xref: /linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_ccs_mode.h"
14 #include "intel_gt_mcr.h"
15 #include "intel_gt_print.h"
16 #include "intel_gt_regs.h"
17 #include "intel_ring.h"
18 #include "intel_workarounds.h"
19 
20 /**
21  * DOC: Hardware workarounds
22  *
23  * Hardware workarounds are register programming documented to be executed in
24  * the driver that fall outside of the normal programming sequences for a
25  * platform. There are some basic categories of workarounds, depending on
26  * how/when they are applied:
27  *
28  * - Context workarounds: workarounds that touch registers that are
29  *   saved/restored to/from the HW context image. The list is emitted (via Load
30  *   Register Immediate commands) once when initializing the device and saved in
31  *   the default context. That default context is then used on every context
32  *   creation to have a "primed golden context", i.e. a context image that
33  *   already contains the changes needed to all the registers.
34  *
35  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
36  *   variants respective to the targeted platforms.
37  *
38  * - Engine workarounds: the list of these WAs is applied whenever the specific
39  *   engine is reset. It's also possible that a set of engine classes share a
40  *   common power domain and they are reset together. This happens on some
41  *   platforms with render and compute engines. In this case (at least) one of
42  *   them need to keeep the workaround programming: the approach taken in the
43  *   driver is to tie those workarounds to the first compute/render engine that
44  *   is registered.  When executing with GuC submission, engine resets are
45  *   outside of kernel driver control, hence the list of registers involved in
46  *   written once, on engine initialization, and then passed to GuC, that
47  *   saves/restores their values before/after the reset takes place. See
48  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
49  *
50  *   Workarounds for registers specific to RCS and CCS should be implemented in
51  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
52  *   registers belonging to BCS, VCS or VECS should be implemented in
53  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
54  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
55  *   should be implemented in general_render_compute_wa_init(). The settings
56  *   about the CCS load balancing should be added in ccs_engine_wa_mode().
57  *
58  * - GT workarounds: the list of these WAs is applied whenever these registers
59  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
60  *
61  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
62  *   variants respective to the targeted platforms.
63  *
64  * - Register whitelist: some workarounds need to be implemented in userspace,
65  *   but need to touch privileged registers. The whitelist in the kernel
66  *   instructs the hardware to allow the access to happen. From the kernel side,
67  *   this is just a special case of a MMIO workaround (as we write the list of
68  *   these to/be-whitelisted registers to some special HW registers).
69  *
70  *   Register whitelisting should be done in the \*_whitelist_build() variants
71  *   respective to the targeted platforms.
72  *
73  * - Workaround batchbuffers: buffers that get executed automatically by the
74  *   hardware on every HW context restore. These buffers are created and
75  *   programmed in the default context so the hardware always go through those
76  *   programming sequences when switching contexts. The support for workaround
77  *   batchbuffers is enabled these hardware mechanisms:
78  *
79  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
80  *      context, pointing the hardware to jump to that location when that offset
81  *      is reached in the context restore. Workaround batchbuffer in the driver
82  *      currently uses this mechanism for all platforms.
83  *
84  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
85  *      pointing the hardware to a buffer to continue executing after the
86  *      engine registers are restored in a context restore sequence. This is
87  *      currently not used in the driver.
88  *
89  * - Other:  There are WAs that, due to their nature, cannot be applied from a
90  *   central place. Those are peppered around the rest of the code, as needed.
91  *   Workarounds related to the display IP are the main example.
92  *
93  * .. [1] Technically, some registers are powercontext saved & restored, so they
94  *    survive a suspend/resume. In practice, writing them again is not too
95  *    costly and simplifies things, so it's the approach taken in the driver.
96  */
97 
98 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
99 			  const char *name, const char *engine_name)
100 {
101 	wal->gt = gt;
102 	wal->name = name;
103 	wal->engine_name = engine_name;
104 }
105 
106 #define WA_LIST_CHUNK (1 << 4)
107 
108 static void wa_init_finish(struct i915_wa_list *wal)
109 {
110 	/* Trim unused entries. */
111 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
112 		struct i915_wa *list = kmemdup(wal->list,
113 					       wal->count * sizeof(*list),
114 					       GFP_KERNEL);
115 
116 		if (list) {
117 			kfree(wal->list);
118 			wal->list = list;
119 		}
120 	}
121 
122 	if (!wal->count)
123 		return;
124 
125 	gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
126 	       wal->wa_count, wal->name, wal->engine_name);
127 }
128 
129 static enum forcewake_domains
130 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
131 {
132 	enum forcewake_domains fw = 0;
133 	struct i915_wa *wa;
134 	unsigned int i;
135 
136 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
137 		fw |= intel_uncore_forcewake_for_reg(uncore,
138 						     wa->reg,
139 						     FW_REG_READ |
140 						     FW_REG_WRITE);
141 
142 	return fw;
143 }
144 
145 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
146 {
147 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
148 	struct drm_i915_private *i915 = wal->gt->i915;
149 	unsigned int start = 0, end = wal->count;
150 	const unsigned int grow = WA_LIST_CHUNK;
151 	struct i915_wa *wa_;
152 
153 	GEM_BUG_ON(!is_power_of_2(grow));
154 
155 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
156 		struct i915_wa *list;
157 
158 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
159 				     GFP_KERNEL);
160 		if (!list) {
161 			drm_err(&i915->drm, "No space for workaround init!\n");
162 			return;
163 		}
164 
165 		if (wal->list) {
166 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
167 			kfree(wal->list);
168 		}
169 
170 		wal->list = list;
171 	}
172 
173 	while (start < end) {
174 		unsigned int mid = start + (end - start) / 2;
175 
176 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
177 			start = mid + 1;
178 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
179 			end = mid;
180 		} else {
181 			wa_ = &wal->list[mid];
182 
183 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
184 				drm_err(&i915->drm,
185 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
186 					i915_mmio_reg_offset(wa_->reg),
187 					wa_->clr, wa_->set);
188 
189 				wa_->set &= ~wa->clr;
190 			}
191 
192 			wal->wa_count++;
193 			wa_->set |= wa->set;
194 			wa_->clr |= wa->clr;
195 			wa_->read |= wa->read;
196 			return;
197 		}
198 	}
199 
200 	wal->wa_count++;
201 	wa_ = &wal->list[wal->count++];
202 	*wa_ = *wa;
203 
204 	while (wa_-- > wal->list) {
205 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
206 			   i915_mmio_reg_offset(wa_[1].reg));
207 		if (i915_mmio_reg_offset(wa_[1].reg) >
208 		    i915_mmio_reg_offset(wa_[0].reg))
209 			break;
210 
211 		swap(wa_[1], wa_[0]);
212 	}
213 }
214 
215 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
216 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
217 {
218 	struct i915_wa wa = {
219 		.reg  = reg,
220 		.clr  = clear,
221 		.set  = set,
222 		.read = read_mask,
223 		.masked_reg = masked_reg,
224 	};
225 
226 	_wa_add(wal, &wa);
227 }
228 
229 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
230 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
231 {
232 	struct i915_wa wa = {
233 		.mcr_reg = reg,
234 		.clr  = clear,
235 		.set  = set,
236 		.read = read_mask,
237 		.masked_reg = masked_reg,
238 		.is_mcr = 1,
239 	};
240 
241 	_wa_add(wal, &wa);
242 }
243 
244 static void
245 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
246 {
247 	wa_add(wal, reg, clear, set, clear | set, false);
248 }
249 
250 static void
251 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
252 {
253 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
254 }
255 
256 static void
257 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
258 {
259 	wa_write_clr_set(wal, reg, ~0, set);
260 }
261 
262 static void
263 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
264 {
265 	wa_mcr_write_clr_set(wal, reg, ~0, set);
266 }
267 
268 static void
269 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
270 {
271 	wa_write_clr_set(wal, reg, set, set);
272 }
273 
274 static void
275 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
276 {
277 	wa_mcr_write_clr_set(wal, reg, set, set);
278 }
279 
280 static void
281 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
282 {
283 	wa_write_clr_set(wal, reg, clr, 0);
284 }
285 
286 static void
287 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
288 {
289 	wa_mcr_write_clr_set(wal, reg, clr, 0);
290 }
291 
292 /*
293  * WA operations on "masked register". A masked register has the upper 16 bits
294  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
295  * portion of the register without a rmw: you simply write in the upper 16 bits
296  * the mask of bits you are going to modify.
297  *
298  * The wa_masked_* family of functions already does the necessary operations to
299  * calculate the mask based on the parameters passed, so user only has to
300  * provide the lower 16 bits of that register.
301  */
302 
303 static void
304 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
305 {
306 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
307 }
308 
309 static void
310 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
311 {
312 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
313 }
314 
315 static void
316 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
317 {
318 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
319 }
320 
321 static void
322 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
323 {
324 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
325 }
326 
327 static void
328 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
329 		    u32 mask, u32 val)
330 {
331 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
332 }
333 
334 static void
335 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
336 			u32 mask, u32 val)
337 {
338 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
339 }
340 
341 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
342 				      struct i915_wa_list *wal)
343 {
344 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
345 }
346 
347 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
348 				      struct i915_wa_list *wal)
349 {
350 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
351 }
352 
353 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
354 				      struct i915_wa_list *wal)
355 {
356 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
357 
358 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
359 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
360 
361 	/* WaDisablePartialInstShootdown:bdw,chv */
362 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
363 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
364 
365 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
366 	 * workaround for a possible hang in the unlikely event a TLB
367 	 * invalidation occurs during a PSD flush.
368 	 */
369 	/* WaForceEnableNonCoherent:bdw,chv */
370 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
371 	wa_masked_en(wal, HDC_CHICKEN0,
372 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
373 		     HDC_FORCE_NON_COHERENT);
374 
375 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
376 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
377 	 *  polygons in the same 8x4 pixel/sample area to be processed without
378 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
379 	 *  buffer."
380 	 *
381 	 * This optimization is off by default for BDW and CHV; turn it on.
382 	 */
383 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
384 
385 	/* Wa4x4STCOptimizationDisable:bdw,chv */
386 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
387 
388 	/*
389 	 * BSpec recommends 8x4 when MSAA is used,
390 	 * however in practice 16x4 seems fastest.
391 	 *
392 	 * Note that PS/WM thread counts depend on the WIZ hashing
393 	 * disable bit, which we don't touch here, but it's good
394 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
395 	 */
396 	wa_masked_field_set(wal, GEN7_GT_MODE,
397 			    GEN6_WIZ_HASHING_MASK,
398 			    GEN6_WIZ_HASHING_16x4);
399 }
400 
401 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
402 				     struct i915_wa_list *wal)
403 {
404 	struct drm_i915_private *i915 = engine->i915;
405 
406 	gen8_ctx_workarounds_init(engine, wal);
407 
408 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
409 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
410 
411 	/* WaDisableDopClockGating:bdw
412 	 *
413 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
414 	 * to disable EUTC clock gating.
415 	 */
416 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
417 			 DOP_CLOCK_GATING_DISABLE);
418 
419 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
420 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
421 
422 	wa_masked_en(wal, HDC_CHICKEN0,
423 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
424 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
425 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
426 		     (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
427 }
428 
429 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
430 				     struct i915_wa_list *wal)
431 {
432 	gen8_ctx_workarounds_init(engine, wal);
433 
434 	/* WaDisableThreadStallDopClockGating:chv */
435 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
436 
437 	/* Improve HiZ throughput on CHV. */
438 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
439 }
440 
441 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
442 				      struct i915_wa_list *wal)
443 {
444 	struct drm_i915_private *i915 = engine->i915;
445 
446 	if (HAS_LLC(i915)) {
447 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
448 		 *
449 		 * Must match Display Engine. See
450 		 * WaCompressedResourceDisplayNewHashMode.
451 		 */
452 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
453 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
454 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
455 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
456 	}
457 
458 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
459 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
460 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
461 			 FLOW_CONTROL_ENABLE |
462 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
463 
464 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
465 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
466 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
467 			 GEN9_ENABLE_YV12_BUGFIX |
468 			 GEN9_ENABLE_GPGPU_PREEMPTION);
469 
470 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
471 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
472 	wa_masked_en(wal, CACHE_MODE_1,
473 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
474 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
475 
476 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
477 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
478 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
479 
480 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
481 	wa_masked_en(wal, HDC_CHICKEN0,
482 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
483 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
484 
485 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
486 	 * both tied to WaForceContextSaveRestoreNonCoherent
487 	 * in some hsds for skl. We keep the tie for all gen9. The
488 	 * documentation is a bit hazy and so we want to get common behaviour,
489 	 * even though there is no clear evidence we would need both on kbl/bxt.
490 	 * This area has been source of system hangs so we play it safe
491 	 * and mimic the skl regardless of what bspec says.
492 	 *
493 	 * Use Force Non-Coherent whenever executing a 3D context. This
494 	 * is a workaround for a possible hang in the unlikely event
495 	 * a TLB invalidation occurs during a PSD flush.
496 	 */
497 
498 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
499 	wa_masked_en(wal, HDC_CHICKEN0,
500 		     HDC_FORCE_NON_COHERENT);
501 
502 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
503 	if (IS_SKYLAKE(i915) ||
504 	    IS_KABYLAKE(i915) ||
505 	    IS_COFFEELAKE(i915) ||
506 	    IS_COMETLAKE(i915))
507 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
508 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
509 
510 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
511 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
512 
513 	/*
514 	 * Supporting preemption with fine-granularity requires changes in the
515 	 * batch buffer programming. Since we can't break old userspace, we
516 	 * need to set our default preemption level to safe value. Userspace is
517 	 * still able to use more fine-grained preemption levels, since in
518 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
519 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
520 	 * not real HW workarounds, but merely a way to start using preemption
521 	 * while maintaining old contract with userspace.
522 	 */
523 
524 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
525 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
526 
527 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
528 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
529 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
530 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
531 
532 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
533 	if (IS_GEN9_LP(i915))
534 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
535 }
536 
537 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
538 				struct i915_wa_list *wal)
539 {
540 	struct intel_gt *gt = engine->gt;
541 	u8 vals[3] = { 0, 0, 0 };
542 	unsigned int i;
543 
544 	for (i = 0; i < 3; i++) {
545 		u8 ss;
546 
547 		/*
548 		 * Only consider slices where one, and only one, subslice has 7
549 		 * EUs
550 		 */
551 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
552 			continue;
553 
554 		/*
555 		 * subslice_7eu[i] != 0 (because of the check above) and
556 		 * ss_max == 4 (maximum number of subslices possible per slice)
557 		 *
558 		 * ->    0 <= ss <= 3;
559 		 */
560 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
561 		vals[i] = 3 - ss;
562 	}
563 
564 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
565 		return;
566 
567 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
568 	wa_masked_field_set(wal, GEN7_GT_MODE,
569 			    GEN9_IZ_HASHING_MASK(2) |
570 			    GEN9_IZ_HASHING_MASK(1) |
571 			    GEN9_IZ_HASHING_MASK(0),
572 			    GEN9_IZ_HASHING(2, vals[2]) |
573 			    GEN9_IZ_HASHING(1, vals[1]) |
574 			    GEN9_IZ_HASHING(0, vals[0]));
575 }
576 
577 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
578 				     struct i915_wa_list *wal)
579 {
580 	gen9_ctx_workarounds_init(engine, wal);
581 	skl_tune_iz_hashing(engine, wal);
582 }
583 
584 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
585 				     struct i915_wa_list *wal)
586 {
587 	gen9_ctx_workarounds_init(engine, wal);
588 
589 	/* WaDisableThreadStallDopClockGating:bxt */
590 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
591 			 STALL_DOP_GATING_DISABLE);
592 
593 	/* WaToEnableHwFixForPushConstHWBug:bxt */
594 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
595 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
596 }
597 
598 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
599 				     struct i915_wa_list *wal)
600 {
601 	struct drm_i915_private *i915 = engine->i915;
602 
603 	gen9_ctx_workarounds_init(engine, wal);
604 
605 	/* WaToEnableHwFixForPushConstHWBug:kbl */
606 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
607 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
608 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
609 
610 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
611 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
612 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
613 }
614 
615 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
616 				     struct i915_wa_list *wal)
617 {
618 	gen9_ctx_workarounds_init(engine, wal);
619 
620 	/* WaToEnableHwFixForPushConstHWBug:glk */
621 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
622 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
623 }
624 
625 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
626 				     struct i915_wa_list *wal)
627 {
628 	gen9_ctx_workarounds_init(engine, wal);
629 
630 	/* WaToEnableHwFixForPushConstHWBug:cfl */
631 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
632 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
633 
634 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
635 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
636 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
637 }
638 
639 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
640 				     struct i915_wa_list *wal)
641 {
642 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
643 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
644 
645 	/* WaForceEnableNonCoherent:icl
646 	 * This is not the same workaround as in early Gen9 platforms, where
647 	 * lacking this could cause system hangs, but coherency performance
648 	 * overhead is high and only a few compute workloads really need it
649 	 * (the register is whitelisted in hardware now, so UMDs can opt in
650 	 * for coherency if they have a good reason).
651 	 */
652 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
653 
654 	/* WaEnableFloatBlendOptimization:icl */
655 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
656 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
657 		   0 /* write-only, so skip validation */,
658 		   true);
659 
660 	/* WaDisableGPGPUMidThreadPreemption:icl */
661 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
662 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
663 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
664 
665 	/* allow headerless messages for preemptible GPGPU context */
666 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
667 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
668 
669 	/* Wa_1604278689:icl,ehl */
670 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
671 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
672 			 0,
673 			 0xFFFFFFFF);
674 
675 	/* Wa_1406306137:icl,ehl */
676 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
677 }
678 
679 /*
680  * These settings aren't actually workarounds, but general tuning settings that
681  * need to be programmed on dg2 platform.
682  */
683 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
684 				   struct i915_wa_list *wal)
685 {
686 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
687 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
688 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
689 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
690 			     FF_MODE2_TDS_TIMER_128);
691 }
692 
693 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
694 				       struct i915_wa_list *wal)
695 {
696 	struct drm_i915_private *i915 = engine->i915;
697 
698 	/*
699 	 * Wa_1409142259:tgl,dg1,adl-p
700 	 * Wa_1409347922:tgl,dg1,adl-p
701 	 * Wa_1409252684:tgl,dg1,adl-p
702 	 * Wa_1409217633:tgl,dg1,adl-p
703 	 * Wa_1409207793:tgl,dg1,adl-p
704 	 * Wa_1409178076:tgl,dg1,adl-p
705 	 * Wa_1408979724:tgl,dg1,adl-p
706 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
707 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
708 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
709 	 */
710 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
711 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
712 
713 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
714 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
715 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
716 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
717 
718 	/*
719 	 * Wa_16011163337 - GS_TIMER
720 	 *
721 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
722 	 * need to program it even on those that don't explicitly list that
723 	 * workaround.
724 	 *
725 	 * Note that the programming of GEN12_FF_MODE2 is further modified
726 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
727 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
728 	 * value when read from the CPU.
729 	 *
730 	 * The default value for this register is zero for all fields.
731 	 * So instead of doing a RMW we should just write the desired values
732 	 * for TDS and GS timers. Note that since the readback can't be trusted,
733 	 * the clear mask is just set to ~0 to make sure other bits are not
734 	 * inadvertently set. For the same reason read verification is ignored.
735 	 */
736 	wa_add(wal,
737 	       GEN12_FF_MODE2,
738 	       ~0,
739 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
740 	       0, false);
741 
742 	if (!IS_DG1(i915)) {
743 		/* Wa_1806527549 */
744 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
745 
746 		/* Wa_1606376872 */
747 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
748 	}
749 }
750 
751 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
752 				     struct i915_wa_list *wal)
753 {
754 	gen12_ctx_workarounds_init(engine, wal);
755 
756 	/* Wa_1409044764 */
757 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
758 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
759 
760 	/* Wa_22010493298 */
761 	wa_masked_en(wal, HIZ_CHICKEN,
762 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
763 }
764 
765 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
766 				     struct i915_wa_list *wal)
767 {
768 	dg2_ctx_gt_tuning_init(engine, wal);
769 
770 	/* Wa_16013271637:dg2 */
771 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
772 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
773 
774 	/* Wa_14014947963:dg2 */
775 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
776 
777 	/* Wa_18018764978:dg2 */
778 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
779 
780 	/* Wa_18019271663:dg2 */
781 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
782 
783 	/* Wa_14019877138:dg2 */
784 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
785 }
786 
787 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
788 				     struct i915_wa_list *wal)
789 {
790 	struct intel_gt *gt = engine->gt;
791 
792 	dg2_ctx_gt_tuning_init(engine, wal);
793 
794 	/*
795 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
796 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
797 	 * steppings.
798 	 */
799 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
800 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
801 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
802 }
803 
804 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
805 				       struct i915_wa_list *wal)
806 {
807 	struct intel_gt *gt = engine->gt;
808 
809 	xelpg_ctx_gt_tuning_init(engine, wal);
810 
811 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
812 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
813 		/* Wa_14014947963 */
814 		wa_masked_field_set(wal, VF_PREEMPTION,
815 				    PREEMPTION_VERTEX_COUNT, 0x4000);
816 
817 		/* Wa_16013271637 */
818 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
819 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
820 
821 		/* Wa_18019627453 */
822 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
823 
824 		/* Wa_18018764978 */
825 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
826 	}
827 
828 	/* Wa_18019271663 */
829 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
830 
831 	/* Wa_14019877138 */
832 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
833 }
834 
835 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
836 					 struct i915_wa_list *wal)
837 {
838 	/*
839 	 * This is a "fake" workaround defined by software to ensure we
840 	 * maintain reliable, backward-compatible behavior for userspace with
841 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
842 	 *
843 	 * The per-context setting of MI_MODE[12] determines whether the bits
844 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
845 	 * in the traditional manner or whether they should instead use a new
846 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
847 	 * into 3rd-level batchbuffers.  When this new capability was first
848 	 * added in TGL, it remained off by default unless a context
849 	 * intentionally opted in to the new behavior.  However Xe_HPG now
850 	 * flips this on by default and requires that we explicitly opt out if
851 	 * we don't want the new behavior.
852 	 *
853 	 * From a SW perspective, we want to maintain the backward-compatible
854 	 * behavior for userspace, so we'll apply a fake workaround to set it
855 	 * back to the legacy behavior on platforms where the hardware default
856 	 * is to break compatibility.  At the moment there is no Linux
857 	 * userspace that utilizes third-level batchbuffers, so this will avoid
858 	 * userspace from needing to make any changes.  using the legacy
859 	 * meaning is the correct thing to do.  If/when we have userspace
860 	 * consumers that want to utilize third-level batch nesting, we can
861 	 * provide a context parameter to allow them to opt-in.
862 	 */
863 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
864 }
865 
866 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
867 				   struct i915_wa_list *wal)
868 {
869 	u8 mocs;
870 
871 	/*
872 	 * Some blitter commands do not have a field for MOCS, those
873 	 * commands will use MOCS index pointed by BLIT_CCTL.
874 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
875 	 */
876 	if (engine->class == COPY_ENGINE_CLASS) {
877 		mocs = engine->gt->mocs.uc_index;
878 		wa_write_clr_set(wal,
879 				 BLIT_CCTL(engine->mmio_base),
880 				 BLIT_CCTL_MASK,
881 				 BLIT_CCTL_MOCS(mocs, mocs));
882 	}
883 }
884 
885 /*
886  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
887  * defined by the hardware team, but it programming general context registers.
888  * Adding those context register programming in context workaround
889  * allow us to use the wa framework for proper application and validation.
890  */
891 static void
892 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
893 			  struct i915_wa_list *wal)
894 {
895 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
896 		fakewa_disable_nestedbb_mode(engine, wal);
897 
898 	gen12_ctx_gt_mocs_init(engine, wal);
899 }
900 
901 static void
902 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
903 			   struct i915_wa_list *wal,
904 			   const char *name)
905 {
906 	struct drm_i915_private *i915 = engine->i915;
907 
908 	wa_init_start(wal, engine->gt, name, engine->name);
909 
910 	/* Applies to all engines */
911 	/*
912 	 * Fake workarounds are not the actual workaround but
913 	 * programming of context registers using workaround framework.
914 	 */
915 	if (GRAPHICS_VER(i915) >= 12)
916 		gen12_ctx_gt_fake_wa_init(engine, wal);
917 
918 	if (engine->class != RENDER_CLASS)
919 		goto done;
920 
921 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
922 		xelpg_ctx_workarounds_init(engine, wal);
923 	else if (IS_PONTEVECCHIO(i915))
924 		; /* noop; none at this time */
925 	else if (IS_DG2(i915))
926 		dg2_ctx_workarounds_init(engine, wal);
927 	else if (IS_XEHPSDV(i915))
928 		; /* noop; none at this time */
929 	else if (IS_DG1(i915))
930 		dg1_ctx_workarounds_init(engine, wal);
931 	else if (GRAPHICS_VER(i915) == 12)
932 		gen12_ctx_workarounds_init(engine, wal);
933 	else if (GRAPHICS_VER(i915) == 11)
934 		icl_ctx_workarounds_init(engine, wal);
935 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
936 		cfl_ctx_workarounds_init(engine, wal);
937 	else if (IS_GEMINILAKE(i915))
938 		glk_ctx_workarounds_init(engine, wal);
939 	else if (IS_KABYLAKE(i915))
940 		kbl_ctx_workarounds_init(engine, wal);
941 	else if (IS_BROXTON(i915))
942 		bxt_ctx_workarounds_init(engine, wal);
943 	else if (IS_SKYLAKE(i915))
944 		skl_ctx_workarounds_init(engine, wal);
945 	else if (IS_CHERRYVIEW(i915))
946 		chv_ctx_workarounds_init(engine, wal);
947 	else if (IS_BROADWELL(i915))
948 		bdw_ctx_workarounds_init(engine, wal);
949 	else if (GRAPHICS_VER(i915) == 7)
950 		gen7_ctx_workarounds_init(engine, wal);
951 	else if (GRAPHICS_VER(i915) == 6)
952 		gen6_ctx_workarounds_init(engine, wal);
953 	else if (GRAPHICS_VER(i915) < 8)
954 		;
955 	else
956 		MISSING_CASE(GRAPHICS_VER(i915));
957 
958 done:
959 	wa_init_finish(wal);
960 }
961 
962 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
963 {
964 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
965 }
966 
967 int intel_engine_emit_ctx_wa(struct i915_request *rq)
968 {
969 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
970 	struct intel_uncore *uncore = rq->engine->uncore;
971 	enum forcewake_domains fw;
972 	unsigned long flags;
973 	struct i915_wa *wa;
974 	unsigned int i;
975 	u32 *cs;
976 	int ret;
977 
978 	if (wal->count == 0)
979 		return 0;
980 
981 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
982 	if (ret)
983 		return ret;
984 
985 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
986 	if (IS_ERR(cs))
987 		return PTR_ERR(cs);
988 
989 	fw = wal_get_fw_for_rmw(uncore, wal);
990 
991 	intel_gt_mcr_lock(wal->gt, &flags);
992 	spin_lock(&uncore->lock);
993 	intel_uncore_forcewake_get__locked(uncore, fw);
994 
995 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
996 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
997 		u32 val;
998 
999 		/* Skip reading the register if it's not really needed */
1000 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1001 			val = wa->set;
1002 		} else {
1003 			val = wa->is_mcr ?
1004 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1005 				intel_uncore_read_fw(uncore, wa->reg);
1006 			val &= ~wa->clr;
1007 			val |= wa->set;
1008 		}
1009 
1010 		*cs++ = i915_mmio_reg_offset(wa->reg);
1011 		*cs++ = val;
1012 	}
1013 	*cs++ = MI_NOOP;
1014 
1015 	intel_uncore_forcewake_put__locked(uncore, fw);
1016 	spin_unlock(&uncore->lock);
1017 	intel_gt_mcr_unlock(wal->gt, flags);
1018 
1019 	intel_ring_advance(rq, cs);
1020 
1021 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1022 	if (ret)
1023 		return ret;
1024 
1025 	return 0;
1026 }
1027 
1028 static void
1029 gen4_gt_workarounds_init(struct intel_gt *gt,
1030 			 struct i915_wa_list *wal)
1031 {
1032 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1033 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1034 }
1035 
1036 static void
1037 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1038 {
1039 	gen4_gt_workarounds_init(gt, wal);
1040 
1041 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1042 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1043 }
1044 
1045 static void
1046 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1047 {
1048 	g4x_gt_workarounds_init(gt, wal);
1049 
1050 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1051 }
1052 
1053 static void
1054 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1055 {
1056 }
1057 
1058 static void
1059 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1060 {
1061 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1062 	wa_masked_dis(wal,
1063 		      GEN7_COMMON_SLICE_CHICKEN1,
1064 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1065 
1066 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1067 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1068 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1069 
1070 	/* WaForceL3Serialization:ivb */
1071 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1072 }
1073 
1074 static void
1075 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1076 {
1077 	/* WaForceL3Serialization:vlv */
1078 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1079 
1080 	/*
1081 	 * WaIncreaseL3CreditsForVLVB0:vlv
1082 	 * This is the hardware default actually.
1083 	 */
1084 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1085 }
1086 
1087 static void
1088 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1089 {
1090 	/* L3 caching of data atomics doesn't work -- disable it. */
1091 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1092 
1093 	wa_add(wal,
1094 	       HSW_ROW_CHICKEN3, 0,
1095 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1096 	       0 /* XXX does this reg exist? */, true);
1097 
1098 	/* WaVSRefCountFullforceMissDisable:hsw */
1099 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1100 }
1101 
1102 static void
1103 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1104 {
1105 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1106 	unsigned int slice, subslice;
1107 	u32 mcr, mcr_mask;
1108 
1109 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1110 
1111 	/*
1112 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1113 	 * Before any MMIO read into slice/subslice specific registers, MCR
1114 	 * packet control register needs to be programmed to point to any
1115 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1116 	 * This means each subsequent MMIO read will be forwarded to an
1117 	 * specific s/ss combination, but this is OK since these registers
1118 	 * are consistent across s/ss in almost all cases. In the rare
1119 	 * occasions, such as INSTDONE, where this value is dependent
1120 	 * on s/ss combo, the read should be done with read_subslice_reg.
1121 	 */
1122 	slice = ffs(sseu->slice_mask) - 1;
1123 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1124 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1125 	GEM_BUG_ON(!subslice);
1126 	subslice--;
1127 
1128 	/*
1129 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1130 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1131 	 */
1132 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1133 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1134 
1135 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1136 
1137 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1138 }
1139 
1140 static void
1141 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1142 {
1143 	struct drm_i915_private *i915 = gt->i915;
1144 
1145 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1146 	gen9_wa_init_mcr(i915, wal);
1147 
1148 	/* WaDisableKillLogic:bxt,skl,kbl */
1149 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1150 		wa_write_or(wal,
1151 			    GAM_ECOCHK,
1152 			    ECOCHK_DIS_TLB);
1153 
1154 	if (HAS_LLC(i915)) {
1155 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1156 		 *
1157 		 * Must match Display Engine. See
1158 		 * WaCompressedResourceDisplayNewHashMode.
1159 		 */
1160 		wa_write_or(wal,
1161 			    MMCD_MISC_CTRL,
1162 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1163 	}
1164 
1165 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1166 	wa_write_or(wal,
1167 		    GAM_ECOCHK,
1168 		    BDW_DISABLE_HDC_INVALIDATION);
1169 }
1170 
1171 static void
1172 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1173 {
1174 	gen9_gt_workarounds_init(gt, wal);
1175 
1176 	/* WaDisableGafsUnitClkGating:skl */
1177 	wa_write_or(wal,
1178 		    GEN7_UCGCTL4,
1179 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1180 
1181 	/* WaInPlaceDecompressionHang:skl */
1182 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1183 		wa_write_or(wal,
1184 			    GEN9_GAMT_ECO_REG_RW_IA,
1185 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1186 }
1187 
1188 static void
1189 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1190 {
1191 	gen9_gt_workarounds_init(gt, wal);
1192 
1193 	/* WaDisableDynamicCreditSharing:kbl */
1194 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1195 		wa_write_or(wal,
1196 			    GAMT_CHKN_BIT_REG,
1197 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1198 
1199 	/* WaDisableGafsUnitClkGating:kbl */
1200 	wa_write_or(wal,
1201 		    GEN7_UCGCTL4,
1202 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1203 
1204 	/* WaInPlaceDecompressionHang:kbl */
1205 	wa_write_or(wal,
1206 		    GEN9_GAMT_ECO_REG_RW_IA,
1207 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1208 }
1209 
1210 static void
1211 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1212 {
1213 	gen9_gt_workarounds_init(gt, wal);
1214 }
1215 
1216 static void
1217 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1218 {
1219 	gen9_gt_workarounds_init(gt, wal);
1220 
1221 	/* WaDisableGafsUnitClkGating:cfl */
1222 	wa_write_or(wal,
1223 		    GEN7_UCGCTL4,
1224 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1225 
1226 	/* WaInPlaceDecompressionHang:cfl */
1227 	wa_write_or(wal,
1228 		    GEN9_GAMT_ECO_REG_RW_IA,
1229 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1230 }
1231 
1232 static void __set_mcr_steering(struct i915_wa_list *wal,
1233 			       i915_reg_t steering_reg,
1234 			       unsigned int slice, unsigned int subslice)
1235 {
1236 	u32 mcr, mcr_mask;
1237 
1238 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1239 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1240 
1241 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1242 }
1243 
1244 static void debug_dump_steering(struct intel_gt *gt)
1245 {
1246 	struct drm_printer p = drm_dbg_printer(&gt->i915->drm, DRM_UT_DRIVER,
1247 					       "MCR Steering:");
1248 
1249 	if (drm_debug_enabled(DRM_UT_DRIVER))
1250 		intel_gt_mcr_report_steering(&p, gt, false);
1251 }
1252 
1253 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1254 			 unsigned int slice, unsigned int subslice)
1255 {
1256 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1257 
1258 	gt->default_steering.groupid = slice;
1259 	gt->default_steering.instanceid = subslice;
1260 
1261 	debug_dump_steering(gt);
1262 }
1263 
1264 static void
1265 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1266 {
1267 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1268 	unsigned int subslice;
1269 
1270 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1271 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1272 
1273 	/*
1274 	 * Although a platform may have subslices, we need to always steer
1275 	 * reads to the lowest instance that isn't fused off.  When Render
1276 	 * Power Gating is enabled, grabbing forcewake will only power up a
1277 	 * single subslice (the "minconfig") if there isn't a real workload
1278 	 * that needs to be run; this means that if we steer register reads to
1279 	 * one of the higher subslices, we run the risk of reading back 0's or
1280 	 * random garbage.
1281 	 */
1282 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1283 
1284 	/*
1285 	 * If the subslice we picked above also steers us to a valid L3 bank,
1286 	 * then we can just rely on the default steering and won't need to
1287 	 * worry about explicitly re-steering L3BANK reads later.
1288 	 */
1289 	if (gt->info.l3bank_mask & BIT(subslice))
1290 		gt->steering_table[L3BANK] = NULL;
1291 
1292 	__add_mcr_wa(gt, wal, 0, subslice);
1293 }
1294 
1295 static void
1296 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1297 {
1298 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1299 	unsigned long slice, subslice = 0, slice_mask = 0;
1300 	u32 lncf_mask = 0;
1301 	int i;
1302 
1303 	/*
1304 	 * On Xe_HP the steering increases in complexity. There are now several
1305 	 * more units that require steering and we're not guaranteed to be able
1306 	 * to find a common setting for all of them. These are:
1307 	 * - GSLICE (fusable)
1308 	 * - DSS (sub-unit within gslice; fusable)
1309 	 * - L3 Bank (fusable)
1310 	 * - MSLICE (fusable)
1311 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1312 	 *
1313 	 * We'll do our default/implicit steering based on GSLICE (in the
1314 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1315 	 * find overlap between the valid MSLICE and/or LNCF values with
1316 	 * a suitable GSLICE, then we can just re-use the default value and
1317 	 * skip and explicit steering at runtime.
1318 	 *
1319 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1320 	 * a valid sliceid value.  DSS steering is the only type of steering
1321 	 * that utilizes the 'subsliceid' bits.
1322 	 *
1323 	 * Also note that, even though the steering domain is called "GSlice"
1324 	 * and it is encoded in the register using the gslice format, the spec
1325 	 * says that the combined (geometry | compute) fuse should be used to
1326 	 * select the steering.
1327 	 */
1328 
1329 	/* Find the potential gslice candidates */
1330 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1331 						       GEN_DSS_PER_GSLICE);
1332 
1333 	/*
1334 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1335 	 * mslice is fine.
1336 	 */
1337 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1338 		lncf_mask |= (0x3 << (i * 2));
1339 
1340 	/*
1341 	 * Are there any sliceid values that work for both GSLICE and LNCF
1342 	 * steering?
1343 	 */
1344 	if (slice_mask & lncf_mask) {
1345 		slice_mask &= lncf_mask;
1346 		gt->steering_table[LNCF] = NULL;
1347 	}
1348 
1349 	/* How about sliceid values that also work for MSLICE steering? */
1350 	if (slice_mask & gt->info.mslice_mask) {
1351 		slice_mask &= gt->info.mslice_mask;
1352 		gt->steering_table[MSLICE] = NULL;
1353 	}
1354 
1355 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1356 		gt->steering_table[GAM] = NULL;
1357 
1358 	slice = __ffs(slice_mask);
1359 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1360 		GEN_DSS_PER_GSLICE;
1361 
1362 	__add_mcr_wa(gt, wal, slice, subslice);
1363 
1364 	/*
1365 	 * SQIDI ranges are special because they use different steering
1366 	 * registers than everything else we work with.  On XeHP SDV and
1367 	 * DG2-G10, any value in the steering registers will work fine since
1368 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1369 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1370 	 * we'll just steer to a hardcoded "2" since that value will work
1371 	 * everywhere.
1372 	 */
1373 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1374 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1375 
1376 	/*
1377 	 * On DG2, GAM registers have a dedicated steering control register
1378 	 * and must always be programmed to a hardcoded groupid of "1."
1379 	 */
1380 	if (IS_DG2(gt->i915))
1381 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1382 }
1383 
1384 static void
1385 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1386 {
1387 	unsigned int dss;
1388 
1389 	/*
1390 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1391 	 * non-fused-off DSS.  All other types of MCR registers will be
1392 	 * explicitly steered.
1393 	 */
1394 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1395 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1396 }
1397 
1398 static void
1399 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1400 {
1401 	struct drm_i915_private *i915 = gt->i915;
1402 
1403 	icl_wa_init_mcr(gt, wal);
1404 
1405 	/* WaModifyGamTlbPartitioning:icl */
1406 	wa_write_clr_set(wal,
1407 			 GEN11_GACB_PERF_CTRL,
1408 			 GEN11_HASH_CTRL_MASK,
1409 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1410 
1411 	/* Wa_1405766107:icl
1412 	 * Formerly known as WaCL2SFHalfMaxAlloc
1413 	 */
1414 	wa_write_or(wal,
1415 		    GEN11_LSN_UNSLCVC,
1416 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1417 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1418 
1419 	/* Wa_220166154:icl
1420 	 * Formerly known as WaDisCtxReload
1421 	 */
1422 	wa_write_or(wal,
1423 		    GEN8_GAMW_ECO_DEV_RW_IA,
1424 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1425 
1426 	/* Wa_1406463099:icl
1427 	 * Formerly known as WaGamTlbPendError
1428 	 */
1429 	wa_write_or(wal,
1430 		    GAMT_CHKN_BIT_REG,
1431 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1432 
1433 	/*
1434 	 * Wa_1408615072:icl,ehl  (vsunit)
1435 	 * Wa_1407596294:icl,ehl  (hsunit)
1436 	 */
1437 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1438 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1439 
1440 	/* Wa_1407352427:icl,ehl */
1441 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1442 		    PSDUNIT_CLKGATE_DIS);
1443 
1444 	/* Wa_1406680159:icl,ehl */
1445 	wa_mcr_write_or(wal,
1446 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1447 			GWUNIT_CLKGATE_DIS);
1448 
1449 	/* Wa_1607087056:icl,ehl,jsl */
1450 	if (IS_ICELAKE(i915) ||
1451 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1452 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1453 		wa_write_or(wal,
1454 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1455 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1456 
1457 	/*
1458 	 * This is not a documented workaround, but rather an optimization
1459 	 * to reduce sampler power.
1460 	 */
1461 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1462 }
1463 
1464 /*
1465  * Though there are per-engine instances of these registers,
1466  * they retain their value through engine resets and should
1467  * only be provided on the GT workaround list rather than
1468  * the engine-specific workaround list.
1469  */
1470 static void
1471 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1472 {
1473 	struct intel_engine_cs *engine;
1474 	int id;
1475 
1476 	for_each_engine(engine, gt, id) {
1477 		if (engine->class != VIDEO_DECODE_CLASS ||
1478 		    (engine->instance % 2))
1479 			continue;
1480 
1481 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1482 			    IECPUNIT_CLKGATE_DIS);
1483 	}
1484 }
1485 
1486 static void
1487 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1488 {
1489 	icl_wa_init_mcr(gt, wal);
1490 
1491 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1492 	wa_14011060649(gt, wal);
1493 
1494 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1495 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1496 
1497 	/*
1498 	 * Wa_14015795083
1499 	 *
1500 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1501 	 * preventing i915 from modifying it for this workaround.  Skip the
1502 	 * readback verification for this workaround on debug builds; if the
1503 	 * workaround doesn't stick due to firmware behavior, it's not an error
1504 	 * that we want CI to flag.
1505 	 */
1506 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1507 	       0, 0, false);
1508 }
1509 
1510 static void
1511 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1512 {
1513 	gen12_gt_workarounds_init(gt, wal);
1514 
1515 	/* Wa_1409420604:dg1 */
1516 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1517 			CPSSUNIT_CLKGATE_DIS);
1518 
1519 	/* Wa_1408615072:dg1 */
1520 	/* Empirical testing shows this register is unaffected by engine reset. */
1521 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1522 }
1523 
1524 static void
1525 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1526 {
1527 	struct drm_i915_private *i915 = gt->i915;
1528 
1529 	xehp_init_mcr(gt, wal);
1530 
1531 	/* Wa_1409757795:xehpsdv */
1532 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1533 
1534 	/* Wa_18011725039:xehpsdv */
1535 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1536 		wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1537 		wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1538 	}
1539 
1540 	/* Wa_16011155590:xehpsdv */
1541 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1542 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1543 			    TSGUNIT_CLKGATE_DIS);
1544 
1545 	/* Wa_14011780169:xehpsdv */
1546 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1547 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1548 			    GAMTLBVDBOX7_CLKGATE_DIS |
1549 			    GAMTLBVDBOX6_CLKGATE_DIS |
1550 			    GAMTLBVDBOX5_CLKGATE_DIS |
1551 			    GAMTLBVDBOX4_CLKGATE_DIS |
1552 			    GAMTLBVDBOX3_CLKGATE_DIS |
1553 			    GAMTLBVDBOX2_CLKGATE_DIS |
1554 			    GAMTLBVDBOX1_CLKGATE_DIS |
1555 			    GAMTLBVDBOX0_CLKGATE_DIS |
1556 			    GAMTLBKCR_CLKGATE_DIS |
1557 			    GAMTLBGUC_CLKGATE_DIS |
1558 			    GAMTLBBLT_CLKGATE_DIS);
1559 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1560 			    GAMTLBGFXA1_CLKGATE_DIS |
1561 			    GAMTLBCOMPA0_CLKGATE_DIS |
1562 			    GAMTLBCOMPA1_CLKGATE_DIS |
1563 			    GAMTLBCOMPB0_CLKGATE_DIS |
1564 			    GAMTLBCOMPB1_CLKGATE_DIS |
1565 			    GAMTLBCOMPC0_CLKGATE_DIS |
1566 			    GAMTLBCOMPC1_CLKGATE_DIS |
1567 			    GAMTLBCOMPD0_CLKGATE_DIS |
1568 			    GAMTLBCOMPD1_CLKGATE_DIS |
1569 			    GAMTLBMERT_CLKGATE_DIS   |
1570 			    GAMTLBVEBOX3_CLKGATE_DIS |
1571 			    GAMTLBVEBOX2_CLKGATE_DIS |
1572 			    GAMTLBVEBOX1_CLKGATE_DIS |
1573 			    GAMTLBVEBOX0_CLKGATE_DIS);
1574 	}
1575 
1576 	/* Wa_16012725990:xehpsdv */
1577 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1578 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1579 
1580 	/* Wa_14011060649:xehpsdv */
1581 	wa_14011060649(gt, wal);
1582 
1583 	/* Wa_14012362059:xehpsdv */
1584 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1585 
1586 	/* Wa_14014368820:xehpsdv */
1587 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1588 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1589 
1590 	/* Wa_14010670810:xehpsdv */
1591 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1592 }
1593 
1594 static void
1595 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1596 {
1597 	xehp_init_mcr(gt, wal);
1598 
1599 	/* Wa_14011060649:dg2 */
1600 	wa_14011060649(gt, wal);
1601 
1602 	if (IS_DG2_G10(gt->i915)) {
1603 		/* Wa_22010523718:dg2 */
1604 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1605 			    CG3DDISCFEG_CLKGATE_DIS);
1606 
1607 		/* Wa_14011006942:dg2 */
1608 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1609 				DSS_ROUTER_CLKGATE_DIS);
1610 	}
1611 
1612 	/* Wa_14014830051:dg2 */
1613 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1614 
1615 	/*
1616 	 * Wa_14015795083
1617 	 * Skip verification for possibly locked register.
1618 	 */
1619 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1620 	       0, 0, false);
1621 
1622 	/* Wa_18018781329 */
1623 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1624 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1625 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1626 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1627 
1628 	/* Wa_1509235366:dg2 */
1629 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1630 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1631 
1632 	/* Wa_14010648519:dg2 */
1633 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1634 }
1635 
1636 static void
1637 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1638 {
1639 	pvc_init_mcr(gt, wal);
1640 
1641 	/* Wa_14015795083 */
1642 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1643 
1644 	/* Wa_18018781329 */
1645 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1646 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1647 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1648 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1649 
1650 	/* Wa_16016694945 */
1651 	wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1652 }
1653 
1654 static void
1655 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1656 {
1657 	/* Wa_14018575942 / Wa_18018781329 */
1658 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1659 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1660 
1661 	/* Wa_22016670082 */
1662 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1663 
1664 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1665 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1666 		/* Wa_14014830051 */
1667 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1668 
1669 		/* Wa_14015795083 */
1670 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1671 	}
1672 
1673 	/*
1674 	 * Unlike older platforms, we no longer setup implicit steering here;
1675 	 * all MCR accesses are explicitly steered.
1676 	 */
1677 	debug_dump_steering(gt);
1678 }
1679 
1680 static void
1681 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1682 {
1683 	struct intel_engine_cs *engine;
1684 	int id;
1685 
1686 	for_each_engine(engine, gt, id)
1687 		if (engine->class == VIDEO_DECODE_CLASS)
1688 			wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1689 				    MFXPIPE_CLKGATE_DIS);
1690 }
1691 
1692 static void
1693 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1694 {
1695 	wa_16021867713(gt, wal);
1696 
1697 	/*
1698 	 * Wa_14018778641
1699 	 * Wa_18018781329
1700 	 *
1701 	 * Note that although these registers are MCR on the primary
1702 	 * GT, the media GT's versions are regular singleton registers.
1703 	 */
1704 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1705 
1706 	/* Wa_22016670082 */
1707 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1708 
1709 	debug_dump_steering(gt);
1710 }
1711 
1712 /*
1713  * The bspec performance guide has recommended MMIO tuning settings.  These
1714  * aren't truly "workarounds" but we want to program them through the
1715  * workaround infrastructure to make sure they're (re)applied at the proper
1716  * times.
1717  *
1718  * The programming in this function is for settings that persist through
1719  * engine resets and also are not part of any engine's register state context.
1720  * I.e., settings that only need to be re-applied in the event of a full GT
1721  * reset.
1722  */
1723 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1724 {
1725 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1726 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1727 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1728 	}
1729 
1730 	if (IS_PONTEVECCHIO(gt->i915)) {
1731 		wa_mcr_write(wal, XEHPC_L3SCRUB,
1732 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1733 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1734 	}
1735 
1736 	if (IS_DG2(gt->i915)) {
1737 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1738 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1739 	}
1740 }
1741 
1742 static void
1743 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1744 {
1745 	struct drm_i915_private *i915 = gt->i915;
1746 
1747 	gt_tuning_settings(gt, wal);
1748 
1749 	if (gt->type == GT_MEDIA) {
1750 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1751 			xelpmp_gt_workarounds_init(gt, wal);
1752 		else
1753 			MISSING_CASE(MEDIA_VER_FULL(i915));
1754 
1755 		return;
1756 	}
1757 
1758 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1759 		xelpg_gt_workarounds_init(gt, wal);
1760 	else if (IS_PONTEVECCHIO(i915))
1761 		pvc_gt_workarounds_init(gt, wal);
1762 	else if (IS_DG2(i915))
1763 		dg2_gt_workarounds_init(gt, wal);
1764 	else if (IS_XEHPSDV(i915))
1765 		xehpsdv_gt_workarounds_init(gt, wal);
1766 	else if (IS_DG1(i915))
1767 		dg1_gt_workarounds_init(gt, wal);
1768 	else if (GRAPHICS_VER(i915) == 12)
1769 		gen12_gt_workarounds_init(gt, wal);
1770 	else if (GRAPHICS_VER(i915) == 11)
1771 		icl_gt_workarounds_init(gt, wal);
1772 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1773 		cfl_gt_workarounds_init(gt, wal);
1774 	else if (IS_GEMINILAKE(i915))
1775 		glk_gt_workarounds_init(gt, wal);
1776 	else if (IS_KABYLAKE(i915))
1777 		kbl_gt_workarounds_init(gt, wal);
1778 	else if (IS_BROXTON(i915))
1779 		gen9_gt_workarounds_init(gt, wal);
1780 	else if (IS_SKYLAKE(i915))
1781 		skl_gt_workarounds_init(gt, wal);
1782 	else if (IS_HASWELL(i915))
1783 		hsw_gt_workarounds_init(gt, wal);
1784 	else if (IS_VALLEYVIEW(i915))
1785 		vlv_gt_workarounds_init(gt, wal);
1786 	else if (IS_IVYBRIDGE(i915))
1787 		ivb_gt_workarounds_init(gt, wal);
1788 	else if (GRAPHICS_VER(i915) == 6)
1789 		snb_gt_workarounds_init(gt, wal);
1790 	else if (GRAPHICS_VER(i915) == 5)
1791 		ilk_gt_workarounds_init(gt, wal);
1792 	else if (IS_G4X(i915))
1793 		g4x_gt_workarounds_init(gt, wal);
1794 	else if (GRAPHICS_VER(i915) == 4)
1795 		gen4_gt_workarounds_init(gt, wal);
1796 	else if (GRAPHICS_VER(i915) <= 8)
1797 		;
1798 	else
1799 		MISSING_CASE(GRAPHICS_VER(i915));
1800 }
1801 
1802 void intel_gt_init_workarounds(struct intel_gt *gt)
1803 {
1804 	struct i915_wa_list *wal = &gt->wa_list;
1805 
1806 	wa_init_start(wal, gt, "GT", "global");
1807 	gt_init_workarounds(gt, wal);
1808 	wa_init_finish(wal);
1809 }
1810 
1811 static bool
1812 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1813 	  const char *name, const char *from)
1814 {
1815 	if ((cur ^ wa->set) & wa->read) {
1816 		gt_err(gt,
1817 		       "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1818 		       name, from, i915_mmio_reg_offset(wa->reg),
1819 		       cur, cur & wa->read, wa->set & wa->read);
1820 
1821 		return false;
1822 	}
1823 
1824 	return true;
1825 }
1826 
1827 static void wa_list_apply(const struct i915_wa_list *wal)
1828 {
1829 	struct intel_gt *gt = wal->gt;
1830 	struct intel_uncore *uncore = gt->uncore;
1831 	enum forcewake_domains fw;
1832 	unsigned long flags;
1833 	struct i915_wa *wa;
1834 	unsigned int i;
1835 
1836 	if (!wal->count)
1837 		return;
1838 
1839 	fw = wal_get_fw_for_rmw(uncore, wal);
1840 
1841 	intel_gt_mcr_lock(gt, &flags);
1842 	spin_lock(&uncore->lock);
1843 	intel_uncore_forcewake_get__locked(uncore, fw);
1844 
1845 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1846 		u32 val, old = 0;
1847 
1848 		/* open-coded rmw due to steering */
1849 		if (wa->clr)
1850 			old = wa->is_mcr ?
1851 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1852 				intel_uncore_read_fw(uncore, wa->reg);
1853 		val = (old & ~wa->clr) | wa->set;
1854 		if (val != old || !wa->clr) {
1855 			if (wa->is_mcr)
1856 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1857 			else
1858 				intel_uncore_write_fw(uncore, wa->reg, val);
1859 		}
1860 
1861 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1862 			u32 val = wa->is_mcr ?
1863 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1864 				intel_uncore_read_fw(uncore, wa->reg);
1865 
1866 			wa_verify(gt, wa, val, wal->name, "application");
1867 		}
1868 	}
1869 
1870 	intel_uncore_forcewake_put__locked(uncore, fw);
1871 	spin_unlock(&uncore->lock);
1872 	intel_gt_mcr_unlock(gt, flags);
1873 }
1874 
1875 void intel_gt_apply_workarounds(struct intel_gt *gt)
1876 {
1877 	wa_list_apply(&gt->wa_list);
1878 }
1879 
1880 static bool wa_list_verify(struct intel_gt *gt,
1881 			   const struct i915_wa_list *wal,
1882 			   const char *from)
1883 {
1884 	struct intel_uncore *uncore = gt->uncore;
1885 	struct i915_wa *wa;
1886 	enum forcewake_domains fw;
1887 	unsigned long flags;
1888 	unsigned int i;
1889 	bool ok = true;
1890 
1891 	fw = wal_get_fw_for_rmw(uncore, wal);
1892 
1893 	intel_gt_mcr_lock(gt, &flags);
1894 	spin_lock(&uncore->lock);
1895 	intel_uncore_forcewake_get__locked(uncore, fw);
1896 
1897 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1898 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1899 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1900 				intel_uncore_read_fw(uncore, wa->reg),
1901 				wal->name, from);
1902 
1903 	intel_uncore_forcewake_put__locked(uncore, fw);
1904 	spin_unlock(&uncore->lock);
1905 	intel_gt_mcr_unlock(gt, flags);
1906 
1907 	return ok;
1908 }
1909 
1910 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1911 {
1912 	return wa_list_verify(gt, &gt->wa_list, from);
1913 }
1914 
1915 __maybe_unused
1916 static bool is_nonpriv_flags_valid(u32 flags)
1917 {
1918 	/* Check only valid flag bits are set */
1919 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1920 		return false;
1921 
1922 	/* NB: Only 3 out of 4 enum values are valid for access field */
1923 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1924 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1925 		return false;
1926 
1927 	return true;
1928 }
1929 
1930 static void
1931 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1932 {
1933 	struct i915_wa wa = {
1934 		.reg = reg
1935 	};
1936 
1937 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1938 		return;
1939 
1940 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1941 		return;
1942 
1943 	wa.reg.reg |= flags;
1944 	_wa_add(wal, &wa);
1945 }
1946 
1947 static void
1948 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1949 {
1950 	struct i915_wa wa = {
1951 		.mcr_reg = reg,
1952 		.is_mcr = 1,
1953 	};
1954 
1955 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1956 		return;
1957 
1958 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1959 		return;
1960 
1961 	wa.mcr_reg.reg |= flags;
1962 	_wa_add(wal, &wa);
1963 }
1964 
1965 static void
1966 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1967 {
1968 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1969 }
1970 
1971 static void
1972 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1973 {
1974 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1975 }
1976 
1977 static void gen9_whitelist_build(struct i915_wa_list *w)
1978 {
1979 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1980 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1981 
1982 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1983 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1984 
1985 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1986 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1987 
1988 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1989 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1990 }
1991 
1992 static void skl_whitelist_build(struct intel_engine_cs *engine)
1993 {
1994 	struct i915_wa_list *w = &engine->whitelist;
1995 
1996 	if (engine->class != RENDER_CLASS)
1997 		return;
1998 
1999 	gen9_whitelist_build(w);
2000 
2001 	/* WaDisableLSQCROPERFforOCL:skl */
2002 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2003 }
2004 
2005 static void bxt_whitelist_build(struct intel_engine_cs *engine)
2006 {
2007 	if (engine->class != RENDER_CLASS)
2008 		return;
2009 
2010 	gen9_whitelist_build(&engine->whitelist);
2011 }
2012 
2013 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2014 {
2015 	struct i915_wa_list *w = &engine->whitelist;
2016 
2017 	if (engine->class != RENDER_CLASS)
2018 		return;
2019 
2020 	gen9_whitelist_build(w);
2021 
2022 	/* WaDisableLSQCROPERFforOCL:kbl */
2023 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2024 }
2025 
2026 static void glk_whitelist_build(struct intel_engine_cs *engine)
2027 {
2028 	struct i915_wa_list *w = &engine->whitelist;
2029 
2030 	if (engine->class != RENDER_CLASS)
2031 		return;
2032 
2033 	gen9_whitelist_build(w);
2034 
2035 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2036 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2037 }
2038 
2039 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2040 {
2041 	struct i915_wa_list *w = &engine->whitelist;
2042 
2043 	if (engine->class != RENDER_CLASS)
2044 		return;
2045 
2046 	gen9_whitelist_build(w);
2047 
2048 	/*
2049 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2050 	 *
2051 	 * This covers 4 register which are next to one another :
2052 	 *   - PS_INVOCATION_COUNT
2053 	 *   - PS_INVOCATION_COUNT_UDW
2054 	 *   - PS_DEPTH_COUNT
2055 	 *   - PS_DEPTH_COUNT_UDW
2056 	 */
2057 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2058 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2059 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2060 }
2061 
2062 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2063 {
2064 	struct i915_wa_list *w = &engine->whitelist;
2065 
2066 	if (engine->class != RENDER_CLASS)
2067 		whitelist_reg_ext(w,
2068 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2069 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2070 }
2071 
2072 static void cml_whitelist_build(struct intel_engine_cs *engine)
2073 {
2074 	allow_read_ctx_timestamp(engine);
2075 
2076 	cfl_whitelist_build(engine);
2077 }
2078 
2079 static void icl_whitelist_build(struct intel_engine_cs *engine)
2080 {
2081 	struct i915_wa_list *w = &engine->whitelist;
2082 
2083 	allow_read_ctx_timestamp(engine);
2084 
2085 	switch (engine->class) {
2086 	case RENDER_CLASS:
2087 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2088 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2089 
2090 		/* WaAllowUMDToModifySamplerMode:icl */
2091 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2092 
2093 		/* WaEnableStateCacheRedirectToCS:icl */
2094 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2095 
2096 		/*
2097 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2098 		 *
2099 		 * This covers 4 register which are next to one another :
2100 		 *   - PS_INVOCATION_COUNT
2101 		 *   - PS_INVOCATION_COUNT_UDW
2102 		 *   - PS_DEPTH_COUNT
2103 		 *   - PS_DEPTH_COUNT_UDW
2104 		 */
2105 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2106 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2107 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2108 		break;
2109 
2110 	case VIDEO_DECODE_CLASS:
2111 		/* hucStatusRegOffset */
2112 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2113 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2114 		/* hucUKernelHdrInfoRegOffset */
2115 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2116 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2117 		/* hucStatus2RegOffset */
2118 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2119 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2120 		break;
2121 
2122 	default:
2123 		break;
2124 	}
2125 }
2126 
2127 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2128 {
2129 	struct i915_wa_list *w = &engine->whitelist;
2130 
2131 	allow_read_ctx_timestamp(engine);
2132 
2133 	switch (engine->class) {
2134 	case RENDER_CLASS:
2135 		/*
2136 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2137 		 * Wa_1408556865:tgl
2138 		 *
2139 		 * This covers 4 registers which are next to one another :
2140 		 *   - PS_INVOCATION_COUNT
2141 		 *   - PS_INVOCATION_COUNT_UDW
2142 		 *   - PS_DEPTH_COUNT
2143 		 *   - PS_DEPTH_COUNT_UDW
2144 		 */
2145 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2146 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2147 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2148 
2149 		/*
2150 		 * Wa_1808121037:tgl
2151 		 * Wa_14012131227:dg1
2152 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2153 		 */
2154 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2155 
2156 		/* Wa_1806527549:tgl */
2157 		whitelist_reg(w, HIZ_CHICKEN);
2158 
2159 		/* Required by recommended tuning setting (not a workaround) */
2160 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2161 
2162 		break;
2163 	default:
2164 		break;
2165 	}
2166 }
2167 
2168 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2169 {
2170 	struct i915_wa_list *w = &engine->whitelist;
2171 
2172 	switch (engine->class) {
2173 	case RENDER_CLASS:
2174 		/* Required by recommended tuning setting (not a workaround) */
2175 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2176 
2177 		break;
2178 	default:
2179 		break;
2180 	}
2181 }
2182 
2183 static void blacklist_trtt(struct intel_engine_cs *engine)
2184 {
2185 	struct i915_wa_list *w = &engine->whitelist;
2186 
2187 	/*
2188 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2189 	 * the TRTT range across all engines. Note that normally userspace
2190 	 * cannot access the other engines' trtt control, but for simplicity
2191 	 * we cover the entire range on each engine.
2192 	 */
2193 	whitelist_reg_ext(w, _MMIO(0x4400),
2194 			  RING_FORCE_TO_NONPRIV_DENY |
2195 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2196 	whitelist_reg_ext(w, _MMIO(0x4500),
2197 			  RING_FORCE_TO_NONPRIV_DENY |
2198 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2199 }
2200 
2201 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2202 {
2203 	/* Wa_16014440446:pvc */
2204 	blacklist_trtt(engine);
2205 }
2206 
2207 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2208 {
2209 	struct i915_wa_list *w = &engine->whitelist;
2210 
2211 	switch (engine->class) {
2212 	case RENDER_CLASS:
2213 		/* Required by recommended tuning setting (not a workaround) */
2214 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2215 
2216 		break;
2217 	default:
2218 		break;
2219 	}
2220 }
2221 
2222 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2223 {
2224 	struct drm_i915_private *i915 = engine->i915;
2225 	struct i915_wa_list *w = &engine->whitelist;
2226 
2227 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2228 
2229 	if (engine->gt->type == GT_MEDIA)
2230 		; /* none yet */
2231 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2232 		xelpg_whitelist_build(engine);
2233 	else if (IS_PONTEVECCHIO(i915))
2234 		pvc_whitelist_build(engine);
2235 	else if (IS_DG2(i915))
2236 		dg2_whitelist_build(engine);
2237 	else if (IS_XEHPSDV(i915))
2238 		; /* none needed */
2239 	else if (GRAPHICS_VER(i915) == 12)
2240 		tgl_whitelist_build(engine);
2241 	else if (GRAPHICS_VER(i915) == 11)
2242 		icl_whitelist_build(engine);
2243 	else if (IS_COMETLAKE(i915))
2244 		cml_whitelist_build(engine);
2245 	else if (IS_COFFEELAKE(i915))
2246 		cfl_whitelist_build(engine);
2247 	else if (IS_GEMINILAKE(i915))
2248 		glk_whitelist_build(engine);
2249 	else if (IS_KABYLAKE(i915))
2250 		kbl_whitelist_build(engine);
2251 	else if (IS_BROXTON(i915))
2252 		bxt_whitelist_build(engine);
2253 	else if (IS_SKYLAKE(i915))
2254 		skl_whitelist_build(engine);
2255 	else if (GRAPHICS_VER(i915) <= 8)
2256 		;
2257 	else
2258 		MISSING_CASE(GRAPHICS_VER(i915));
2259 
2260 	wa_init_finish(w);
2261 }
2262 
2263 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2264 {
2265 	const struct i915_wa_list *wal = &engine->whitelist;
2266 	struct intel_uncore *uncore = engine->uncore;
2267 	const u32 base = engine->mmio_base;
2268 	struct i915_wa *wa;
2269 	unsigned int i;
2270 
2271 	if (!wal->count)
2272 		return;
2273 
2274 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2275 		intel_uncore_write(uncore,
2276 				   RING_FORCE_TO_NONPRIV(base, i),
2277 				   i915_mmio_reg_offset(wa->reg));
2278 
2279 	/* And clear the rest just in case of garbage */
2280 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2281 		intel_uncore_write(uncore,
2282 				   RING_FORCE_TO_NONPRIV(base, i),
2283 				   i915_mmio_reg_offset(RING_NOPID(base)));
2284 }
2285 
2286 /*
2287  * engine_fake_wa_init(), a place holder to program the registers
2288  * which are not part of an official workaround defined by the
2289  * hardware team.
2290  * Adding programming of those register inside workaround will
2291  * allow utilizing wa framework to proper application and verification.
2292  */
2293 static void
2294 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2295 {
2296 	u8 mocs_w, mocs_r;
2297 
2298 	/*
2299 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2300 	 * by the command streamer when executing commands that don't have
2301 	 * a way to explicitly specify a MOCS setting.  The default should
2302 	 * usually reference whichever MOCS entry corresponds to uncached
2303 	 * behavior, although use of a WB cached entry is recommended by the
2304 	 * spec in certain circumstances on specific platforms.
2305 	 */
2306 	if (GRAPHICS_VER(engine->i915) >= 12) {
2307 		mocs_r = engine->gt->mocs.uc_index;
2308 		mocs_w = engine->gt->mocs.uc_index;
2309 
2310 		if (HAS_L3_CCS_READ(engine->i915) &&
2311 		    engine->class == COMPUTE_CLASS) {
2312 			mocs_r = engine->gt->mocs.wb_index;
2313 
2314 			/*
2315 			 * Even on the few platforms where MOCS 0 is a
2316 			 * legitimate table entry, it's never the correct
2317 			 * setting to use here; we can assume the MOCS init
2318 			 * just forgot to initialize wb_index.
2319 			 */
2320 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2321 		}
2322 
2323 		wa_masked_field_set(wal,
2324 				    RING_CMD_CCTL(engine->mmio_base),
2325 				    CMD_CCTL_MOCS_MASK,
2326 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2327 	}
2328 }
2329 
2330 static void
2331 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2332 {
2333 	struct drm_i915_private *i915 = engine->i915;
2334 	struct intel_gt *gt = engine->gt;
2335 
2336 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2337 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2338 		/* Wa_22014600077 */
2339 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2340 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2341 	}
2342 
2343 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2344 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2345 	    IS_DG2(i915)) {
2346 		/* Wa_1509727124 */
2347 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2348 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2349 	}
2350 
2351 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2352 	    IS_DG2(i915)) {
2353 		/* Wa_22012856258 */
2354 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2355 				 GEN12_DISABLE_READ_SUPPRESSION);
2356 	}
2357 
2358 	if (IS_DG2(i915)) {
2359 		/*
2360 		 * Wa_22010960976:dg2
2361 		 * Wa_14013347512:dg2
2362 		 */
2363 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2364 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2365 	}
2366 
2367 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2368 	    IS_DG2(i915)) {
2369 		/* Wa_14015150844 */
2370 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2371 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2372 			   0, true);
2373 	}
2374 
2375 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2376 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2377 		/*
2378 		 * Wa_1606700617:tgl,dg1,adl-p
2379 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2380 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2381 		 * Wa_18019627453:dg2
2382 		 */
2383 		wa_masked_en(wal,
2384 			     GEN9_CS_DEBUG_MODE1,
2385 			     FF_DOP_CLOCK_GATE_DISABLE);
2386 	}
2387 
2388 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2389 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2390 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2391 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2392 
2393 		/*
2394 		 * Wa_1407928979:tgl A*
2395 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2396 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2397 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2398 		 */
2399 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2400 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2401 
2402 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2403 		wa_mcr_masked_en(wal,
2404 				 GEN10_SAMPLER_MODE,
2405 				 ENABLE_SMALLPL);
2406 	}
2407 
2408 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2409 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2410 		/* Wa_1409804808 */
2411 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2412 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2413 
2414 		/* Wa_14010229206 */
2415 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2416 	}
2417 
2418 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2419 		/*
2420 		 * Wa_1607297627
2421 		 *
2422 		 * On TGL and RKL there are multiple entries for this WA in the
2423 		 * BSpec; some indicate this is an A0-only WA, others indicate
2424 		 * it applies to all steppings so we trust the "all steppings."
2425 		 */
2426 		wa_masked_en(wal,
2427 			     RING_PSMI_CTL(RENDER_RING_BASE),
2428 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2429 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2430 	}
2431 
2432 	if (GRAPHICS_VER(i915) == 11) {
2433 		/* This is not an Wa. Enable for better image quality */
2434 		wa_masked_en(wal,
2435 			     _3D_CHICKEN3,
2436 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2437 
2438 		/*
2439 		 * Wa_1405543622:icl
2440 		 * Formerly known as WaGAPZPriorityScheme
2441 		 */
2442 		wa_write_or(wal,
2443 			    GEN8_GARBCNTL,
2444 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2445 
2446 		/*
2447 		 * Wa_1604223664:icl
2448 		 * Formerly known as WaL3BankAddressHashing
2449 		 */
2450 		wa_write_clr_set(wal,
2451 				 GEN8_GARBCNTL,
2452 				 GEN11_HASH_CTRL_EXCL_MASK,
2453 				 GEN11_HASH_CTRL_EXCL_BIT0);
2454 		wa_write_clr_set(wal,
2455 				 GEN11_GLBLINVL,
2456 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2457 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2458 
2459 		/*
2460 		 * Wa_1405733216:icl
2461 		 * Formerly known as WaDisableCleanEvicts
2462 		 */
2463 		wa_mcr_write_or(wal,
2464 				GEN8_L3SQCREG4,
2465 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2466 
2467 		/* Wa_1606682166:icl */
2468 		wa_write_or(wal,
2469 			    GEN7_SARCHKMD,
2470 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2471 
2472 		/* Wa_1409178092:icl */
2473 		wa_mcr_write_clr_set(wal,
2474 				     GEN11_SCRATCH2,
2475 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2476 				     0);
2477 
2478 		/* WaEnable32PlaneMode:icl */
2479 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2480 			     GEN11_ENABLE_32_PLANE_MODE);
2481 
2482 		/*
2483 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2484 		 * Wa_1605460711:icl[a0..c0]
2485 		 */
2486 		wa_write_or(wal,
2487 			    GEN7_FF_THREAD_MODE,
2488 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2489 
2490 		/* Wa_22010271021 */
2491 		wa_masked_en(wal,
2492 			     GEN9_CS_DEBUG_MODE1,
2493 			     FF_DOP_CLOCK_GATE_DISABLE);
2494 	}
2495 
2496 	/*
2497 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2498 	 * beyond) allow the kernel-mode driver to choose between two different
2499 	 * options for controlling preemption granularity and behavior.
2500 	 *
2501 	 * Option 1 (hardware default):
2502 	 *   Preemption settings are controlled in a global manner via
2503 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2504 	 *   and settings chosen by the kernel-mode driver will apply to all
2505 	 *   userspace clients.
2506 	 *
2507 	 * Option 2:
2508 	 *   Preemption settings are controlled on a per-context basis via
2509 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2510 	 *   context switch and is writable by userspace (e.g., via
2511 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2512 	 *   which allows different userspace drivers/clients to select
2513 	 *   different settings, or to change those settings on the fly in
2514 	 *   response to runtime needs.  This option was known by name
2515 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2516 	 *   that name is somewhat misleading as other non-granularity
2517 	 *   preemption settings are also impacted by this decision.
2518 	 *
2519 	 * On Linux, our policy has always been to let userspace drivers
2520 	 * control preemption granularity/settings (Option 2).  This was
2521 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2522 	 * userspace developed before object-level preemption was enabled would
2523 	 * not behave well if i915 were to go with Option 1 and enable that
2524 	 * preemption in a global manner).  On gen9 each context would have
2525 	 * object-level preemption disabled by default (see
2526 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2527 	 * userspace drivers could opt-in to object-level preemption as they
2528 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2529 	 * even though it is no longer necessary for ABI compatibility when
2530 	 * enabling a new platform, it does ensure that userspace will be able
2531 	 * to implement any workarounds that show up requiring temporary
2532 	 * adjustments to preemption behavior at runtime.
2533 	 *
2534 	 * Notes/Workarounds:
2535 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2536 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2537 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2538 	 *      using Option 1).  Effectively this means userspace is unable
2539 	 *      to disable object-level preemption on these platforms/steppings
2540 	 *      despite the setting here.
2541 	 *
2542 	 *  - Wa_16013994831:  May require that userspace program
2543 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2544 	 *      Userspace requires Option 2 to be in effect for their update of
2545 	 *      CS_CHICKEN1[10] to be effective.
2546 	 *
2547 	 * Other workarounds may appear in the future that will also require
2548 	 * Option 2 behavior to allow proper userspace implementation.
2549 	 */
2550 	if (GRAPHICS_VER(i915) >= 9)
2551 		wa_masked_en(wal,
2552 			     GEN7_FF_SLICE_CS_CHICKEN1,
2553 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2554 
2555 	if (IS_SKYLAKE(i915) ||
2556 	    IS_KABYLAKE(i915) ||
2557 	    IS_COFFEELAKE(i915) ||
2558 	    IS_COMETLAKE(i915)) {
2559 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2560 		wa_write_or(wal,
2561 			    GEN8_GARBCNTL,
2562 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2563 	}
2564 
2565 	if (IS_BROXTON(i915)) {
2566 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2567 		wa_masked_en(wal,
2568 			     FF_SLICE_CS_CHICKEN2,
2569 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2570 	}
2571 
2572 	if (GRAPHICS_VER(i915) == 9) {
2573 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2574 		wa_masked_en(wal,
2575 			     GEN9_CSFE_CHICKEN1_RCS,
2576 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2577 
2578 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2579 		wa_mcr_write_or(wal,
2580 				BDW_SCRATCH1,
2581 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2582 
2583 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2584 		if (IS_GEN9_LP(i915))
2585 			wa_mcr_write_clr_set(wal,
2586 					     GEN8_L3SQCREG1,
2587 					     L3_PRIO_CREDITS_MASK,
2588 					     L3_GENERAL_PRIO_CREDITS(62) |
2589 					     L3_HIGH_PRIO_CREDITS(2));
2590 
2591 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2592 		wa_mcr_write_or(wal,
2593 				GEN8_L3SQCREG4,
2594 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2595 
2596 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2597 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2598 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2599 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2600 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2601 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2602 				     EVICTION_PERF_FIX_ENABLE, 0);
2603 	}
2604 
2605 	if (IS_HASWELL(i915)) {
2606 		/* WaSampleCChickenBitEnable:hsw */
2607 		wa_masked_en(wal,
2608 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2609 
2610 		wa_masked_dis(wal,
2611 			      CACHE_MODE_0_GEN7,
2612 			      /* enable HiZ Raw Stall Optimization */
2613 			      HIZ_RAW_STALL_OPT_DISABLE);
2614 	}
2615 
2616 	if (IS_VALLEYVIEW(i915)) {
2617 		/* WaDisableEarlyCull:vlv */
2618 		wa_masked_en(wal,
2619 			     _3D_CHICKEN3,
2620 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2621 
2622 		/*
2623 		 * WaVSThreadDispatchOverride:ivb,vlv
2624 		 *
2625 		 * This actually overrides the dispatch
2626 		 * mode for all thread types.
2627 		 */
2628 		wa_write_clr_set(wal,
2629 				 GEN7_FF_THREAD_MODE,
2630 				 GEN7_FF_SCHED_MASK,
2631 				 GEN7_FF_TS_SCHED_HW |
2632 				 GEN7_FF_VS_SCHED_HW |
2633 				 GEN7_FF_DS_SCHED_HW);
2634 
2635 		/* WaPsdDispatchEnable:vlv */
2636 		/* WaDisablePSDDualDispatchEnable:vlv */
2637 		wa_masked_en(wal,
2638 			     GEN7_HALF_SLICE_CHICKEN1,
2639 			     GEN7_MAX_PS_THREAD_DEP |
2640 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2641 	}
2642 
2643 	if (IS_IVYBRIDGE(i915)) {
2644 		/* WaDisableEarlyCull:ivb */
2645 		wa_masked_en(wal,
2646 			     _3D_CHICKEN3,
2647 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2648 
2649 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2650 			/* enable HiZ Raw Stall Optimization */
2651 			wa_masked_dis(wal,
2652 				      CACHE_MODE_0_GEN7,
2653 				      HIZ_RAW_STALL_OPT_DISABLE);
2654 		}
2655 
2656 		/*
2657 		 * WaVSThreadDispatchOverride:ivb,vlv
2658 		 *
2659 		 * This actually overrides the dispatch
2660 		 * mode for all thread types.
2661 		 */
2662 		wa_write_clr_set(wal,
2663 				 GEN7_FF_THREAD_MODE,
2664 				 GEN7_FF_SCHED_MASK,
2665 				 GEN7_FF_TS_SCHED_HW |
2666 				 GEN7_FF_VS_SCHED_HW |
2667 				 GEN7_FF_DS_SCHED_HW);
2668 
2669 		/* WaDisablePSDDualDispatchEnable:ivb */
2670 		if (IS_IVB_GT1(i915))
2671 			wa_masked_en(wal,
2672 				     GEN7_HALF_SLICE_CHICKEN1,
2673 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2674 	}
2675 
2676 	if (GRAPHICS_VER(i915) == 7) {
2677 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2678 		wa_masked_en(wal,
2679 			     RING_MODE_GEN7(RENDER_RING_BASE),
2680 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2681 
2682 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2683 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2684 
2685 		/*
2686 		 * BSpec says this must be set, even though
2687 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2688 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2689 		 */
2690 		wa_masked_en(wal,
2691 			     CACHE_MODE_1,
2692 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2693 
2694 		/*
2695 		 * BSpec recommends 8x4 when MSAA is used,
2696 		 * however in practice 16x4 seems fastest.
2697 		 *
2698 		 * Note that PS/WM thread counts depend on the WIZ hashing
2699 		 * disable bit, which we don't touch here, but it's good
2700 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2701 		 */
2702 		wa_masked_field_set(wal,
2703 				    GEN7_GT_MODE,
2704 				    GEN6_WIZ_HASHING_MASK,
2705 				    GEN6_WIZ_HASHING_16x4);
2706 	}
2707 
2708 	if (IS_GRAPHICS_VER(i915, 6, 7))
2709 		/*
2710 		 * We need to disable the AsyncFlip performance optimisations in
2711 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2712 		 * already be programmed to '1' on all products.
2713 		 *
2714 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2715 		 */
2716 		wa_masked_en(wal,
2717 			     RING_MI_MODE(RENDER_RING_BASE),
2718 			     ASYNC_FLIP_PERF_DISABLE);
2719 
2720 	if (GRAPHICS_VER(i915) == 6) {
2721 		/*
2722 		 * Required for the hardware to program scanline values for
2723 		 * waiting
2724 		 * WaEnableFlushTlbInvalidationMode:snb
2725 		 */
2726 		wa_masked_en(wal,
2727 			     GFX_MODE,
2728 			     GFX_TLB_INVALIDATE_EXPLICIT);
2729 
2730 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2731 		wa_masked_en(wal,
2732 			     _3D_CHICKEN,
2733 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2734 
2735 		wa_masked_en(wal,
2736 			     _3D_CHICKEN3,
2737 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2738 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2739 			     /*
2740 			      * Bspec says:
2741 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2742 			      * to normal and 3DSTATE_SF number of SF output attributes
2743 			      * is more than 16."
2744 			      */
2745 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2746 
2747 		/*
2748 		 * BSpec recommends 8x4 when MSAA is used,
2749 		 * however in practice 16x4 seems fastest.
2750 		 *
2751 		 * Note that PS/WM thread counts depend on the WIZ hashing
2752 		 * disable bit, which we don't touch here, but it's good
2753 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2754 		 */
2755 		wa_masked_field_set(wal,
2756 				    GEN6_GT_MODE,
2757 				    GEN6_WIZ_HASHING_MASK,
2758 				    GEN6_WIZ_HASHING_16x4);
2759 
2760 		/* WaDisable_RenderCache_OperationalFlush:snb */
2761 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2762 
2763 		/*
2764 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2765 		 * "If this bit is set, STCunit will have LRA as replacement
2766 		 *  policy. [...] This bit must be reset. LRA replacement
2767 		 *  policy is not supported."
2768 		 */
2769 		wa_masked_dis(wal,
2770 			      CACHE_MODE_0,
2771 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2772 	}
2773 
2774 	if (IS_GRAPHICS_VER(i915, 4, 6))
2775 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2776 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2777 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2778 		       /* XXX bit doesn't stick on Broadwater */
2779 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2780 
2781 	if (GRAPHICS_VER(i915) == 4)
2782 		/*
2783 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2784 		 * image. For as it is loaded, it is executed and the stored
2785 		 * address may no longer be valid, leading to a GPU hang.
2786 		 *
2787 		 * This imposes the requirement that userspace reload their
2788 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2789 		 * they are already accustomed to from before contexts were
2790 		 * enabled.
2791 		 */
2792 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2793 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2794 		       0 /* XXX bit doesn't stick on Broadwater */,
2795 		       true);
2796 }
2797 
2798 static void
2799 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2800 {
2801 	struct drm_i915_private *i915 = engine->i915;
2802 
2803 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2804 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2805 		wa_write(wal,
2806 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2807 			 1);
2808 	}
2809 	/* Wa_16018031267, Wa_16018063123 */
2810 	if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2811 		wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2812 				    XEHP_BLITTER_SCHEDULING_MODE_MASK,
2813 				    XEHP_BLITTER_ROUND_ROBIN_MODE);
2814 }
2815 
2816 static void
2817 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2818 {
2819 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2820 		/* Wa_14014999345:pvc */
2821 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2822 	}
2823 }
2824 
2825 /*
2826  * The bspec performance guide has recommended MMIO tuning settings.  These
2827  * aren't truly "workarounds" but we want to program them with the same
2828  * workaround infrastructure to ensure that they're automatically added to
2829  * the GuC save/restore lists, re-applied at the right times, and checked for
2830  * any conflicting programming requested by real workarounds.
2831  *
2832  * Programming settings should be added here only if their registers are not
2833  * part of an engine's register state context.  If a register is part of a
2834  * context, then any tuning settings should be programmed in an appropriate
2835  * function invoked by __intel_engine_init_ctx_wa().
2836  */
2837 static void
2838 add_render_compute_tuning_settings(struct intel_gt *gt,
2839 				   struct i915_wa_list *wal)
2840 {
2841 	struct drm_i915_private *i915 = gt->i915;
2842 
2843 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2844 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2845 
2846 	/*
2847 	 * This tuning setting proves beneficial only on ATS-M designs; the
2848 	 * default "age based" setting is optimal on regular DG2 and other
2849 	 * platforms.
2850 	 */
2851 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2852 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2853 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2854 
2855 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2856 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2857 }
2858 
2859 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2860 {
2861 	struct intel_gt *gt = engine->gt;
2862 
2863 	if (!IS_DG2(gt->i915))
2864 		return;
2865 
2866 	/*
2867 	 * Wa_14019159160: This workaround, along with others, leads to
2868 	 * significant challenges in utilizing load balancing among the
2869 	 * CCS slices. Consequently, an architectural decision has been
2870 	 * made to completely disable automatic CCS load balancing.
2871 	 */
2872 	wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2873 
2874 	/*
2875 	 * After having disabled automatic load balancing we need to
2876 	 * assign all slices to a single CCS. We will call it CCS mode 1
2877 	 */
2878 	intel_gt_apply_ccs_mode(gt);
2879 }
2880 
2881 /*
2882  * The workarounds in this function apply to shared registers in
2883  * the general render reset domain that aren't tied to a
2884  * specific engine.  Since all render+compute engines get reset
2885  * together, and the contents of these registers are lost during
2886  * the shared render domain reset, we'll define such workarounds
2887  * here and then add them to just a single RCS or CCS engine's
2888  * workaround list (whichever engine has the XXXX flag).
2889  */
2890 static void
2891 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2892 {
2893 	struct drm_i915_private *i915 = engine->i915;
2894 	struct intel_gt *gt = engine->gt;
2895 
2896 	add_render_compute_tuning_settings(gt, wal);
2897 
2898 	if (GRAPHICS_VER(i915) >= 11) {
2899 		/* This is not a Wa (although referred to as
2900 		 * WaSetInidrectStateOverride in places), this allows
2901 		 * applications that reference sampler states through
2902 		 * the BindlessSamplerStateBaseAddress to have their
2903 		 * border color relative to DynamicStateBaseAddress
2904 		 * rather than BindlessSamplerStateBaseAddress.
2905 		 *
2906 		 * Otherwise SAMPLER_STATE border colors have to be
2907 		 * copied in multiple heaps (DynamicStateBaseAddress &
2908 		 * BindlessSamplerStateBaseAddress)
2909 		 *
2910 		 * BSpec: 46052
2911 		 */
2912 		wa_mcr_masked_en(wal,
2913 				 GEN10_SAMPLER_MODE,
2914 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2915 	}
2916 
2917 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2918 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2919 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74)))
2920 		/* Wa_14017856879 */
2921 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2922 
2923 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2924 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2925 		/*
2926 		 * Wa_14017066071
2927 		 * Wa_14017654203
2928 		 */
2929 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2930 				 MTL_DISABLE_SAMPLER_SC_OOO);
2931 
2932 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2933 		/* Wa_22015279794 */
2934 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2935 				 DISABLE_PREFETCH_INTO_IC);
2936 
2937 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2938 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2939 	    IS_DG2(i915)) {
2940 		/* Wa_22013037850 */
2941 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2942 				DISABLE_128B_EVICTION_COMMAND_UDW);
2943 
2944 		/* Wa_18017747507 */
2945 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2946 	}
2947 
2948 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2949 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2950 	    IS_PONTEVECCHIO(i915) ||
2951 	    IS_DG2(i915)) {
2952 		/* Wa_22014226127 */
2953 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2954 	}
2955 
2956 	if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2957 		/* Wa_14015227452:dg2,pvc */
2958 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2959 
2960 		/* Wa_16015675438:dg2,pvc */
2961 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2962 	}
2963 
2964 	if (IS_DG2(i915)) {
2965 		/*
2966 		 * Wa_16011620976:dg2_g11
2967 		 * Wa_22015475538:dg2
2968 		 */
2969 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2970 
2971 		/* Wa_18028616096 */
2972 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2973 	}
2974 
2975 	if (IS_DG2_G11(i915)) {
2976 		/*
2977 		 * Wa_22012826095:dg2
2978 		 * Wa_22013059131:dg2
2979 		 */
2980 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2981 				     MAXREQS_PER_BANK,
2982 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2983 
2984 		/* Wa_22013059131:dg2 */
2985 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2986 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2987 
2988 		/*
2989 		 * Wa_22012654132
2990 		 *
2991 		 * Note that register 0xE420 is write-only and cannot be read
2992 		 * back for verification on DG2 (due to Wa_14012342262), so
2993 		 * we need to explicitly skip the readback.
2994 		 */
2995 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2996 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2997 			   0 /* write-only, so skip validation */,
2998 			   true);
2999 	}
3000 
3001 	if (IS_XEHPSDV(i915)) {
3002 		/* Wa_1409954639 */
3003 		wa_mcr_masked_en(wal,
3004 				 GEN8_ROW_CHICKEN,
3005 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3006 
3007 		/* Wa_1607196519 */
3008 		wa_mcr_masked_en(wal,
3009 				 GEN9_ROW_CHICKEN4,
3010 				 GEN12_DISABLE_GRF_CLEAR);
3011 
3012 		/* Wa_14010449647:xehpsdv */
3013 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3014 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3015 	}
3016 }
3017 
3018 static void
3019 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3020 {
3021 	if (GRAPHICS_VER(engine->i915) < 4)
3022 		return;
3023 
3024 	engine_fake_wa_init(engine, wal);
3025 
3026 	/*
3027 	 * These are common workarounds that just need to applied
3028 	 * to a single RCS/CCS engine's workaround list since
3029 	 * they're reset as part of the general render domain reset.
3030 	 */
3031 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
3032 		general_render_compute_wa_init(engine, wal);
3033 		ccs_engine_wa_mode(engine, wal);
3034 	}
3035 
3036 	if (engine->class == COMPUTE_CLASS)
3037 		ccs_engine_wa_init(engine, wal);
3038 	else if (engine->class == RENDER_CLASS)
3039 		rcs_engine_wa_init(engine, wal);
3040 	else
3041 		xcs_engine_wa_init(engine, wal);
3042 }
3043 
3044 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3045 {
3046 	struct i915_wa_list *wal = &engine->wa_list;
3047 
3048 	wa_init_start(wal, engine->gt, "engine", engine->name);
3049 	engine_init_workarounds(engine, wal);
3050 	wa_init_finish(wal);
3051 }
3052 
3053 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3054 {
3055 	wa_list_apply(&engine->wa_list);
3056 }
3057 
3058 static const struct i915_range mcr_ranges_gen8[] = {
3059 	{ .start = 0x5500, .end = 0x55ff },
3060 	{ .start = 0x7000, .end = 0x7fff },
3061 	{ .start = 0x9400, .end = 0x97ff },
3062 	{ .start = 0xb000, .end = 0xb3ff },
3063 	{ .start = 0xe000, .end = 0xe7ff },
3064 	{},
3065 };
3066 
3067 static const struct i915_range mcr_ranges_gen12[] = {
3068 	{ .start =  0x8150, .end =  0x815f },
3069 	{ .start =  0x9520, .end =  0x955f },
3070 	{ .start =  0xb100, .end =  0xb3ff },
3071 	{ .start =  0xde80, .end =  0xe8ff },
3072 	{ .start = 0x24a00, .end = 0x24a7f },
3073 	{},
3074 };
3075 
3076 static const struct i915_range mcr_ranges_xehp[] = {
3077 	{ .start =  0x4000, .end =  0x4aff },
3078 	{ .start =  0x5200, .end =  0x52ff },
3079 	{ .start =  0x5400, .end =  0x7fff },
3080 	{ .start =  0x8140, .end =  0x815f },
3081 	{ .start =  0x8c80, .end =  0x8dff },
3082 	{ .start =  0x94d0, .end =  0x955f },
3083 	{ .start =  0x9680, .end =  0x96ff },
3084 	{ .start =  0xb000, .end =  0xb3ff },
3085 	{ .start =  0xc800, .end =  0xcfff },
3086 	{ .start =  0xd800, .end =  0xd8ff },
3087 	{ .start =  0xdc00, .end =  0xffff },
3088 	{ .start = 0x17000, .end = 0x17fff },
3089 	{ .start = 0x24a00, .end = 0x24a7f },
3090 	{},
3091 };
3092 
3093 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3094 {
3095 	const struct i915_range *mcr_ranges;
3096 	int i;
3097 
3098 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3099 		mcr_ranges = mcr_ranges_xehp;
3100 	else if (GRAPHICS_VER(i915) >= 12)
3101 		mcr_ranges = mcr_ranges_gen12;
3102 	else if (GRAPHICS_VER(i915) >= 8)
3103 		mcr_ranges = mcr_ranges_gen8;
3104 	else
3105 		return false;
3106 
3107 	/*
3108 	 * Registers in these ranges are affected by the MCR selector
3109 	 * which only controls CPU initiated MMIO. Routing does not
3110 	 * work for CS access so we cannot verify them on this path.
3111 	 */
3112 	for (i = 0; mcr_ranges[i].start; i++)
3113 		if (offset >= mcr_ranges[i].start &&
3114 		    offset <= mcr_ranges[i].end)
3115 			return true;
3116 
3117 	return false;
3118 }
3119 
3120 static int
3121 wa_list_srm(struct i915_request *rq,
3122 	    const struct i915_wa_list *wal,
3123 	    struct i915_vma *vma)
3124 {
3125 	struct drm_i915_private *i915 = rq->i915;
3126 	unsigned int i, count = 0;
3127 	const struct i915_wa *wa;
3128 	u32 srm, *cs;
3129 
3130 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3131 	if (GRAPHICS_VER(i915) >= 8)
3132 		srm++;
3133 
3134 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3135 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3136 			count++;
3137 	}
3138 
3139 	cs = intel_ring_begin(rq, 4 * count);
3140 	if (IS_ERR(cs))
3141 		return PTR_ERR(cs);
3142 
3143 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3144 		u32 offset = i915_mmio_reg_offset(wa->reg);
3145 
3146 		if (mcr_range(i915, offset))
3147 			continue;
3148 
3149 		*cs++ = srm;
3150 		*cs++ = offset;
3151 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3152 		*cs++ = 0;
3153 	}
3154 	intel_ring_advance(rq, cs);
3155 
3156 	return 0;
3157 }
3158 
3159 static int engine_wa_list_verify(struct intel_context *ce,
3160 				 const struct i915_wa_list * const wal,
3161 				 const char *from)
3162 {
3163 	const struct i915_wa *wa;
3164 	struct i915_request *rq;
3165 	struct i915_vma *vma;
3166 	struct i915_gem_ww_ctx ww;
3167 	unsigned int i;
3168 	u32 *results;
3169 	int err;
3170 
3171 	if (!wal->count)
3172 		return 0;
3173 
3174 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3175 					   wal->count * sizeof(u32));
3176 	if (IS_ERR(vma))
3177 		return PTR_ERR(vma);
3178 
3179 	intel_engine_pm_get(ce->engine);
3180 	i915_gem_ww_ctx_init(&ww, false);
3181 retry:
3182 	err = i915_gem_object_lock(vma->obj, &ww);
3183 	if (err == 0)
3184 		err = intel_context_pin_ww(ce, &ww);
3185 	if (err)
3186 		goto err_pm;
3187 
3188 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3189 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3190 	if (err)
3191 		goto err_unpin;
3192 
3193 	rq = i915_request_create(ce);
3194 	if (IS_ERR(rq)) {
3195 		err = PTR_ERR(rq);
3196 		goto err_vma;
3197 	}
3198 
3199 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3200 	if (err == 0)
3201 		err = wa_list_srm(rq, wal, vma);
3202 
3203 	i915_request_get(rq);
3204 	if (err)
3205 		i915_request_set_error_once(rq, err);
3206 	i915_request_add(rq);
3207 
3208 	if (err)
3209 		goto err_rq;
3210 
3211 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3212 		err = -ETIME;
3213 		goto err_rq;
3214 	}
3215 
3216 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3217 	if (IS_ERR(results)) {
3218 		err = PTR_ERR(results);
3219 		goto err_rq;
3220 	}
3221 
3222 	err = 0;
3223 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3224 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3225 			continue;
3226 
3227 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3228 			err = -ENXIO;
3229 	}
3230 
3231 	i915_gem_object_unpin_map(vma->obj);
3232 
3233 err_rq:
3234 	i915_request_put(rq);
3235 err_vma:
3236 	i915_vma_unpin(vma);
3237 err_unpin:
3238 	intel_context_unpin(ce);
3239 err_pm:
3240 	if (err == -EDEADLK) {
3241 		err = i915_gem_ww_ctx_backoff(&ww);
3242 		if (!err)
3243 			goto retry;
3244 	}
3245 	i915_gem_ww_ctx_fini(&ww);
3246 	intel_engine_pm_put(ce->engine);
3247 	i915_vma_put(vma);
3248 	return err;
3249 }
3250 
3251 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3252 				    const char *from)
3253 {
3254 	return engine_wa_list_verify(engine->kernel_context,
3255 				     &engine->wa_list,
3256 				     from);
3257 }
3258 
3259 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3260 #include "selftest_workarounds.c"
3261 #endif
3262