xref: /linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_print.h"
15 #include "intel_gt_regs.h"
16 #include "intel_ring.h"
17 #include "intel_workarounds.h"
18 
19 /**
20  * DOC: Hardware workarounds
21  *
22  * Hardware workarounds are register programming documented to be executed in
23  * the driver that fall outside of the normal programming sequences for a
24  * platform. There are some basic categories of workarounds, depending on
25  * how/when they are applied:
26  *
27  * - Context workarounds: workarounds that touch registers that are
28  *   saved/restored to/from the HW context image. The list is emitted (via Load
29  *   Register Immediate commands) once when initializing the device and saved in
30  *   the default context. That default context is then used on every context
31  *   creation to have a "primed golden context", i.e. a context image that
32  *   already contains the changes needed to all the registers.
33  *
34  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
35  *   variants respective to the targeted platforms.
36  *
37  * - Engine workarounds: the list of these WAs is applied whenever the specific
38  *   engine is reset. It's also possible that a set of engine classes share a
39  *   common power domain and they are reset together. This happens on some
40  *   platforms with render and compute engines. In this case (at least) one of
41  *   them need to keeep the workaround programming: the approach taken in the
42  *   driver is to tie those workarounds to the first compute/render engine that
43  *   is registered.  When executing with GuC submission, engine resets are
44  *   outside of kernel driver control, hence the list of registers involved in
45  *   written once, on engine initialization, and then passed to GuC, that
46  *   saves/restores their values before/after the reset takes place. See
47  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
48  *
49  *   Workarounds for registers specific to RCS and CCS should be implemented in
50  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
51  *   registers belonging to BCS, VCS or VECS should be implemented in
52  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
53  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
54  *   should be implemented in general_render_compute_wa_init().
55  *
56  * - GT workarounds: the list of these WAs is applied whenever these registers
57  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
58  *
59  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
60  *   variants respective to the targeted platforms.
61  *
62  * - Register whitelist: some workarounds need to be implemented in userspace,
63  *   but need to touch privileged registers. The whitelist in the kernel
64  *   instructs the hardware to allow the access to happen. From the kernel side,
65  *   this is just a special case of a MMIO workaround (as we write the list of
66  *   these to/be-whitelisted registers to some special HW registers).
67  *
68  *   Register whitelisting should be done in the \*_whitelist_build() variants
69  *   respective to the targeted platforms.
70  *
71  * - Workaround batchbuffers: buffers that get executed automatically by the
72  *   hardware on every HW context restore. These buffers are created and
73  *   programmed in the default context so the hardware always go through those
74  *   programming sequences when switching contexts. The support for workaround
75  *   batchbuffers is enabled these hardware mechanisms:
76  *
77  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
78  *      context, pointing the hardware to jump to that location when that offset
79  *      is reached in the context restore. Workaround batchbuffer in the driver
80  *      currently uses this mechanism for all platforms.
81  *
82  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
83  *      pointing the hardware to a buffer to continue executing after the
84  *      engine registers are restored in a context restore sequence. This is
85  *      currently not used in the driver.
86  *
87  * - Other:  There are WAs that, due to their nature, cannot be applied from a
88  *   central place. Those are peppered around the rest of the code, as needed.
89  *   Workarounds related to the display IP are the main example.
90  *
91  * .. [1] Technically, some registers are powercontext saved & restored, so they
92  *    survive a suspend/resume. In practice, writing them again is not too
93  *    costly and simplifies things, so it's the approach taken in the driver.
94  */
95 
96 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
97 			  const char *name, const char *engine_name)
98 {
99 	wal->gt = gt;
100 	wal->name = name;
101 	wal->engine_name = engine_name;
102 }
103 
104 #define WA_LIST_CHUNK (1 << 4)
105 
106 static void wa_init_finish(struct i915_wa_list *wal)
107 {
108 	/* Trim unused entries. */
109 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
110 		struct i915_wa *list = kmemdup(wal->list,
111 					       wal->count * sizeof(*list),
112 					       GFP_KERNEL);
113 
114 		if (list) {
115 			kfree(wal->list);
116 			wal->list = list;
117 		}
118 	}
119 
120 	if (!wal->count)
121 		return;
122 
123 	gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
124 	       wal->wa_count, wal->name, wal->engine_name);
125 }
126 
127 static enum forcewake_domains
128 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
129 {
130 	enum forcewake_domains fw = 0;
131 	struct i915_wa *wa;
132 	unsigned int i;
133 
134 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
135 		fw |= intel_uncore_forcewake_for_reg(uncore,
136 						     wa->reg,
137 						     FW_REG_READ |
138 						     FW_REG_WRITE);
139 
140 	return fw;
141 }
142 
143 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
144 {
145 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
146 	struct drm_i915_private *i915 = wal->gt->i915;
147 	unsigned int start = 0, end = wal->count;
148 	const unsigned int grow = WA_LIST_CHUNK;
149 	struct i915_wa *wa_;
150 
151 	GEM_BUG_ON(!is_power_of_2(grow));
152 
153 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
154 		struct i915_wa *list;
155 
156 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
157 				     GFP_KERNEL);
158 		if (!list) {
159 			drm_err(&i915->drm, "No space for workaround init!\n");
160 			return;
161 		}
162 
163 		if (wal->list) {
164 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
165 			kfree(wal->list);
166 		}
167 
168 		wal->list = list;
169 	}
170 
171 	while (start < end) {
172 		unsigned int mid = start + (end - start) / 2;
173 
174 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
175 			start = mid + 1;
176 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
177 			end = mid;
178 		} else {
179 			wa_ = &wal->list[mid];
180 
181 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
182 				drm_err(&i915->drm,
183 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
184 					i915_mmio_reg_offset(wa_->reg),
185 					wa_->clr, wa_->set);
186 
187 				wa_->set &= ~wa->clr;
188 			}
189 
190 			wal->wa_count++;
191 			wa_->set |= wa->set;
192 			wa_->clr |= wa->clr;
193 			wa_->read |= wa->read;
194 			return;
195 		}
196 	}
197 
198 	wal->wa_count++;
199 	wa_ = &wal->list[wal->count++];
200 	*wa_ = *wa;
201 
202 	while (wa_-- > wal->list) {
203 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
204 			   i915_mmio_reg_offset(wa_[1].reg));
205 		if (i915_mmio_reg_offset(wa_[1].reg) >
206 		    i915_mmio_reg_offset(wa_[0].reg))
207 			break;
208 
209 		swap(wa_[1], wa_[0]);
210 	}
211 }
212 
213 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
214 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
215 {
216 	struct i915_wa wa = {
217 		.reg  = reg,
218 		.clr  = clear,
219 		.set  = set,
220 		.read = read_mask,
221 		.masked_reg = masked_reg,
222 	};
223 
224 	_wa_add(wal, &wa);
225 }
226 
227 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
228 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
229 {
230 	struct i915_wa wa = {
231 		.mcr_reg = reg,
232 		.clr  = clear,
233 		.set  = set,
234 		.read = read_mask,
235 		.masked_reg = masked_reg,
236 		.is_mcr = 1,
237 	};
238 
239 	_wa_add(wal, &wa);
240 }
241 
242 static void
243 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
244 {
245 	wa_add(wal, reg, clear, set, clear | set, false);
246 }
247 
248 static void
249 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
250 {
251 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
252 }
253 
254 static void
255 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
256 {
257 	wa_write_clr_set(wal, reg, ~0, set);
258 }
259 
260 static void
261 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
262 {
263 	wa_mcr_write_clr_set(wal, reg, ~0, set);
264 }
265 
266 static void
267 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
268 {
269 	wa_write_clr_set(wal, reg, set, set);
270 }
271 
272 static void
273 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
274 {
275 	wa_mcr_write_clr_set(wal, reg, set, set);
276 }
277 
278 static void
279 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
280 {
281 	wa_write_clr_set(wal, reg, clr, 0);
282 }
283 
284 static void
285 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
286 {
287 	wa_mcr_write_clr_set(wal, reg, clr, 0);
288 }
289 
290 /*
291  * WA operations on "masked register". A masked register has the upper 16 bits
292  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
293  * portion of the register without a rmw: you simply write in the upper 16 bits
294  * the mask of bits you are going to modify.
295  *
296  * The wa_masked_* family of functions already does the necessary operations to
297  * calculate the mask based on the parameters passed, so user only has to
298  * provide the lower 16 bits of that register.
299  */
300 
301 static void
302 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
303 {
304 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
305 }
306 
307 static void
308 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
309 {
310 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
311 }
312 
313 static void
314 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
315 {
316 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
317 }
318 
319 static void
320 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
321 {
322 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
323 }
324 
325 static void
326 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
327 		    u32 mask, u32 val)
328 {
329 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
330 }
331 
332 static void
333 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
334 			u32 mask, u32 val)
335 {
336 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
337 }
338 
339 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
340 				      struct i915_wa_list *wal)
341 {
342 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
343 }
344 
345 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
346 				      struct i915_wa_list *wal)
347 {
348 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
349 }
350 
351 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
352 				      struct i915_wa_list *wal)
353 {
354 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
355 
356 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
357 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
358 
359 	/* WaDisablePartialInstShootdown:bdw,chv */
360 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
361 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
362 
363 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
364 	 * workaround for a possible hang in the unlikely event a TLB
365 	 * invalidation occurs during a PSD flush.
366 	 */
367 	/* WaForceEnableNonCoherent:bdw,chv */
368 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
369 	wa_masked_en(wal, HDC_CHICKEN0,
370 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
371 		     HDC_FORCE_NON_COHERENT);
372 
373 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
374 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
375 	 *  polygons in the same 8x4 pixel/sample area to be processed without
376 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
377 	 *  buffer."
378 	 *
379 	 * This optimization is off by default for BDW and CHV; turn it on.
380 	 */
381 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
382 
383 	/* Wa4x4STCOptimizationDisable:bdw,chv */
384 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
385 
386 	/*
387 	 * BSpec recommends 8x4 when MSAA is used,
388 	 * however in practice 16x4 seems fastest.
389 	 *
390 	 * Note that PS/WM thread counts depend on the WIZ hashing
391 	 * disable bit, which we don't touch here, but it's good
392 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
393 	 */
394 	wa_masked_field_set(wal, GEN7_GT_MODE,
395 			    GEN6_WIZ_HASHING_MASK,
396 			    GEN6_WIZ_HASHING_16x4);
397 }
398 
399 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
400 				     struct i915_wa_list *wal)
401 {
402 	struct drm_i915_private *i915 = engine->i915;
403 
404 	gen8_ctx_workarounds_init(engine, wal);
405 
406 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
407 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
408 
409 	/* WaDisableDopClockGating:bdw
410 	 *
411 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
412 	 * to disable EUTC clock gating.
413 	 */
414 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
415 			 DOP_CLOCK_GATING_DISABLE);
416 
417 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
418 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
419 
420 	wa_masked_en(wal, HDC_CHICKEN0,
421 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
422 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
423 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
424 		     (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
425 }
426 
427 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
428 				     struct i915_wa_list *wal)
429 {
430 	gen8_ctx_workarounds_init(engine, wal);
431 
432 	/* WaDisableThreadStallDopClockGating:chv */
433 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
434 
435 	/* Improve HiZ throughput on CHV. */
436 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
437 }
438 
439 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
440 				      struct i915_wa_list *wal)
441 {
442 	struct drm_i915_private *i915 = engine->i915;
443 
444 	if (HAS_LLC(i915)) {
445 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
446 		 *
447 		 * Must match Display Engine. See
448 		 * WaCompressedResourceDisplayNewHashMode.
449 		 */
450 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
451 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
452 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
453 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
454 	}
455 
456 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
457 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
458 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
459 			 FLOW_CONTROL_ENABLE |
460 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
461 
462 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
463 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
464 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
465 			 GEN9_ENABLE_YV12_BUGFIX |
466 			 GEN9_ENABLE_GPGPU_PREEMPTION);
467 
468 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
469 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
470 	wa_masked_en(wal, CACHE_MODE_1,
471 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
472 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
473 
474 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
475 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
476 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
477 
478 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
479 	wa_masked_en(wal, HDC_CHICKEN0,
480 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
481 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
482 
483 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
484 	 * both tied to WaForceContextSaveRestoreNonCoherent
485 	 * in some hsds for skl. We keep the tie for all gen9. The
486 	 * documentation is a bit hazy and so we want to get common behaviour,
487 	 * even though there is no clear evidence we would need both on kbl/bxt.
488 	 * This area has been source of system hangs so we play it safe
489 	 * and mimic the skl regardless of what bspec says.
490 	 *
491 	 * Use Force Non-Coherent whenever executing a 3D context. This
492 	 * is a workaround for a possible hang in the unlikely event
493 	 * a TLB invalidation occurs during a PSD flush.
494 	 */
495 
496 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
497 	wa_masked_en(wal, HDC_CHICKEN0,
498 		     HDC_FORCE_NON_COHERENT);
499 
500 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
501 	if (IS_SKYLAKE(i915) ||
502 	    IS_KABYLAKE(i915) ||
503 	    IS_COFFEELAKE(i915) ||
504 	    IS_COMETLAKE(i915))
505 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
506 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
507 
508 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
509 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
510 
511 	/*
512 	 * Supporting preemption with fine-granularity requires changes in the
513 	 * batch buffer programming. Since we can't break old userspace, we
514 	 * need to set our default preemption level to safe value. Userspace is
515 	 * still able to use more fine-grained preemption levels, since in
516 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
517 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
518 	 * not real HW workarounds, but merely a way to start using preemption
519 	 * while maintaining old contract with userspace.
520 	 */
521 
522 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
523 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
524 
525 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
526 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
527 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
528 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
529 
530 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
531 	if (IS_GEN9_LP(i915))
532 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
533 }
534 
535 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
536 				struct i915_wa_list *wal)
537 {
538 	struct intel_gt *gt = engine->gt;
539 	u8 vals[3] = { 0, 0, 0 };
540 	unsigned int i;
541 
542 	for (i = 0; i < 3; i++) {
543 		u8 ss;
544 
545 		/*
546 		 * Only consider slices where one, and only one, subslice has 7
547 		 * EUs
548 		 */
549 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
550 			continue;
551 
552 		/*
553 		 * subslice_7eu[i] != 0 (because of the check above) and
554 		 * ss_max == 4 (maximum number of subslices possible per slice)
555 		 *
556 		 * ->    0 <= ss <= 3;
557 		 */
558 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
559 		vals[i] = 3 - ss;
560 	}
561 
562 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
563 		return;
564 
565 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
566 	wa_masked_field_set(wal, GEN7_GT_MODE,
567 			    GEN9_IZ_HASHING_MASK(2) |
568 			    GEN9_IZ_HASHING_MASK(1) |
569 			    GEN9_IZ_HASHING_MASK(0),
570 			    GEN9_IZ_HASHING(2, vals[2]) |
571 			    GEN9_IZ_HASHING(1, vals[1]) |
572 			    GEN9_IZ_HASHING(0, vals[0]));
573 }
574 
575 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
576 				     struct i915_wa_list *wal)
577 {
578 	gen9_ctx_workarounds_init(engine, wal);
579 	skl_tune_iz_hashing(engine, wal);
580 }
581 
582 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
583 				     struct i915_wa_list *wal)
584 {
585 	gen9_ctx_workarounds_init(engine, wal);
586 
587 	/* WaDisableThreadStallDopClockGating:bxt */
588 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
589 			 STALL_DOP_GATING_DISABLE);
590 
591 	/* WaToEnableHwFixForPushConstHWBug:bxt */
592 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
593 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
594 }
595 
596 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
597 				     struct i915_wa_list *wal)
598 {
599 	struct drm_i915_private *i915 = engine->i915;
600 
601 	gen9_ctx_workarounds_init(engine, wal);
602 
603 	/* WaToEnableHwFixForPushConstHWBug:kbl */
604 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
605 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
606 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
607 
608 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
609 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
610 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
611 }
612 
613 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
614 				     struct i915_wa_list *wal)
615 {
616 	gen9_ctx_workarounds_init(engine, wal);
617 
618 	/* WaToEnableHwFixForPushConstHWBug:glk */
619 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
620 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
621 }
622 
623 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
624 				     struct i915_wa_list *wal)
625 {
626 	gen9_ctx_workarounds_init(engine, wal);
627 
628 	/* WaToEnableHwFixForPushConstHWBug:cfl */
629 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
630 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
631 
632 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
633 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
634 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
635 }
636 
637 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
638 				     struct i915_wa_list *wal)
639 {
640 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
641 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
642 
643 	/* WaForceEnableNonCoherent:icl
644 	 * This is not the same workaround as in early Gen9 platforms, where
645 	 * lacking this could cause system hangs, but coherency performance
646 	 * overhead is high and only a few compute workloads really need it
647 	 * (the register is whitelisted in hardware now, so UMDs can opt in
648 	 * for coherency if they have a good reason).
649 	 */
650 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
651 
652 	/* WaEnableFloatBlendOptimization:icl */
653 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
654 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
655 		   0 /* write-only, so skip validation */,
656 		   true);
657 
658 	/* WaDisableGPGPUMidThreadPreemption:icl */
659 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
660 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
661 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
662 
663 	/* allow headerless messages for preemptible GPGPU context */
664 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
665 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
666 
667 	/* Wa_1604278689:icl,ehl */
668 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
669 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
670 			 0,
671 			 0xFFFFFFFF);
672 
673 	/* Wa_1406306137:icl,ehl */
674 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
675 }
676 
677 /*
678  * These settings aren't actually workarounds, but general tuning settings that
679  * need to be programmed on dg2 platform.
680  */
681 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
682 				   struct i915_wa_list *wal)
683 {
684 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
685 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
686 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
687 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
688 			     FF_MODE2_TDS_TIMER_128);
689 }
690 
691 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
692 				       struct i915_wa_list *wal)
693 {
694 	struct drm_i915_private *i915 = engine->i915;
695 
696 	/*
697 	 * Wa_1409142259:tgl,dg1,adl-p
698 	 * Wa_1409347922:tgl,dg1,adl-p
699 	 * Wa_1409252684:tgl,dg1,adl-p
700 	 * Wa_1409217633:tgl,dg1,adl-p
701 	 * Wa_1409207793:tgl,dg1,adl-p
702 	 * Wa_1409178076:tgl,dg1,adl-p
703 	 * Wa_1408979724:tgl,dg1,adl-p
704 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
705 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
706 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
707 	 */
708 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
709 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
710 
711 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
712 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
713 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
714 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
715 
716 	/*
717 	 * Wa_16011163337 - GS_TIMER
718 	 *
719 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
720 	 * need to program it even on those that don't explicitly list that
721 	 * workaround.
722 	 *
723 	 * Note that the programming of GEN12_FF_MODE2 is further modified
724 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
725 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
726 	 * value when read from the CPU.
727 	 *
728 	 * The default value for this register is zero for all fields.
729 	 * So instead of doing a RMW we should just write the desired values
730 	 * for TDS and GS timers. Note that since the readback can't be trusted,
731 	 * the clear mask is just set to ~0 to make sure other bits are not
732 	 * inadvertently set. For the same reason read verification is ignored.
733 	 */
734 	wa_add(wal,
735 	       GEN12_FF_MODE2,
736 	       ~0,
737 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
738 	       0, false);
739 
740 	if (!IS_DG1(i915)) {
741 		/* Wa_1806527549 */
742 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
743 
744 		/* Wa_1606376872 */
745 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
746 	}
747 }
748 
749 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
750 				     struct i915_wa_list *wal)
751 {
752 	gen12_ctx_workarounds_init(engine, wal);
753 
754 	/* Wa_1409044764 */
755 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
756 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
757 
758 	/* Wa_22010493298 */
759 	wa_masked_en(wal, HIZ_CHICKEN,
760 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
761 }
762 
763 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
764 				     struct i915_wa_list *wal)
765 {
766 	dg2_ctx_gt_tuning_init(engine, wal);
767 
768 	/* Wa_16013271637:dg2 */
769 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
770 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
771 
772 	/* Wa_14014947963:dg2 */
773 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
774 
775 	/* Wa_18018764978:dg2 */
776 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
777 
778 	/* Wa_18019271663:dg2 */
779 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
780 }
781 
782 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
783 				     struct i915_wa_list *wal)
784 {
785 	struct intel_gt *gt = engine->gt;
786 
787 	dg2_ctx_gt_tuning_init(engine, wal);
788 
789 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
790 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER))
791 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
792 }
793 
794 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
795 				       struct i915_wa_list *wal)
796 {
797 	struct intel_gt *gt = engine->gt;
798 
799 	xelpg_ctx_gt_tuning_init(engine, wal);
800 
801 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
802 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
803 		/* Wa_14014947963 */
804 		wa_masked_field_set(wal, VF_PREEMPTION,
805 				    PREEMPTION_VERTEX_COUNT, 0x4000);
806 
807 		/* Wa_16013271637 */
808 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
809 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
810 
811 		/* Wa_18019627453 */
812 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
813 
814 		/* Wa_18018764978 */
815 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
816 	}
817 
818 	/* Wa_18019271663 */
819 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
820 }
821 
822 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
823 					 struct i915_wa_list *wal)
824 {
825 	/*
826 	 * This is a "fake" workaround defined by software to ensure we
827 	 * maintain reliable, backward-compatible behavior for userspace with
828 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
829 	 *
830 	 * The per-context setting of MI_MODE[12] determines whether the bits
831 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
832 	 * in the traditional manner or whether they should instead use a new
833 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
834 	 * into 3rd-level batchbuffers.  When this new capability was first
835 	 * added in TGL, it remained off by default unless a context
836 	 * intentionally opted in to the new behavior.  However Xe_HPG now
837 	 * flips this on by default and requires that we explicitly opt out if
838 	 * we don't want the new behavior.
839 	 *
840 	 * From a SW perspective, we want to maintain the backward-compatible
841 	 * behavior for userspace, so we'll apply a fake workaround to set it
842 	 * back to the legacy behavior on platforms where the hardware default
843 	 * is to break compatibility.  At the moment there is no Linux
844 	 * userspace that utilizes third-level batchbuffers, so this will avoid
845 	 * userspace from needing to make any changes.  using the legacy
846 	 * meaning is the correct thing to do.  If/when we have userspace
847 	 * consumers that want to utilize third-level batch nesting, we can
848 	 * provide a context parameter to allow them to opt-in.
849 	 */
850 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
851 }
852 
853 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
854 				   struct i915_wa_list *wal)
855 {
856 	u8 mocs;
857 
858 	/*
859 	 * Some blitter commands do not have a field for MOCS, those
860 	 * commands will use MOCS index pointed by BLIT_CCTL.
861 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
862 	 */
863 	if (engine->class == COPY_ENGINE_CLASS) {
864 		mocs = engine->gt->mocs.uc_index;
865 		wa_write_clr_set(wal,
866 				 BLIT_CCTL(engine->mmio_base),
867 				 BLIT_CCTL_MASK,
868 				 BLIT_CCTL_MOCS(mocs, mocs));
869 	}
870 }
871 
872 /*
873  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
874  * defined by the hardware team, but it programming general context registers.
875  * Adding those context register programming in context workaround
876  * allow us to use the wa framework for proper application and validation.
877  */
878 static void
879 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
880 			  struct i915_wa_list *wal)
881 {
882 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
883 		fakewa_disable_nestedbb_mode(engine, wal);
884 
885 	gen12_ctx_gt_mocs_init(engine, wal);
886 }
887 
888 static void
889 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
890 			   struct i915_wa_list *wal,
891 			   const char *name)
892 {
893 	struct drm_i915_private *i915 = engine->i915;
894 
895 	wa_init_start(wal, engine->gt, name, engine->name);
896 
897 	/* Applies to all engines */
898 	/*
899 	 * Fake workarounds are not the actual workaround but
900 	 * programming of context registers using workaround framework.
901 	 */
902 	if (GRAPHICS_VER(i915) >= 12)
903 		gen12_ctx_gt_fake_wa_init(engine, wal);
904 
905 	if (engine->class != RENDER_CLASS)
906 		goto done;
907 
908 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 71)))
909 		xelpg_ctx_workarounds_init(engine, wal);
910 	else if (IS_PONTEVECCHIO(i915))
911 		; /* noop; none at this time */
912 	else if (IS_DG2(i915))
913 		dg2_ctx_workarounds_init(engine, wal);
914 	else if (IS_XEHPSDV(i915))
915 		; /* noop; none at this time */
916 	else if (IS_DG1(i915))
917 		dg1_ctx_workarounds_init(engine, wal);
918 	else if (GRAPHICS_VER(i915) == 12)
919 		gen12_ctx_workarounds_init(engine, wal);
920 	else if (GRAPHICS_VER(i915) == 11)
921 		icl_ctx_workarounds_init(engine, wal);
922 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
923 		cfl_ctx_workarounds_init(engine, wal);
924 	else if (IS_GEMINILAKE(i915))
925 		glk_ctx_workarounds_init(engine, wal);
926 	else if (IS_KABYLAKE(i915))
927 		kbl_ctx_workarounds_init(engine, wal);
928 	else if (IS_BROXTON(i915))
929 		bxt_ctx_workarounds_init(engine, wal);
930 	else if (IS_SKYLAKE(i915))
931 		skl_ctx_workarounds_init(engine, wal);
932 	else if (IS_CHERRYVIEW(i915))
933 		chv_ctx_workarounds_init(engine, wal);
934 	else if (IS_BROADWELL(i915))
935 		bdw_ctx_workarounds_init(engine, wal);
936 	else if (GRAPHICS_VER(i915) == 7)
937 		gen7_ctx_workarounds_init(engine, wal);
938 	else if (GRAPHICS_VER(i915) == 6)
939 		gen6_ctx_workarounds_init(engine, wal);
940 	else if (GRAPHICS_VER(i915) < 8)
941 		;
942 	else
943 		MISSING_CASE(GRAPHICS_VER(i915));
944 
945 done:
946 	wa_init_finish(wal);
947 }
948 
949 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
950 {
951 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
952 }
953 
954 int intel_engine_emit_ctx_wa(struct i915_request *rq)
955 {
956 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
957 	struct intel_uncore *uncore = rq->engine->uncore;
958 	enum forcewake_domains fw;
959 	unsigned long flags;
960 	struct i915_wa *wa;
961 	unsigned int i;
962 	u32 *cs;
963 	int ret;
964 
965 	if (wal->count == 0)
966 		return 0;
967 
968 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
969 	if (ret)
970 		return ret;
971 
972 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
973 	if (IS_ERR(cs))
974 		return PTR_ERR(cs);
975 
976 	fw = wal_get_fw_for_rmw(uncore, wal);
977 
978 	intel_gt_mcr_lock(wal->gt, &flags);
979 	spin_lock(&uncore->lock);
980 	intel_uncore_forcewake_get__locked(uncore, fw);
981 
982 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
983 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
984 		u32 val;
985 
986 		/* Skip reading the register if it's not really needed */
987 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
988 			val = wa->set;
989 		} else {
990 			val = wa->is_mcr ?
991 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
992 				intel_uncore_read_fw(uncore, wa->reg);
993 			val &= ~wa->clr;
994 			val |= wa->set;
995 		}
996 
997 		*cs++ = i915_mmio_reg_offset(wa->reg);
998 		*cs++ = val;
999 	}
1000 	*cs++ = MI_NOOP;
1001 
1002 	intel_uncore_forcewake_put__locked(uncore, fw);
1003 	spin_unlock(&uncore->lock);
1004 	intel_gt_mcr_unlock(wal->gt, flags);
1005 
1006 	intel_ring_advance(rq, cs);
1007 
1008 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1009 	if (ret)
1010 		return ret;
1011 
1012 	return 0;
1013 }
1014 
1015 static void
1016 gen4_gt_workarounds_init(struct intel_gt *gt,
1017 			 struct i915_wa_list *wal)
1018 {
1019 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1020 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1021 }
1022 
1023 static void
1024 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1025 {
1026 	gen4_gt_workarounds_init(gt, wal);
1027 
1028 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1029 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1030 }
1031 
1032 static void
1033 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1034 {
1035 	g4x_gt_workarounds_init(gt, wal);
1036 
1037 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1038 }
1039 
1040 static void
1041 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1042 {
1043 }
1044 
1045 static void
1046 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1047 {
1048 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1049 	wa_masked_dis(wal,
1050 		      GEN7_COMMON_SLICE_CHICKEN1,
1051 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1052 
1053 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1054 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1055 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1056 
1057 	/* WaForceL3Serialization:ivb */
1058 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1059 }
1060 
1061 static void
1062 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1063 {
1064 	/* WaForceL3Serialization:vlv */
1065 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1066 
1067 	/*
1068 	 * WaIncreaseL3CreditsForVLVB0:vlv
1069 	 * This is the hardware default actually.
1070 	 */
1071 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1072 }
1073 
1074 static void
1075 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1076 {
1077 	/* L3 caching of data atomics doesn't work -- disable it. */
1078 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1079 
1080 	wa_add(wal,
1081 	       HSW_ROW_CHICKEN3, 0,
1082 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1083 	       0 /* XXX does this reg exist? */, true);
1084 
1085 	/* WaVSRefCountFullforceMissDisable:hsw */
1086 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1087 }
1088 
1089 static void
1090 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1091 {
1092 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1093 	unsigned int slice, subslice;
1094 	u32 mcr, mcr_mask;
1095 
1096 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1097 
1098 	/*
1099 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1100 	 * Before any MMIO read into slice/subslice specific registers, MCR
1101 	 * packet control register needs to be programmed to point to any
1102 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1103 	 * This means each subsequent MMIO read will be forwarded to an
1104 	 * specific s/ss combination, but this is OK since these registers
1105 	 * are consistent across s/ss in almost all cases. In the rare
1106 	 * occasions, such as INSTDONE, where this value is dependent
1107 	 * on s/ss combo, the read should be done with read_subslice_reg.
1108 	 */
1109 	slice = ffs(sseu->slice_mask) - 1;
1110 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1111 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1112 	GEM_BUG_ON(!subslice);
1113 	subslice--;
1114 
1115 	/*
1116 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1117 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1118 	 */
1119 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1120 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1121 
1122 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1123 
1124 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1125 }
1126 
1127 static void
1128 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1129 {
1130 	struct drm_i915_private *i915 = gt->i915;
1131 
1132 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1133 	gen9_wa_init_mcr(i915, wal);
1134 
1135 	/* WaDisableKillLogic:bxt,skl,kbl */
1136 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1137 		wa_write_or(wal,
1138 			    GAM_ECOCHK,
1139 			    ECOCHK_DIS_TLB);
1140 
1141 	if (HAS_LLC(i915)) {
1142 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1143 		 *
1144 		 * Must match Display Engine. See
1145 		 * WaCompressedResourceDisplayNewHashMode.
1146 		 */
1147 		wa_write_or(wal,
1148 			    MMCD_MISC_CTRL,
1149 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1150 	}
1151 
1152 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1153 	wa_write_or(wal,
1154 		    GAM_ECOCHK,
1155 		    BDW_DISABLE_HDC_INVALIDATION);
1156 }
1157 
1158 static void
1159 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1160 {
1161 	gen9_gt_workarounds_init(gt, wal);
1162 
1163 	/* WaDisableGafsUnitClkGating:skl */
1164 	wa_write_or(wal,
1165 		    GEN7_UCGCTL4,
1166 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1167 
1168 	/* WaInPlaceDecompressionHang:skl */
1169 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1170 		wa_write_or(wal,
1171 			    GEN9_GAMT_ECO_REG_RW_IA,
1172 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1173 }
1174 
1175 static void
1176 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1177 {
1178 	gen9_gt_workarounds_init(gt, wal);
1179 
1180 	/* WaDisableDynamicCreditSharing:kbl */
1181 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1182 		wa_write_or(wal,
1183 			    GAMT_CHKN_BIT_REG,
1184 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1185 
1186 	/* WaDisableGafsUnitClkGating:kbl */
1187 	wa_write_or(wal,
1188 		    GEN7_UCGCTL4,
1189 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1190 
1191 	/* WaInPlaceDecompressionHang:kbl */
1192 	wa_write_or(wal,
1193 		    GEN9_GAMT_ECO_REG_RW_IA,
1194 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1195 }
1196 
1197 static void
1198 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1199 {
1200 	gen9_gt_workarounds_init(gt, wal);
1201 }
1202 
1203 static void
1204 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1205 {
1206 	gen9_gt_workarounds_init(gt, wal);
1207 
1208 	/* WaDisableGafsUnitClkGating:cfl */
1209 	wa_write_or(wal,
1210 		    GEN7_UCGCTL4,
1211 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1212 
1213 	/* WaInPlaceDecompressionHang:cfl */
1214 	wa_write_or(wal,
1215 		    GEN9_GAMT_ECO_REG_RW_IA,
1216 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1217 }
1218 
1219 static void __set_mcr_steering(struct i915_wa_list *wal,
1220 			       i915_reg_t steering_reg,
1221 			       unsigned int slice, unsigned int subslice)
1222 {
1223 	u32 mcr, mcr_mask;
1224 
1225 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1226 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1227 
1228 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1229 }
1230 
1231 static void debug_dump_steering(struct intel_gt *gt)
1232 {
1233 	struct drm_printer p = drm_debug_printer("MCR Steering:");
1234 
1235 	if (drm_debug_enabled(DRM_UT_DRIVER))
1236 		intel_gt_mcr_report_steering(&p, gt, false);
1237 }
1238 
1239 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1240 			 unsigned int slice, unsigned int subslice)
1241 {
1242 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1243 
1244 	gt->default_steering.groupid = slice;
1245 	gt->default_steering.instanceid = subslice;
1246 
1247 	debug_dump_steering(gt);
1248 }
1249 
1250 static void
1251 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1252 {
1253 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1254 	unsigned int subslice;
1255 
1256 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1257 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1258 
1259 	/*
1260 	 * Although a platform may have subslices, we need to always steer
1261 	 * reads to the lowest instance that isn't fused off.  When Render
1262 	 * Power Gating is enabled, grabbing forcewake will only power up a
1263 	 * single subslice (the "minconfig") if there isn't a real workload
1264 	 * that needs to be run; this means that if we steer register reads to
1265 	 * one of the higher subslices, we run the risk of reading back 0's or
1266 	 * random garbage.
1267 	 */
1268 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1269 
1270 	/*
1271 	 * If the subslice we picked above also steers us to a valid L3 bank,
1272 	 * then we can just rely on the default steering and won't need to
1273 	 * worry about explicitly re-steering L3BANK reads later.
1274 	 */
1275 	if (gt->info.l3bank_mask & BIT(subslice))
1276 		gt->steering_table[L3BANK] = NULL;
1277 
1278 	__add_mcr_wa(gt, wal, 0, subslice);
1279 }
1280 
1281 static void
1282 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1283 {
1284 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1285 	unsigned long slice, subslice = 0, slice_mask = 0;
1286 	u32 lncf_mask = 0;
1287 	int i;
1288 
1289 	/*
1290 	 * On Xe_HP the steering increases in complexity. There are now several
1291 	 * more units that require steering and we're not guaranteed to be able
1292 	 * to find a common setting for all of them. These are:
1293 	 * - GSLICE (fusable)
1294 	 * - DSS (sub-unit within gslice; fusable)
1295 	 * - L3 Bank (fusable)
1296 	 * - MSLICE (fusable)
1297 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1298 	 *
1299 	 * We'll do our default/implicit steering based on GSLICE (in the
1300 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1301 	 * find overlap between the valid MSLICE and/or LNCF values with
1302 	 * a suitable GSLICE, then we can just re-use the default value and
1303 	 * skip and explicit steering at runtime.
1304 	 *
1305 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1306 	 * a valid sliceid value.  DSS steering is the only type of steering
1307 	 * that utilizes the 'subsliceid' bits.
1308 	 *
1309 	 * Also note that, even though the steering domain is called "GSlice"
1310 	 * and it is encoded in the register using the gslice format, the spec
1311 	 * says that the combined (geometry | compute) fuse should be used to
1312 	 * select the steering.
1313 	 */
1314 
1315 	/* Find the potential gslice candidates */
1316 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1317 						       GEN_DSS_PER_GSLICE);
1318 
1319 	/*
1320 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1321 	 * mslice is fine.
1322 	 */
1323 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1324 		lncf_mask |= (0x3 << (i * 2));
1325 
1326 	/*
1327 	 * Are there any sliceid values that work for both GSLICE and LNCF
1328 	 * steering?
1329 	 */
1330 	if (slice_mask & lncf_mask) {
1331 		slice_mask &= lncf_mask;
1332 		gt->steering_table[LNCF] = NULL;
1333 	}
1334 
1335 	/* How about sliceid values that also work for MSLICE steering? */
1336 	if (slice_mask & gt->info.mslice_mask) {
1337 		slice_mask &= gt->info.mslice_mask;
1338 		gt->steering_table[MSLICE] = NULL;
1339 	}
1340 
1341 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1342 		gt->steering_table[GAM] = NULL;
1343 
1344 	slice = __ffs(slice_mask);
1345 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1346 		GEN_DSS_PER_GSLICE;
1347 
1348 	__add_mcr_wa(gt, wal, slice, subslice);
1349 
1350 	/*
1351 	 * SQIDI ranges are special because they use different steering
1352 	 * registers than everything else we work with.  On XeHP SDV and
1353 	 * DG2-G10, any value in the steering registers will work fine since
1354 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1355 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1356 	 * we'll just steer to a hardcoded "2" since that value will work
1357 	 * everywhere.
1358 	 */
1359 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1360 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1361 
1362 	/*
1363 	 * On DG2, GAM registers have a dedicated steering control register
1364 	 * and must always be programmed to a hardcoded groupid of "1."
1365 	 */
1366 	if (IS_DG2(gt->i915))
1367 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1368 }
1369 
1370 static void
1371 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1372 {
1373 	unsigned int dss;
1374 
1375 	/*
1376 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1377 	 * non-fused-off DSS.  All other types of MCR registers will be
1378 	 * explicitly steered.
1379 	 */
1380 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1381 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1382 }
1383 
1384 static void
1385 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1386 {
1387 	struct drm_i915_private *i915 = gt->i915;
1388 
1389 	icl_wa_init_mcr(gt, wal);
1390 
1391 	/* WaModifyGamTlbPartitioning:icl */
1392 	wa_write_clr_set(wal,
1393 			 GEN11_GACB_PERF_CTRL,
1394 			 GEN11_HASH_CTRL_MASK,
1395 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1396 
1397 	/* Wa_1405766107:icl
1398 	 * Formerly known as WaCL2SFHalfMaxAlloc
1399 	 */
1400 	wa_write_or(wal,
1401 		    GEN11_LSN_UNSLCVC,
1402 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1403 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1404 
1405 	/* Wa_220166154:icl
1406 	 * Formerly known as WaDisCtxReload
1407 	 */
1408 	wa_write_or(wal,
1409 		    GEN8_GAMW_ECO_DEV_RW_IA,
1410 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1411 
1412 	/* Wa_1406463099:icl
1413 	 * Formerly known as WaGamTlbPendError
1414 	 */
1415 	wa_write_or(wal,
1416 		    GAMT_CHKN_BIT_REG,
1417 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1418 
1419 	/*
1420 	 * Wa_1408615072:icl,ehl  (vsunit)
1421 	 * Wa_1407596294:icl,ehl  (hsunit)
1422 	 */
1423 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1424 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1425 
1426 	/* Wa_1407352427:icl,ehl */
1427 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1428 		    PSDUNIT_CLKGATE_DIS);
1429 
1430 	/* Wa_1406680159:icl,ehl */
1431 	wa_mcr_write_or(wal,
1432 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1433 			GWUNIT_CLKGATE_DIS);
1434 
1435 	/* Wa_1607087056:icl,ehl,jsl */
1436 	if (IS_ICELAKE(i915) ||
1437 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1438 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1439 		wa_write_or(wal,
1440 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1441 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1442 
1443 	/*
1444 	 * This is not a documented workaround, but rather an optimization
1445 	 * to reduce sampler power.
1446 	 */
1447 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1448 }
1449 
1450 /*
1451  * Though there are per-engine instances of these registers,
1452  * they retain their value through engine resets and should
1453  * only be provided on the GT workaround list rather than
1454  * the engine-specific workaround list.
1455  */
1456 static void
1457 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1458 {
1459 	struct intel_engine_cs *engine;
1460 	int id;
1461 
1462 	for_each_engine(engine, gt, id) {
1463 		if (engine->class != VIDEO_DECODE_CLASS ||
1464 		    (engine->instance % 2))
1465 			continue;
1466 
1467 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1468 			    IECPUNIT_CLKGATE_DIS);
1469 	}
1470 }
1471 
1472 static void
1473 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1474 {
1475 	icl_wa_init_mcr(gt, wal);
1476 
1477 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1478 	wa_14011060649(gt, wal);
1479 
1480 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1481 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1482 
1483 	/*
1484 	 * Wa_14015795083
1485 	 *
1486 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1487 	 * preventing i915 from modifying it for this workaround.  Skip the
1488 	 * readback verification for this workaround on debug builds; if the
1489 	 * workaround doesn't stick due to firmware behavior, it's not an error
1490 	 * that we want CI to flag.
1491 	 */
1492 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1493 	       0, 0, false);
1494 }
1495 
1496 static void
1497 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1498 {
1499 	gen12_gt_workarounds_init(gt, wal);
1500 
1501 	/* Wa_1409420604:dg1 */
1502 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1503 			CPSSUNIT_CLKGATE_DIS);
1504 
1505 	/* Wa_1408615072:dg1 */
1506 	/* Empirical testing shows this register is unaffected by engine reset. */
1507 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1508 }
1509 
1510 static void
1511 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1512 {
1513 	struct drm_i915_private *i915 = gt->i915;
1514 
1515 	xehp_init_mcr(gt, wal);
1516 
1517 	/* Wa_1409757795:xehpsdv */
1518 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1519 
1520 	/* Wa_18011725039:xehpsdv */
1521 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1522 		wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1523 		wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1524 	}
1525 
1526 	/* Wa_16011155590:xehpsdv */
1527 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1528 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1529 			    TSGUNIT_CLKGATE_DIS);
1530 
1531 	/* Wa_14011780169:xehpsdv */
1532 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1533 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1534 			    GAMTLBVDBOX7_CLKGATE_DIS |
1535 			    GAMTLBVDBOX6_CLKGATE_DIS |
1536 			    GAMTLBVDBOX5_CLKGATE_DIS |
1537 			    GAMTLBVDBOX4_CLKGATE_DIS |
1538 			    GAMTLBVDBOX3_CLKGATE_DIS |
1539 			    GAMTLBVDBOX2_CLKGATE_DIS |
1540 			    GAMTLBVDBOX1_CLKGATE_DIS |
1541 			    GAMTLBVDBOX0_CLKGATE_DIS |
1542 			    GAMTLBKCR_CLKGATE_DIS |
1543 			    GAMTLBGUC_CLKGATE_DIS |
1544 			    GAMTLBBLT_CLKGATE_DIS);
1545 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1546 			    GAMTLBGFXA1_CLKGATE_DIS |
1547 			    GAMTLBCOMPA0_CLKGATE_DIS |
1548 			    GAMTLBCOMPA1_CLKGATE_DIS |
1549 			    GAMTLBCOMPB0_CLKGATE_DIS |
1550 			    GAMTLBCOMPB1_CLKGATE_DIS |
1551 			    GAMTLBCOMPC0_CLKGATE_DIS |
1552 			    GAMTLBCOMPC1_CLKGATE_DIS |
1553 			    GAMTLBCOMPD0_CLKGATE_DIS |
1554 			    GAMTLBCOMPD1_CLKGATE_DIS |
1555 			    GAMTLBMERT_CLKGATE_DIS   |
1556 			    GAMTLBVEBOX3_CLKGATE_DIS |
1557 			    GAMTLBVEBOX2_CLKGATE_DIS |
1558 			    GAMTLBVEBOX1_CLKGATE_DIS |
1559 			    GAMTLBVEBOX0_CLKGATE_DIS);
1560 	}
1561 
1562 	/* Wa_16012725990:xehpsdv */
1563 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1564 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1565 
1566 	/* Wa_14011060649:xehpsdv */
1567 	wa_14011060649(gt, wal);
1568 
1569 	/* Wa_14012362059:xehpsdv */
1570 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1571 
1572 	/* Wa_14014368820:xehpsdv */
1573 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1574 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1575 
1576 	/* Wa_14010670810:xehpsdv */
1577 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1578 }
1579 
1580 static void
1581 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1582 {
1583 	xehp_init_mcr(gt, wal);
1584 
1585 	/* Wa_14011060649:dg2 */
1586 	wa_14011060649(gt, wal);
1587 
1588 	if (IS_DG2_G10(gt->i915)) {
1589 		/* Wa_22010523718:dg2 */
1590 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1591 			    CG3DDISCFEG_CLKGATE_DIS);
1592 
1593 		/* Wa_14011006942:dg2 */
1594 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1595 				DSS_ROUTER_CLKGATE_DIS);
1596 	}
1597 
1598 	/* Wa_14014830051:dg2 */
1599 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1600 
1601 	/*
1602 	 * Wa_14015795083
1603 	 * Skip verification for possibly locked register.
1604 	 */
1605 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1606 	       0, 0, false);
1607 
1608 	/* Wa_18018781329 */
1609 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1610 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1611 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1612 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1613 
1614 	/* Wa_1509235366:dg2 */
1615 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1616 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1617 
1618 	/* Wa_14010648519:dg2 */
1619 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1620 }
1621 
1622 static void
1623 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1624 {
1625 	pvc_init_mcr(gt, wal);
1626 
1627 	/* Wa_14015795083 */
1628 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1629 
1630 	/* Wa_18018781329 */
1631 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1632 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1633 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1634 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1635 
1636 	/* Wa_16016694945 */
1637 	wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1638 }
1639 
1640 static void
1641 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1642 {
1643 	/* Wa_14018778641 / Wa_18018781329 */
1644 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1645 
1646 	/* Wa_22016670082 */
1647 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1648 
1649 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1650 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1651 		/* Wa_14014830051 */
1652 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1653 
1654 		/* Wa_14015795083 */
1655 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1656 	}
1657 
1658 	/*
1659 	 * Unlike older platforms, we no longer setup implicit steering here;
1660 	 * all MCR accesses are explicitly steered.
1661 	 */
1662 	debug_dump_steering(gt);
1663 }
1664 
1665 static void
1666 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1667 {
1668 	/*
1669 	 * Wa_14018778641
1670 	 * Wa_18018781329
1671 	 *
1672 	 * Note that although these registers are MCR on the primary
1673 	 * GT, the media GT's versions are regular singleton registers.
1674 	 */
1675 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1676 
1677 	debug_dump_steering(gt);
1678 }
1679 
1680 /*
1681  * The bspec performance guide has recommended MMIO tuning settings.  These
1682  * aren't truly "workarounds" but we want to program them through the
1683  * workaround infrastructure to make sure they're (re)applied at the proper
1684  * times.
1685  *
1686  * The programming in this function is for settings that persist through
1687  * engine resets and also are not part of any engine's register state context.
1688  * I.e., settings that only need to be re-applied in the event of a full GT
1689  * reset.
1690  */
1691 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1692 {
1693 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71))) {
1694 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1695 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1696 	}
1697 
1698 	if (IS_PONTEVECCHIO(gt->i915)) {
1699 		wa_mcr_write(wal, XEHPC_L3SCRUB,
1700 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1701 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1702 	}
1703 
1704 	if (IS_DG2(gt->i915)) {
1705 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1706 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1707 	}
1708 }
1709 
1710 static void
1711 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1712 {
1713 	struct drm_i915_private *i915 = gt->i915;
1714 
1715 	gt_tuning_settings(gt, wal);
1716 
1717 	if (gt->type == GT_MEDIA) {
1718 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1719 			xelpmp_gt_workarounds_init(gt, wal);
1720 		else
1721 			MISSING_CASE(MEDIA_VER_FULL(i915));
1722 
1723 		return;
1724 	}
1725 
1726 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)))
1727 		xelpg_gt_workarounds_init(gt, wal);
1728 	else if (IS_PONTEVECCHIO(i915))
1729 		pvc_gt_workarounds_init(gt, wal);
1730 	else if (IS_DG2(i915))
1731 		dg2_gt_workarounds_init(gt, wal);
1732 	else if (IS_XEHPSDV(i915))
1733 		xehpsdv_gt_workarounds_init(gt, wal);
1734 	else if (IS_DG1(i915))
1735 		dg1_gt_workarounds_init(gt, wal);
1736 	else if (GRAPHICS_VER(i915) == 12)
1737 		gen12_gt_workarounds_init(gt, wal);
1738 	else if (GRAPHICS_VER(i915) == 11)
1739 		icl_gt_workarounds_init(gt, wal);
1740 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1741 		cfl_gt_workarounds_init(gt, wal);
1742 	else if (IS_GEMINILAKE(i915))
1743 		glk_gt_workarounds_init(gt, wal);
1744 	else if (IS_KABYLAKE(i915))
1745 		kbl_gt_workarounds_init(gt, wal);
1746 	else if (IS_BROXTON(i915))
1747 		gen9_gt_workarounds_init(gt, wal);
1748 	else if (IS_SKYLAKE(i915))
1749 		skl_gt_workarounds_init(gt, wal);
1750 	else if (IS_HASWELL(i915))
1751 		hsw_gt_workarounds_init(gt, wal);
1752 	else if (IS_VALLEYVIEW(i915))
1753 		vlv_gt_workarounds_init(gt, wal);
1754 	else if (IS_IVYBRIDGE(i915))
1755 		ivb_gt_workarounds_init(gt, wal);
1756 	else if (GRAPHICS_VER(i915) == 6)
1757 		snb_gt_workarounds_init(gt, wal);
1758 	else if (GRAPHICS_VER(i915) == 5)
1759 		ilk_gt_workarounds_init(gt, wal);
1760 	else if (IS_G4X(i915))
1761 		g4x_gt_workarounds_init(gt, wal);
1762 	else if (GRAPHICS_VER(i915) == 4)
1763 		gen4_gt_workarounds_init(gt, wal);
1764 	else if (GRAPHICS_VER(i915) <= 8)
1765 		;
1766 	else
1767 		MISSING_CASE(GRAPHICS_VER(i915));
1768 }
1769 
1770 void intel_gt_init_workarounds(struct intel_gt *gt)
1771 {
1772 	struct i915_wa_list *wal = &gt->wa_list;
1773 
1774 	wa_init_start(wal, gt, "GT", "global");
1775 	gt_init_workarounds(gt, wal);
1776 	wa_init_finish(wal);
1777 }
1778 
1779 static bool
1780 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1781 	  const char *name, const char *from)
1782 {
1783 	if ((cur ^ wa->set) & wa->read) {
1784 		gt_err(gt,
1785 		       "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1786 		       name, from, i915_mmio_reg_offset(wa->reg),
1787 		       cur, cur & wa->read, wa->set & wa->read);
1788 
1789 		return false;
1790 	}
1791 
1792 	return true;
1793 }
1794 
1795 static void wa_list_apply(const struct i915_wa_list *wal)
1796 {
1797 	struct intel_gt *gt = wal->gt;
1798 	struct intel_uncore *uncore = gt->uncore;
1799 	enum forcewake_domains fw;
1800 	unsigned long flags;
1801 	struct i915_wa *wa;
1802 	unsigned int i;
1803 
1804 	if (!wal->count)
1805 		return;
1806 
1807 	fw = wal_get_fw_for_rmw(uncore, wal);
1808 
1809 	intel_gt_mcr_lock(gt, &flags);
1810 	spin_lock(&uncore->lock);
1811 	intel_uncore_forcewake_get__locked(uncore, fw);
1812 
1813 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1814 		u32 val, old = 0;
1815 
1816 		/* open-coded rmw due to steering */
1817 		if (wa->clr)
1818 			old = wa->is_mcr ?
1819 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1820 				intel_uncore_read_fw(uncore, wa->reg);
1821 		val = (old & ~wa->clr) | wa->set;
1822 		if (val != old || !wa->clr) {
1823 			if (wa->is_mcr)
1824 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1825 			else
1826 				intel_uncore_write_fw(uncore, wa->reg, val);
1827 		}
1828 
1829 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1830 			u32 val = wa->is_mcr ?
1831 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1832 				intel_uncore_read_fw(uncore, wa->reg);
1833 
1834 			wa_verify(gt, wa, val, wal->name, "application");
1835 		}
1836 	}
1837 
1838 	intel_uncore_forcewake_put__locked(uncore, fw);
1839 	spin_unlock(&uncore->lock);
1840 	intel_gt_mcr_unlock(gt, flags);
1841 }
1842 
1843 void intel_gt_apply_workarounds(struct intel_gt *gt)
1844 {
1845 	wa_list_apply(&gt->wa_list);
1846 }
1847 
1848 static bool wa_list_verify(struct intel_gt *gt,
1849 			   const struct i915_wa_list *wal,
1850 			   const char *from)
1851 {
1852 	struct intel_uncore *uncore = gt->uncore;
1853 	struct i915_wa *wa;
1854 	enum forcewake_domains fw;
1855 	unsigned long flags;
1856 	unsigned int i;
1857 	bool ok = true;
1858 
1859 	fw = wal_get_fw_for_rmw(uncore, wal);
1860 
1861 	intel_gt_mcr_lock(gt, &flags);
1862 	spin_lock(&uncore->lock);
1863 	intel_uncore_forcewake_get__locked(uncore, fw);
1864 
1865 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1866 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1867 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1868 				intel_uncore_read_fw(uncore, wa->reg),
1869 				wal->name, from);
1870 
1871 	intel_uncore_forcewake_put__locked(uncore, fw);
1872 	spin_unlock(&uncore->lock);
1873 	intel_gt_mcr_unlock(gt, flags);
1874 
1875 	return ok;
1876 }
1877 
1878 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1879 {
1880 	return wa_list_verify(gt, &gt->wa_list, from);
1881 }
1882 
1883 __maybe_unused
1884 static bool is_nonpriv_flags_valid(u32 flags)
1885 {
1886 	/* Check only valid flag bits are set */
1887 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1888 		return false;
1889 
1890 	/* NB: Only 3 out of 4 enum values are valid for access field */
1891 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1892 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1893 		return false;
1894 
1895 	return true;
1896 }
1897 
1898 static void
1899 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1900 {
1901 	struct i915_wa wa = {
1902 		.reg = reg
1903 	};
1904 
1905 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1906 		return;
1907 
1908 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1909 		return;
1910 
1911 	wa.reg.reg |= flags;
1912 	_wa_add(wal, &wa);
1913 }
1914 
1915 static void
1916 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1917 {
1918 	struct i915_wa wa = {
1919 		.mcr_reg = reg,
1920 		.is_mcr = 1,
1921 	};
1922 
1923 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1924 		return;
1925 
1926 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1927 		return;
1928 
1929 	wa.mcr_reg.reg |= flags;
1930 	_wa_add(wal, &wa);
1931 }
1932 
1933 static void
1934 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1935 {
1936 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1937 }
1938 
1939 static void
1940 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1941 {
1942 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1943 }
1944 
1945 static void gen9_whitelist_build(struct i915_wa_list *w)
1946 {
1947 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1948 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1949 
1950 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1951 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1952 
1953 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1954 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1955 
1956 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1957 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1958 }
1959 
1960 static void skl_whitelist_build(struct intel_engine_cs *engine)
1961 {
1962 	struct i915_wa_list *w = &engine->whitelist;
1963 
1964 	if (engine->class != RENDER_CLASS)
1965 		return;
1966 
1967 	gen9_whitelist_build(w);
1968 
1969 	/* WaDisableLSQCROPERFforOCL:skl */
1970 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1971 }
1972 
1973 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1974 {
1975 	if (engine->class != RENDER_CLASS)
1976 		return;
1977 
1978 	gen9_whitelist_build(&engine->whitelist);
1979 }
1980 
1981 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1982 {
1983 	struct i915_wa_list *w = &engine->whitelist;
1984 
1985 	if (engine->class != RENDER_CLASS)
1986 		return;
1987 
1988 	gen9_whitelist_build(w);
1989 
1990 	/* WaDisableLSQCROPERFforOCL:kbl */
1991 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1992 }
1993 
1994 static void glk_whitelist_build(struct intel_engine_cs *engine)
1995 {
1996 	struct i915_wa_list *w = &engine->whitelist;
1997 
1998 	if (engine->class != RENDER_CLASS)
1999 		return;
2000 
2001 	gen9_whitelist_build(w);
2002 
2003 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2004 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2005 }
2006 
2007 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2008 {
2009 	struct i915_wa_list *w = &engine->whitelist;
2010 
2011 	if (engine->class != RENDER_CLASS)
2012 		return;
2013 
2014 	gen9_whitelist_build(w);
2015 
2016 	/*
2017 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2018 	 *
2019 	 * This covers 4 register which are next to one another :
2020 	 *   - PS_INVOCATION_COUNT
2021 	 *   - PS_INVOCATION_COUNT_UDW
2022 	 *   - PS_DEPTH_COUNT
2023 	 *   - PS_DEPTH_COUNT_UDW
2024 	 */
2025 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2026 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2027 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2028 }
2029 
2030 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2031 {
2032 	struct i915_wa_list *w = &engine->whitelist;
2033 
2034 	if (engine->class != RENDER_CLASS)
2035 		whitelist_reg_ext(w,
2036 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2037 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2038 }
2039 
2040 static void cml_whitelist_build(struct intel_engine_cs *engine)
2041 {
2042 	allow_read_ctx_timestamp(engine);
2043 
2044 	cfl_whitelist_build(engine);
2045 }
2046 
2047 static void icl_whitelist_build(struct intel_engine_cs *engine)
2048 {
2049 	struct i915_wa_list *w = &engine->whitelist;
2050 
2051 	allow_read_ctx_timestamp(engine);
2052 
2053 	switch (engine->class) {
2054 	case RENDER_CLASS:
2055 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2056 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2057 
2058 		/* WaAllowUMDToModifySamplerMode:icl */
2059 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2060 
2061 		/* WaEnableStateCacheRedirectToCS:icl */
2062 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2063 
2064 		/*
2065 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2066 		 *
2067 		 * This covers 4 register which are next to one another :
2068 		 *   - PS_INVOCATION_COUNT
2069 		 *   - PS_INVOCATION_COUNT_UDW
2070 		 *   - PS_DEPTH_COUNT
2071 		 *   - PS_DEPTH_COUNT_UDW
2072 		 */
2073 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2074 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2075 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2076 		break;
2077 
2078 	case VIDEO_DECODE_CLASS:
2079 		/* hucStatusRegOffset */
2080 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2081 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2082 		/* hucUKernelHdrInfoRegOffset */
2083 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2084 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2085 		/* hucStatus2RegOffset */
2086 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2087 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2088 		break;
2089 
2090 	default:
2091 		break;
2092 	}
2093 }
2094 
2095 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2096 {
2097 	struct i915_wa_list *w = &engine->whitelist;
2098 
2099 	allow_read_ctx_timestamp(engine);
2100 
2101 	switch (engine->class) {
2102 	case RENDER_CLASS:
2103 		/*
2104 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2105 		 * Wa_1408556865:tgl
2106 		 *
2107 		 * This covers 4 registers which are next to one another :
2108 		 *   - PS_INVOCATION_COUNT
2109 		 *   - PS_INVOCATION_COUNT_UDW
2110 		 *   - PS_DEPTH_COUNT
2111 		 *   - PS_DEPTH_COUNT_UDW
2112 		 */
2113 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2114 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2115 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2116 
2117 		/*
2118 		 * Wa_1808121037:tgl
2119 		 * Wa_14012131227:dg1
2120 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2121 		 */
2122 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2123 
2124 		/* Wa_1806527549:tgl */
2125 		whitelist_reg(w, HIZ_CHICKEN);
2126 
2127 		/* Required by recommended tuning setting (not a workaround) */
2128 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2129 
2130 		break;
2131 	default:
2132 		break;
2133 	}
2134 }
2135 
2136 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2137 {
2138 	struct i915_wa_list *w = &engine->whitelist;
2139 
2140 	switch (engine->class) {
2141 	case RENDER_CLASS:
2142 		/* Required by recommended tuning setting (not a workaround) */
2143 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2144 
2145 		break;
2146 	default:
2147 		break;
2148 	}
2149 }
2150 
2151 static void blacklist_trtt(struct intel_engine_cs *engine)
2152 {
2153 	struct i915_wa_list *w = &engine->whitelist;
2154 
2155 	/*
2156 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2157 	 * the TRTT range across all engines. Note that normally userspace
2158 	 * cannot access the other engines' trtt control, but for simplicity
2159 	 * we cover the entire range on each engine.
2160 	 */
2161 	whitelist_reg_ext(w, _MMIO(0x4400),
2162 			  RING_FORCE_TO_NONPRIV_DENY |
2163 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2164 	whitelist_reg_ext(w, _MMIO(0x4500),
2165 			  RING_FORCE_TO_NONPRIV_DENY |
2166 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2167 }
2168 
2169 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2170 {
2171 	/* Wa_16014440446:pvc */
2172 	blacklist_trtt(engine);
2173 }
2174 
2175 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2176 {
2177 	struct i915_wa_list *w = &engine->whitelist;
2178 
2179 	switch (engine->class) {
2180 	case RENDER_CLASS:
2181 		/* Required by recommended tuning setting (not a workaround) */
2182 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2183 
2184 		break;
2185 	default:
2186 		break;
2187 	}
2188 }
2189 
2190 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2191 {
2192 	struct drm_i915_private *i915 = engine->i915;
2193 	struct i915_wa_list *w = &engine->whitelist;
2194 
2195 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2196 
2197 	if (engine->gt->type == GT_MEDIA)
2198 		; /* none yet */
2199 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 71)))
2200 		xelpg_whitelist_build(engine);
2201 	else if (IS_PONTEVECCHIO(i915))
2202 		pvc_whitelist_build(engine);
2203 	else if (IS_DG2(i915))
2204 		dg2_whitelist_build(engine);
2205 	else if (IS_XEHPSDV(i915))
2206 		; /* none needed */
2207 	else if (GRAPHICS_VER(i915) == 12)
2208 		tgl_whitelist_build(engine);
2209 	else if (GRAPHICS_VER(i915) == 11)
2210 		icl_whitelist_build(engine);
2211 	else if (IS_COMETLAKE(i915))
2212 		cml_whitelist_build(engine);
2213 	else if (IS_COFFEELAKE(i915))
2214 		cfl_whitelist_build(engine);
2215 	else if (IS_GEMINILAKE(i915))
2216 		glk_whitelist_build(engine);
2217 	else if (IS_KABYLAKE(i915))
2218 		kbl_whitelist_build(engine);
2219 	else if (IS_BROXTON(i915))
2220 		bxt_whitelist_build(engine);
2221 	else if (IS_SKYLAKE(i915))
2222 		skl_whitelist_build(engine);
2223 	else if (GRAPHICS_VER(i915) <= 8)
2224 		;
2225 	else
2226 		MISSING_CASE(GRAPHICS_VER(i915));
2227 
2228 	wa_init_finish(w);
2229 }
2230 
2231 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2232 {
2233 	const struct i915_wa_list *wal = &engine->whitelist;
2234 	struct intel_uncore *uncore = engine->uncore;
2235 	const u32 base = engine->mmio_base;
2236 	struct i915_wa *wa;
2237 	unsigned int i;
2238 
2239 	if (!wal->count)
2240 		return;
2241 
2242 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2243 		intel_uncore_write(uncore,
2244 				   RING_FORCE_TO_NONPRIV(base, i),
2245 				   i915_mmio_reg_offset(wa->reg));
2246 
2247 	/* And clear the rest just in case of garbage */
2248 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2249 		intel_uncore_write(uncore,
2250 				   RING_FORCE_TO_NONPRIV(base, i),
2251 				   i915_mmio_reg_offset(RING_NOPID(base)));
2252 }
2253 
2254 /*
2255  * engine_fake_wa_init(), a place holder to program the registers
2256  * which are not part of an official workaround defined by the
2257  * hardware team.
2258  * Adding programming of those register inside workaround will
2259  * allow utilizing wa framework to proper application and verification.
2260  */
2261 static void
2262 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2263 {
2264 	u8 mocs_w, mocs_r;
2265 
2266 	/*
2267 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2268 	 * by the command streamer when executing commands that don't have
2269 	 * a way to explicitly specify a MOCS setting.  The default should
2270 	 * usually reference whichever MOCS entry corresponds to uncached
2271 	 * behavior, although use of a WB cached entry is recommended by the
2272 	 * spec in certain circumstances on specific platforms.
2273 	 */
2274 	if (GRAPHICS_VER(engine->i915) >= 12) {
2275 		mocs_r = engine->gt->mocs.uc_index;
2276 		mocs_w = engine->gt->mocs.uc_index;
2277 
2278 		if (HAS_L3_CCS_READ(engine->i915) &&
2279 		    engine->class == COMPUTE_CLASS) {
2280 			mocs_r = engine->gt->mocs.wb_index;
2281 
2282 			/*
2283 			 * Even on the few platforms where MOCS 0 is a
2284 			 * legitimate table entry, it's never the correct
2285 			 * setting to use here; we can assume the MOCS init
2286 			 * just forgot to initialize wb_index.
2287 			 */
2288 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2289 		}
2290 
2291 		wa_masked_field_set(wal,
2292 				    RING_CMD_CCTL(engine->mmio_base),
2293 				    CMD_CCTL_MOCS_MASK,
2294 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2295 	}
2296 }
2297 
2298 static void
2299 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2300 {
2301 	struct drm_i915_private *i915 = engine->i915;
2302 	struct intel_gt *gt = engine->gt;
2303 
2304 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2305 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2306 		/* Wa_22014600077 */
2307 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2308 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2309 	}
2310 
2311 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2312 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2313 	    IS_DG2(i915)) {
2314 		/* Wa_1509727124 */
2315 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2316 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2317 	}
2318 
2319 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2320 	    IS_DG2(i915)) {
2321 		/* Wa_22012856258 */
2322 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2323 				 GEN12_DISABLE_READ_SUPPRESSION);
2324 	}
2325 
2326 	if (IS_DG2(i915)) {
2327 		/*
2328 		 * Wa_22010960976:dg2
2329 		 * Wa_14013347512:dg2
2330 		 */
2331 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2332 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2333 	}
2334 
2335 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2336 	    IS_DG2(i915)) {
2337 		/* Wa_14015150844 */
2338 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2339 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2340 			   0, true);
2341 	}
2342 
2343 	if (IS_DG2_G11(i915) || IS_DG2_G10(i915)) {
2344 		/* Wa_22014600077:dg2 */
2345 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2346 			   _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2347 			   0 /* Wa_14012342262 write-only reg, so skip verification */,
2348 			   true);
2349 	}
2350 
2351 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2352 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2353 		/*
2354 		 * Wa_1606700617:tgl,dg1,adl-p
2355 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2356 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2357 		 * Wa_18019627453:dg2
2358 		 */
2359 		wa_masked_en(wal,
2360 			     GEN9_CS_DEBUG_MODE1,
2361 			     FF_DOP_CLOCK_GATE_DISABLE);
2362 	}
2363 
2364 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2365 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2366 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2367 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2368 
2369 		/*
2370 		 * Wa_1407928979:tgl A*
2371 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2372 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2373 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2374 		 */
2375 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2376 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2377 
2378 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2379 		wa_mcr_masked_en(wal,
2380 				 GEN10_SAMPLER_MODE,
2381 				 ENABLE_SMALLPL);
2382 	}
2383 
2384 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2385 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2386 		/* Wa_1409804808 */
2387 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2388 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2389 
2390 		/* Wa_14010229206 */
2391 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2392 	}
2393 
2394 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2395 		/*
2396 		 * Wa_1607297627
2397 		 *
2398 		 * On TGL and RKL there are multiple entries for this WA in the
2399 		 * BSpec; some indicate this is an A0-only WA, others indicate
2400 		 * it applies to all steppings so we trust the "all steppings."
2401 		 */
2402 		wa_masked_en(wal,
2403 			     RING_PSMI_CTL(RENDER_RING_BASE),
2404 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2405 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2406 	}
2407 
2408 	if (GRAPHICS_VER(i915) == 11) {
2409 		/* This is not an Wa. Enable for better image quality */
2410 		wa_masked_en(wal,
2411 			     _3D_CHICKEN3,
2412 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2413 
2414 		/*
2415 		 * Wa_1405543622:icl
2416 		 * Formerly known as WaGAPZPriorityScheme
2417 		 */
2418 		wa_write_or(wal,
2419 			    GEN8_GARBCNTL,
2420 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2421 
2422 		/*
2423 		 * Wa_1604223664:icl
2424 		 * Formerly known as WaL3BankAddressHashing
2425 		 */
2426 		wa_write_clr_set(wal,
2427 				 GEN8_GARBCNTL,
2428 				 GEN11_HASH_CTRL_EXCL_MASK,
2429 				 GEN11_HASH_CTRL_EXCL_BIT0);
2430 		wa_write_clr_set(wal,
2431 				 GEN11_GLBLINVL,
2432 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2433 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2434 
2435 		/*
2436 		 * Wa_1405733216:icl
2437 		 * Formerly known as WaDisableCleanEvicts
2438 		 */
2439 		wa_mcr_write_or(wal,
2440 				GEN8_L3SQCREG4,
2441 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2442 
2443 		/* Wa_1606682166:icl */
2444 		wa_write_or(wal,
2445 			    GEN7_SARCHKMD,
2446 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2447 
2448 		/* Wa_1409178092:icl */
2449 		wa_mcr_write_clr_set(wal,
2450 				     GEN11_SCRATCH2,
2451 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2452 				     0);
2453 
2454 		/* WaEnable32PlaneMode:icl */
2455 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2456 			     GEN11_ENABLE_32_PLANE_MODE);
2457 
2458 		/*
2459 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2460 		 * Wa_1605460711:icl[a0..c0]
2461 		 */
2462 		wa_write_or(wal,
2463 			    GEN7_FF_THREAD_MODE,
2464 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2465 
2466 		/* Wa_22010271021 */
2467 		wa_masked_en(wal,
2468 			     GEN9_CS_DEBUG_MODE1,
2469 			     FF_DOP_CLOCK_GATE_DISABLE);
2470 	}
2471 
2472 	/*
2473 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2474 	 * beyond) allow the kernel-mode driver to choose between two different
2475 	 * options for controlling preemption granularity and behavior.
2476 	 *
2477 	 * Option 1 (hardware default):
2478 	 *   Preemption settings are controlled in a global manner via
2479 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2480 	 *   and settings chosen by the kernel-mode driver will apply to all
2481 	 *   userspace clients.
2482 	 *
2483 	 * Option 2:
2484 	 *   Preemption settings are controlled on a per-context basis via
2485 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2486 	 *   context switch and is writable by userspace (e.g., via
2487 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2488 	 *   which allows different userspace drivers/clients to select
2489 	 *   different settings, or to change those settings on the fly in
2490 	 *   response to runtime needs.  This option was known by name
2491 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2492 	 *   that name is somewhat misleading as other non-granularity
2493 	 *   preemption settings are also impacted by this decision.
2494 	 *
2495 	 * On Linux, our policy has always been to let userspace drivers
2496 	 * control preemption granularity/settings (Option 2).  This was
2497 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2498 	 * userspace developed before object-level preemption was enabled would
2499 	 * not behave well if i915 were to go with Option 1 and enable that
2500 	 * preemption in a global manner).  On gen9 each context would have
2501 	 * object-level preemption disabled by default (see
2502 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2503 	 * userspace drivers could opt-in to object-level preemption as they
2504 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2505 	 * even though it is no longer necessary for ABI compatibility when
2506 	 * enabling a new platform, it does ensure that userspace will be able
2507 	 * to implement any workarounds that show up requiring temporary
2508 	 * adjustments to preemption behavior at runtime.
2509 	 *
2510 	 * Notes/Workarounds:
2511 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2512 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2513 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2514 	 *      using Option 1).  Effectively this means userspace is unable
2515 	 *      to disable object-level preemption on these platforms/steppings
2516 	 *      despite the setting here.
2517 	 *
2518 	 *  - Wa_16013994831:  May require that userspace program
2519 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2520 	 *      Userspace requires Option 2 to be in effect for their update of
2521 	 *      CS_CHICKEN1[10] to be effective.
2522 	 *
2523 	 * Other workarounds may appear in the future that will also require
2524 	 * Option 2 behavior to allow proper userspace implementation.
2525 	 */
2526 	if (GRAPHICS_VER(i915) >= 9)
2527 		wa_masked_en(wal,
2528 			     GEN7_FF_SLICE_CS_CHICKEN1,
2529 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2530 
2531 	if (IS_SKYLAKE(i915) ||
2532 	    IS_KABYLAKE(i915) ||
2533 	    IS_COFFEELAKE(i915) ||
2534 	    IS_COMETLAKE(i915)) {
2535 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2536 		wa_write_or(wal,
2537 			    GEN8_GARBCNTL,
2538 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2539 	}
2540 
2541 	if (IS_BROXTON(i915)) {
2542 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2543 		wa_masked_en(wal,
2544 			     FF_SLICE_CS_CHICKEN2,
2545 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2546 	}
2547 
2548 	if (GRAPHICS_VER(i915) == 9) {
2549 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2550 		wa_masked_en(wal,
2551 			     GEN9_CSFE_CHICKEN1_RCS,
2552 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2553 
2554 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2555 		wa_mcr_write_or(wal,
2556 				BDW_SCRATCH1,
2557 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2558 
2559 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2560 		if (IS_GEN9_LP(i915))
2561 			wa_mcr_write_clr_set(wal,
2562 					     GEN8_L3SQCREG1,
2563 					     L3_PRIO_CREDITS_MASK,
2564 					     L3_GENERAL_PRIO_CREDITS(62) |
2565 					     L3_HIGH_PRIO_CREDITS(2));
2566 
2567 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2568 		wa_mcr_write_or(wal,
2569 				GEN8_L3SQCREG4,
2570 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2571 
2572 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2573 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2574 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2575 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2576 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2577 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2578 				     EVICTION_PERF_FIX_ENABLE, 0);
2579 	}
2580 
2581 	if (IS_HASWELL(i915)) {
2582 		/* WaSampleCChickenBitEnable:hsw */
2583 		wa_masked_en(wal,
2584 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2585 
2586 		wa_masked_dis(wal,
2587 			      CACHE_MODE_0_GEN7,
2588 			      /* enable HiZ Raw Stall Optimization */
2589 			      HIZ_RAW_STALL_OPT_DISABLE);
2590 	}
2591 
2592 	if (IS_VALLEYVIEW(i915)) {
2593 		/* WaDisableEarlyCull:vlv */
2594 		wa_masked_en(wal,
2595 			     _3D_CHICKEN3,
2596 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2597 
2598 		/*
2599 		 * WaVSThreadDispatchOverride:ivb,vlv
2600 		 *
2601 		 * This actually overrides the dispatch
2602 		 * mode for all thread types.
2603 		 */
2604 		wa_write_clr_set(wal,
2605 				 GEN7_FF_THREAD_MODE,
2606 				 GEN7_FF_SCHED_MASK,
2607 				 GEN7_FF_TS_SCHED_HW |
2608 				 GEN7_FF_VS_SCHED_HW |
2609 				 GEN7_FF_DS_SCHED_HW);
2610 
2611 		/* WaPsdDispatchEnable:vlv */
2612 		/* WaDisablePSDDualDispatchEnable:vlv */
2613 		wa_masked_en(wal,
2614 			     GEN7_HALF_SLICE_CHICKEN1,
2615 			     GEN7_MAX_PS_THREAD_DEP |
2616 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2617 	}
2618 
2619 	if (IS_IVYBRIDGE(i915)) {
2620 		/* WaDisableEarlyCull:ivb */
2621 		wa_masked_en(wal,
2622 			     _3D_CHICKEN3,
2623 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2624 
2625 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2626 			/* enable HiZ Raw Stall Optimization */
2627 			wa_masked_dis(wal,
2628 				      CACHE_MODE_0_GEN7,
2629 				      HIZ_RAW_STALL_OPT_DISABLE);
2630 		}
2631 
2632 		/*
2633 		 * WaVSThreadDispatchOverride:ivb,vlv
2634 		 *
2635 		 * This actually overrides the dispatch
2636 		 * mode for all thread types.
2637 		 */
2638 		wa_write_clr_set(wal,
2639 				 GEN7_FF_THREAD_MODE,
2640 				 GEN7_FF_SCHED_MASK,
2641 				 GEN7_FF_TS_SCHED_HW |
2642 				 GEN7_FF_VS_SCHED_HW |
2643 				 GEN7_FF_DS_SCHED_HW);
2644 
2645 		/* WaDisablePSDDualDispatchEnable:ivb */
2646 		if (IS_IVB_GT1(i915))
2647 			wa_masked_en(wal,
2648 				     GEN7_HALF_SLICE_CHICKEN1,
2649 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2650 	}
2651 
2652 	if (GRAPHICS_VER(i915) == 7) {
2653 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2654 		wa_masked_en(wal,
2655 			     RING_MODE_GEN7(RENDER_RING_BASE),
2656 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2657 
2658 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2659 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2660 
2661 		/*
2662 		 * BSpec says this must be set, even though
2663 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2664 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2665 		 */
2666 		wa_masked_en(wal,
2667 			     CACHE_MODE_1,
2668 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2669 
2670 		/*
2671 		 * BSpec recommends 8x4 when MSAA is used,
2672 		 * however in practice 16x4 seems fastest.
2673 		 *
2674 		 * Note that PS/WM thread counts depend on the WIZ hashing
2675 		 * disable bit, which we don't touch here, but it's good
2676 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2677 		 */
2678 		wa_masked_field_set(wal,
2679 				    GEN7_GT_MODE,
2680 				    GEN6_WIZ_HASHING_MASK,
2681 				    GEN6_WIZ_HASHING_16x4);
2682 	}
2683 
2684 	if (IS_GRAPHICS_VER(i915, 6, 7))
2685 		/*
2686 		 * We need to disable the AsyncFlip performance optimisations in
2687 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2688 		 * already be programmed to '1' on all products.
2689 		 *
2690 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2691 		 */
2692 		wa_masked_en(wal,
2693 			     RING_MI_MODE(RENDER_RING_BASE),
2694 			     ASYNC_FLIP_PERF_DISABLE);
2695 
2696 	if (GRAPHICS_VER(i915) == 6) {
2697 		/*
2698 		 * Required for the hardware to program scanline values for
2699 		 * waiting
2700 		 * WaEnableFlushTlbInvalidationMode:snb
2701 		 */
2702 		wa_masked_en(wal,
2703 			     GFX_MODE,
2704 			     GFX_TLB_INVALIDATE_EXPLICIT);
2705 
2706 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2707 		wa_masked_en(wal,
2708 			     _3D_CHICKEN,
2709 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2710 
2711 		wa_masked_en(wal,
2712 			     _3D_CHICKEN3,
2713 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2714 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2715 			     /*
2716 			      * Bspec says:
2717 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2718 			      * to normal and 3DSTATE_SF number of SF output attributes
2719 			      * is more than 16."
2720 			      */
2721 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2722 
2723 		/*
2724 		 * BSpec recommends 8x4 when MSAA is used,
2725 		 * however in practice 16x4 seems fastest.
2726 		 *
2727 		 * Note that PS/WM thread counts depend on the WIZ hashing
2728 		 * disable bit, which we don't touch here, but it's good
2729 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2730 		 */
2731 		wa_masked_field_set(wal,
2732 				    GEN6_GT_MODE,
2733 				    GEN6_WIZ_HASHING_MASK,
2734 				    GEN6_WIZ_HASHING_16x4);
2735 
2736 		/* WaDisable_RenderCache_OperationalFlush:snb */
2737 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2738 
2739 		/*
2740 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2741 		 * "If this bit is set, STCunit will have LRA as replacement
2742 		 *  policy. [...] This bit must be reset. LRA replacement
2743 		 *  policy is not supported."
2744 		 */
2745 		wa_masked_dis(wal,
2746 			      CACHE_MODE_0,
2747 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2748 	}
2749 
2750 	if (IS_GRAPHICS_VER(i915, 4, 6))
2751 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2752 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2753 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2754 		       /* XXX bit doesn't stick on Broadwater */
2755 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2756 
2757 	if (GRAPHICS_VER(i915) == 4)
2758 		/*
2759 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2760 		 * image. For as it is loaded, it is executed and the stored
2761 		 * address may no longer be valid, leading to a GPU hang.
2762 		 *
2763 		 * This imposes the requirement that userspace reload their
2764 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2765 		 * they are already accustomed to from before contexts were
2766 		 * enabled.
2767 		 */
2768 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2769 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2770 		       0 /* XXX bit doesn't stick on Broadwater */,
2771 		       true);
2772 }
2773 
2774 static void
2775 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2776 {
2777 	struct drm_i915_private *i915 = engine->i915;
2778 
2779 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2780 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2781 		wa_write(wal,
2782 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2783 			 1);
2784 	}
2785 }
2786 
2787 static void
2788 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2789 {
2790 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2791 		/* Wa_14014999345:pvc */
2792 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2793 	}
2794 }
2795 
2796 /*
2797  * The bspec performance guide has recommended MMIO tuning settings.  These
2798  * aren't truly "workarounds" but we want to program them with the same
2799  * workaround infrastructure to ensure that they're automatically added to
2800  * the GuC save/restore lists, re-applied at the right times, and checked for
2801  * any conflicting programming requested by real workarounds.
2802  *
2803  * Programming settings should be added here only if their registers are not
2804  * part of an engine's register state context.  If a register is part of a
2805  * context, then any tuning settings should be programmed in an appropriate
2806  * function invoked by __intel_engine_init_ctx_wa().
2807  */
2808 static void
2809 add_render_compute_tuning_settings(struct intel_gt *gt,
2810 				   struct i915_wa_list *wal)
2811 {
2812 	struct drm_i915_private *i915 = gt->i915;
2813 
2814 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) || IS_DG2(i915))
2815 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2816 
2817 	/*
2818 	 * This tuning setting proves beneficial only on ATS-M designs; the
2819 	 * default "age based" setting is optimal on regular DG2 and other
2820 	 * platforms.
2821 	 */
2822 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2823 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2824 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2825 
2826 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2827 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2828 }
2829 
2830 /*
2831  * The workarounds in this function apply to shared registers in
2832  * the general render reset domain that aren't tied to a
2833  * specific engine.  Since all render+compute engines get reset
2834  * together, and the contents of these registers are lost during
2835  * the shared render domain reset, we'll define such workarounds
2836  * here and then add them to just a single RCS or CCS engine's
2837  * workaround list (whichever engine has the XXXX flag).
2838  */
2839 static void
2840 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2841 {
2842 	struct drm_i915_private *i915 = engine->i915;
2843 	struct intel_gt *gt = engine->gt;
2844 
2845 	add_render_compute_tuning_settings(gt, wal);
2846 
2847 	if (GRAPHICS_VER(i915) >= 11) {
2848 		/* This is not a Wa (although referred to as
2849 		 * WaSetInidrectStateOverride in places), this allows
2850 		 * applications that reference sampler states through
2851 		 * the BindlessSamplerStateBaseAddress to have their
2852 		 * border color relative to DynamicStateBaseAddress
2853 		 * rather than BindlessSamplerStateBaseAddress.
2854 		 *
2855 		 * Otherwise SAMPLER_STATE border colors have to be
2856 		 * copied in multiple heaps (DynamicStateBaseAddress &
2857 		 * BindlessSamplerStateBaseAddress)
2858 		 *
2859 		 * BSpec: 46052
2860 		 */
2861 		wa_mcr_masked_en(wal,
2862 				 GEN10_SAMPLER_MODE,
2863 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2864 	}
2865 
2866 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2867 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER))
2868 		/* Wa_14017856879 */
2869 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2870 
2871 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2872 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2873 		/*
2874 		 * Wa_14017066071
2875 		 * Wa_14017654203
2876 		 */
2877 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2878 				 MTL_DISABLE_SAMPLER_SC_OOO);
2879 
2880 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2881 		/* Wa_22015279794 */
2882 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2883 				 DISABLE_PREFETCH_INTO_IC);
2884 
2885 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2886 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2887 	    IS_DG2(i915)) {
2888 		/* Wa_22013037850 */
2889 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2890 				DISABLE_128B_EVICTION_COMMAND_UDW);
2891 
2892 		/* Wa_18017747507 */
2893 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2894 	}
2895 
2896 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2897 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2898 	    IS_PONTEVECCHIO(i915) ||
2899 	    IS_DG2(i915)) {
2900 		/* Wa_22014226127 */
2901 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2902 	}
2903 
2904 	if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2905 		/* Wa_14015227452:dg2,pvc */
2906 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2907 
2908 		/* Wa_16015675438:dg2,pvc */
2909 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2910 	}
2911 
2912 	if (IS_DG2(i915)) {
2913 		/*
2914 		 * Wa_16011620976:dg2_g11
2915 		 * Wa_22015475538:dg2
2916 		 */
2917 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2918 	}
2919 
2920 	if (IS_DG2_G11(i915)) {
2921 		/*
2922 		 * Wa_22012826095:dg2
2923 		 * Wa_22013059131:dg2
2924 		 */
2925 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2926 				     MAXREQS_PER_BANK,
2927 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2928 
2929 		/* Wa_22013059131:dg2 */
2930 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2931 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2932 
2933 		/*
2934 		 * Wa_22012654132
2935 		 *
2936 		 * Note that register 0xE420 is write-only and cannot be read
2937 		 * back for verification on DG2 (due to Wa_14012342262), so
2938 		 * we need to explicitly skip the readback.
2939 		 */
2940 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2941 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2942 			   0 /* write-only, so skip validation */,
2943 			   true);
2944 	}
2945 
2946 	if (IS_DG2_G10(i915) || IS_DG2_G12(i915)) {
2947 		/* Wa_18028616096 */
2948 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2949 	}
2950 
2951 	if (IS_XEHPSDV(i915)) {
2952 		/* Wa_1409954639 */
2953 		wa_mcr_masked_en(wal,
2954 				 GEN8_ROW_CHICKEN,
2955 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
2956 
2957 		/* Wa_1607196519 */
2958 		wa_mcr_masked_en(wal,
2959 				 GEN9_ROW_CHICKEN4,
2960 				 GEN12_DISABLE_GRF_CLEAR);
2961 
2962 		/* Wa_14010449647:xehpsdv */
2963 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
2964 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2965 	}
2966 }
2967 
2968 static void
2969 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2970 {
2971 	if (GRAPHICS_VER(engine->i915) < 4)
2972 		return;
2973 
2974 	engine_fake_wa_init(engine, wal);
2975 
2976 	/*
2977 	 * These are common workarounds that just need to applied
2978 	 * to a single RCS/CCS engine's workaround list since
2979 	 * they're reset as part of the general render domain reset.
2980 	 */
2981 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2982 		general_render_compute_wa_init(engine, wal);
2983 
2984 	if (engine->class == COMPUTE_CLASS)
2985 		ccs_engine_wa_init(engine, wal);
2986 	else if (engine->class == RENDER_CLASS)
2987 		rcs_engine_wa_init(engine, wal);
2988 	else
2989 		xcs_engine_wa_init(engine, wal);
2990 }
2991 
2992 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2993 {
2994 	struct i915_wa_list *wal = &engine->wa_list;
2995 
2996 	wa_init_start(wal, engine->gt, "engine", engine->name);
2997 	engine_init_workarounds(engine, wal);
2998 	wa_init_finish(wal);
2999 }
3000 
3001 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3002 {
3003 	wa_list_apply(&engine->wa_list);
3004 }
3005 
3006 static const struct i915_range mcr_ranges_gen8[] = {
3007 	{ .start = 0x5500, .end = 0x55ff },
3008 	{ .start = 0x7000, .end = 0x7fff },
3009 	{ .start = 0x9400, .end = 0x97ff },
3010 	{ .start = 0xb000, .end = 0xb3ff },
3011 	{ .start = 0xe000, .end = 0xe7ff },
3012 	{},
3013 };
3014 
3015 static const struct i915_range mcr_ranges_gen12[] = {
3016 	{ .start =  0x8150, .end =  0x815f },
3017 	{ .start =  0x9520, .end =  0x955f },
3018 	{ .start =  0xb100, .end =  0xb3ff },
3019 	{ .start =  0xde80, .end =  0xe8ff },
3020 	{ .start = 0x24a00, .end = 0x24a7f },
3021 	{},
3022 };
3023 
3024 static const struct i915_range mcr_ranges_xehp[] = {
3025 	{ .start =  0x4000, .end =  0x4aff },
3026 	{ .start =  0x5200, .end =  0x52ff },
3027 	{ .start =  0x5400, .end =  0x7fff },
3028 	{ .start =  0x8140, .end =  0x815f },
3029 	{ .start =  0x8c80, .end =  0x8dff },
3030 	{ .start =  0x94d0, .end =  0x955f },
3031 	{ .start =  0x9680, .end =  0x96ff },
3032 	{ .start =  0xb000, .end =  0xb3ff },
3033 	{ .start =  0xc800, .end =  0xcfff },
3034 	{ .start =  0xd800, .end =  0xd8ff },
3035 	{ .start =  0xdc00, .end =  0xffff },
3036 	{ .start = 0x17000, .end = 0x17fff },
3037 	{ .start = 0x24a00, .end = 0x24a7f },
3038 	{},
3039 };
3040 
3041 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3042 {
3043 	const struct i915_range *mcr_ranges;
3044 	int i;
3045 
3046 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3047 		mcr_ranges = mcr_ranges_xehp;
3048 	else if (GRAPHICS_VER(i915) >= 12)
3049 		mcr_ranges = mcr_ranges_gen12;
3050 	else if (GRAPHICS_VER(i915) >= 8)
3051 		mcr_ranges = mcr_ranges_gen8;
3052 	else
3053 		return false;
3054 
3055 	/*
3056 	 * Registers in these ranges are affected by the MCR selector
3057 	 * which only controls CPU initiated MMIO. Routing does not
3058 	 * work for CS access so we cannot verify them on this path.
3059 	 */
3060 	for (i = 0; mcr_ranges[i].start; i++)
3061 		if (offset >= mcr_ranges[i].start &&
3062 		    offset <= mcr_ranges[i].end)
3063 			return true;
3064 
3065 	return false;
3066 }
3067 
3068 static int
3069 wa_list_srm(struct i915_request *rq,
3070 	    const struct i915_wa_list *wal,
3071 	    struct i915_vma *vma)
3072 {
3073 	struct drm_i915_private *i915 = rq->i915;
3074 	unsigned int i, count = 0;
3075 	const struct i915_wa *wa;
3076 	u32 srm, *cs;
3077 
3078 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3079 	if (GRAPHICS_VER(i915) >= 8)
3080 		srm++;
3081 
3082 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3083 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3084 			count++;
3085 	}
3086 
3087 	cs = intel_ring_begin(rq, 4 * count);
3088 	if (IS_ERR(cs))
3089 		return PTR_ERR(cs);
3090 
3091 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3092 		u32 offset = i915_mmio_reg_offset(wa->reg);
3093 
3094 		if (mcr_range(i915, offset))
3095 			continue;
3096 
3097 		*cs++ = srm;
3098 		*cs++ = offset;
3099 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3100 		*cs++ = 0;
3101 	}
3102 	intel_ring_advance(rq, cs);
3103 
3104 	return 0;
3105 }
3106 
3107 static int engine_wa_list_verify(struct intel_context *ce,
3108 				 const struct i915_wa_list * const wal,
3109 				 const char *from)
3110 {
3111 	const struct i915_wa *wa;
3112 	struct i915_request *rq;
3113 	struct i915_vma *vma;
3114 	struct i915_gem_ww_ctx ww;
3115 	unsigned int i;
3116 	u32 *results;
3117 	int err;
3118 
3119 	if (!wal->count)
3120 		return 0;
3121 
3122 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3123 					   wal->count * sizeof(u32));
3124 	if (IS_ERR(vma))
3125 		return PTR_ERR(vma);
3126 
3127 	intel_engine_pm_get(ce->engine);
3128 	i915_gem_ww_ctx_init(&ww, false);
3129 retry:
3130 	err = i915_gem_object_lock(vma->obj, &ww);
3131 	if (err == 0)
3132 		err = intel_context_pin_ww(ce, &ww);
3133 	if (err)
3134 		goto err_pm;
3135 
3136 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3137 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3138 	if (err)
3139 		goto err_unpin;
3140 
3141 	rq = i915_request_create(ce);
3142 	if (IS_ERR(rq)) {
3143 		err = PTR_ERR(rq);
3144 		goto err_vma;
3145 	}
3146 
3147 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3148 	if (err == 0)
3149 		err = wa_list_srm(rq, wal, vma);
3150 
3151 	i915_request_get(rq);
3152 	if (err)
3153 		i915_request_set_error_once(rq, err);
3154 	i915_request_add(rq);
3155 
3156 	if (err)
3157 		goto err_rq;
3158 
3159 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3160 		err = -ETIME;
3161 		goto err_rq;
3162 	}
3163 
3164 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3165 	if (IS_ERR(results)) {
3166 		err = PTR_ERR(results);
3167 		goto err_rq;
3168 	}
3169 
3170 	err = 0;
3171 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3172 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3173 			continue;
3174 
3175 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3176 			err = -ENXIO;
3177 	}
3178 
3179 	i915_gem_object_unpin_map(vma->obj);
3180 
3181 err_rq:
3182 	i915_request_put(rq);
3183 err_vma:
3184 	i915_vma_unpin(vma);
3185 err_unpin:
3186 	intel_context_unpin(ce);
3187 err_pm:
3188 	if (err == -EDEADLK) {
3189 		err = i915_gem_ww_ctx_backoff(&ww);
3190 		if (!err)
3191 			goto retry;
3192 	}
3193 	i915_gem_ww_ctx_fini(&ww);
3194 	intel_engine_pm_put(ce->engine);
3195 	i915_vma_put(vma);
3196 	return err;
3197 }
3198 
3199 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3200 				    const char *from)
3201 {
3202 	return engine_wa_list_verify(engine->kernel_context,
3203 				     &engine->wa_list,
3204 				     from);
3205 }
3206 
3207 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3208 #include "selftest_workarounds.c"
3209 #endif
3210