made to completely disable automatic CCS load balancing.
2748 	 */
2749 	wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2750 
2751 	/*
2752 	 * After having disabled automatic load balancing we need to
2753 	 * assign all slices to a single CCS. We will call it CCS mode 1
2754 	 */
2755 	mode = intel_gt_apply_ccs_mode(gt);
2756 	wa_masked_en(wal, XEHP_CCS_MODE, mode);
2757 }
2758 
2759 /*
2760  * The workarounds in this function apply to shared registers in
2761  * the general render reset domain that aren't tied to a
2762  * specific engine.  Since all render+compute engines get reset
2763  * together, and the contents of these registers are lost during
2764  * the shared render domain reset, we'll define such workarounds
2765  * here and then add them to just a single RCS or CCS engine's
2766  * workaround list (whichever engine has the XXXX flag).
2767  */
2768 static void
2769 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2770 {
2771 	struct drm_i915_private *i915 = engine->i915;
2772 	struct intel_gt *gt = engine->gt;
2773 
2774 	add_render_compute_tuning_settings(gt, wal);
2775 
2776 	if (GRAPHICS_VER(i915) >= 11) {
2777 		/* This is not a Wa (although referred to as
2778 		 * WaSetInidrectStateOverride in places), this allows
2779 		 * applications that reference sampler states through
2780 		 * the BindlessSamplerStateBaseAddress to have their
2781 		 * border color relative to DynamicStateBaseAddress
2782 		 * rather than BindlessSamplerStateBaseAddress.
2783 		 *
2784 		 * Otherwise SAMPLER_STATE border colors have to be
2785 		 * copied in multiple heaps (DynamicStateBaseAddress &
2786 		 * BindlessSamplerStateBaseAddress)
2787 		 *
2788 		 * BSpec: 46052
2789 		 */
2790 		wa_mcr_masked_en(wal,
2791 				 GEN10_SAMPLER_MODE,
2792 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2793 	}
2794 
2795 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2796 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2797 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) {
2798 		/* Wa_14017856879 */
2799 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2800 
2801 		/* Wa_14020495402 */
2802 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING);
2803 	}
2804 
2805 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2806 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2807 		/*
2808 		 * Wa_14017066071
2809 		 * Wa_14017654203
2810 		 */
2811 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2812 				 MTL_DISABLE_SAMPLER_SC_OOO);
2813 
2814 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2815 		/* Wa_22015279794 */
2816 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2817 				 DISABLE_PREFETCH_INTO_IC);
2818 
2819 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2820 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2821 	    IS_DG2(i915)) {
2822 		/* Wa_22013037850 */
2823 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2824 				DISABLE_128B_EVICTION_COMMAND_UDW);
2825 
2826 		/* Wa_18017747507 */
2827 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2828 	}
2829 
2830 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2831 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2832 	    IS_DG2(i915)) {
2833 		/* Wa_22014226127 */
2834 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2835 	}
2836 
2837 	if (IS_DG2(i915)) {
2838 		/* Wa_14015227452:dg2,pvc */
2839 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2840 
2841 		/*
2842 		 * Wa_16011620976:dg2_g11
2843 		 * Wa_22015475538:dg2
2844 		 */
2845 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2846 
2847 		/* Wa_18028616096 */
2848 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2849 	}
2850 
2851 	if (IS_DG2_G11(i915)) {
2852 		/*
2853 		 * Wa_22012826095:dg2
2854 		 * Wa_22013059131:dg2
2855 		 */
2856 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2857 				     MAXREQS_PER_BANK,
2858 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2859 
2860 		/* Wa_22013059131:dg2 */
2861 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2862 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2863 
2864 		/*
2865 		 * Wa_22012654132
2866 		 *
2867 		 * Note that register 0xE420 is write-only and cannot be read
2868 		 * back for verification on DG2 (due to Wa_14012342262), so
2869 		 * we need to explicitly skip the readback.
2870 		 */
2871 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2872 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2873 			   0 /* write-only, so skip validation */,
2874 			   true);
2875 	}
2876 }
2877 
2878 static void
2879 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2880 {
2881 	if (GRAPHICS_VER(engine->i915) < 4)
2882 		return;
2883 
2884 	engine_fake_wa_init(engine, wal);
2885 
2886 	/*
2887 	 * These are common workarounds that just need to applied
2888 	 * to a single RCS/CCS engine's workaround list since
2889 	 * they're reset as part of the general render domain reset.
2890 	 */
2891 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
2892 		general_render_compute_wa_init(engine, wal);
2893 		ccs_engine_wa_mode(engine, wal);
2894 	}
2895 
2896 	if (engine->class == COMPUTE_CLASS)
2897 		ccs_engine_wa_init(engine, wal);
2898 	else if (engine->class == RENDER_CLASS)
2899 		rcs_engine_wa_init(engine, wal);
2900 	else
2901 		xcs_engine_wa_init(engine, wal);
2902 }
2903 
2904 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2905 {
2906 	struct i915_wa_list *wal = &engine->wa_list;
2907 
2908 	wa_init_start(wal, engine->gt, "engine", engine->name);
2909 	engine_init_workarounds(engine, wal);
2910 	wa_init_finish(wal);
2911 }
2912 
2913 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
2914 {
2915 	wa_list_apply(&engine->wa_list);
2916 }
2917 
2918 static const struct i915_range mcr_ranges_gen8[] = {
2919 	{ .start = 0x5500, .end = 0x55ff },
2920 	{ .start = 0x7000, .end = 0x7fff },
2921 	{ .start = 0x9400, .end = 0x97ff },
2922 	{ .start = 0xb000, .end = 0xb3ff },
2923 	{ .start = 0xe000, .end = 0xe7ff },
2924 	{},
2925 };
2926 
2927 static const struct i915_range mcr_ranges_gen12[] = {
2928 	{ .start =  0x8150, .end =  0x815f },
2929 	{ .start =  0x9520, .end =  0x955f },
2930 	{ .start =  0xb100, .end =  0xb3ff },
2931 	{ .start =  0xde80, .end =  0xe8ff },
2932 	{ .start = 0x24a00, .end = 0x24a7f },
2933 	{},
2934 };
2935 
2936 static const struct i915_range mcr_ranges_xehp[] = {
2937 	{ .start =  0x4000, .end =  0x4aff },
2938 	{ .start =  0x5200, .end =  0x52ff },
2939 	{ .start =  0x5400, .end =  0x7fff },
2940 	{ .start =  0x8140, .end =  0x815f },
2941 	{ .start =  0x8c80, .end =  0x8dff },
2942 	{ .start =  0x94d0, .end =  0x955f },
2943 	{ .start =  0x9680, .end =  0x96ff },
2944 	{ .start =  0xb000, .end =  0xb3ff },
2945 	{ .start =  0xc800, .end =  0xcfff },
2946 	{ .start =  0xd800, .end =  0xd8ff },
2947 	{ .start =  0xdc00, .end =  0xffff },
2948 	{ .start = 0x17000, .end = 0x17fff },
2949 	{ .start = 0x24a00, .end = 0x24a7f },
2950 	{},
2951 };
2952 
2953 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
2954 {
2955 	const struct i915_range *mcr_ranges;
2956 	int i;
2957 
2958 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
2959 		mcr_ranges = mcr_ranges_xehp;
2960 	else if (GRAPHICS_VER(i915) >= 12)
2961 		mcr_ranges = mcr_ranges_gen12;
2962 	else if (GRAPHICS_VER(i915) >= 8)
2963 		mcr_ranges = mcr_ranges_gen8;
2964 	else
2965 		return false;
2966 
2967 	/*
2968 	 * Registers in these ranges are affected by the MCR selector
2969 	 * which only controls CPU initiated MMIO. Routing does not
2970 	 * work for CS access so we cannot verify them on this path.
2971 	 */
2972 	for (i = 0; mcr_ranges[i].start; i++)
2973 		if (offset >= mcr_ranges[i].start &&
2974 		    offset <= mcr_ranges[i].end)
2975 			return true;
2976 
2977 	return false;
2978 }
2979 
2980 static int
2981 wa_list_srm(struct i915_request *rq,
2982 	    const struct i915_wa_list *wal,
2983 	    struct i915_vma *vma)
2984 {
2985 	struct drm_i915_private *i915 = rq->i915;
2986 	unsigned int i, count = 0;
2987 	const struct i915_wa *wa;
2988 	u32 srm, *cs;
2989 
2990 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
2991 	if (GRAPHICS_VER(i915) >= 8)
2992 		srm++;
2993 
2994 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
2995 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
2996 			count++;
2997 	}
2998 
2999 	cs = intel_ring_begin(rq, 4 * count);
3000 	if (IS_ERR(cs))
3001 		return PTR_ERR(cs);
3002 
3003 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3004 		u32 offset = i915_mmio_reg_offset(wa->reg);
3005 
3006 		if (mcr_range(i915, offset))
3007 			continue;
3008 
3009 		*cs++ = srm;
3010 		*cs++ = offset;
3011 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3012 		*cs++ = 0;
3013 	}
3014 	intel_ring_advance(rq, cs);
3015 
3016 	return 0;
3017 }
3018 
3019 static int engine_wa_list_verify(struct intel_context *ce,
3020 				 const struct i915_wa_list * const wal,
3021 				 const char *from)
3022 {
3023 	const struct i915_wa *wa;
3024 	struct i915_request *rq;
3025 	struct i915_vma *vma;
3026 	struct i915_gem_ww_ctx ww;
3027 	unsigned int i;
3028 	u32 *results;
3029 	int err;
3030 
3031 	if (!wal->count)
3032 		return 0;
3033 
3034 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3035 					   wal->count * sizeof(u32));
3036 	if (IS_ERR(vma))
3037 		return PTR_ERR(vma);
3038 
3039 	intel_engine_pm_get(ce->engine);
3040 	i915_gem_ww_ctx_init(&ww, false);
3041 retry:
3042 	err = i915_gem_object_lock(vma->obj, &ww);
3043 	if (err == 0)
3044 		err = intel_context_pin_ww(ce, &ww);
3045 	if (err)
3046 		goto err_pm;
3047 
3048 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3049 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3050 	if (err)
3051 		goto err_unpin;
3052 
3053 	rq = i915_request_create(ce);
3054 	if (IS_ERR(rq)) {
3055 		err = PTR_ERR(rq);
3056 		goto err_vma;
3057 	}
3058 
3059 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3060 	if (err == 0)
3061 		err = wa_list_srm(rq, wal, vma);
3062 
3063 	i915_request_get(rq);
3064 	if (err)
3065 		i915_request_set_error_once(rq, err);
3066 	i915_request_add(rq);
3067 
3068 	if (err)
3069 		goto err_rq;
3070 
3071 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3072 		err = -ETIME;
3073 		goto err_rq;
3074 	}
3075 
3076 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3077 	if (IS_ERR(results)) {
3078 		err = PTR_ERR(results);
3079 		goto err_rq;
3080 	}
3081 
3082 	err = 0;
3083 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3084 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3085 			continue;
3086 
3087 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3088 			err = -ENXIO;
3089 	}
3090 
3091 	i915_gem_object_unpin_map(vma->obj);
3092 
3093 err_rq:
3094 	i915_request_put(rq);
3095 err_vma:
3096 	i915_vma_unpin(vma);
3097 err_unpin:
3098 	intel_context_unpin(ce);
3099 err_pm:
3100 	if (err == -EDEADLK) {
3101 		err = i915_gem_ww_ctx_backoff(&ww);
3102 		if (!err)
3103 			goto retry;
3104 	}
3105 	i915_gem_ww_ctx_fini(&ww);
3106 	intel_engine_pm_put(ce->engine);
3107 	i915_vma_put(vma);
3108 	return err;
3109 }
3110 
3111 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3112 				    const char *from)
3113 {
3114 	return engine_wa_list_verify(engine->kernel_context,
3115 				     &engine->wa_list,
3116 				     from);
3117 }
3118 
3119 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3120 #include "selftest_workarounds.c"
3121 #endif
3122