xref: /linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 6dcc304f85898b099b35c63748c5e11ba56d0c8a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_ccs_mode.h"
14 #include "intel_gt_mcr.h"
15 #include "intel_gt_print.h"
16 #include "intel_gt_regs.h"
17 #include "intel_ring.h"
18 #include "intel_workarounds.h"
19 
20 #include "display/intel_fbc_regs.h"
21 
22 /**
23  * DOC: Hardware workarounds
24  *
25  * Hardware workarounds are register programming documented to be executed in
26  * the driver that fall outside of the normal programming sequences for a
27  * platform. There are some basic categories of workarounds, depending on
28  * how/when they are applied:
29  *
30  * - Context workarounds: workarounds that touch registers that are
31  *   saved/restored to/from the HW context image. The list is emitted (via Load
32  *   Register Immediate commands) once when initializing the device and saved in
33  *   the default context. That default context is then used on every context
34  *   creation to have a "primed golden context", i.e. a context image that
35  *   already contains the changes needed to all the registers.
36  *
37  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
38  *   variants respective to the targeted platforms.
39  *
40  * - Engine workarounds: the list of these WAs is applied whenever the specific
41  *   engine is reset. It's also possible that a set of engine classes share a
42  *   common power domain and they are reset together. This happens on some
43  *   platforms with render and compute engines. In this case (at least) one of
44  *   them need to keeep the workaround programming: the approach taken in the
45  *   driver is to tie those workarounds to the first compute/render engine that
46  *   is registered.  When executing with GuC submission, engine resets are
47  *   outside of kernel driver control, hence the list of registers involved in
48  *   written once, on engine initialization, and then passed to GuC, that
49  *   saves/restores their values before/after the reset takes place. See
50  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
51  *
52  *   Workarounds for registers specific to RCS and CCS should be implemented in
53  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
54  *   registers belonging to BCS, VCS or VECS should be implemented in
55  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
56  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
57  *   should be implemented in general_render_compute_wa_init(). The settings
58  *   about the CCS load balancing should be added in ccs_engine_wa_mode().
59  *
60  * - GT workarounds: the list of these WAs is applied whenever these registers
61  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
62  *
63  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
64  *   variants respective to the targeted platforms.
65  *
66  * - Register whitelist: some workarounds need to be implemented in userspace,
67  *   but need to touch privileged registers. The whitelist in the kernel
68  *   instructs the hardware to allow the access to happen. From the kernel side,
69  *   this is just a special case of a MMIO workaround (as we write the list of
70  *   these to/be-whitelisted registers to some special HW registers).
71  *
72  *   Register whitelisting should be done in the \*_whitelist_build() variants
73  *   respective to the targeted platforms.
74  *
75  * - Workaround batchbuffers: buffers that get executed automatically by the
76  *   hardware on every HW context restore. These buffers are created and
77  *   programmed in the default context so the hardware always go through those
78  *   programming sequences when switching contexts. The support for workaround
79  *   batchbuffers is enabled these hardware mechanisms:
80  *
81  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
82  *      context, pointing the hardware to jump to that location when that offset
83  *      is reached in the context restore. Workaround batchbuffer in the driver
84  *      currently uses this mechanism for all platforms.
85  *
86  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
87  *      pointing the hardware to a buffer to continue executing after the
88  *      engine registers are restored in a context restore sequence. This is
89  *      currently not used in the driver.
90  *
91  * - Other:  There are WAs that, due to their nature, cannot be applied from a
92  *   central place. Those are peppered around the rest of the code, as needed.
93  *   Workarounds related to the display IP are the main example.
94  *
95  * .. [1] Technically, some registers are powercontext saved & restored, so they
96  *    survive a suspend/resume. In practice, writing them again is not too
97  *    costly and simplifies things, so it's the approach taken in the driver.
98  */
99 
100 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
101 			  const char *name, const char *engine_name)
102 {
103 	wal->gt = gt;
104 	wal->name = name;
105 	wal->engine_name = engine_name;
106 }
107 
108 #define WA_LIST_CHUNK (1 << 4)
109 
110 static void wa_init_finish(struct i915_wa_list *wal)
111 {
112 	/* Trim unused entries. */
113 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
114 		struct i915_wa *list = kmemdup(wal->list,
115 					       wal->count * sizeof(*list),
116 					       GFP_KERNEL);
117 
118 		if (list) {
119 			kfree(wal->list);
120 			wal->list = list;
121 		}
122 	}
123 
124 	if (!wal->count)
125 		return;
126 
127 	gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
128 	       wal->wa_count, wal->name, wal->engine_name);
129 }
130 
131 static enum forcewake_domains
132 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
133 {
134 	enum forcewake_domains fw = 0;
135 	struct i915_wa *wa;
136 	unsigned int i;
137 
138 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
139 		fw |= intel_uncore_forcewake_for_reg(uncore,
140 						     wa->reg,
141 						     FW_REG_READ |
142 						     FW_REG_WRITE);
143 
144 	return fw;
145 }
146 
147 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
148 {
149 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
150 	struct drm_i915_private *i915 = wal->gt->i915;
151 	unsigned int start = 0, end = wal->count;
152 	const unsigned int grow = WA_LIST_CHUNK;
153 	struct i915_wa *wa_;
154 
155 	GEM_BUG_ON(!is_power_of_2(grow));
156 
157 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
158 		struct i915_wa *list;
159 
160 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
161 				     GFP_KERNEL);
162 		if (!list) {
163 			drm_err(&i915->drm, "No space for workaround init!\n");
164 			return;
165 		}
166 
167 		if (wal->list) {
168 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
169 			kfree(wal->list);
170 		}
171 
172 		wal->list = list;
173 	}
174 
175 	while (start < end) {
176 		unsigned int mid = start + (end - start) / 2;
177 
178 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
179 			start = mid + 1;
180 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
181 			end = mid;
182 		} else {
183 			wa_ = &wal->list[mid];
184 
185 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
186 				drm_err(&i915->drm,
187 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
188 					i915_mmio_reg_offset(wa_->reg),
189 					wa_->clr, wa_->set);
190 
191 				wa_->set &= ~wa->clr;
192 			}
193 
194 			wal->wa_count++;
195 			wa_->set |= wa->set;
196 			wa_->clr |= wa->clr;
197 			wa_->read |= wa->read;
198 			return;
199 		}
200 	}
201 
202 	wal->wa_count++;
203 	wa_ = &wal->list[wal->count++];
204 	*wa_ = *wa;
205 
206 	while (wa_-- > wal->list) {
207 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
208 			   i915_mmio_reg_offset(wa_[1].reg));
209 		if (i915_mmio_reg_offset(wa_[1].reg) >
210 		    i915_mmio_reg_offset(wa_[0].reg))
211 			break;
212 
213 		swap(wa_[1], wa_[0]);
214 	}
215 }
216 
217 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
218 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
219 {
220 	struct i915_wa wa = {
221 		.reg  = reg,
222 		.clr  = clear,
223 		.set  = set,
224 		.read = read_mask,
225 		.masked_reg = masked_reg,
226 	};
227 
228 	_wa_add(wal, &wa);
229 }
230 
231 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
232 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
233 {
234 	struct i915_wa wa = {
235 		.mcr_reg = reg,
236 		.clr  = clear,
237 		.set  = set,
238 		.read = read_mask,
239 		.masked_reg = masked_reg,
240 		.is_mcr = 1,
241 	};
242 
243 	_wa_add(wal, &wa);
244 }
245 
246 static void
247 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
248 {
249 	wa_add(wal, reg, clear, set, clear | set, false);
250 }
251 
252 static void
253 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
254 {
255 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
256 }
257 
258 static void
259 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
260 {
261 	wa_write_clr_set(wal, reg, ~0, set);
262 }
263 
264 static void
265 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
266 {
267 	wa_write_clr_set(wal, reg, set, set);
268 }
269 
270 static void
271 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
272 {
273 	wa_mcr_write_clr_set(wal, reg, set, set);
274 }
275 
276 static void
277 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
278 {
279 	wa_write_clr_set(wal, reg, clr, 0);
280 }
281 
282 static void
283 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
284 {
285 	wa_mcr_write_clr_set(wal, reg, clr, 0);
286 }
287 
288 /*
289  * WA operations on "masked register". A masked register has the upper 16 bits
290  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
291  * portion of the register without a rmw: you simply write in the upper 16 bits
292  * the mask of bits you are going to modify.
293  *
294  * The wa_masked_* family of functions already does the necessary operations to
295  * calculate the mask based on the parameters passed, so user only has to
296  * provide the lower 16 bits of that register.
297  */
298 
299 static void
300 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
301 {
302 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
303 }
304 
305 static void
306 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
307 {
308 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
309 }
310 
311 static void
312 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
313 {
314 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
315 }
316 
317 static void
318 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
319 {
320 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
321 }
322 
323 static void
324 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
325 		    u32 mask, u32 val)
326 {
327 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
328 }
329 
330 static void
331 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
332 			u32 mask, u32 val)
333 {
334 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
335 }
336 
337 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
338 				      struct i915_wa_list *wal)
339 {
340 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
341 }
342 
343 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
344 				      struct i915_wa_list *wal)
345 {
346 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
347 }
348 
349 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
350 				      struct i915_wa_list *wal)
351 {
352 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
353 
354 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
355 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
356 
357 	/* WaDisablePartialInstShootdown:bdw,chv */
358 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
359 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
360 
361 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
362 	 * workaround for a possible hang in the unlikely event a TLB
363 	 * invalidation occurs during a PSD flush.
364 	 */
365 	/* WaForceEnableNonCoherent:bdw,chv */
366 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
367 	wa_masked_en(wal, HDC_CHICKEN0,
368 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
369 		     HDC_FORCE_NON_COHERENT);
370 
371 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
372 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
373 	 *  polygons in the same 8x4 pixel/sample area to be processed without
374 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
375 	 *  buffer."
376 	 *
377 	 * This optimization is off by default for BDW and CHV; turn it on.
378 	 */
379 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
380 
381 	/* Wa4x4STCOptimizationDisable:bdw,chv */
382 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
383 
384 	/*
385 	 * BSpec recommends 8x4 when MSAA is used,
386 	 * however in practice 16x4 seems fastest.
387 	 *
388 	 * Note that PS/WM thread counts depend on the WIZ hashing
389 	 * disable bit, which we don't touch here, but it's good
390 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
391 	 */
392 	wa_masked_field_set(wal, GEN7_GT_MODE,
393 			    GEN6_WIZ_HASHING_MASK,
394 			    GEN6_WIZ_HASHING_16x4);
395 }
396 
397 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
398 				     struct i915_wa_list *wal)
399 {
400 	struct drm_i915_private *i915 = engine->i915;
401 
402 	gen8_ctx_workarounds_init(engine, wal);
403 
404 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
405 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
406 
407 	/* WaDisableDopClockGating:bdw
408 	 *
409 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
410 	 * to disable EUTC clock gating.
411 	 */
412 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
413 			 DOP_CLOCK_GATING_DISABLE);
414 
415 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
416 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
417 
418 	wa_masked_en(wal, HDC_CHICKEN0,
419 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
420 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
421 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
422 		     (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
423 }
424 
425 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
426 				     struct i915_wa_list *wal)
427 {
428 	gen8_ctx_workarounds_init(engine, wal);
429 
430 	/* WaDisableThreadStallDopClockGating:chv */
431 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
432 
433 	/* Improve HiZ throughput on CHV. */
434 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
435 }
436 
437 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
438 				      struct i915_wa_list *wal)
439 {
440 	struct drm_i915_private *i915 = engine->i915;
441 
442 	if (HAS_LLC(i915)) {
443 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
444 		 *
445 		 * Must match Display Engine. See
446 		 * WaCompressedResourceDisplayNewHashMode.
447 		 */
448 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
449 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
450 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
451 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
452 	}
453 
454 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
455 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
456 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
457 			 FLOW_CONTROL_ENABLE |
458 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
459 
460 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
461 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
462 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
463 			 GEN9_ENABLE_YV12_BUGFIX |
464 			 GEN9_ENABLE_GPGPU_PREEMPTION);
465 
466 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
467 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
468 	wa_masked_en(wal, CACHE_MODE_1,
469 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
470 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
471 
472 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
473 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
474 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
475 
476 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
477 	wa_masked_en(wal, HDC_CHICKEN0,
478 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
479 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
480 
481 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
482 	 * both tied to WaForceContextSaveRestoreNonCoherent
483 	 * in some hsds for skl. We keep the tie for all gen9. The
484 	 * documentation is a bit hazy and so we want to get common behaviour,
485 	 * even though there is no clear evidence we would need both on kbl/bxt.
486 	 * This area has been source of system hangs so we play it safe
487 	 * and mimic the skl regardless of what bspec says.
488 	 *
489 	 * Use Force Non-Coherent whenever executing a 3D context. This
490 	 * is a workaround for a possible hang in the unlikely event
491 	 * a TLB invalidation occurs during a PSD flush.
492 	 */
493 
494 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
495 	wa_masked_en(wal, HDC_CHICKEN0,
496 		     HDC_FORCE_NON_COHERENT);
497 
498 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
499 	if (IS_SKYLAKE(i915) ||
500 	    IS_KABYLAKE(i915) ||
501 	    IS_COFFEELAKE(i915) ||
502 	    IS_COMETLAKE(i915))
503 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
504 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
505 
506 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
507 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
508 
509 	/*
510 	 * Supporting preemption with fine-granularity requires changes in the
511 	 * batch buffer programming. Since we can't break old userspace, we
512 	 * need to set our default preemption level to safe value. Userspace is
513 	 * still able to use more fine-grained preemption levels, since in
514 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
515 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
516 	 * not real HW workarounds, but merely a way to start using preemption
517 	 * while maintaining old contract with userspace.
518 	 */
519 
520 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
521 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
522 
523 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
524 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
525 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
526 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
527 
528 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
529 	if (IS_GEN9_LP(i915))
530 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
531 }
532 
533 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
534 				struct i915_wa_list *wal)
535 {
536 	struct intel_gt *gt = engine->gt;
537 	u8 vals[3] = { 0, 0, 0 };
538 	unsigned int i;
539 
540 	for (i = 0; i < 3; i++) {
541 		u8 ss;
542 
543 		/*
544 		 * Only consider slices where one, and only one, subslice has 7
545 		 * EUs
546 		 */
547 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
548 			continue;
549 
550 		/*
551 		 * subslice_7eu[i] != 0 (because of the check above) and
552 		 * ss_max == 4 (maximum number of subslices possible per slice)
553 		 *
554 		 * ->    0 <= ss <= 3;
555 		 */
556 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
557 		vals[i] = 3 - ss;
558 	}
559 
560 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
561 		return;
562 
563 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
564 	wa_masked_field_set(wal, GEN7_GT_MODE,
565 			    GEN9_IZ_HASHING_MASK(2) |
566 			    GEN9_IZ_HASHING_MASK(1) |
567 			    GEN9_IZ_HASHING_MASK(0),
568 			    GEN9_IZ_HASHING(2, vals[2]) |
569 			    GEN9_IZ_HASHING(1, vals[1]) |
570 			    GEN9_IZ_HASHING(0, vals[0]));
571 }
572 
573 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
574 				     struct i915_wa_list *wal)
575 {
576 	gen9_ctx_workarounds_init(engine, wal);
577 	skl_tune_iz_hashing(engine, wal);
578 }
579 
580 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
581 				     struct i915_wa_list *wal)
582 {
583 	gen9_ctx_workarounds_init(engine, wal);
584 
585 	/* WaDisableThreadStallDopClockGating:bxt */
586 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
587 			 STALL_DOP_GATING_DISABLE);
588 
589 	/* WaToEnableHwFixForPushConstHWBug:bxt */
590 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
591 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
592 }
593 
594 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
595 				     struct i915_wa_list *wal)
596 {
597 	struct drm_i915_private *i915 = engine->i915;
598 
599 	gen9_ctx_workarounds_init(engine, wal);
600 
601 	/* WaToEnableHwFixForPushConstHWBug:kbl */
602 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
603 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
604 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
605 
606 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
607 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
608 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
609 }
610 
611 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
612 				     struct i915_wa_list *wal)
613 {
614 	gen9_ctx_workarounds_init(engine, wal);
615 
616 	/* WaToEnableHwFixForPushConstHWBug:glk */
617 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
618 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
619 }
620 
621 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
622 				     struct i915_wa_list *wal)
623 {
624 	gen9_ctx_workarounds_init(engine, wal);
625 
626 	/* WaToEnableHwFixForPushConstHWBug:cfl */
627 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
628 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
629 
630 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
631 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
632 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
633 }
634 
635 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
636 				     struct i915_wa_list *wal)
637 {
638 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
639 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
640 
641 	/* WaForceEnableNonCoherent:icl
642 	 * This is not the same workaround as in early Gen9 platforms, where
643 	 * lacking this could cause system hangs, but coherency performance
644 	 * overhead is high and only a few compute workloads really need it
645 	 * (the register is whitelisted in hardware now, so UMDs can opt in
646 	 * for coherency if they have a good reason).
647 	 */
648 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
649 
650 	/* WaEnableFloatBlendOptimization:icl */
651 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
652 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
653 		   0 /* write-only, so skip validation */,
654 		   true);
655 
656 	/* WaDisableGPGPUMidThreadPreemption:icl */
657 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
658 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
659 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
660 
661 	/* allow headerless messages for preemptible GPGPU context */
662 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
663 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
664 
665 	/* Wa_1604278689:icl,ehl */
666 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
667 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
668 			 0,
669 			 0xFFFFFFFF);
670 
671 	/* Wa_1406306137:icl,ehl */
672 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
673 }
674 
675 /*
676  * These settings aren't actually workarounds, but general tuning settings that
677  * need to be programmed on dg2 platform.
678  */
679 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
680 				   struct i915_wa_list *wal)
681 {
682 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
683 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
684 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
685 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
686 			     FF_MODE2_TDS_TIMER_128);
687 }
688 
689 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
690 				       struct i915_wa_list *wal)
691 {
692 	struct drm_i915_private *i915 = engine->i915;
693 
694 	/*
695 	 * Wa_1409142259:tgl,dg1,adl-p
696 	 * Wa_1409347922:tgl,dg1,adl-p
697 	 * Wa_1409252684:tgl,dg1,adl-p
698 	 * Wa_1409217633:tgl,dg1,adl-p
699 	 * Wa_1409207793:tgl,dg1,adl-p
700 	 * Wa_1409178076:tgl,dg1,adl-p
701 	 * Wa_1408979724:tgl,dg1,adl-p
702 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
703 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
704 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
705 	 */
706 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
707 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
708 
709 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
710 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
711 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
712 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
713 
714 	/*
715 	 * Wa_16011163337 - GS_TIMER
716 	 *
717 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
718 	 * need to program it even on those that don't explicitly list that
719 	 * workaround.
720 	 *
721 	 * Note that the programming of GEN12_FF_MODE2 is further modified
722 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
723 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
724 	 * value when read from the CPU.
725 	 *
726 	 * The default value for this register is zero for all fields.
727 	 * So instead of doing a RMW we should just write the desired values
728 	 * for TDS and GS timers. Note that since the readback can't be trusted,
729 	 * the clear mask is just set to ~0 to make sure other bits are not
730 	 * inadvertently set. For the same reason read verification is ignored.
731 	 */
732 	wa_add(wal,
733 	       GEN12_FF_MODE2,
734 	       ~0,
735 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
736 	       0, false);
737 
738 	if (!IS_DG1(i915)) {
739 		/* Wa_1806527549 */
740 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
741 
742 		/* Wa_1606376872 */
743 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
744 	}
745 }
746 
747 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
748 				     struct i915_wa_list *wal)
749 {
750 	gen12_ctx_workarounds_init(engine, wal);
751 
752 	/* Wa_1409044764 */
753 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
754 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
755 
756 	/* Wa_22010493298 */
757 	wa_masked_en(wal, HIZ_CHICKEN,
758 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
759 }
760 
761 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
762 				     struct i915_wa_list *wal)
763 {
764 	dg2_ctx_gt_tuning_init(engine, wal);
765 
766 	/* Wa_16013271637:dg2 */
767 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
768 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
769 
770 	/* Wa_14014947963:dg2 */
771 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
772 
773 	/* Wa_18018764978:dg2 */
774 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
775 
776 	/* Wa_18019271663:dg2 */
777 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
778 
779 	/* Wa_14019877138:dg2 */
780 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
781 }
782 
783 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
784 				     struct i915_wa_list *wal)
785 {
786 	struct intel_gt *gt = engine->gt;
787 
788 	dg2_ctx_gt_tuning_init(engine, wal);
789 
790 	/*
791 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
792 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
793 	 * steppings.
794 	 */
795 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
796 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
797 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
798 }
799 
800 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
801 				       struct i915_wa_list *wal)
802 {
803 	struct intel_gt *gt = engine->gt;
804 
805 	xelpg_ctx_gt_tuning_init(engine, wal);
806 
807 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
808 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
809 		/* Wa_14014947963 */
810 		wa_masked_field_set(wal, VF_PREEMPTION,
811 				    PREEMPTION_VERTEX_COUNT, 0x4000);
812 
813 		/* Wa_16013271637 */
814 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
815 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
816 
817 		/* Wa_18019627453 */
818 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
819 
820 		/* Wa_18018764978 */
821 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
822 	}
823 
824 	/* Wa_18019271663 */
825 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
826 
827 	/* Wa_14019877138 */
828 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
829 }
830 
831 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
832 					 struct i915_wa_list *wal)
833 {
834 	/*
835 	 * This is a "fake" workaround defined by software to ensure we
836 	 * maintain reliable, backward-compatible behavior for userspace with
837 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
838 	 *
839 	 * The per-context setting of MI_MODE[12] determines whether the bits
840 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
841 	 * in the traditional manner or whether they should instead use a new
842 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
843 	 * into 3rd-level batchbuffers.  When this new capability was first
844 	 * added in TGL, it remained off by default unless a context
845 	 * intentionally opted in to the new behavior.  However Xe_HPG now
846 	 * flips this on by default and requires that we explicitly opt out if
847 	 * we don't want the new behavior.
848 	 *
849 	 * From a SW perspective, we want to maintain the backward-compatible
850 	 * behavior for userspace, so we'll apply a fake workaround to set it
851 	 * back to the legacy behavior on platforms where the hardware default
852 	 * is to break compatibility.  At the moment there is no Linux
853 	 * userspace that utilizes third-level batchbuffers, so this will avoid
854 	 * userspace from needing to make any changes.  using the legacy
855 	 * meaning is the correct thing to do.  If/when we have userspace
856 	 * consumers that want to utilize third-level batch nesting, we can
857 	 * provide a context parameter to allow them to opt-in.
858 	 */
859 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
860 }
861 
862 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
863 				   struct i915_wa_list *wal)
864 {
865 	u8 mocs;
866 
867 	/*
868 	 * Some blitter commands do not have a field for MOCS, those
869 	 * commands will use MOCS index pointed by BLIT_CCTL.
870 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
871 	 */
872 	if (engine->class == COPY_ENGINE_CLASS) {
873 		mocs = engine->gt->mocs.uc_index;
874 		wa_write_clr_set(wal,
875 				 BLIT_CCTL(engine->mmio_base),
876 				 BLIT_CCTL_MASK,
877 				 BLIT_CCTL_MOCS(mocs, mocs));
878 	}
879 }
880 
881 /*
882  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
883  * defined by the hardware team, but it programming general context registers.
884  * Adding those context register programming in context workaround
885  * allow us to use the wa framework for proper application and validation.
886  */
887 static void
888 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
889 			  struct i915_wa_list *wal)
890 {
891 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
892 		fakewa_disable_nestedbb_mode(engine, wal);
893 
894 	gen12_ctx_gt_mocs_init(engine, wal);
895 }
896 
897 static void
898 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
899 			   struct i915_wa_list *wal,
900 			   const char *name)
901 {
902 	struct drm_i915_private *i915 = engine->i915;
903 
904 	wa_init_start(wal, engine->gt, name, engine->name);
905 
906 	/* Applies to all engines */
907 	/*
908 	 * Fake workarounds are not the actual workaround but
909 	 * programming of context registers using workaround framework.
910 	 */
911 	if (GRAPHICS_VER(i915) >= 12)
912 		gen12_ctx_gt_fake_wa_init(engine, wal);
913 
914 	if (engine->class != RENDER_CLASS)
915 		goto done;
916 
917 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
918 		xelpg_ctx_workarounds_init(engine, wal);
919 	else if (IS_DG2(i915))
920 		dg2_ctx_workarounds_init(engine, wal);
921 	else if (IS_DG1(i915))
922 		dg1_ctx_workarounds_init(engine, wal);
923 	else if (GRAPHICS_VER(i915) == 12)
924 		gen12_ctx_workarounds_init(engine, wal);
925 	else if (GRAPHICS_VER(i915) == 11)
926 		icl_ctx_workarounds_init(engine, wal);
927 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
928 		cfl_ctx_workarounds_init(engine, wal);
929 	else if (IS_GEMINILAKE(i915))
930 		glk_ctx_workarounds_init(engine, wal);
931 	else if (IS_KABYLAKE(i915))
932 		kbl_ctx_workarounds_init(engine, wal);
933 	else if (IS_BROXTON(i915))
934 		bxt_ctx_workarounds_init(engine, wal);
935 	else if (IS_SKYLAKE(i915))
936 		skl_ctx_workarounds_init(engine, wal);
937 	else if (IS_CHERRYVIEW(i915))
938 		chv_ctx_workarounds_init(engine, wal);
939 	else if (IS_BROADWELL(i915))
940 		bdw_ctx_workarounds_init(engine, wal);
941 	else if (GRAPHICS_VER(i915) == 7)
942 		gen7_ctx_workarounds_init(engine, wal);
943 	else if (GRAPHICS_VER(i915) == 6)
944 		gen6_ctx_workarounds_init(engine, wal);
945 	else if (GRAPHICS_VER(i915) < 8)
946 		;
947 	else
948 		MISSING_CASE(GRAPHICS_VER(i915));
949 
950 done:
951 	wa_init_finish(wal);
952 }
953 
954 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
955 {
956 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
957 }
958 
959 int intel_engine_emit_ctx_wa(struct i915_request *rq)
960 {
961 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
962 	struct intel_uncore *uncore = rq->engine->uncore;
963 	enum forcewake_domains fw;
964 	unsigned long flags;
965 	struct i915_wa *wa;
966 	unsigned int i;
967 	u32 *cs;
968 	int ret;
969 
970 	if (wal->count == 0)
971 		return 0;
972 
973 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
974 	if (ret)
975 		return ret;
976 
977 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
978 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS)
979 		cs = intel_ring_begin(rq, (wal->count * 2 + 6));
980 	else
981 		cs = intel_ring_begin(rq, (wal->count * 2 + 2));
982 
983 	if (IS_ERR(cs))
984 		return PTR_ERR(cs);
985 
986 	fw = wal_get_fw_for_rmw(uncore, wal);
987 
988 	intel_gt_mcr_lock(wal->gt, &flags);
989 	spin_lock(&uncore->lock);
990 	intel_uncore_forcewake_get__locked(uncore, fw);
991 
992 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
993 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
994 		u32 val;
995 
996 		/* Skip reading the register if it's not really needed */
997 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
998 			val = wa->set;
999 		} else {
1000 			val = wa->is_mcr ?
1001 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1002 				intel_uncore_read_fw(uncore, wa->reg);
1003 			val &= ~wa->clr;
1004 			val |= wa->set;
1005 		}
1006 
1007 		*cs++ = i915_mmio_reg_offset(wa->reg);
1008 		*cs++ = val;
1009 	}
1010 	*cs++ = MI_NOOP;
1011 
1012 	/* Wa_14019789679 */
1013 	if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
1014 	     IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) {
1015 		*cs++ = CMD_3DSTATE_MESH_CONTROL;
1016 		*cs++ = 0;
1017 		*cs++ = 0;
1018 		*cs++ = MI_NOOP;
1019 	}
1020 
1021 	intel_uncore_forcewake_put__locked(uncore, fw);
1022 	spin_unlock(&uncore->lock);
1023 	intel_gt_mcr_unlock(wal->gt, flags);
1024 
1025 	intel_ring_advance(rq, cs);
1026 
1027 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1028 	if (ret)
1029 		return ret;
1030 
1031 	return 0;
1032 }
1033 
1034 static void
1035 gen4_gt_workarounds_init(struct intel_gt *gt,
1036 			 struct i915_wa_list *wal)
1037 {
1038 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1039 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1040 }
1041 
1042 static void
1043 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1044 {
1045 	gen4_gt_workarounds_init(gt, wal);
1046 
1047 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1048 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1049 }
1050 
1051 static void
1052 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1053 {
1054 	g4x_gt_workarounds_init(gt, wal);
1055 
1056 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1057 }
1058 
1059 static void
1060 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1061 {
1062 }
1063 
1064 static void
1065 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1066 {
1067 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1068 	wa_masked_dis(wal,
1069 		      GEN7_COMMON_SLICE_CHICKEN1,
1070 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1071 
1072 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1073 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1074 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1075 
1076 	/* WaForceL3Serialization:ivb */
1077 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1078 }
1079 
1080 static void
1081 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1082 {
1083 	/* WaForceL3Serialization:vlv */
1084 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1085 
1086 	/*
1087 	 * WaIncreaseL3CreditsForVLVB0:vlv
1088 	 * This is the hardware default actually.
1089 	 */
1090 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1091 }
1092 
1093 static void
1094 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1095 {
1096 	/* L3 caching of data atomics doesn't work -- disable it. */
1097 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1098 
1099 	wa_add(wal,
1100 	       HSW_ROW_CHICKEN3, 0,
1101 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1102 	       0 /* XXX does this reg exist? */, true);
1103 
1104 	/* WaVSRefCountFullforceMissDisable:hsw */
1105 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1106 }
1107 
1108 static void
1109 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1110 {
1111 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1112 	unsigned int slice, subslice;
1113 	u32 mcr, mcr_mask;
1114 
1115 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1116 
1117 	/*
1118 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1119 	 * Before any MMIO read into slice/subslice specific registers, MCR
1120 	 * packet control register needs to be programmed to point to any
1121 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1122 	 * This means each subsequent MMIO read will be forwarded to an
1123 	 * specific s/ss combination, but this is OK since these registers
1124 	 * are consistent across s/ss in almost all cases. In the rare
1125 	 * occasions, such as INSTDONE, where this value is dependent
1126 	 * on s/ss combo, the read should be done with read_subslice_reg.
1127 	 */
1128 	slice = ffs(sseu->slice_mask) - 1;
1129 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1130 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1131 	GEM_BUG_ON(!subslice);
1132 	subslice--;
1133 
1134 	/*
1135 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1136 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1137 	 */
1138 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1139 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1140 
1141 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1142 
1143 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1144 }
1145 
1146 static void
1147 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1148 {
1149 	struct drm_i915_private *i915 = gt->i915;
1150 
1151 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1152 	gen9_wa_init_mcr(i915, wal);
1153 
1154 	/* WaDisableKillLogic:bxt,skl,kbl */
1155 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1156 		wa_write_or(wal,
1157 			    GAM_ECOCHK,
1158 			    ECOCHK_DIS_TLB);
1159 
1160 	if (HAS_LLC(i915)) {
1161 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1162 		 *
1163 		 * Must match Display Engine. See
1164 		 * WaCompressedResourceDisplayNewHashMode.
1165 		 */
1166 		wa_write_or(wal,
1167 			    MMCD_MISC_CTRL,
1168 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1169 	}
1170 
1171 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1172 	wa_write_or(wal,
1173 		    GAM_ECOCHK,
1174 		    BDW_DISABLE_HDC_INVALIDATION);
1175 }
1176 
1177 static void
1178 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1179 {
1180 	gen9_gt_workarounds_init(gt, wal);
1181 
1182 	/* WaDisableGafsUnitClkGating:skl */
1183 	wa_write_or(wal,
1184 		    GEN7_UCGCTL4,
1185 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1186 
1187 	/* WaInPlaceDecompressionHang:skl */
1188 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1189 		wa_write_or(wal,
1190 			    GEN9_GAMT_ECO_REG_RW_IA,
1191 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1192 }
1193 
1194 static void
1195 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1196 {
1197 	gen9_gt_workarounds_init(gt, wal);
1198 
1199 	/* WaDisableDynamicCreditSharing:kbl */
1200 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1201 		wa_write_or(wal,
1202 			    GAMT_CHKN_BIT_REG,
1203 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1204 
1205 	/* WaDisableGafsUnitClkGating:kbl */
1206 	wa_write_or(wal,
1207 		    GEN7_UCGCTL4,
1208 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1209 
1210 	/* WaInPlaceDecompressionHang:kbl */
1211 	wa_write_or(wal,
1212 		    GEN9_GAMT_ECO_REG_RW_IA,
1213 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1214 }
1215 
1216 static void
1217 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1218 {
1219 	gen9_gt_workarounds_init(gt, wal);
1220 }
1221 
1222 static void
1223 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1224 {
1225 	gen9_gt_workarounds_init(gt, wal);
1226 
1227 	/* WaDisableGafsUnitClkGating:cfl */
1228 	wa_write_or(wal,
1229 		    GEN7_UCGCTL4,
1230 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1231 
1232 	/* WaInPlaceDecompressionHang:cfl */
1233 	wa_write_or(wal,
1234 		    GEN9_GAMT_ECO_REG_RW_IA,
1235 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1236 }
1237 
1238 static void __set_mcr_steering(struct i915_wa_list *wal,
1239 			       i915_reg_t steering_reg,
1240 			       unsigned int slice, unsigned int subslice)
1241 {
1242 	u32 mcr, mcr_mask;
1243 
1244 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1245 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1246 
1247 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1248 }
1249 
1250 static void debug_dump_steering(struct intel_gt *gt)
1251 {
1252 	struct drm_printer p = drm_dbg_printer(&gt->i915->drm, DRM_UT_DRIVER,
1253 					       "MCR Steering:");
1254 
1255 	if (drm_debug_enabled(DRM_UT_DRIVER))
1256 		intel_gt_mcr_report_steering(&p, gt, false);
1257 }
1258 
1259 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1260 			 unsigned int slice, unsigned int subslice)
1261 {
1262 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1263 
1264 	gt->default_steering.groupid = slice;
1265 	gt->default_steering.instanceid = subslice;
1266 
1267 	debug_dump_steering(gt);
1268 }
1269 
1270 static void
1271 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1272 {
1273 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1274 	unsigned int subslice;
1275 
1276 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1277 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1278 
1279 	/*
1280 	 * Although a platform may have subslices, we need to always steer
1281 	 * reads to the lowest instance that isn't fused off.  When Render
1282 	 * Power Gating is enabled, grabbing forcewake will only power up a
1283 	 * single subslice (the "minconfig") if there isn't a real workload
1284 	 * that needs to be run; this means that if we steer register reads to
1285 	 * one of the higher subslices, we run the risk of reading back 0's or
1286 	 * random garbage.
1287 	 */
1288 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1289 
1290 	/*
1291 	 * If the subslice we picked above also steers us to a valid L3 bank,
1292 	 * then we can just rely on the default steering and won't need to
1293 	 * worry about explicitly re-steering L3BANK reads later.
1294 	 */
1295 	if (gt->info.l3bank_mask & BIT(subslice))
1296 		gt->steering_table[L3BANK] = NULL;
1297 
1298 	__add_mcr_wa(gt, wal, 0, subslice);
1299 }
1300 
1301 static void
1302 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1303 {
1304 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1305 	unsigned long slice, subslice = 0, slice_mask = 0;
1306 	u32 lncf_mask = 0;
1307 	int i;
1308 
1309 	/*
1310 	 * On Xe_HP the steering increases in complexity. There are now several
1311 	 * more units that require steering and we're not guaranteed to be able
1312 	 * to find a common setting for all of them. These are:
1313 	 * - GSLICE (fusable)
1314 	 * - DSS (sub-unit within gslice; fusable)
1315 	 * - L3 Bank (fusable)
1316 	 * - MSLICE (fusable)
1317 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1318 	 *
1319 	 * We'll do our default/implicit steering based on GSLICE (in the
1320 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1321 	 * find overlap between the valid MSLICE and/or LNCF values with
1322 	 * a suitable GSLICE, then we can just re-use the default value and
1323 	 * skip and explicit steering at runtime.
1324 	 *
1325 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1326 	 * a valid sliceid value.  DSS steering is the only type of steering
1327 	 * that utilizes the 'subsliceid' bits.
1328 	 *
1329 	 * Also note that, even though the steering domain is called "GSlice"
1330 	 * and it is encoded in the register using the gslice format, the spec
1331 	 * says that the combined (geometry | compute) fuse should be used to
1332 	 * select the steering.
1333 	 */
1334 
1335 	/* Find the potential gslice candidates */
1336 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1337 						       GEN_DSS_PER_GSLICE);
1338 
1339 	/*
1340 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1341 	 * mslice is fine.
1342 	 */
1343 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1344 		lncf_mask |= (0x3 << (i * 2));
1345 
1346 	/*
1347 	 * Are there any sliceid values that work for both GSLICE and LNCF
1348 	 * steering?
1349 	 */
1350 	if (slice_mask & lncf_mask) {
1351 		slice_mask &= lncf_mask;
1352 		gt->steering_table[LNCF] = NULL;
1353 	}
1354 
1355 	/* How about sliceid values that also work for MSLICE steering? */
1356 	if (slice_mask & gt->info.mslice_mask) {
1357 		slice_mask &= gt->info.mslice_mask;
1358 		gt->steering_table[MSLICE] = NULL;
1359 	}
1360 
1361 	slice = __ffs(slice_mask);
1362 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1363 		GEN_DSS_PER_GSLICE;
1364 
1365 	__add_mcr_wa(gt, wal, slice, subslice);
1366 
1367 	/*
1368 	 * SQIDI ranges are special because they use different steering
1369 	 * registers than everything else we work with.  On XeHP SDV and
1370 	 * DG2-G10, any value in the steering registers will work fine since
1371 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1372 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1373 	 * we'll just steer to a hardcoded "2" since that value will work
1374 	 * everywhere.
1375 	 */
1376 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1377 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1378 
1379 	/*
1380 	 * On DG2, GAM registers have a dedicated steering control register
1381 	 * and must always be programmed to a hardcoded groupid of "1."
1382 	 */
1383 	if (IS_DG2(gt->i915))
1384 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1385 }
1386 
1387 static void
1388 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1389 {
1390 	struct drm_i915_private *i915 = gt->i915;
1391 
1392 	icl_wa_init_mcr(gt, wal);
1393 
1394 	/* WaModifyGamTlbPartitioning:icl */
1395 	wa_write_clr_set(wal,
1396 			 GEN11_GACB_PERF_CTRL,
1397 			 GEN11_HASH_CTRL_MASK,
1398 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1399 
1400 	/* Wa_1405766107:icl
1401 	 * Formerly known as WaCL2SFHalfMaxAlloc
1402 	 */
1403 	wa_write_or(wal,
1404 		    GEN11_LSN_UNSLCVC,
1405 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1406 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1407 
1408 	/* Wa_220166154:icl
1409 	 * Formerly known as WaDisCtxReload
1410 	 */
1411 	wa_write_or(wal,
1412 		    GEN8_GAMW_ECO_DEV_RW_IA,
1413 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1414 
1415 	/* Wa_1406463099:icl
1416 	 * Formerly known as WaGamTlbPendError
1417 	 */
1418 	wa_write_or(wal,
1419 		    GAMT_CHKN_BIT_REG,
1420 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1421 
1422 	/*
1423 	 * Wa_1408615072:icl,ehl  (vsunit)
1424 	 * Wa_1407596294:icl,ehl  (hsunit)
1425 	 */
1426 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1427 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1428 
1429 	/* Wa_1407352427:icl,ehl */
1430 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1431 		    PSDUNIT_CLKGATE_DIS);
1432 
1433 	/* Wa_1406680159:icl,ehl */
1434 	wa_mcr_write_or(wal,
1435 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1436 			GWUNIT_CLKGATE_DIS);
1437 
1438 	/* Wa_1607087056:icl,ehl,jsl */
1439 	if (IS_ICELAKE(i915) ||
1440 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1441 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1442 		wa_write_or(wal,
1443 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1444 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1445 
1446 	/*
1447 	 * This is not a documented workaround, but rather an optimization
1448 	 * to reduce sampler power.
1449 	 */
1450 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1451 }
1452 
1453 /*
1454  * Though there are per-engine instances of these registers,
1455  * they retain their value through engine resets and should
1456  * only be provided on the GT workaround list rather than
1457  * the engine-specific workaround list.
1458  */
1459 static void
1460 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1461 {
1462 	struct intel_engine_cs *engine;
1463 	int id;
1464 
1465 	for_each_engine(engine, gt, id) {
1466 		if (engine->class != VIDEO_DECODE_CLASS ||
1467 		    (engine->instance % 2))
1468 			continue;
1469 
1470 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1471 			    IECPUNIT_CLKGATE_DIS);
1472 	}
1473 }
1474 
1475 static void
1476 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1477 {
1478 	icl_wa_init_mcr(gt, wal);
1479 
1480 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1481 	wa_14011060649(gt, wal);
1482 
1483 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1484 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1485 
1486 	/*
1487 	 * Wa_14015795083
1488 	 *
1489 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1490 	 * preventing i915 from modifying it for this workaround.  Skip the
1491 	 * readback verification for this workaround on debug builds; if the
1492 	 * workaround doesn't stick due to firmware behavior, it's not an error
1493 	 * that we want CI to flag.
1494 	 */
1495 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1496 	       0, 0, false);
1497 }
1498 
1499 static void
1500 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1501 {
1502 	gen12_gt_workarounds_init(gt, wal);
1503 
1504 	/* Wa_1409420604:dg1 */
1505 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1506 			CPSSUNIT_CLKGATE_DIS);
1507 
1508 	/* Wa_1408615072:dg1 */
1509 	/* Empirical testing shows this register is unaffected by engine reset. */
1510 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1511 }
1512 
1513 static void
1514 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1515 {
1516 	xehp_init_mcr(gt, wal);
1517 
1518 	/* Wa_14011060649:dg2 */
1519 	wa_14011060649(gt, wal);
1520 
1521 	if (IS_DG2_G10(gt->i915)) {
1522 		/* Wa_22010523718:dg2 */
1523 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1524 			    CG3DDISCFEG_CLKGATE_DIS);
1525 
1526 		/* Wa_14011006942:dg2 */
1527 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1528 				DSS_ROUTER_CLKGATE_DIS);
1529 	}
1530 
1531 	/* Wa_14014830051:dg2 */
1532 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1533 
1534 	/*
1535 	 * Wa_14015795083
1536 	 * Skip verification for possibly locked register.
1537 	 */
1538 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1539 	       0, 0, false);
1540 
1541 	/* Wa_18018781329 */
1542 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1543 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1544 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1545 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1546 
1547 	/* Wa_1509235366:dg2 */
1548 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1549 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1550 
1551 	/* Wa_14010648519:dg2 */
1552 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1553 }
1554 
1555 static void
1556 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1557 {
1558 	/* Wa_14018575942 / Wa_18018781329 */
1559 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1560 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1561 
1562 	/* Wa_22016670082 */
1563 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1564 
1565 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1566 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1567 		/* Wa_14014830051 */
1568 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1569 
1570 		/* Wa_14015795083 */
1571 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1572 	}
1573 
1574 	/*
1575 	 * Unlike older platforms, we no longer setup implicit steering here;
1576 	 * all MCR accesses are explicitly steered.
1577 	 */
1578 	debug_dump_steering(gt);
1579 }
1580 
1581 static void
1582 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1583 {
1584 	struct intel_engine_cs *engine;
1585 	int id;
1586 
1587 	for_each_engine(engine, gt, id)
1588 		if (engine->class == VIDEO_DECODE_CLASS)
1589 			wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1590 				    MFXPIPE_CLKGATE_DIS);
1591 }
1592 
1593 static void
1594 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1595 {
1596 	wa_16021867713(gt, wal);
1597 
1598 	/*
1599 	 * Wa_14018778641
1600 	 * Wa_18018781329
1601 	 *
1602 	 * Note that although these registers are MCR on the primary
1603 	 * GT, the media GT's versions are regular singleton registers.
1604 	 */
1605 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1606 
1607 	/*
1608 	 * Wa_14018575942
1609 	 *
1610 	 * Issue is seen on media KPI test running on VDBOX engine
1611 	 * especially VP9 encoding WLs
1612 	 */
1613 	wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1614 
1615 	/* Wa_22016670082 */
1616 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1617 
1618 	debug_dump_steering(gt);
1619 }
1620 
1621 /*
1622  * The bspec performance guide has recommended MMIO tuning settings.  These
1623  * aren't truly "workarounds" but we want to program them through the
1624  * workaround infrastructure to make sure they're (re)applied at the proper
1625  * times.
1626  *
1627  * The programming in this function is for settings that persist through
1628  * engine resets and also are not part of any engine's register state context.
1629  * I.e., settings that only need to be re-applied in the event of a full GT
1630  * reset.
1631  */
1632 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1633 {
1634 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1635 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1636 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1637 	}
1638 
1639 	if (IS_DG2(gt->i915)) {
1640 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1641 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1642 	}
1643 }
1644 
1645 static void
1646 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1647 {
1648 	struct drm_i915_private *i915 = gt->i915;
1649 
1650 	gt_tuning_settings(gt, wal);
1651 
1652 	if (gt->type == GT_MEDIA) {
1653 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1654 			xelpmp_gt_workarounds_init(gt, wal);
1655 		else
1656 			MISSING_CASE(MEDIA_VER_FULL(i915));
1657 
1658 		return;
1659 	}
1660 
1661 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1662 		xelpg_gt_workarounds_init(gt, wal);
1663 	else if (IS_DG2(i915))
1664 		dg2_gt_workarounds_init(gt, wal);
1665 	else if (IS_DG1(i915))
1666 		dg1_gt_workarounds_init(gt, wal);
1667 	else if (GRAPHICS_VER(i915) == 12)
1668 		gen12_gt_workarounds_init(gt, wal);
1669 	else if (GRAPHICS_VER(i915) == 11)
1670 		icl_gt_workarounds_init(gt, wal);
1671 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1672 		cfl_gt_workarounds_init(gt, wal);
1673 	else if (IS_GEMINILAKE(i915))
1674 		glk_gt_workarounds_init(gt, wal);
1675 	else if (IS_KABYLAKE(i915))
1676 		kbl_gt_workarounds_init(gt, wal);
1677 	else if (IS_BROXTON(i915))
1678 		gen9_gt_workarounds_init(gt, wal);
1679 	else if (IS_SKYLAKE(i915))
1680 		skl_gt_workarounds_init(gt, wal);
1681 	else if (IS_HASWELL(i915))
1682 		hsw_gt_workarounds_init(gt, wal);
1683 	else if (IS_VALLEYVIEW(i915))
1684 		vlv_gt_workarounds_init(gt, wal);
1685 	else if (IS_IVYBRIDGE(i915))
1686 		ivb_gt_workarounds_init(gt, wal);
1687 	else if (GRAPHICS_VER(i915) == 6)
1688 		snb_gt_workarounds_init(gt, wal);
1689 	else if (GRAPHICS_VER(i915) == 5)
1690 		ilk_gt_workarounds_init(gt, wal);
1691 	else if (IS_G4X(i915))
1692 		g4x_gt_workarounds_init(gt, wal);
1693 	else if (GRAPHICS_VER(i915) == 4)
1694 		gen4_gt_workarounds_init(gt, wal);
1695 	else if (GRAPHICS_VER(i915) <= 8)
1696 		;
1697 	else
1698 		MISSING_CASE(GRAPHICS_VER(i915));
1699 }
1700 
1701 void intel_gt_init_workarounds(struct intel_gt *gt)
1702 {
1703 	struct i915_wa_list *wal = &gt->wa_list;
1704 
1705 	wa_init_start(wal, gt, "GT", "global");
1706 	gt_init_workarounds(gt, wal);
1707 	wa_init_finish(wal);
1708 }
1709 
1710 static bool
1711 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1712 	  const char *name, const char *from)
1713 {
1714 	if ((cur ^ wa->set) & wa->read) {
1715 		gt_err(gt,
1716 		       "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1717 		       name, from, i915_mmio_reg_offset(wa->reg),
1718 		       cur, cur & wa->read, wa->set & wa->read);
1719 
1720 		return false;
1721 	}
1722 
1723 	return true;
1724 }
1725 
1726 static void wa_list_apply(const struct i915_wa_list *wal)
1727 {
1728 	struct intel_gt *gt = wal->gt;
1729 	struct intel_uncore *uncore = gt->uncore;
1730 	enum forcewake_domains fw;
1731 	unsigned long flags;
1732 	struct i915_wa *wa;
1733 	unsigned int i;
1734 
1735 	if (!wal->count)
1736 		return;
1737 
1738 	fw = wal_get_fw_for_rmw(uncore, wal);
1739 
1740 	intel_gt_mcr_lock(gt, &flags);
1741 	spin_lock(&uncore->lock);
1742 	intel_uncore_forcewake_get__locked(uncore, fw);
1743 
1744 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1745 		u32 val, old = 0;
1746 
1747 		/* open-coded rmw due to steering */
1748 		if (wa->clr)
1749 			old = wa->is_mcr ?
1750 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1751 				intel_uncore_read_fw(uncore, wa->reg);
1752 		val = (old & ~wa->clr) | wa->set;
1753 		if (val != old || !wa->clr) {
1754 			if (wa->is_mcr)
1755 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1756 			else
1757 				intel_uncore_write_fw(uncore, wa->reg, val);
1758 		}
1759 
1760 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1761 			u32 val = wa->is_mcr ?
1762 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1763 				intel_uncore_read_fw(uncore, wa->reg);
1764 
1765 			wa_verify(gt, wa, val, wal->name, "application");
1766 		}
1767 	}
1768 
1769 	intel_uncore_forcewake_put__locked(uncore, fw);
1770 	spin_unlock(&uncore->lock);
1771 	intel_gt_mcr_unlock(gt, flags);
1772 }
1773 
1774 void intel_gt_apply_workarounds(struct intel_gt *gt)
1775 {
1776 	wa_list_apply(&gt->wa_list);
1777 }
1778 
1779 static bool wa_list_verify(struct intel_gt *gt,
1780 			   const struct i915_wa_list *wal,
1781 			   const char *from)
1782 {
1783 	struct intel_uncore *uncore = gt->uncore;
1784 	struct i915_wa *wa;
1785 	enum forcewake_domains fw;
1786 	unsigned long flags;
1787 	unsigned int i;
1788 	bool ok = true;
1789 
1790 	fw = wal_get_fw_for_rmw(uncore, wal);
1791 
1792 	intel_gt_mcr_lock(gt, &flags);
1793 	spin_lock(&uncore->lock);
1794 	intel_uncore_forcewake_get__locked(uncore, fw);
1795 
1796 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1797 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1798 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1799 				intel_uncore_read_fw(uncore, wa->reg),
1800 				wal->name, from);
1801 
1802 	intel_uncore_forcewake_put__locked(uncore, fw);
1803 	spin_unlock(&uncore->lock);
1804 	intel_gt_mcr_unlock(gt, flags);
1805 
1806 	return ok;
1807 }
1808 
1809 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1810 {
1811 	return wa_list_verify(gt, &gt->wa_list, from);
1812 }
1813 
1814 __maybe_unused
1815 static bool is_nonpriv_flags_valid(u32 flags)
1816 {
1817 	/* Check only valid flag bits are set */
1818 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1819 		return false;
1820 
1821 	/* NB: Only 3 out of 4 enum values are valid for access field */
1822 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1823 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1824 		return false;
1825 
1826 	return true;
1827 }
1828 
1829 static void
1830 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1831 {
1832 	struct i915_wa wa = {
1833 		.reg = reg
1834 	};
1835 
1836 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1837 		return;
1838 
1839 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1840 		return;
1841 
1842 	wa.reg.reg |= flags;
1843 	_wa_add(wal, &wa);
1844 }
1845 
1846 static void
1847 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1848 {
1849 	struct i915_wa wa = {
1850 		.mcr_reg = reg,
1851 		.is_mcr = 1,
1852 	};
1853 
1854 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1855 		return;
1856 
1857 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1858 		return;
1859 
1860 	wa.mcr_reg.reg |= flags;
1861 	_wa_add(wal, &wa);
1862 }
1863 
1864 static void
1865 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1866 {
1867 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1868 }
1869 
1870 static void
1871 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1872 {
1873 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1874 }
1875 
1876 static void gen9_whitelist_build(struct i915_wa_list *w)
1877 {
1878 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1879 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1880 
1881 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1882 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1883 
1884 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1885 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1886 
1887 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1888 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1889 }
1890 
1891 static void skl_whitelist_build(struct intel_engine_cs *engine)
1892 {
1893 	struct i915_wa_list *w = &engine->whitelist;
1894 
1895 	if (engine->class != RENDER_CLASS)
1896 		return;
1897 
1898 	gen9_whitelist_build(w);
1899 
1900 	/* WaDisableLSQCROPERFforOCL:skl */
1901 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1902 }
1903 
1904 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1905 {
1906 	if (engine->class != RENDER_CLASS)
1907 		return;
1908 
1909 	gen9_whitelist_build(&engine->whitelist);
1910 }
1911 
1912 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1913 {
1914 	struct i915_wa_list *w = &engine->whitelist;
1915 
1916 	if (engine->class != RENDER_CLASS)
1917 		return;
1918 
1919 	gen9_whitelist_build(w);
1920 
1921 	/* WaDisableLSQCROPERFforOCL:kbl */
1922 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1923 }
1924 
1925 static void glk_whitelist_build(struct intel_engine_cs *engine)
1926 {
1927 	struct i915_wa_list *w = &engine->whitelist;
1928 
1929 	if (engine->class != RENDER_CLASS)
1930 		return;
1931 
1932 	gen9_whitelist_build(w);
1933 
1934 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
1935 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1936 }
1937 
1938 static void cfl_whitelist_build(struct intel_engine_cs *engine)
1939 {
1940 	struct i915_wa_list *w = &engine->whitelist;
1941 
1942 	if (engine->class != RENDER_CLASS)
1943 		return;
1944 
1945 	gen9_whitelist_build(w);
1946 
1947 	/*
1948 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
1949 	 *
1950 	 * This covers 4 register which are next to one another :
1951 	 *   - PS_INVOCATION_COUNT
1952 	 *   - PS_INVOCATION_COUNT_UDW
1953 	 *   - PS_DEPTH_COUNT
1954 	 *   - PS_DEPTH_COUNT_UDW
1955 	 */
1956 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1957 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
1958 			  RING_FORCE_TO_NONPRIV_RANGE_4);
1959 }
1960 
1961 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
1962 {
1963 	struct i915_wa_list *w = &engine->whitelist;
1964 
1965 	if (engine->class != RENDER_CLASS)
1966 		whitelist_reg_ext(w,
1967 				  RING_CTX_TIMESTAMP(engine->mmio_base),
1968 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
1969 }
1970 
1971 static void cml_whitelist_build(struct intel_engine_cs *engine)
1972 {
1973 	allow_read_ctx_timestamp(engine);
1974 
1975 	cfl_whitelist_build(engine);
1976 }
1977 
1978 static void icl_whitelist_build(struct intel_engine_cs *engine)
1979 {
1980 	struct i915_wa_list *w = &engine->whitelist;
1981 
1982 	allow_read_ctx_timestamp(engine);
1983 
1984 	switch (engine->class) {
1985 	case RENDER_CLASS:
1986 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
1987 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
1988 
1989 		/* WaAllowUMDToModifySamplerMode:icl */
1990 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
1991 
1992 		/* WaEnableStateCacheRedirectToCS:icl */
1993 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1994 
1995 		/*
1996 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
1997 		 *
1998 		 * This covers 4 register which are next to one another :
1999 		 *   - PS_INVOCATION_COUNT
2000 		 *   - PS_INVOCATION_COUNT_UDW
2001 		 *   - PS_DEPTH_COUNT
2002 		 *   - PS_DEPTH_COUNT_UDW
2003 		 */
2004 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2005 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2006 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2007 		break;
2008 
2009 	case VIDEO_DECODE_CLASS:
2010 		/* hucStatusRegOffset */
2011 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2012 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2013 		/* hucUKernelHdrInfoRegOffset */
2014 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2015 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2016 		/* hucStatus2RegOffset */
2017 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2018 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2019 		break;
2020 
2021 	default:
2022 		break;
2023 	}
2024 }
2025 
2026 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2027 {
2028 	struct i915_wa_list *w = &engine->whitelist;
2029 
2030 	allow_read_ctx_timestamp(engine);
2031 
2032 	switch (engine->class) {
2033 	case RENDER_CLASS:
2034 		/*
2035 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2036 		 * Wa_1408556865:tgl
2037 		 *
2038 		 * This covers 4 registers which are next to one another :
2039 		 *   - PS_INVOCATION_COUNT
2040 		 *   - PS_INVOCATION_COUNT_UDW
2041 		 *   - PS_DEPTH_COUNT
2042 		 *   - PS_DEPTH_COUNT_UDW
2043 		 */
2044 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2045 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2046 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2047 
2048 		/*
2049 		 * Wa_1808121037:tgl
2050 		 * Wa_14012131227:dg1
2051 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2052 		 */
2053 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2054 
2055 		/* Wa_1806527549:tgl */
2056 		whitelist_reg(w, HIZ_CHICKEN);
2057 
2058 		/* Required by recommended tuning setting (not a workaround) */
2059 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2060 
2061 		break;
2062 	default:
2063 		break;
2064 	}
2065 }
2066 
2067 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2068 {
2069 	struct i915_wa_list *w = &engine->whitelist;
2070 
2071 	switch (engine->class) {
2072 	case RENDER_CLASS:
2073 		/* Required by recommended tuning setting (not a workaround) */
2074 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2075 
2076 		break;
2077 	default:
2078 		break;
2079 	}
2080 }
2081 
2082 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2083 {
2084 	struct i915_wa_list *w = &engine->whitelist;
2085 
2086 	switch (engine->class) {
2087 	case RENDER_CLASS:
2088 		/* Required by recommended tuning setting (not a workaround) */
2089 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2090 
2091 		break;
2092 	default:
2093 		break;
2094 	}
2095 }
2096 
2097 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2098 {
2099 	struct drm_i915_private *i915 = engine->i915;
2100 	struct i915_wa_list *w = &engine->whitelist;
2101 
2102 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2103 
2104 	if (engine->gt->type == GT_MEDIA)
2105 		; /* none yet */
2106 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2107 		xelpg_whitelist_build(engine);
2108 	else if (IS_DG2(i915))
2109 		dg2_whitelist_build(engine);
2110 	else if (GRAPHICS_VER(i915) == 12)
2111 		tgl_whitelist_build(engine);
2112 	else if (GRAPHICS_VER(i915) == 11)
2113 		icl_whitelist_build(engine);
2114 	else if (IS_COMETLAKE(i915))
2115 		cml_whitelist_build(engine);
2116 	else if (IS_COFFEELAKE(i915))
2117 		cfl_whitelist_build(engine);
2118 	else if (IS_GEMINILAKE(i915))
2119 		glk_whitelist_build(engine);
2120 	else if (IS_KABYLAKE(i915))
2121 		kbl_whitelist_build(engine);
2122 	else if (IS_BROXTON(i915))
2123 		bxt_whitelist_build(engine);
2124 	else if (IS_SKYLAKE(i915))
2125 		skl_whitelist_build(engine);
2126 	else if (GRAPHICS_VER(i915) <= 8)
2127 		;
2128 	else
2129 		MISSING_CASE(GRAPHICS_VER(i915));
2130 
2131 	wa_init_finish(w);
2132 }
2133 
2134 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2135 {
2136 	const struct i915_wa_list *wal = &engine->whitelist;
2137 	struct intel_uncore *uncore = engine->uncore;
2138 	const u32 base = engine->mmio_base;
2139 	struct i915_wa *wa;
2140 	unsigned int i;
2141 
2142 	if (!wal->count)
2143 		return;
2144 
2145 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2146 		intel_uncore_write(uncore,
2147 				   RING_FORCE_TO_NONPRIV(base, i),
2148 				   i915_mmio_reg_offset(wa->reg));
2149 
2150 	/* And clear the rest just in case of garbage */
2151 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2152 		intel_uncore_write(uncore,
2153 				   RING_FORCE_TO_NONPRIV(base, i),
2154 				   i915_mmio_reg_offset(RING_NOPID(base)));
2155 }
2156 
2157 /*
2158  * engine_fake_wa_init(), a place holder to program the registers
2159  * which are not part of an official workaround defined by the
2160  * hardware team.
2161  * Adding programming of those register inside workaround will
2162  * allow utilizing wa framework to proper application and verification.
2163  */
2164 static void
2165 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2166 {
2167 	u8 mocs_w, mocs_r;
2168 
2169 	/*
2170 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2171 	 * by the command streamer when executing commands that don't have
2172 	 * a way to explicitly specify a MOCS setting.  The default should
2173 	 * usually reference whichever MOCS entry corresponds to uncached
2174 	 * behavior, although use of a WB cached entry is recommended by the
2175 	 * spec in certain circumstances on specific platforms.
2176 	 */
2177 	if (GRAPHICS_VER(engine->i915) >= 12) {
2178 		mocs_r = engine->gt->mocs.uc_index;
2179 		mocs_w = engine->gt->mocs.uc_index;
2180 
2181 		if (HAS_L3_CCS_READ(engine->i915) &&
2182 		    engine->class == COMPUTE_CLASS) {
2183 			mocs_r = engine->gt->mocs.wb_index;
2184 
2185 			/*
2186 			 * Even on the few platforms where MOCS 0 is a
2187 			 * legitimate table entry, it's never the correct
2188 			 * setting to use here; we can assume the MOCS init
2189 			 * just forgot to initialize wb_index.
2190 			 */
2191 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2192 		}
2193 
2194 		wa_masked_field_set(wal,
2195 				    RING_CMD_CCTL(engine->mmio_base),
2196 				    CMD_CCTL_MOCS_MASK,
2197 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2198 	}
2199 }
2200 
2201 static void
2202 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2203 {
2204 	struct drm_i915_private *i915 = engine->i915;
2205 	struct intel_gt *gt = engine->gt;
2206 
2207 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2208 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2209 		/* Wa_22014600077 */
2210 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2211 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2212 	}
2213 
2214 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2215 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2216 	    IS_DG2(i915)) {
2217 		/* Wa_1509727124 */
2218 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2219 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2220 	}
2221 
2222 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2223 	    IS_DG2(i915)) {
2224 		/* Wa_22012856258 */
2225 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2226 				 GEN12_DISABLE_READ_SUPPRESSION);
2227 	}
2228 
2229 	if (IS_DG2(i915)) {
2230 		/*
2231 		 * Wa_22010960976:dg2
2232 		 * Wa_14013347512:dg2
2233 		 */
2234 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2235 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2236 	}
2237 
2238 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2239 	    IS_DG2(i915)) {
2240 		/* Wa_14015150844 */
2241 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2242 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2243 			   0, true);
2244 	}
2245 
2246 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2247 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2248 		/*
2249 		 * Wa_1606700617:tgl,dg1,adl-p
2250 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2251 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2252 		 * Wa_18019627453:dg2
2253 		 */
2254 		wa_masked_en(wal,
2255 			     GEN9_CS_DEBUG_MODE1,
2256 			     FF_DOP_CLOCK_GATE_DISABLE);
2257 	}
2258 
2259 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2260 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2261 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2262 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2263 
2264 		/*
2265 		 * Wa_1407928979:tgl A*
2266 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2267 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2268 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2269 		 */
2270 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2271 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2272 
2273 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2274 		wa_mcr_masked_en(wal,
2275 				 GEN10_SAMPLER_MODE,
2276 				 ENABLE_SMALLPL);
2277 	}
2278 
2279 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2280 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2281 		/* Wa_1409804808 */
2282 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2283 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2284 
2285 		/* Wa_14010229206 */
2286 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2287 	}
2288 
2289 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2290 		/*
2291 		 * Wa_1607297627
2292 		 *
2293 		 * On TGL and RKL there are multiple entries for this WA in the
2294 		 * BSpec; some indicate this is an A0-only WA, others indicate
2295 		 * it applies to all steppings so we trust the "all steppings."
2296 		 */
2297 		wa_masked_en(wal,
2298 			     RING_PSMI_CTL(RENDER_RING_BASE),
2299 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2300 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2301 	}
2302 
2303 	if (GRAPHICS_VER(i915) == 11) {
2304 		/* This is not an Wa. Enable for better image quality */
2305 		wa_masked_en(wal,
2306 			     _3D_CHICKEN3,
2307 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2308 
2309 		/*
2310 		 * Wa_1405543622:icl
2311 		 * Formerly known as WaGAPZPriorityScheme
2312 		 */
2313 		wa_write_or(wal,
2314 			    GEN8_GARBCNTL,
2315 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2316 
2317 		/*
2318 		 * Wa_1604223664:icl
2319 		 * Formerly known as WaL3BankAddressHashing
2320 		 */
2321 		wa_write_clr_set(wal,
2322 				 GEN8_GARBCNTL,
2323 				 GEN11_HASH_CTRL_EXCL_MASK,
2324 				 GEN11_HASH_CTRL_EXCL_BIT0);
2325 		wa_write_clr_set(wal,
2326 				 GEN11_GLBLINVL,
2327 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2328 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2329 
2330 		/*
2331 		 * Wa_1405733216:icl
2332 		 * Formerly known as WaDisableCleanEvicts
2333 		 */
2334 		wa_mcr_write_or(wal,
2335 				GEN8_L3SQCREG4,
2336 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2337 
2338 		/* Wa_1606682166:icl */
2339 		wa_write_or(wal,
2340 			    GEN7_SARCHKMD,
2341 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2342 
2343 		/* Wa_1409178092:icl */
2344 		wa_mcr_write_clr_set(wal,
2345 				     GEN11_SCRATCH2,
2346 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2347 				     0);
2348 
2349 		/* WaEnable32PlaneMode:icl */
2350 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2351 			     GEN11_ENABLE_32_PLANE_MODE);
2352 
2353 		/*
2354 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2355 		 * Wa_1605460711:icl[a0..c0]
2356 		 */
2357 		wa_write_or(wal,
2358 			    GEN7_FF_THREAD_MODE,
2359 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2360 
2361 		/* Wa_22010271021 */
2362 		wa_masked_en(wal,
2363 			     GEN9_CS_DEBUG_MODE1,
2364 			     FF_DOP_CLOCK_GATE_DISABLE);
2365 	}
2366 
2367 	/*
2368 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2369 	 * beyond) allow the kernel-mode driver to choose between two different
2370 	 * options for controlling preemption granularity and behavior.
2371 	 *
2372 	 * Option 1 (hardware default):
2373 	 *   Preemption settings are controlled in a global manner via
2374 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2375 	 *   and settings chosen by the kernel-mode driver will apply to all
2376 	 *   userspace clients.
2377 	 *
2378 	 * Option 2:
2379 	 *   Preemption settings are controlled on a per-context basis via
2380 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2381 	 *   context switch and is writable by userspace (e.g., via
2382 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2383 	 *   which allows different userspace drivers/clients to select
2384 	 *   different settings, or to change those settings on the fly in
2385 	 *   response to runtime needs.  This option was known by name
2386 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2387 	 *   that name is somewhat misleading as other non-granularity
2388 	 *   preemption settings are also impacted by this decision.
2389 	 *
2390 	 * On Linux, our policy has always been to let userspace drivers
2391 	 * control preemption granularity/settings (Option 2).  This was
2392 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2393 	 * userspace developed before object-level preemption was enabled would
2394 	 * not behave well if i915 were to go with Option 1 and enable that
2395 	 * preemption in a global manner).  On gen9 each context would have
2396 	 * object-level preemption disabled by default (see
2397 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2398 	 * userspace drivers could opt-in to object-level preemption as they
2399 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2400 	 * even though it is no longer necessary for ABI compatibility when
2401 	 * enabling a new platform, it does ensure that userspace will be able
2402 	 * to implement any workarounds that show up requiring temporary
2403 	 * adjustments to preemption behavior at runtime.
2404 	 *
2405 	 * Notes/Workarounds:
2406 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2407 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2408 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2409 	 *      using Option 1).  Effectively this means userspace is unable
2410 	 *      to disable object-level preemption on these platforms/steppings
2411 	 *      despite the setting here.
2412 	 *
2413 	 *  - Wa_16013994831:  May require that userspace program
2414 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2415 	 *      Userspace requires Option 2 to be in effect for their update of
2416 	 *      CS_CHICKEN1[10] to be effective.
2417 	 *
2418 	 * Other workarounds may appear in the future that will also require
2419 	 * Option 2 behavior to allow proper userspace implementation.
2420 	 */
2421 	if (GRAPHICS_VER(i915) >= 9)
2422 		wa_masked_en(wal,
2423 			     GEN7_FF_SLICE_CS_CHICKEN1,
2424 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2425 
2426 	if (IS_SKYLAKE(i915) ||
2427 	    IS_KABYLAKE(i915) ||
2428 	    IS_COFFEELAKE(i915) ||
2429 	    IS_COMETLAKE(i915)) {
2430 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2431 		wa_write_or(wal,
2432 			    GEN8_GARBCNTL,
2433 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2434 	}
2435 
2436 	if (IS_BROXTON(i915)) {
2437 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2438 		wa_masked_en(wal,
2439 			     FF_SLICE_CS_CHICKEN2,
2440 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2441 	}
2442 
2443 	if (GRAPHICS_VER(i915) == 9) {
2444 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2445 		wa_masked_en(wal,
2446 			     GEN9_CSFE_CHICKEN1_RCS,
2447 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2448 
2449 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2450 		wa_mcr_write_or(wal,
2451 				BDW_SCRATCH1,
2452 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2453 
2454 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2455 		if (IS_GEN9_LP(i915))
2456 			wa_mcr_write_clr_set(wal,
2457 					     GEN8_L3SQCREG1,
2458 					     L3_PRIO_CREDITS_MASK,
2459 					     L3_GENERAL_PRIO_CREDITS(62) |
2460 					     L3_HIGH_PRIO_CREDITS(2));
2461 
2462 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2463 		wa_mcr_write_or(wal,
2464 				GEN8_L3SQCREG4,
2465 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2466 
2467 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2468 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2469 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2470 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2471 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2472 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2473 				     EVICTION_PERF_FIX_ENABLE, 0);
2474 	}
2475 
2476 	if (IS_HASWELL(i915)) {
2477 		/* WaSampleCChickenBitEnable:hsw */
2478 		wa_masked_en(wal,
2479 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2480 
2481 		wa_masked_dis(wal,
2482 			      CACHE_MODE_0_GEN7,
2483 			      /* enable HiZ Raw Stall Optimization */
2484 			      HIZ_RAW_STALL_OPT_DISABLE);
2485 	}
2486 
2487 	if (IS_VALLEYVIEW(i915)) {
2488 		/* WaDisableEarlyCull:vlv */
2489 		wa_masked_en(wal,
2490 			     _3D_CHICKEN3,
2491 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2492 
2493 		/*
2494 		 * WaVSThreadDispatchOverride:ivb,vlv
2495 		 *
2496 		 * This actually overrides the dispatch
2497 		 * mode for all thread types.
2498 		 */
2499 		wa_write_clr_set(wal,
2500 				 GEN7_FF_THREAD_MODE,
2501 				 GEN7_FF_SCHED_MASK,
2502 				 GEN7_FF_TS_SCHED_HW |
2503 				 GEN7_FF_VS_SCHED_HW |
2504 				 GEN7_FF_DS_SCHED_HW);
2505 
2506 		/* WaPsdDispatchEnable:vlv */
2507 		/* WaDisablePSDDualDispatchEnable:vlv */
2508 		wa_masked_en(wal,
2509 			     GEN7_HALF_SLICE_CHICKEN1,
2510 			     GEN7_MAX_PS_THREAD_DEP |
2511 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2512 	}
2513 
2514 	if (IS_IVYBRIDGE(i915)) {
2515 		/* WaDisableEarlyCull:ivb */
2516 		wa_masked_en(wal,
2517 			     _3D_CHICKEN3,
2518 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2519 
2520 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2521 			/* enable HiZ Raw Stall Optimization */
2522 			wa_masked_dis(wal,
2523 				      CACHE_MODE_0_GEN7,
2524 				      HIZ_RAW_STALL_OPT_DISABLE);
2525 		}
2526 
2527 		/*
2528 		 * WaVSThreadDispatchOverride:ivb,vlv
2529 		 *
2530 		 * This actually overrides the dispatch
2531 		 * mode for all thread types.
2532 		 */
2533 		wa_write_clr_set(wal,
2534 				 GEN7_FF_THREAD_MODE,
2535 				 GEN7_FF_SCHED_MASK,
2536 				 GEN7_FF_TS_SCHED_HW |
2537 				 GEN7_FF_VS_SCHED_HW |
2538 				 GEN7_FF_DS_SCHED_HW);
2539 
2540 		/* WaDisablePSDDualDispatchEnable:ivb */
2541 		if (IS_IVB_GT1(i915))
2542 			wa_masked_en(wal,
2543 				     GEN7_HALF_SLICE_CHICKEN1,
2544 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2545 	}
2546 
2547 	if (GRAPHICS_VER(i915) == 7) {
2548 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2549 		wa_masked_en(wal,
2550 			     RING_MODE_GEN7(RENDER_RING_BASE),
2551 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2552 
2553 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2554 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2555 
2556 		/*
2557 		 * BSpec says this must be set, even though
2558 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2559 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2560 		 */
2561 		wa_masked_en(wal,
2562 			     CACHE_MODE_1,
2563 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2564 
2565 		/*
2566 		 * BSpec recommends 8x4 when MSAA is used,
2567 		 * however in practice 16x4 seems fastest.
2568 		 *
2569 		 * Note that PS/WM thread counts depend on the WIZ hashing
2570 		 * disable bit, which we don't touch here, but it's good
2571 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2572 		 */
2573 		wa_masked_field_set(wal,
2574 				    GEN7_GT_MODE,
2575 				    GEN6_WIZ_HASHING_MASK,
2576 				    GEN6_WIZ_HASHING_16x4);
2577 	}
2578 
2579 	if (IS_GRAPHICS_VER(i915, 6, 7))
2580 		/*
2581 		 * We need to disable the AsyncFlip performance optimisations in
2582 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2583 		 * already be programmed to '1' on all products.
2584 		 *
2585 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2586 		 */
2587 		wa_masked_en(wal,
2588 			     RING_MI_MODE(RENDER_RING_BASE),
2589 			     ASYNC_FLIP_PERF_DISABLE);
2590 
2591 	if (GRAPHICS_VER(i915) == 6) {
2592 		/*
2593 		 * Required for the hardware to program scanline values for
2594 		 * waiting
2595 		 * WaEnableFlushTlbInvalidationMode:snb
2596 		 */
2597 		wa_masked_en(wal,
2598 			     GFX_MODE,
2599 			     GFX_TLB_INVALIDATE_EXPLICIT);
2600 
2601 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2602 		wa_masked_en(wal,
2603 			     _3D_CHICKEN,
2604 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2605 
2606 		wa_masked_en(wal,
2607 			     _3D_CHICKEN3,
2608 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2609 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2610 			     /*
2611 			      * Bspec says:
2612 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2613 			      * to normal and 3DSTATE_SF number of SF output attributes
2614 			      * is more than 16."
2615 			      */
2616 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2617 
2618 		/*
2619 		 * BSpec recommends 8x4 when MSAA is used,
2620 		 * however in practice 16x4 seems fastest.
2621 		 *
2622 		 * Note that PS/WM thread counts depend on the WIZ hashing
2623 		 * disable bit, which we don't touch here, but it's good
2624 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2625 		 */
2626 		wa_masked_field_set(wal,
2627 				    GEN6_GT_MODE,
2628 				    GEN6_WIZ_HASHING_MASK,
2629 				    GEN6_WIZ_HASHING_16x4);
2630 
2631 		/* WaDisable_RenderCache_OperationalFlush:snb */
2632 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2633 
2634 		/*
2635 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2636 		 * "If this bit is set, STCunit will have LRA as replacement
2637 		 *  policy. [...] This bit must be reset. LRA replacement
2638 		 *  policy is not supported."
2639 		 */
2640 		wa_masked_dis(wal,
2641 			      CACHE_MODE_0,
2642 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2643 	}
2644 
2645 	if (IS_GRAPHICS_VER(i915, 4, 6))
2646 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2647 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2648 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2649 		       /* XXX bit doesn't stick on Broadwater */
2650 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2651 
2652 	if (GRAPHICS_VER(i915) == 4)
2653 		/*
2654 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2655 		 * image. For as it is loaded, it is executed and the stored
2656 		 * address may no longer be valid, leading to a GPU hang.
2657 		 *
2658 		 * This imposes the requirement that userspace reload their
2659 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2660 		 * they are already accustomed to from before contexts were
2661 		 * enabled.
2662 		 */
2663 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2664 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2665 		       0 /* XXX bit doesn't stick on Broadwater */,
2666 		       true);
2667 }
2668 
2669 static void
2670 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2671 {
2672 	struct drm_i915_private *i915 = engine->i915;
2673 
2674 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2675 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2676 		wa_write(wal,
2677 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2678 			 1);
2679 	}
2680 	/* Wa_16018031267, Wa_16018063123 */
2681 	if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2682 		wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2683 				    XEHP_BLITTER_SCHEDULING_MODE_MASK,
2684 				    XEHP_BLITTER_ROUND_ROBIN_MODE);
2685 }
2686 
2687 static void
2688 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2689 {
2690 	/* boilerplate for any CCS engine workaround */
2691 }
2692 
2693 /*
2694  * The bspec performance guide has recommended MMIO tuning settings.  These
2695  * aren't truly "workarounds" but we want to program them with the same
2696  * workaround infrastructure to ensure that they're automatically added to
2697  * the GuC save/restore lists, re-applied at the right times, and checked for
2698  * any conflicting programming requested by real workarounds.
2699  *
2700  * Programming settings should be added here only if their registers are not
2701  * part of an engine's register state context.  If a register is part of a
2702  * context, then any tuning settings should be programmed in an appropriate
2703  * function invoked by __intel_engine_init_ctx_wa().
2704  */
2705 static void
2706 add_render_compute_tuning_settings(struct intel_gt *gt,
2707 				   struct i915_wa_list *wal)
2708 {
2709 	struct drm_i915_private *i915 = gt->i915;
2710 
2711 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2712 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2713 
2714 	/*
2715 	 * This tuning setting proves beneficial only on ATS-M designs; the
2716 	 * default "age based" setting is optimal on regular DG2 and other
2717 	 * platforms.
2718 	 */
2719 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2720 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2721 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2722 
2723 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55))
2724 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2725 }
2726 
2727 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2728 {
2729 	struct intel_gt *gt = engine->gt;
2730 	u32 mode;
2731 
2732 	if (!IS_DG2(gt->i915))
2733 		return;
2734 
2735 	/*
2736 	 * Wa_14019159160: This workaround, along with others, leads to
2737 	 * significant challenges in utilizing load balancing among the
2738 	 * CCS slices. Consequently, an architectural decision has been
2739 	 * made to completely disable automatic CCS load balancing.
2740 	 */
2741 	wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2742 
2743 	/*
2744 	 * After having disabled automatic load balancing we need to
2745 	 * assign all slices to a single CCS. We will call it CCS mode 1
2746 	 */
2747 	mode = intel_gt_apply_ccs_mode(gt);
2748 	wa_masked_en(wal, XEHP_CCS_MODE, mode);
2749 }
2750 
2751 /*
2752  * The workarounds in this function apply to shared registers in
2753  * the general render reset domain that aren't tied to a
2754  * specific engine.  Since all render+compute engines get reset
2755  * together, and the contents of these registers are lost during
2756  * the shared render domain reset, we'll define such workarounds
2757  * here and then add them to just a single RCS or CCS engine's
2758  * workaround list (whichever engine has the XXXX flag).
2759  */
2760 static void
2761 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2762 {
2763 	struct drm_i915_private *i915 = engine->i915;
2764 	struct intel_gt *gt = engine->gt;
2765 
2766 	add_render_compute_tuning_settings(gt, wal);
2767 
2768 	if (GRAPHICS_VER(i915) >= 11) {
2769 		/* This is not a Wa (although referred to as
2770 		 * WaSetInidrectStateOverride in places), this allows
2771 		 * applications that reference sampler states through
2772 		 * the BindlessSamplerStateBaseAddress to have their
2773 		 * border color relative to DynamicStateBaseAddress
2774 		 * rather than BindlessSamplerStateBaseAddress.
2775 		 *
2776 		 * Otherwise SAMPLER_STATE border colors have to be
2777 		 * copied in multiple heaps (DynamicStateBaseAddress &
2778 		 * BindlessSamplerStateBaseAddress)
2779 		 *
2780 		 * BSpec: 46052
2781 		 */
2782 		wa_mcr_masked_en(wal,
2783 				 GEN10_SAMPLER_MODE,
2784 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2785 	}
2786 
2787 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2788 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2789 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) {
2790 		/* Wa_14017856879 */
2791 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2792 
2793 		/* Wa_14020495402 */
2794 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING);
2795 	}
2796 
2797 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2798 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2799 		/*
2800 		 * Wa_14017066071
2801 		 * Wa_14017654203
2802 		 */
2803 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2804 				 MTL_DISABLE_SAMPLER_SC_OOO);
2805 
2806 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2807 		/* Wa_22015279794 */
2808 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2809 				 DISABLE_PREFETCH_INTO_IC);
2810 
2811 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2812 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2813 	    IS_DG2(i915)) {
2814 		/* Wa_22013037850 */
2815 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2816 				DISABLE_128B_EVICTION_COMMAND_UDW);
2817 
2818 		/* Wa_18017747507 */
2819 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2820 	}
2821 
2822 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2823 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2824 	    IS_DG2(i915)) {
2825 		/* Wa_22014226127 */
2826 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2827 	}
2828 
2829 	if (IS_DG2(i915)) {
2830 		/* Wa_14015227452:dg2,pvc */
2831 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2832 
2833 		/*
2834 		 * Wa_16011620976:dg2_g11
2835 		 * Wa_22015475538:dg2
2836 		 */
2837 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2838 
2839 		/* Wa_18028616096 */
2840 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2841 	}
2842 
2843 	if (IS_DG2_G11(i915)) {
2844 		/*
2845 		 * Wa_22012826095:dg2
2846 		 * Wa_22013059131:dg2
2847 		 */
2848 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2849 				     MAXREQS_PER_BANK,
2850 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2851 
2852 		/* Wa_22013059131:dg2 */
2853 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2854 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2855 
2856 		/*
2857 		 * Wa_22012654132
2858 		 *
2859 		 * Note that register 0xE420 is write-only and cannot be read
2860 		 * back for verification on DG2 (due to Wa_14012342262), so
2861 		 * we need to explicitly skip the readback.
2862 		 */
2863 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2864 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2865 			   0 /* write-only, so skip validation */,
2866 			   true);
2867 	}
2868 }
2869 
2870 static void
2871 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2872 {
2873 	if (GRAPHICS_VER(engine->i915) < 4)
2874 		return;
2875 
2876 	engine_fake_wa_init(engine, wal);
2877 
2878 	/*
2879 	 * These are common workarounds that just need to applied
2880 	 * to a single RCS/CCS engine's workaround list since
2881 	 * they're reset as part of the general render domain reset.
2882 	 */
2883 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
2884 		general_render_compute_wa_init(engine, wal);
2885 		ccs_engine_wa_mode(engine, wal);
2886 	}
2887 
2888 	if (engine->class == COMPUTE_CLASS)
2889 		ccs_engine_wa_init(engine, wal);
2890 	else if (engine->class == RENDER_CLASS)
2891 		rcs_engine_wa_init(engine, wal);
2892 	else
2893 		xcs_engine_wa_init(engine, wal);
2894 }
2895 
2896 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2897 {
2898 	struct i915_wa_list *wal = &engine->wa_list;
2899 
2900 	wa_init_start(wal, engine->gt, "engine", engine->name);
2901 	engine_init_workarounds(engine, wal);
2902 	wa_init_finish(wal);
2903 }
2904 
2905 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
2906 {
2907 	wa_list_apply(&engine->wa_list);
2908 }
2909 
2910 static const struct i915_range mcr_ranges_gen8[] = {
2911 	{ .start = 0x5500, .end = 0x55ff },
2912 	{ .start = 0x7000, .end = 0x7fff },
2913 	{ .start = 0x9400, .end = 0x97ff },
2914 	{ .start = 0xb000, .end = 0xb3ff },
2915 	{ .start = 0xe000, .end = 0xe7ff },
2916 	{},
2917 };
2918 
2919 static const struct i915_range mcr_ranges_gen12[] = {
2920 	{ .start =  0x8150, .end =  0x815f },
2921 	{ .start =  0x9520, .end =  0x955f },
2922 	{ .start =  0xb100, .end =  0xb3ff },
2923 	{ .start =  0xde80, .end =  0xe8ff },
2924 	{ .start = 0x24a00, .end = 0x24a7f },
2925 	{},
2926 };
2927 
2928 static const struct i915_range mcr_ranges_xehp[] = {
2929 	{ .start =  0x4000, .end =  0x4aff },
2930 	{ .start =  0x5200, .end =  0x52ff },
2931 	{ .start =  0x5400, .end =  0x7fff },
2932 	{ .start =  0x8140, .end =  0x815f },
2933 	{ .start =  0x8c80, .end =  0x8dff },
2934 	{ .start =  0x94d0, .end =  0x955f },
2935 	{ .start =  0x9680, .end =  0x96ff },
2936 	{ .start =  0xb000, .end =  0xb3ff },
2937 	{ .start =  0xc800, .end =  0xcfff },
2938 	{ .start =  0xd800, .end =  0xd8ff },
2939 	{ .start =  0xdc00, .end =  0xffff },
2940 	{ .start = 0x17000, .end = 0x17fff },
2941 	{ .start = 0x24a00, .end = 0x24a7f },
2942 	{},
2943 };
2944 
2945 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
2946 {
2947 	const struct i915_range *mcr_ranges;
2948 	int i;
2949 
2950 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
2951 		mcr_ranges = mcr_ranges_xehp;
2952 	else if (GRAPHICS_VER(i915) >= 12)
2953 		mcr_ranges = mcr_ranges_gen12;
2954 	else if (GRAPHICS_VER(i915) >= 8)
2955 		mcr_ranges = mcr_ranges_gen8;
2956 	else
2957 		return false;
2958 
2959 	/*
2960 	 * Registers in these ranges are affected by the MCR selector
2961 	 * which only controls CPU initiated MMIO. Routing does not
2962 	 * work for CS access so we cannot verify them on this path.
2963 	 */
2964 	for (i = 0; mcr_ranges[i].start; i++)
2965 		if (offset >= mcr_ranges[i].start &&
2966 		    offset <= mcr_ranges[i].end)
2967 			return true;
2968 
2969 	return false;
2970 }
2971 
2972 static int
2973 wa_list_srm(struct i915_request *rq,
2974 	    const struct i915_wa_list *wal,
2975 	    struct i915_vma *vma)
2976 {
2977 	struct drm_i915_private *i915 = rq->i915;
2978 	unsigned int i, count = 0;
2979 	const struct i915_wa *wa;
2980 	u32 srm, *cs;
2981 
2982 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
2983 	if (GRAPHICS_VER(i915) >= 8)
2984 		srm++;
2985 
2986 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
2987 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
2988 			count++;
2989 	}
2990 
2991 	cs = intel_ring_begin(rq, 4 * count);
2992 	if (IS_ERR(cs))
2993 		return PTR_ERR(cs);
2994 
2995 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
2996 		u32 offset = i915_mmio_reg_offset(wa->reg);
2997 
2998 		if (mcr_range(i915, offset))
2999 			continue;
3000 
3001 		*cs++ = srm;
3002 		*cs++ = offset;
3003 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3004 		*cs++ = 0;
3005 	}
3006 	intel_ring_advance(rq, cs);
3007 
3008 	return 0;
3009 }
3010 
3011 static int engine_wa_list_verify(struct intel_context *ce,
3012 				 const struct i915_wa_list * const wal,
3013 				 const char *from)
3014 {
3015 	const struct i915_wa *wa;
3016 	struct i915_request *rq;
3017 	struct i915_vma *vma;
3018 	struct i915_gem_ww_ctx ww;
3019 	unsigned int i;
3020 	u32 *results;
3021 	int err;
3022 
3023 	if (!wal->count)
3024 		return 0;
3025 
3026 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3027 					   wal->count * sizeof(u32));
3028 	if (IS_ERR(vma))
3029 		return PTR_ERR(vma);
3030 
3031 	intel_engine_pm_get(ce->engine);
3032 	i915_gem_ww_ctx_init(&ww, false);
3033 retry:
3034 	err = i915_gem_object_lock(vma->obj, &ww);
3035 	if (err == 0)
3036 		err = intel_context_pin_ww(ce, &ww);
3037 	if (err)
3038 		goto err_pm;
3039 
3040 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3041 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3042 	if (err)
3043 		goto err_unpin;
3044 
3045 	rq = i915_request_create(ce);
3046 	if (IS_ERR(rq)) {
3047 		err = PTR_ERR(rq);
3048 		goto err_vma;
3049 	}
3050 
3051 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3052 	if (err == 0)
3053 		err = wa_list_srm(rq, wal, vma);
3054 
3055 	i915_request_get(rq);
3056 	if (err)
3057 		i915_request_set_error_once(rq, err);
3058 	i915_request_add(rq);
3059 
3060 	if (err)
3061 		goto err_rq;
3062 
3063 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3064 		err = -ETIME;
3065 		goto err_rq;
3066 	}
3067 
3068 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3069 	if (IS_ERR(results)) {
3070 		err = PTR_ERR(results);
3071 		goto err_rq;
3072 	}
3073 
3074 	err = 0;
3075 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3076 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3077 			continue;
3078 
3079 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3080 			err = -ENXIO;
3081 	}
3082 
3083 	i915_gem_object_unpin_map(vma->obj);
3084 
3085 err_rq:
3086 	i915_request_put(rq);
3087 err_vma:
3088 	i915_vma_unpin(vma);
3089 err_unpin:
3090 	intel_context_unpin(ce);
3091 err_pm:
3092 	if (err == -EDEADLK) {
3093 		err = i915_gem_ww_ctx_backoff(&ww);
3094 		if (!err)
3095 			goto retry;
3096 	}
3097 	i915_gem_ww_ctx_fini(&ww);
3098 	intel_engine_pm_put(ce->engine);
3099 	i915_vma_put(vma);
3100 	return err;
3101 }
3102 
3103 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3104 				    const char *from)
3105 {
3106 	return engine_wa_list_verify(engine->kernel_context,
3107 				     &engine->wa_list,
3108 				     from);
3109 }
3110 
3111 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3112 #include "selftest_workarounds.c"
3113 #endif
3114