1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2018 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_context.h" 9 #include "intel_engine_pm.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gpu_commands.h" 12 #include "intel_gt.h" 13 #include "intel_gt_ccs_mode.h" 14 #include "intel_gt_mcr.h" 15 #include "intel_gt_print.h" 16 #include "intel_gt_regs.h" 17 #include "intel_ring.h" 18 #include "intel_workarounds.h" 19 20 #include "display/intel_fbc_regs.h" 21 22 /** 23 * DOC: Hardware workarounds 24 * 25 * Hardware workarounds are register programming documented to be executed in 26 * the driver that fall outside of the normal programming sequences for a 27 * platform. There are some basic categories of workarounds, depending on 28 * how/when they are applied: 29 * 30 * - Context workarounds: workarounds that touch registers that are 31 * saved/restored to/from the HW context image. The list is emitted (via Load 32 * Register Immediate commands) once when initializing the device and saved in 33 * the default context. That default context is then used on every context 34 * creation to have a "primed golden context", i.e. a context image that 35 * already contains the changes needed to all the registers. 36 * 37 * Context workarounds should be implemented in the \*_ctx_workarounds_init() 38 * variants respective to the targeted platforms. 39 * 40 * - Engine workarounds: the list of these WAs is applied whenever the specific 41 * engine is reset. It's also possible that a set of engine classes share a 42 * common power domain and they are reset together. This happens on some 43 * platforms with render and compute engines. In this case (at least) one of 44 * them need to keeep the workaround programming: the approach taken in the 45 * driver is to tie those workarounds to the first compute/render engine that 46 * is registered. When executing with GuC submission, engine resets are 47 * outside of kernel driver control, hence the list of registers involved in 48 * written once, on engine initialization, and then passed to GuC, that 49 * saves/restores their values before/after the reset takes place. See 50 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. 51 * 52 * Workarounds for registers specific to RCS and CCS should be implemented in 53 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for 54 * registers belonging to BCS, VCS or VECS should be implemented in 55 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific 56 * engine's MMIO range but that are part of of the common RCS/CCS reset domain 57 * should be implemented in general_render_compute_wa_init(). The settings 58 * about the CCS load balancing should be added in ccs_engine_wa_mode(). 59 * 60 * - GT workarounds: the list of these WAs is applied whenever these registers 61 * revert to their default values: on GPU reset, suspend/resume [1]_, etc. 62 * 63 * GT workarounds should be implemented in the \*_gt_workarounds_init() 64 * variants respective to the targeted platforms. 65 * 66 * - Register whitelist: some workarounds need to be implemented in userspace, 67 * but need to touch privileged registers. The whitelist in the kernel 68 * instructs the hardware to allow the access to happen. From the kernel side, 69 * this is just a special case of a MMIO workaround (as we write the list of 70 * these to/be-whitelisted registers to some special HW registers). 71 * 72 * Register whitelisting should be done in the \*_whitelist_build() variants 73 * respective to the targeted platforms. 74 * 75 * - Workaround batchbuffers: buffers that get executed automatically by the 76 * hardware on every HW context restore. These buffers are created and 77 * programmed in the default context so the hardware always go through those 78 * programming sequences when switching contexts. The support for workaround 79 * batchbuffers is enabled these hardware mechanisms: 80 * 81 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default 82 * context, pointing the hardware to jump to that location when that offset 83 * is reached in the context restore. Workaround batchbuffer in the driver 84 * currently uses this mechanism for all platforms. 85 * 86 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, 87 * pointing the hardware to a buffer to continue executing after the 88 * engine registers are restored in a context restore sequence. This is 89 * currently not used in the driver. 90 * 91 * - Other: There are WAs that, due to their nature, cannot be applied from a 92 * central place. Those are peppered around the rest of the code, as needed. 93 * Workarounds related to the display IP are the main example. 94 * 95 * .. [1] Technically, some registers are powercontext saved & restored, so they 96 * survive a suspend/resume. In practice, writing them again is not too 97 * costly and simplifies things, so it's the approach taken in the driver. 98 */ 99 100 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, 101 const char *name, const char *engine_name) 102 { 103 wal->gt = gt; 104 wal->name = name; 105 wal->engine_name = engine_name; 106 } 107 108 #define WA_LIST_CHUNK (1 << 4) 109 110 static void wa_init_finish(struct i915_wa_list *wal) 111 { 112 /* Trim unused entries. */ 113 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { 114 struct i915_wa *list = kmemdup(wal->list, 115 wal->count * sizeof(*list), 116 GFP_KERNEL); 117 118 if (list) { 119 kfree(wal->list); 120 wal->list = list; 121 } 122 } 123 124 if (!wal->count) 125 return; 126 127 gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n", 128 wal->wa_count, wal->name, wal->engine_name); 129 } 130 131 static enum forcewake_domains 132 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) 133 { 134 enum forcewake_domains fw = 0; 135 struct i915_wa *wa; 136 unsigned int i; 137 138 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 139 fw |= intel_uncore_forcewake_for_reg(uncore, 140 wa->reg, 141 FW_REG_READ | 142 FW_REG_WRITE); 143 144 return fw; 145 } 146 147 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) 148 { 149 unsigned int addr = i915_mmio_reg_offset(wa->reg); 150 struct drm_i915_private *i915 = wal->gt->i915; 151 unsigned int start = 0, end = wal->count; 152 const unsigned int grow = WA_LIST_CHUNK; 153 struct i915_wa *wa_; 154 155 GEM_BUG_ON(!is_power_of_2(grow)); 156 157 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ 158 struct i915_wa *list; 159 160 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), 161 GFP_KERNEL); 162 if (!list) { 163 drm_err(&i915->drm, "No space for workaround init!\n"); 164 return; 165 } 166 167 if (wal->list) { 168 memcpy(list, wal->list, sizeof(*wa) * wal->count); 169 kfree(wal->list); 170 } 171 172 wal->list = list; 173 } 174 175 while (start < end) { 176 unsigned int mid = start + (end - start) / 2; 177 178 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { 179 start = mid + 1; 180 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { 181 end = mid; 182 } else { 183 wa_ = &wal->list[mid]; 184 185 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { 186 drm_err(&i915->drm, 187 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", 188 i915_mmio_reg_offset(wa_->reg), 189 wa_->clr, wa_->set); 190 191 wa_->set &= ~wa->clr; 192 } 193 194 wal->wa_count++; 195 wa_->set |= wa->set; 196 wa_->clr |= wa->clr; 197 wa_->read |= wa->read; 198 return; 199 } 200 } 201 202 wal->wa_count++; 203 wa_ = &wal->list[wal->count++]; 204 *wa_ = *wa; 205 206 while (wa_-- > wal->list) { 207 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == 208 i915_mmio_reg_offset(wa_[1].reg)); 209 if (i915_mmio_reg_offset(wa_[1].reg) > 210 i915_mmio_reg_offset(wa_[0].reg)) 211 break; 212 213 swap(wa_[1], wa_[0]); 214 } 215 } 216 217 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, 218 u32 clear, u32 set, u32 read_mask, bool masked_reg) 219 { 220 struct i915_wa wa = { 221 .reg = reg, 222 .clr = clear, 223 .set = set, 224 .read = read_mask, 225 .masked_reg = masked_reg, 226 }; 227 228 _wa_add(wal, &wa); 229 } 230 231 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, 232 u32 clear, u32 set, u32 read_mask, bool masked_reg) 233 { 234 struct i915_wa wa = { 235 .mcr_reg = reg, 236 .clr = clear, 237 .set = set, 238 .read = read_mask, 239 .masked_reg = masked_reg, 240 .is_mcr = 1, 241 }; 242 243 _wa_add(wal, &wa); 244 } 245 246 static void 247 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) 248 { 249 wa_add(wal, reg, clear, set, clear | set, false); 250 } 251 252 static void 253 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) 254 { 255 wa_mcr_add(wal, reg, clear, set, clear | set, false); 256 } 257 258 static void 259 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 260 { 261 wa_write_clr_set(wal, reg, ~0, set); 262 } 263 264 static void 265 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 266 { 267 wa_write_clr_set(wal, reg, set, set); 268 } 269 270 static void 271 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 272 { 273 wa_mcr_write_clr_set(wal, reg, set, set); 274 } 275 276 static void 277 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) 278 { 279 wa_write_clr_set(wal, reg, clr, 0); 280 } 281 282 static void 283 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) 284 { 285 wa_mcr_write_clr_set(wal, reg, clr, 0); 286 } 287 288 /* 289 * WA operations on "masked register". A masked register has the upper 16 bits 290 * documented as "masked" in b-spec. Its purpose is to allow writing to just a 291 * portion of the register without a rmw: you simply write in the upper 16 bits 292 * the mask of bits you are going to modify. 293 * 294 * The wa_masked_* family of functions already does the necessary operations to 295 * calculate the mask based on the parameters passed, so user only has to 296 * provide the lower 16 bits of that register. 297 */ 298 299 static void 300 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 301 { 302 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 303 } 304 305 static void 306 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 307 { 308 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 309 } 310 311 static void 312 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 313 { 314 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 315 } 316 317 static void 318 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 319 { 320 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 321 } 322 323 static void 324 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, 325 u32 mask, u32 val) 326 { 327 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 328 } 329 330 static void 331 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, 332 u32 mask, u32 val) 333 { 334 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 335 } 336 337 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, 338 struct i915_wa_list *wal) 339 { 340 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 341 } 342 343 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, 344 struct i915_wa_list *wal) 345 { 346 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 347 } 348 349 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, 350 struct i915_wa_list *wal) 351 { 352 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 353 354 /* WaDisableAsyncFlipPerfMode:bdw,chv */ 355 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); 356 357 /* WaDisablePartialInstShootdown:bdw,chv */ 358 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 359 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 360 361 /* Use Force Non-Coherent whenever executing a 3D context. This is a 362 * workaround for a possible hang in the unlikely event a TLB 363 * invalidation occurs during a PSD flush. 364 */ 365 /* WaForceEnableNonCoherent:bdw,chv */ 366 /* WaHdcDisableFetchWhenMasked:bdw,chv */ 367 wa_masked_en(wal, HDC_CHICKEN0, 368 HDC_DONOT_FETCH_MEM_WHEN_MASKED | 369 HDC_FORCE_NON_COHERENT); 370 371 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: 372 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping 373 * polygons in the same 8x4 pixel/sample area to be processed without 374 * stalling waiting for the earlier ones to write to Hierarchical Z 375 * buffer." 376 * 377 * This optimization is off by default for BDW and CHV; turn it on. 378 */ 379 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); 380 381 /* Wa4x4STCOptimizationDisable:bdw,chv */ 382 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); 383 384 /* 385 * BSpec recommends 8x4 when MSAA is used, 386 * however in practice 16x4 seems fastest. 387 * 388 * Note that PS/WM thread counts depend on the WIZ hashing 389 * disable bit, which we don't touch here, but it's good 390 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 391 */ 392 wa_masked_field_set(wal, GEN7_GT_MODE, 393 GEN6_WIZ_HASHING_MASK, 394 GEN6_WIZ_HASHING_16x4); 395 } 396 397 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, 398 struct i915_wa_list *wal) 399 { 400 struct drm_i915_private *i915 = engine->i915; 401 402 gen8_ctx_workarounds_init(engine, wal); 403 404 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ 405 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 406 407 /* WaDisableDopClockGating:bdw 408 * 409 * Also see the related UCGTCL1 write in bdw_init_clock_gating() 410 * to disable EUTC clock gating. 411 */ 412 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 413 DOP_CLOCK_GATING_DISABLE); 414 415 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 416 GEN8_SAMPLER_POWER_BYPASS_DIS); 417 418 wa_masked_en(wal, HDC_CHICKEN0, 419 /* WaForceContextSaveRestoreNonCoherent:bdw */ 420 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 421 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ 422 (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); 423 } 424 425 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, 426 struct i915_wa_list *wal) 427 { 428 gen8_ctx_workarounds_init(engine, wal); 429 430 /* WaDisableThreadStallDopClockGating:chv */ 431 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 432 433 /* Improve HiZ throughput on CHV. */ 434 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); 435 } 436 437 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, 438 struct i915_wa_list *wal) 439 { 440 struct drm_i915_private *i915 = engine->i915; 441 442 if (HAS_LLC(i915)) { 443 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 444 * 445 * Must match Display Engine. See 446 * WaCompressedResourceDisplayNewHashMode. 447 */ 448 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 449 GEN9_PBE_COMPRESSED_HASH_SELECTION); 450 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 451 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); 452 } 453 454 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ 455 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ 456 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 457 FLOW_CONTROL_ENABLE | 458 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 459 460 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ 461 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ 462 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 463 GEN9_ENABLE_YV12_BUGFIX | 464 GEN9_ENABLE_GPGPU_PREEMPTION); 465 466 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ 467 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ 468 wa_masked_en(wal, CACHE_MODE_1, 469 GEN8_4x4_STC_OPTIMIZATION_DISABLE | 470 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); 471 472 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ 473 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, 474 GEN9_CCS_TLB_PREFETCH_ENABLE); 475 476 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ 477 wa_masked_en(wal, HDC_CHICKEN0, 478 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 479 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); 480 481 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are 482 * both tied to WaForceContextSaveRestoreNonCoherent 483 * in some hsds for skl. We keep the tie for all gen9. The 484 * documentation is a bit hazy and so we want to get common behaviour, 485 * even though there is no clear evidence we would need both on kbl/bxt. 486 * This area has been source of system hangs so we play it safe 487 * and mimic the skl regardless of what bspec says. 488 * 489 * Use Force Non-Coherent whenever executing a 3D context. This 490 * is a workaround for a possible hang in the unlikely event 491 * a TLB invalidation occurs during a PSD flush. 492 */ 493 494 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ 495 wa_masked_en(wal, HDC_CHICKEN0, 496 HDC_FORCE_NON_COHERENT); 497 498 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ 499 if (IS_SKYLAKE(i915) || 500 IS_KABYLAKE(i915) || 501 IS_COFFEELAKE(i915) || 502 IS_COMETLAKE(i915)) 503 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 504 GEN8_SAMPLER_POWER_BYPASS_DIS); 505 506 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ 507 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); 508 509 /* 510 * Supporting preemption with fine-granularity requires changes in the 511 * batch buffer programming. Since we can't break old userspace, we 512 * need to set our default preemption level to safe value. Userspace is 513 * still able to use more fine-grained preemption levels, since in 514 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the 515 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are 516 * not real HW workarounds, but merely a way to start using preemption 517 * while maintaining old contract with userspace. 518 */ 519 520 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ 521 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); 522 523 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ 524 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 525 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 526 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); 527 528 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ 529 if (IS_GEN9_LP(i915)) 530 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); 531 } 532 533 static void skl_tune_iz_hashing(struct intel_engine_cs *engine, 534 struct i915_wa_list *wal) 535 { 536 struct intel_gt *gt = engine->gt; 537 u8 vals[3] = { 0, 0, 0 }; 538 unsigned int i; 539 540 for (i = 0; i < 3; i++) { 541 u8 ss; 542 543 /* 544 * Only consider slices where one, and only one, subslice has 7 545 * EUs 546 */ 547 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) 548 continue; 549 550 /* 551 * subslice_7eu[i] != 0 (because of the check above) and 552 * ss_max == 4 (maximum number of subslices possible per slice) 553 * 554 * -> 0 <= ss <= 3; 555 */ 556 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; 557 vals[i] = 3 - ss; 558 } 559 560 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) 561 return; 562 563 /* Tune IZ hashing. See intel_device_info_runtime_init() */ 564 wa_masked_field_set(wal, GEN7_GT_MODE, 565 GEN9_IZ_HASHING_MASK(2) | 566 GEN9_IZ_HASHING_MASK(1) | 567 GEN9_IZ_HASHING_MASK(0), 568 GEN9_IZ_HASHING(2, vals[2]) | 569 GEN9_IZ_HASHING(1, vals[1]) | 570 GEN9_IZ_HASHING(0, vals[0])); 571 } 572 573 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, 574 struct i915_wa_list *wal) 575 { 576 gen9_ctx_workarounds_init(engine, wal); 577 skl_tune_iz_hashing(engine, wal); 578 } 579 580 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, 581 struct i915_wa_list *wal) 582 { 583 gen9_ctx_workarounds_init(engine, wal); 584 585 /* WaDisableThreadStallDopClockGating:bxt */ 586 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 587 STALL_DOP_GATING_DISABLE); 588 589 /* WaToEnableHwFixForPushConstHWBug:bxt */ 590 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 591 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 592 } 593 594 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, 595 struct i915_wa_list *wal) 596 { 597 struct drm_i915_private *i915 = engine->i915; 598 599 gen9_ctx_workarounds_init(engine, wal); 600 601 /* WaToEnableHwFixForPushConstHWBug:kbl */ 602 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) 603 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 604 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 605 606 /* WaDisableSbeCacheDispatchPortSharing:kbl */ 607 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 608 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 609 } 610 611 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, 612 struct i915_wa_list *wal) 613 { 614 gen9_ctx_workarounds_init(engine, wal); 615 616 /* WaToEnableHwFixForPushConstHWBug:glk */ 617 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 618 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 619 } 620 621 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, 622 struct i915_wa_list *wal) 623 { 624 gen9_ctx_workarounds_init(engine, wal); 625 626 /* WaToEnableHwFixForPushConstHWBug:cfl */ 627 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 628 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 629 630 /* WaDisableSbeCacheDispatchPortSharing:cfl */ 631 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 632 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 633 } 634 635 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, 636 struct i915_wa_list *wal) 637 { 638 /* Wa_1406697149 (WaDisableBankHangMode:icl) */ 639 wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL); 640 641 /* WaForceEnableNonCoherent:icl 642 * This is not the same workaround as in early Gen9 platforms, where 643 * lacking this could cause system hangs, but coherency performance 644 * overhead is high and only a few compute workloads really need it 645 * (the register is whitelisted in hardware now, so UMDs can opt in 646 * for coherency if they have a good reason). 647 */ 648 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); 649 650 /* WaEnableFloatBlendOptimization:icl */ 651 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 652 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 653 0 /* write-only, so skip validation */, 654 true); 655 656 /* WaDisableGPGPUMidThreadPreemption:icl */ 657 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 658 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 659 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 660 661 /* allow headerless messages for preemptible GPGPU context */ 662 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 663 GEN11_SAMPLER_ENABLE_HEADLESS_MSG); 664 665 /* Wa_1604278689:icl,ehl */ 666 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); 667 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 668 0, 669 0xFFFFFFFF); 670 671 /* Wa_1406306137:icl,ehl */ 672 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); 673 } 674 675 /* 676 * These settings aren't actually workarounds, but general tuning settings that 677 * need to be programmed on dg2 platform. 678 */ 679 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, 680 struct i915_wa_list *wal) 681 { 682 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); 683 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, 684 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); 685 wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK, 686 FF_MODE2_TDS_TIMER_128); 687 } 688 689 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, 690 struct i915_wa_list *wal) 691 { 692 struct drm_i915_private *i915 = engine->i915; 693 694 /* 695 * Wa_1409142259:tgl,dg1,adl-p 696 * Wa_1409347922:tgl,dg1,adl-p 697 * Wa_1409252684:tgl,dg1,adl-p 698 * Wa_1409217633:tgl,dg1,adl-p 699 * Wa_1409207793:tgl,dg1,adl-p 700 * Wa_1409178076:tgl,dg1,adl-p 701 * Wa_1408979724:tgl,dg1,adl-p 702 * Wa_14010443199:tgl,rkl,dg1,adl-p 703 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p 704 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p 705 */ 706 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, 707 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 708 709 /* WaDisableGPGPUMidThreadPreemption:gen12 */ 710 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 711 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 712 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 713 714 /* 715 * Wa_16011163337 - GS_TIMER 716 * 717 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we 718 * need to program it even on those that don't explicitly list that 719 * workaround. 720 * 721 * Note that the programming of GEN12_FF_MODE2 is further modified 722 * according to the FF_MODE2 guidance given by Wa_1608008084. 723 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong 724 * value when read from the CPU. 725 * 726 * The default value for this register is zero for all fields. 727 * So instead of doing a RMW we should just write the desired values 728 * for TDS and GS timers. Note that since the readback can't be trusted, 729 * the clear mask is just set to ~0 to make sure other bits are not 730 * inadvertently set. For the same reason read verification is ignored. 731 */ 732 wa_add(wal, 733 GEN12_FF_MODE2, 734 ~0, 735 FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224, 736 0, false); 737 738 if (!IS_DG1(i915)) { 739 /* Wa_1806527549 */ 740 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); 741 742 /* Wa_1606376872 */ 743 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC); 744 } 745 } 746 747 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, 748 struct i915_wa_list *wal) 749 { 750 gen12_ctx_workarounds_init(engine, wal); 751 752 /* Wa_1409044764 */ 753 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, 754 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); 755 756 /* Wa_22010493298 */ 757 wa_masked_en(wal, HIZ_CHICKEN, 758 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); 759 } 760 761 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, 762 struct i915_wa_list *wal) 763 { 764 dg2_ctx_gt_tuning_init(engine, wal); 765 766 /* Wa_16013271637:dg2 */ 767 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 768 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 769 770 /* Wa_14014947963:dg2 */ 771 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); 772 773 /* Wa_18018764978:dg2 */ 774 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 775 776 /* Wa_18019271663:dg2 */ 777 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 778 779 /* Wa_14019877138:dg2 */ 780 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT); 781 } 782 783 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine, 784 struct i915_wa_list *wal) 785 { 786 struct intel_gt *gt = engine->gt; 787 788 dg2_ctx_gt_tuning_init(engine, wal); 789 790 /* 791 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in 792 * gen12_emit_indirect_ctx_rcs() rather than here on some early 793 * steppings. 794 */ 795 if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 796 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))) 797 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false); 798 } 799 800 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine, 801 struct i915_wa_list *wal) 802 { 803 struct intel_gt *gt = engine->gt; 804 805 xelpg_ctx_gt_tuning_init(engine, wal); 806 807 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 808 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 809 /* Wa_14014947963 */ 810 wa_masked_field_set(wal, VF_PREEMPTION, 811 PREEMPTION_VERTEX_COUNT, 0x4000); 812 813 /* Wa_16013271637 */ 814 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 815 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 816 817 /* Wa_18019627453 */ 818 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS); 819 820 /* Wa_18018764978 */ 821 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 822 } 823 824 /* Wa_18019271663 */ 825 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 826 827 /* Wa_14019877138 */ 828 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT); 829 } 830 831 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, 832 struct i915_wa_list *wal) 833 { 834 /* 835 * This is a "fake" workaround defined by software to ensure we 836 * maintain reliable, backward-compatible behavior for userspace with 837 * regards to how nested MI_BATCH_BUFFER_START commands are handled. 838 * 839 * The per-context setting of MI_MODE[12] determines whether the bits 840 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted 841 * in the traditional manner or whether they should instead use a new 842 * tgl+ meaning that breaks backward compatibility, but allows nesting 843 * into 3rd-level batchbuffers. When this new capability was first 844 * added in TGL, it remained off by default unless a context 845 * intentionally opted in to the new behavior. However Xe_HPG now 846 * flips this on by default and requires that we explicitly opt out if 847 * we don't want the new behavior. 848 * 849 * From a SW perspective, we want to maintain the backward-compatible 850 * behavior for userspace, so we'll apply a fake workaround to set it 851 * back to the legacy behavior on platforms where the hardware default 852 * is to break compatibility. At the moment there is no Linux 853 * userspace that utilizes third-level batchbuffers, so this will avoid 854 * userspace from needing to make any changes. using the legacy 855 * meaning is the correct thing to do. If/when we have userspace 856 * consumers that want to utilize third-level batch nesting, we can 857 * provide a context parameter to allow them to opt-in. 858 */ 859 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); 860 } 861 862 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, 863 struct i915_wa_list *wal) 864 { 865 u8 mocs; 866 867 /* 868 * Some blitter commands do not have a field for MOCS, those 869 * commands will use MOCS index pointed by BLIT_CCTL. 870 * BLIT_CCTL registers are needed to be programmed to un-cached. 871 */ 872 if (engine->class == COPY_ENGINE_CLASS) { 873 mocs = engine->gt->mocs.uc_index; 874 wa_write_clr_set(wal, 875 BLIT_CCTL(engine->mmio_base), 876 BLIT_CCTL_MASK, 877 BLIT_CCTL_MOCS(mocs, mocs)); 878 } 879 } 880 881 /* 882 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround 883 * defined by the hardware team, but it programming general context registers. 884 * Adding those context register programming in context workaround 885 * allow us to use the wa framework for proper application and validation. 886 */ 887 static void 888 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, 889 struct i915_wa_list *wal) 890 { 891 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 892 fakewa_disable_nestedbb_mode(engine, wal); 893 894 gen12_ctx_gt_mocs_init(engine, wal); 895 } 896 897 static void 898 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, 899 struct i915_wa_list *wal, 900 const char *name) 901 { 902 struct drm_i915_private *i915 = engine->i915; 903 904 wa_init_start(wal, engine->gt, name, engine->name); 905 906 /* Applies to all engines */ 907 /* 908 * Fake workarounds are not the actual workaround but 909 * programming of context registers using workaround framework. 910 */ 911 if (GRAPHICS_VER(i915) >= 12) 912 gen12_ctx_gt_fake_wa_init(engine, wal); 913 914 if (engine->class != RENDER_CLASS) 915 goto done; 916 917 if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 918 xelpg_ctx_workarounds_init(engine, wal); 919 else if (IS_DG2(i915)) 920 dg2_ctx_workarounds_init(engine, wal); 921 else if (IS_DG1(i915)) 922 dg1_ctx_workarounds_init(engine, wal); 923 else if (GRAPHICS_VER(i915) == 12) 924 gen12_ctx_workarounds_init(engine, wal); 925 else if (GRAPHICS_VER(i915) == 11) 926 icl_ctx_workarounds_init(engine, wal); 927 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 928 cfl_ctx_workarounds_init(engine, wal); 929 else if (IS_GEMINILAKE(i915)) 930 glk_ctx_workarounds_init(engine, wal); 931 else if (IS_KABYLAKE(i915)) 932 kbl_ctx_workarounds_init(engine, wal); 933 else if (IS_BROXTON(i915)) 934 bxt_ctx_workarounds_init(engine, wal); 935 else if (IS_SKYLAKE(i915)) 936 skl_ctx_workarounds_init(engine, wal); 937 else if (IS_CHERRYVIEW(i915)) 938 chv_ctx_workarounds_init(engine, wal); 939 else if (IS_BROADWELL(i915)) 940 bdw_ctx_workarounds_init(engine, wal); 941 else if (GRAPHICS_VER(i915) == 7) 942 gen7_ctx_workarounds_init(engine, wal); 943 else if (GRAPHICS_VER(i915) == 6) 944 gen6_ctx_workarounds_init(engine, wal); 945 else if (GRAPHICS_VER(i915) < 8) 946 ; 947 else 948 MISSING_CASE(GRAPHICS_VER(i915)); 949 950 done: 951 wa_init_finish(wal); 952 } 953 954 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) 955 { 956 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); 957 } 958 959 int intel_engine_emit_ctx_wa(struct i915_request *rq) 960 { 961 struct i915_wa_list *wal = &rq->engine->ctx_wa_list; 962 struct intel_uncore *uncore = rq->engine->uncore; 963 enum forcewake_domains fw; 964 unsigned long flags; 965 struct i915_wa *wa; 966 unsigned int i; 967 u32 *cs; 968 int ret; 969 970 if (wal->count == 0) 971 return 0; 972 973 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 974 if (ret) 975 return ret; 976 977 cs = intel_ring_begin(rq, (wal->count * 2 + 2)); 978 if (IS_ERR(cs)) 979 return PTR_ERR(cs); 980 981 fw = wal_get_fw_for_rmw(uncore, wal); 982 983 intel_gt_mcr_lock(wal->gt, &flags); 984 spin_lock(&uncore->lock); 985 intel_uncore_forcewake_get__locked(uncore, fw); 986 987 *cs++ = MI_LOAD_REGISTER_IMM(wal->count); 988 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 989 u32 val; 990 991 /* Skip reading the register if it's not really needed */ 992 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) { 993 val = wa->set; 994 } else { 995 val = wa->is_mcr ? 996 intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) : 997 intel_uncore_read_fw(uncore, wa->reg); 998 val &= ~wa->clr; 999 val |= wa->set; 1000 } 1001 1002 *cs++ = i915_mmio_reg_offset(wa->reg); 1003 *cs++ = val; 1004 } 1005 *cs++ = MI_NOOP; 1006 1007 intel_uncore_forcewake_put__locked(uncore, fw); 1008 spin_unlock(&uncore->lock); 1009 intel_gt_mcr_unlock(wal->gt, flags); 1010 1011 intel_ring_advance(rq, cs); 1012 1013 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 1014 if (ret) 1015 return ret; 1016 1017 return 0; 1018 } 1019 1020 static void 1021 gen4_gt_workarounds_init(struct intel_gt *gt, 1022 struct i915_wa_list *wal) 1023 { 1024 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ 1025 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 1026 } 1027 1028 static void 1029 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1030 { 1031 gen4_gt_workarounds_init(gt, wal); 1032 1033 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ 1034 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); 1035 } 1036 1037 static void 1038 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1039 { 1040 g4x_gt_workarounds_init(gt, wal); 1041 1042 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); 1043 } 1044 1045 static void 1046 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1047 { 1048 } 1049 1050 static void 1051 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1052 { 1053 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ 1054 wa_masked_dis(wal, 1055 GEN7_COMMON_SLICE_CHICKEN1, 1056 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 1057 1058 /* WaApplyL3ControlAndL3ChickenMode:ivb */ 1059 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); 1060 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); 1061 1062 /* WaForceL3Serialization:ivb */ 1063 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1064 } 1065 1066 static void 1067 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1068 { 1069 /* WaForceL3Serialization:vlv */ 1070 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1071 1072 /* 1073 * WaIncreaseL3CreditsForVLVB0:vlv 1074 * This is the hardware default actually. 1075 */ 1076 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); 1077 } 1078 1079 static void 1080 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1081 { 1082 /* L3 caching of data atomics doesn't work -- disable it. */ 1083 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); 1084 1085 wa_add(wal, 1086 HSW_ROW_CHICKEN3, 0, 1087 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 1088 0 /* XXX does this reg exist? */, true); 1089 1090 /* WaVSRefCountFullforceMissDisable:hsw */ 1091 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); 1092 } 1093 1094 static void 1095 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) 1096 { 1097 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; 1098 unsigned int slice, subslice; 1099 u32 mcr, mcr_mask; 1100 1101 GEM_BUG_ON(GRAPHICS_VER(i915) != 9); 1102 1103 /* 1104 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml 1105 * Before any MMIO read into slice/subslice specific registers, MCR 1106 * packet control register needs to be programmed to point to any 1107 * enabled s/ss pair. Otherwise, incorrect values will be returned. 1108 * This means each subsequent MMIO read will be forwarded to an 1109 * specific s/ss combination, but this is OK since these registers 1110 * are consistent across s/ss in almost all cases. In the rare 1111 * occasions, such as INSTDONE, where this value is dependent 1112 * on s/ss combo, the read should be done with read_subslice_reg. 1113 */ 1114 slice = ffs(sseu->slice_mask) - 1; 1115 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); 1116 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); 1117 GEM_BUG_ON(!subslice); 1118 subslice--; 1119 1120 /* 1121 * We use GEN8_MCR..() macros to calculate the |mcr| value for 1122 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads 1123 */ 1124 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1125 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1126 1127 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); 1128 1129 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); 1130 } 1131 1132 static void 1133 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1134 { 1135 struct drm_i915_private *i915 = gt->i915; 1136 1137 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ 1138 gen9_wa_init_mcr(i915, wal); 1139 1140 /* WaDisableKillLogic:bxt,skl,kbl */ 1141 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) 1142 wa_write_or(wal, 1143 GAM_ECOCHK, 1144 ECOCHK_DIS_TLB); 1145 1146 if (HAS_LLC(i915)) { 1147 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 1148 * 1149 * Must match Display Engine. See 1150 * WaCompressedResourceDisplayNewHashMode. 1151 */ 1152 wa_write_or(wal, 1153 MMCD_MISC_CTRL, 1154 MMCD_PCLA | MMCD_HOTSPOT_EN); 1155 } 1156 1157 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ 1158 wa_write_or(wal, 1159 GAM_ECOCHK, 1160 BDW_DISABLE_HDC_INVALIDATION); 1161 } 1162 1163 static void 1164 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1165 { 1166 gen9_gt_workarounds_init(gt, wal); 1167 1168 /* WaDisableGafsUnitClkGating:skl */ 1169 wa_write_or(wal, 1170 GEN7_UCGCTL4, 1171 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1172 1173 /* WaInPlaceDecompressionHang:skl */ 1174 if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) 1175 wa_write_or(wal, 1176 GEN9_GAMT_ECO_REG_RW_IA, 1177 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1178 } 1179 1180 static void 1181 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1182 { 1183 gen9_gt_workarounds_init(gt, wal); 1184 1185 /* WaDisableDynamicCreditSharing:kbl */ 1186 if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) 1187 wa_write_or(wal, 1188 GAMT_CHKN_BIT_REG, 1189 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); 1190 1191 /* WaDisableGafsUnitClkGating:kbl */ 1192 wa_write_or(wal, 1193 GEN7_UCGCTL4, 1194 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1195 1196 /* WaInPlaceDecompressionHang:kbl */ 1197 wa_write_or(wal, 1198 GEN9_GAMT_ECO_REG_RW_IA, 1199 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1200 } 1201 1202 static void 1203 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1204 { 1205 gen9_gt_workarounds_init(gt, wal); 1206 } 1207 1208 static void 1209 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1210 { 1211 gen9_gt_workarounds_init(gt, wal); 1212 1213 /* WaDisableGafsUnitClkGating:cfl */ 1214 wa_write_or(wal, 1215 GEN7_UCGCTL4, 1216 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1217 1218 /* WaInPlaceDecompressionHang:cfl */ 1219 wa_write_or(wal, 1220 GEN9_GAMT_ECO_REG_RW_IA, 1221 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1222 } 1223 1224 static void __set_mcr_steering(struct i915_wa_list *wal, 1225 i915_reg_t steering_reg, 1226 unsigned int slice, unsigned int subslice) 1227 { 1228 u32 mcr, mcr_mask; 1229 1230 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1231 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1232 1233 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); 1234 } 1235 1236 static void debug_dump_steering(struct intel_gt *gt) 1237 { 1238 struct drm_printer p = drm_dbg_printer(>->i915->drm, DRM_UT_DRIVER, 1239 "MCR Steering:"); 1240 1241 if (drm_debug_enabled(DRM_UT_DRIVER)) 1242 intel_gt_mcr_report_steering(&p, gt, false); 1243 } 1244 1245 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, 1246 unsigned int slice, unsigned int subslice) 1247 { 1248 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); 1249 1250 gt->default_steering.groupid = slice; 1251 gt->default_steering.instanceid = subslice; 1252 1253 debug_dump_steering(gt); 1254 } 1255 1256 static void 1257 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1258 { 1259 const struct sseu_dev_info *sseu = >->info.sseu; 1260 unsigned int subslice; 1261 1262 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); 1263 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); 1264 1265 /* 1266 * Although a platform may have subslices, we need to always steer 1267 * reads to the lowest instance that isn't fused off. When Render 1268 * Power Gating is enabled, grabbing forcewake will only power up a 1269 * single subslice (the "minconfig") if there isn't a real workload 1270 * that needs to be run; this means that if we steer register reads to 1271 * one of the higher subslices, we run the risk of reading back 0's or 1272 * random garbage. 1273 */ 1274 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); 1275 1276 /* 1277 * If the subslice we picked above also steers us to a valid L3 bank, 1278 * then we can just rely on the default steering and won't need to 1279 * worry about explicitly re-steering L3BANK reads later. 1280 */ 1281 if (gt->info.l3bank_mask & BIT(subslice)) 1282 gt->steering_table[L3BANK] = NULL; 1283 1284 __add_mcr_wa(gt, wal, 0, subslice); 1285 } 1286 1287 static void 1288 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1289 { 1290 const struct sseu_dev_info *sseu = >->info.sseu; 1291 unsigned long slice, subslice = 0, slice_mask = 0; 1292 u32 lncf_mask = 0; 1293 int i; 1294 1295 /* 1296 * On Xe_HP the steering increases in complexity. There are now several 1297 * more units that require steering and we're not guaranteed to be able 1298 * to find a common setting for all of them. These are: 1299 * - GSLICE (fusable) 1300 * - DSS (sub-unit within gslice; fusable) 1301 * - L3 Bank (fusable) 1302 * - MSLICE (fusable) 1303 * - LNCF (sub-unit within mslice; always present if mslice is present) 1304 * 1305 * We'll do our default/implicit steering based on GSLICE (in the 1306 * sliceid field) and DSS (in the subsliceid field). If we can 1307 * find overlap between the valid MSLICE and/or LNCF values with 1308 * a suitable GSLICE, then we can just re-use the default value and 1309 * skip and explicit steering at runtime. 1310 * 1311 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find 1312 * a valid sliceid value. DSS steering is the only type of steering 1313 * that utilizes the 'subsliceid' bits. 1314 * 1315 * Also note that, even though the steering domain is called "GSlice" 1316 * and it is encoded in the register using the gslice format, the spec 1317 * says that the combined (geometry | compute) fuse should be used to 1318 * select the steering. 1319 */ 1320 1321 /* Find the potential gslice candidates */ 1322 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, 1323 GEN_DSS_PER_GSLICE); 1324 1325 /* 1326 * Find the potential LNCF candidates. Either LNCF within a valid 1327 * mslice is fine. 1328 */ 1329 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES) 1330 lncf_mask |= (0x3 << (i * 2)); 1331 1332 /* 1333 * Are there any sliceid values that work for both GSLICE and LNCF 1334 * steering? 1335 */ 1336 if (slice_mask & lncf_mask) { 1337 slice_mask &= lncf_mask; 1338 gt->steering_table[LNCF] = NULL; 1339 } 1340 1341 /* How about sliceid values that also work for MSLICE steering? */ 1342 if (slice_mask & gt->info.mslice_mask) { 1343 slice_mask &= gt->info.mslice_mask; 1344 gt->steering_table[MSLICE] = NULL; 1345 } 1346 1347 slice = __ffs(slice_mask); 1348 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % 1349 GEN_DSS_PER_GSLICE; 1350 1351 __add_mcr_wa(gt, wal, slice, subslice); 1352 1353 /* 1354 * SQIDI ranges are special because they use different steering 1355 * registers than everything else we work with. On XeHP SDV and 1356 * DG2-G10, any value in the steering registers will work fine since 1357 * all instances are present, but DG2-G11 only has SQIDI instances at 1358 * ID's 2 and 3, so we need to steer to one of those. For simplicity 1359 * we'll just steer to a hardcoded "2" since that value will work 1360 * everywhere. 1361 */ 1362 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); 1363 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); 1364 1365 /* 1366 * On DG2, GAM registers have a dedicated steering control register 1367 * and must always be programmed to a hardcoded groupid of "1." 1368 */ 1369 if (IS_DG2(gt->i915)) 1370 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); 1371 } 1372 1373 static void 1374 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1375 { 1376 struct drm_i915_private *i915 = gt->i915; 1377 1378 icl_wa_init_mcr(gt, wal); 1379 1380 /* WaModifyGamTlbPartitioning:icl */ 1381 wa_write_clr_set(wal, 1382 GEN11_GACB_PERF_CTRL, 1383 GEN11_HASH_CTRL_MASK, 1384 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); 1385 1386 /* Wa_1405766107:icl 1387 * Formerly known as WaCL2SFHalfMaxAlloc 1388 */ 1389 wa_write_or(wal, 1390 GEN11_LSN_UNSLCVC, 1391 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | 1392 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); 1393 1394 /* Wa_220166154:icl 1395 * Formerly known as WaDisCtxReload 1396 */ 1397 wa_write_or(wal, 1398 GEN8_GAMW_ECO_DEV_RW_IA, 1399 GAMW_ECO_DEV_CTX_RELOAD_DISABLE); 1400 1401 /* Wa_1406463099:icl 1402 * Formerly known as WaGamTlbPendError 1403 */ 1404 wa_write_or(wal, 1405 GAMT_CHKN_BIT_REG, 1406 GAMT_CHKN_DISABLE_L3_COH_PIPE); 1407 1408 /* 1409 * Wa_1408615072:icl,ehl (vsunit) 1410 * Wa_1407596294:icl,ehl (hsunit) 1411 */ 1412 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1413 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); 1414 1415 /* Wa_1407352427:icl,ehl */ 1416 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1417 PSDUNIT_CLKGATE_DIS); 1418 1419 /* Wa_1406680159:icl,ehl */ 1420 wa_mcr_write_or(wal, 1421 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1422 GWUNIT_CLKGATE_DIS); 1423 1424 /* Wa_1607087056:icl,ehl,jsl */ 1425 if (IS_ICELAKE(i915) || 1426 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && 1427 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))) 1428 wa_write_or(wal, 1429 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1430 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1431 1432 /* 1433 * This is not a documented workaround, but rather an optimization 1434 * to reduce sampler power. 1435 */ 1436 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1437 } 1438 1439 /* 1440 * Though there are per-engine instances of these registers, 1441 * they retain their value through engine resets and should 1442 * only be provided on the GT workaround list rather than 1443 * the engine-specific workaround list. 1444 */ 1445 static void 1446 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) 1447 { 1448 struct intel_engine_cs *engine; 1449 int id; 1450 1451 for_each_engine(engine, gt, id) { 1452 if (engine->class != VIDEO_DECODE_CLASS || 1453 (engine->instance % 2)) 1454 continue; 1455 1456 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), 1457 IECPUNIT_CLKGATE_DIS); 1458 } 1459 } 1460 1461 static void 1462 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1463 { 1464 icl_wa_init_mcr(gt, wal); 1465 1466 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ 1467 wa_14011060649(gt, wal); 1468 1469 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ 1470 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1471 1472 /* 1473 * Wa_14015795083 1474 * 1475 * Firmware on some gen12 platforms locks the MISCCPCTL register, 1476 * preventing i915 from modifying it for this workaround. Skip the 1477 * readback verification for this workaround on debug builds; if the 1478 * workaround doesn't stick due to firmware behavior, it's not an error 1479 * that we want CI to flag. 1480 */ 1481 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 1482 0, 0, false); 1483 } 1484 1485 static void 1486 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1487 { 1488 gen12_gt_workarounds_init(gt, wal); 1489 1490 /* Wa_1409420604:dg1 */ 1491 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2, 1492 CPSSUNIT_CLKGATE_DIS); 1493 1494 /* Wa_1408615072:dg1 */ 1495 /* Empirical testing shows this register is unaffected by engine reset. */ 1496 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL); 1497 } 1498 1499 static void 1500 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1501 { 1502 xehp_init_mcr(gt, wal); 1503 1504 /* Wa_14011060649:dg2 */ 1505 wa_14011060649(gt, wal); 1506 1507 if (IS_DG2_G10(gt->i915)) { 1508 /* Wa_22010523718:dg2 */ 1509 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1510 CG3DDISCFEG_CLKGATE_DIS); 1511 1512 /* Wa_14011006942:dg2 */ 1513 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1514 DSS_ROUTER_CLKGATE_DIS); 1515 } 1516 1517 /* Wa_14014830051:dg2 */ 1518 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1519 1520 /* 1521 * Wa_14015795083 1522 * Skip verification for possibly locked register. 1523 */ 1524 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 1525 0, 0, false); 1526 1527 /* Wa_18018781329 */ 1528 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1529 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1530 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1531 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1532 1533 /* Wa_1509235366:dg2 */ 1534 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1535 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1536 1537 /* Wa_14010648519:dg2 */ 1538 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 1539 } 1540 1541 static void 1542 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1543 { 1544 /* Wa_14018575942 / Wa_18018781329 */ 1545 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1546 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1547 1548 /* Wa_22016670082 */ 1549 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); 1550 1551 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 1552 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 1553 /* Wa_14014830051 */ 1554 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1555 1556 /* Wa_14015795083 */ 1557 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1558 } 1559 1560 /* 1561 * Unlike older platforms, we no longer setup implicit steering here; 1562 * all MCR accesses are explicitly steered. 1563 */ 1564 debug_dump_steering(gt); 1565 } 1566 1567 static void 1568 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal) 1569 { 1570 struct intel_engine_cs *engine; 1571 int id; 1572 1573 for_each_engine(engine, gt, id) 1574 if (engine->class == VIDEO_DECODE_CLASS) 1575 wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base), 1576 MFXPIPE_CLKGATE_DIS); 1577 } 1578 1579 static void 1580 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1581 { 1582 wa_16021867713(gt, wal); 1583 1584 /* 1585 * Wa_14018778641 1586 * Wa_18018781329 1587 * 1588 * Note that although these registers are MCR on the primary 1589 * GT, the media GT's versions are regular singleton registers. 1590 */ 1591 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB); 1592 1593 /* Wa_22016670082 */ 1594 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); 1595 1596 debug_dump_steering(gt); 1597 } 1598 1599 /* 1600 * The bspec performance guide has recommended MMIO tuning settings. These 1601 * aren't truly "workarounds" but we want to program them through the 1602 * workaround infrastructure to make sure they're (re)applied at the proper 1603 * times. 1604 * 1605 * The programming in this function is for settings that persist through 1606 * engine resets and also are not part of any engine's register state context. 1607 * I.e., settings that only need to be re-applied in the event of a full GT 1608 * reset. 1609 */ 1610 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal) 1611 { 1612 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { 1613 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 1614 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1615 } 1616 1617 if (IS_DG2(gt->i915)) { 1618 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 1619 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1620 } 1621 } 1622 1623 static void 1624 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) 1625 { 1626 struct drm_i915_private *i915 = gt->i915; 1627 1628 gt_tuning_settings(gt, wal); 1629 1630 if (gt->type == GT_MEDIA) { 1631 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) 1632 xelpmp_gt_workarounds_init(gt, wal); 1633 else 1634 MISSING_CASE(MEDIA_VER_FULL(i915)); 1635 1636 return; 1637 } 1638 1639 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) 1640 xelpg_gt_workarounds_init(gt, wal); 1641 else if (IS_DG2(i915)) 1642 dg2_gt_workarounds_init(gt, wal); 1643 else if (IS_DG1(i915)) 1644 dg1_gt_workarounds_init(gt, wal); 1645 else if (GRAPHICS_VER(i915) == 12) 1646 gen12_gt_workarounds_init(gt, wal); 1647 else if (GRAPHICS_VER(i915) == 11) 1648 icl_gt_workarounds_init(gt, wal); 1649 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 1650 cfl_gt_workarounds_init(gt, wal); 1651 else if (IS_GEMINILAKE(i915)) 1652 glk_gt_workarounds_init(gt, wal); 1653 else if (IS_KABYLAKE(i915)) 1654 kbl_gt_workarounds_init(gt, wal); 1655 else if (IS_BROXTON(i915)) 1656 gen9_gt_workarounds_init(gt, wal); 1657 else if (IS_SKYLAKE(i915)) 1658 skl_gt_workarounds_init(gt, wal); 1659 else if (IS_HASWELL(i915)) 1660 hsw_gt_workarounds_init(gt, wal); 1661 else if (IS_VALLEYVIEW(i915)) 1662 vlv_gt_workarounds_init(gt, wal); 1663 else if (IS_IVYBRIDGE(i915)) 1664 ivb_gt_workarounds_init(gt, wal); 1665 else if (GRAPHICS_VER(i915) == 6) 1666 snb_gt_workarounds_init(gt, wal); 1667 else if (GRAPHICS_VER(i915) == 5) 1668 ilk_gt_workarounds_init(gt, wal); 1669 else if (IS_G4X(i915)) 1670 g4x_gt_workarounds_init(gt, wal); 1671 else if (GRAPHICS_VER(i915) == 4) 1672 gen4_gt_workarounds_init(gt, wal); 1673 else if (GRAPHICS_VER(i915) <= 8) 1674 ; 1675 else 1676 MISSING_CASE(GRAPHICS_VER(i915)); 1677 } 1678 1679 void intel_gt_init_workarounds(struct intel_gt *gt) 1680 { 1681 struct i915_wa_list *wal = >->wa_list; 1682 1683 wa_init_start(wal, gt, "GT", "global"); 1684 gt_init_workarounds(gt, wal); 1685 wa_init_finish(wal); 1686 } 1687 1688 static bool 1689 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, 1690 const char *name, const char *from) 1691 { 1692 if ((cur ^ wa->set) & wa->read) { 1693 gt_err(gt, 1694 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", 1695 name, from, i915_mmio_reg_offset(wa->reg), 1696 cur, cur & wa->read, wa->set & wa->read); 1697 1698 return false; 1699 } 1700 1701 return true; 1702 } 1703 1704 static void wa_list_apply(const struct i915_wa_list *wal) 1705 { 1706 struct intel_gt *gt = wal->gt; 1707 struct intel_uncore *uncore = gt->uncore; 1708 enum forcewake_domains fw; 1709 unsigned long flags; 1710 struct i915_wa *wa; 1711 unsigned int i; 1712 1713 if (!wal->count) 1714 return; 1715 1716 fw = wal_get_fw_for_rmw(uncore, wal); 1717 1718 intel_gt_mcr_lock(gt, &flags); 1719 spin_lock(&uncore->lock); 1720 intel_uncore_forcewake_get__locked(uncore, fw); 1721 1722 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 1723 u32 val, old = 0; 1724 1725 /* open-coded rmw due to steering */ 1726 if (wa->clr) 1727 old = wa->is_mcr ? 1728 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1729 intel_uncore_read_fw(uncore, wa->reg); 1730 val = (old & ~wa->clr) | wa->set; 1731 if (val != old || !wa->clr) { 1732 if (wa->is_mcr) 1733 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); 1734 else 1735 intel_uncore_write_fw(uncore, wa->reg, val); 1736 } 1737 1738 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 1739 u32 val = wa->is_mcr ? 1740 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1741 intel_uncore_read_fw(uncore, wa->reg); 1742 1743 wa_verify(gt, wa, val, wal->name, "application"); 1744 } 1745 } 1746 1747 intel_uncore_forcewake_put__locked(uncore, fw); 1748 spin_unlock(&uncore->lock); 1749 intel_gt_mcr_unlock(gt, flags); 1750 } 1751 1752 void intel_gt_apply_workarounds(struct intel_gt *gt) 1753 { 1754 wa_list_apply(>->wa_list); 1755 } 1756 1757 static bool wa_list_verify(struct intel_gt *gt, 1758 const struct i915_wa_list *wal, 1759 const char *from) 1760 { 1761 struct intel_uncore *uncore = gt->uncore; 1762 struct i915_wa *wa; 1763 enum forcewake_domains fw; 1764 unsigned long flags; 1765 unsigned int i; 1766 bool ok = true; 1767 1768 fw = wal_get_fw_for_rmw(uncore, wal); 1769 1770 intel_gt_mcr_lock(gt, &flags); 1771 spin_lock(&uncore->lock); 1772 intel_uncore_forcewake_get__locked(uncore, fw); 1773 1774 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1775 ok &= wa_verify(wal->gt, wa, wa->is_mcr ? 1776 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1777 intel_uncore_read_fw(uncore, wa->reg), 1778 wal->name, from); 1779 1780 intel_uncore_forcewake_put__locked(uncore, fw); 1781 spin_unlock(&uncore->lock); 1782 intel_gt_mcr_unlock(gt, flags); 1783 1784 return ok; 1785 } 1786 1787 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) 1788 { 1789 return wa_list_verify(gt, >->wa_list, from); 1790 } 1791 1792 __maybe_unused 1793 static bool is_nonpriv_flags_valid(u32 flags) 1794 { 1795 /* Check only valid flag bits are set */ 1796 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) 1797 return false; 1798 1799 /* NB: Only 3 out of 4 enum values are valid for access field */ 1800 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == 1801 RING_FORCE_TO_NONPRIV_ACCESS_INVALID) 1802 return false; 1803 1804 return true; 1805 } 1806 1807 static void 1808 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) 1809 { 1810 struct i915_wa wa = { 1811 .reg = reg 1812 }; 1813 1814 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1815 return; 1816 1817 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1818 return; 1819 1820 wa.reg.reg |= flags; 1821 _wa_add(wal, &wa); 1822 } 1823 1824 static void 1825 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) 1826 { 1827 struct i915_wa wa = { 1828 .mcr_reg = reg, 1829 .is_mcr = 1, 1830 }; 1831 1832 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1833 return; 1834 1835 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1836 return; 1837 1838 wa.mcr_reg.reg |= flags; 1839 _wa_add(wal, &wa); 1840 } 1841 1842 static void 1843 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) 1844 { 1845 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1846 } 1847 1848 static void 1849 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) 1850 { 1851 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1852 } 1853 1854 static void gen9_whitelist_build(struct i915_wa_list *w) 1855 { 1856 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ 1857 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 1858 1859 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ 1860 whitelist_reg(w, GEN8_CS_CHICKEN1); 1861 1862 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ 1863 whitelist_reg(w, GEN8_HDC_CHICKEN1); 1864 1865 /* WaSendPushConstantsFromMMIO:skl,bxt */ 1866 whitelist_reg(w, COMMON_SLICE_CHICKEN2); 1867 } 1868 1869 static void skl_whitelist_build(struct intel_engine_cs *engine) 1870 { 1871 struct i915_wa_list *w = &engine->whitelist; 1872 1873 if (engine->class != RENDER_CLASS) 1874 return; 1875 1876 gen9_whitelist_build(w); 1877 1878 /* WaDisableLSQCROPERFforOCL:skl */ 1879 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1880 } 1881 1882 static void bxt_whitelist_build(struct intel_engine_cs *engine) 1883 { 1884 if (engine->class != RENDER_CLASS) 1885 return; 1886 1887 gen9_whitelist_build(&engine->whitelist); 1888 } 1889 1890 static void kbl_whitelist_build(struct intel_engine_cs *engine) 1891 { 1892 struct i915_wa_list *w = &engine->whitelist; 1893 1894 if (engine->class != RENDER_CLASS) 1895 return; 1896 1897 gen9_whitelist_build(w); 1898 1899 /* WaDisableLSQCROPERFforOCL:kbl */ 1900 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1901 } 1902 1903 static void glk_whitelist_build(struct intel_engine_cs *engine) 1904 { 1905 struct i915_wa_list *w = &engine->whitelist; 1906 1907 if (engine->class != RENDER_CLASS) 1908 return; 1909 1910 gen9_whitelist_build(w); 1911 1912 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ 1913 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 1914 } 1915 1916 static void cfl_whitelist_build(struct intel_engine_cs *engine) 1917 { 1918 struct i915_wa_list *w = &engine->whitelist; 1919 1920 if (engine->class != RENDER_CLASS) 1921 return; 1922 1923 gen9_whitelist_build(w); 1924 1925 /* 1926 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml 1927 * 1928 * This covers 4 register which are next to one another : 1929 * - PS_INVOCATION_COUNT 1930 * - PS_INVOCATION_COUNT_UDW 1931 * - PS_DEPTH_COUNT 1932 * - PS_DEPTH_COUNT_UDW 1933 */ 1934 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 1935 RING_FORCE_TO_NONPRIV_ACCESS_RD | 1936 RING_FORCE_TO_NONPRIV_RANGE_4); 1937 } 1938 1939 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) 1940 { 1941 struct i915_wa_list *w = &engine->whitelist; 1942 1943 if (engine->class != RENDER_CLASS) 1944 whitelist_reg_ext(w, 1945 RING_CTX_TIMESTAMP(engine->mmio_base), 1946 RING_FORCE_TO_NONPRIV_ACCESS_RD); 1947 } 1948 1949 static void cml_whitelist_build(struct intel_engine_cs *engine) 1950 { 1951 allow_read_ctx_timestamp(engine); 1952 1953 cfl_whitelist_build(engine); 1954 } 1955 1956 static void icl_whitelist_build(struct intel_engine_cs *engine) 1957 { 1958 struct i915_wa_list *w = &engine->whitelist; 1959 1960 allow_read_ctx_timestamp(engine); 1961 1962 switch (engine->class) { 1963 case RENDER_CLASS: 1964 /* WaAllowUMDToModifyHalfSliceChicken7:icl */ 1965 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); 1966 1967 /* WaAllowUMDToModifySamplerMode:icl */ 1968 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); 1969 1970 /* WaEnableStateCacheRedirectToCS:icl */ 1971 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 1972 1973 /* 1974 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl 1975 * 1976 * This covers 4 register which are next to one another : 1977 * - PS_INVOCATION_COUNT 1978 * - PS_INVOCATION_COUNT_UDW 1979 * - PS_DEPTH_COUNT 1980 * - PS_DEPTH_COUNT_UDW 1981 */ 1982 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 1983 RING_FORCE_TO_NONPRIV_ACCESS_RD | 1984 RING_FORCE_TO_NONPRIV_RANGE_4); 1985 break; 1986 1987 case VIDEO_DECODE_CLASS: 1988 /* hucStatusRegOffset */ 1989 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), 1990 RING_FORCE_TO_NONPRIV_ACCESS_RD); 1991 /* hucUKernelHdrInfoRegOffset */ 1992 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), 1993 RING_FORCE_TO_NONPRIV_ACCESS_RD); 1994 /* hucStatus2RegOffset */ 1995 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), 1996 RING_FORCE_TO_NONPRIV_ACCESS_RD); 1997 break; 1998 1999 default: 2000 break; 2001 } 2002 } 2003 2004 static void tgl_whitelist_build(struct intel_engine_cs *engine) 2005 { 2006 struct i915_wa_list *w = &engine->whitelist; 2007 2008 allow_read_ctx_timestamp(engine); 2009 2010 switch (engine->class) { 2011 case RENDER_CLASS: 2012 /* 2013 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl 2014 * Wa_1408556865:tgl 2015 * 2016 * This covers 4 registers which are next to one another : 2017 * - PS_INVOCATION_COUNT 2018 * - PS_INVOCATION_COUNT_UDW 2019 * - PS_DEPTH_COUNT 2020 * - PS_DEPTH_COUNT_UDW 2021 */ 2022 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2023 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2024 RING_FORCE_TO_NONPRIV_RANGE_4); 2025 2026 /* 2027 * Wa_1808121037:tgl 2028 * Wa_14012131227:dg1 2029 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p 2030 */ 2031 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2032 2033 /* Wa_1806527549:tgl */ 2034 whitelist_reg(w, HIZ_CHICKEN); 2035 2036 /* Required by recommended tuning setting (not a workaround) */ 2037 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3); 2038 2039 break; 2040 default: 2041 break; 2042 } 2043 } 2044 2045 static void dg2_whitelist_build(struct intel_engine_cs *engine) 2046 { 2047 struct i915_wa_list *w = &engine->whitelist; 2048 2049 switch (engine->class) { 2050 case RENDER_CLASS: 2051 /* Required by recommended tuning setting (not a workaround) */ 2052 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2053 2054 break; 2055 default: 2056 break; 2057 } 2058 } 2059 2060 static void xelpg_whitelist_build(struct intel_engine_cs *engine) 2061 { 2062 struct i915_wa_list *w = &engine->whitelist; 2063 2064 switch (engine->class) { 2065 case RENDER_CLASS: 2066 /* Required by recommended tuning setting (not a workaround) */ 2067 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2068 2069 break; 2070 default: 2071 break; 2072 } 2073 } 2074 2075 void intel_engine_init_whitelist(struct intel_engine_cs *engine) 2076 { 2077 struct drm_i915_private *i915 = engine->i915; 2078 struct i915_wa_list *w = &engine->whitelist; 2079 2080 wa_init_start(w, engine->gt, "whitelist", engine->name); 2081 2082 if (engine->gt->type == GT_MEDIA) 2083 ; /* none yet */ 2084 else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 2085 xelpg_whitelist_build(engine); 2086 else if (IS_DG2(i915)) 2087 dg2_whitelist_build(engine); 2088 else if (GRAPHICS_VER(i915) == 12) 2089 tgl_whitelist_build(engine); 2090 else if (GRAPHICS_VER(i915) == 11) 2091 icl_whitelist_build(engine); 2092 else if (IS_COMETLAKE(i915)) 2093 cml_whitelist_build(engine); 2094 else if (IS_COFFEELAKE(i915)) 2095 cfl_whitelist_build(engine); 2096 else if (IS_GEMINILAKE(i915)) 2097 glk_whitelist_build(engine); 2098 else if (IS_KABYLAKE(i915)) 2099 kbl_whitelist_build(engine); 2100 else if (IS_BROXTON(i915)) 2101 bxt_whitelist_build(engine); 2102 else if (IS_SKYLAKE(i915)) 2103 skl_whitelist_build(engine); 2104 else if (GRAPHICS_VER(i915) <= 8) 2105 ; 2106 else 2107 MISSING_CASE(GRAPHICS_VER(i915)); 2108 2109 wa_init_finish(w); 2110 } 2111 2112 void intel_engine_apply_whitelist(struct intel_engine_cs *engine) 2113 { 2114 const struct i915_wa_list *wal = &engine->whitelist; 2115 struct intel_uncore *uncore = engine->uncore; 2116 const u32 base = engine->mmio_base; 2117 struct i915_wa *wa; 2118 unsigned int i; 2119 2120 if (!wal->count) 2121 return; 2122 2123 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 2124 intel_uncore_write(uncore, 2125 RING_FORCE_TO_NONPRIV(base, i), 2126 i915_mmio_reg_offset(wa->reg)); 2127 2128 /* And clear the rest just in case of garbage */ 2129 for (; i < RING_MAX_NONPRIV_SLOTS; i++) 2130 intel_uncore_write(uncore, 2131 RING_FORCE_TO_NONPRIV(base, i), 2132 i915_mmio_reg_offset(RING_NOPID(base))); 2133 } 2134 2135 /* 2136 * engine_fake_wa_init(), a place holder to program the registers 2137 * which are not part of an official workaround defined by the 2138 * hardware team. 2139 * Adding programming of those register inside workaround will 2140 * allow utilizing wa framework to proper application and verification. 2141 */ 2142 static void 2143 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2144 { 2145 u8 mocs_w, mocs_r; 2146 2147 /* 2148 * RING_CMD_CCTL specifies the default MOCS entry that will be used 2149 * by the command streamer when executing commands that don't have 2150 * a way to explicitly specify a MOCS setting. The default should 2151 * usually reference whichever MOCS entry corresponds to uncached 2152 * behavior, although use of a WB cached entry is recommended by the 2153 * spec in certain circumstances on specific platforms. 2154 */ 2155 if (GRAPHICS_VER(engine->i915) >= 12) { 2156 mocs_r = engine->gt->mocs.uc_index; 2157 mocs_w = engine->gt->mocs.uc_index; 2158 2159 if (HAS_L3_CCS_READ(engine->i915) && 2160 engine->class == COMPUTE_CLASS) { 2161 mocs_r = engine->gt->mocs.wb_index; 2162 2163 /* 2164 * Even on the few platforms where MOCS 0 is a 2165 * legitimate table entry, it's never the correct 2166 * setting to use here; we can assume the MOCS init 2167 * just forgot to initialize wb_index. 2168 */ 2169 drm_WARN_ON(&engine->i915->drm, mocs_r == 0); 2170 } 2171 2172 wa_masked_field_set(wal, 2173 RING_CMD_CCTL(engine->mmio_base), 2174 CMD_CCTL_MOCS_MASK, 2175 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); 2176 } 2177 } 2178 2179 static void 2180 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2181 { 2182 struct drm_i915_private *i915 = engine->i915; 2183 struct intel_gt *gt = engine->gt; 2184 2185 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2186 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 2187 /* Wa_22014600077 */ 2188 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2189 ENABLE_EU_COUNT_FOR_TDL_FLUSH); 2190 } 2191 2192 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2193 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2194 IS_DG2(i915)) { 2195 /* Wa_1509727124 */ 2196 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2197 SC_DISABLE_POWER_OPTIMIZATION_EBB); 2198 } 2199 2200 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2201 IS_DG2(i915)) { 2202 /* Wa_22012856258 */ 2203 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2204 GEN12_DISABLE_READ_SUPPRESSION); 2205 } 2206 2207 if (IS_DG2(i915)) { 2208 /* 2209 * Wa_22010960976:dg2 2210 * Wa_14013347512:dg2 2211 */ 2212 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, 2213 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); 2214 } 2215 2216 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) || 2217 IS_DG2(i915)) { 2218 /* Wa_14015150844 */ 2219 wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0, 2220 _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES), 2221 0, true); 2222 } 2223 2224 if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2225 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2226 /* 2227 * Wa_1606700617:tgl,dg1,adl-p 2228 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p 2229 * Wa_14010826681:tgl,dg1,rkl,adl-p 2230 * Wa_18019627453:dg2 2231 */ 2232 wa_masked_en(wal, 2233 GEN9_CS_DEBUG_MODE1, 2234 FF_DOP_CLOCK_GATE_DISABLE); 2235 } 2236 2237 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || 2238 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2239 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ 2240 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); 2241 2242 /* 2243 * Wa_1407928979:tgl A* 2244 * Wa_18011464164:tgl[B0+],dg1[B0+] 2245 * Wa_22010931296:tgl[B0+],dg1[B0+] 2246 * Wa_14010919138:rkl,dg1,adl-s,adl-p 2247 */ 2248 wa_write_or(wal, GEN7_FF_THREAD_MODE, 2249 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2250 2251 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ 2252 wa_mcr_masked_en(wal, 2253 GEN10_SAMPLER_MODE, 2254 ENABLE_SMALLPL); 2255 } 2256 2257 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2258 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2259 /* Wa_1409804808 */ 2260 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2261 GEN12_PUSH_CONST_DEREF_HOLD_DIS); 2262 2263 /* Wa_14010229206 */ 2264 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); 2265 } 2266 2267 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { 2268 /* 2269 * Wa_1607297627 2270 * 2271 * On TGL and RKL there are multiple entries for this WA in the 2272 * BSpec; some indicate this is an A0-only WA, others indicate 2273 * it applies to all steppings so we trust the "all steppings." 2274 */ 2275 wa_masked_en(wal, 2276 RING_PSMI_CTL(RENDER_RING_BASE), 2277 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | 2278 GEN8_RC_SEMA_IDLE_MSG_DISABLE); 2279 } 2280 2281 if (GRAPHICS_VER(i915) == 11) { 2282 /* This is not an Wa. Enable for better image quality */ 2283 wa_masked_en(wal, 2284 _3D_CHICKEN3, 2285 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); 2286 2287 /* 2288 * Wa_1405543622:icl 2289 * Formerly known as WaGAPZPriorityScheme 2290 */ 2291 wa_write_or(wal, 2292 GEN8_GARBCNTL, 2293 GEN11_ARBITRATION_PRIO_ORDER_MASK); 2294 2295 /* 2296 * Wa_1604223664:icl 2297 * Formerly known as WaL3BankAddressHashing 2298 */ 2299 wa_write_clr_set(wal, 2300 GEN8_GARBCNTL, 2301 GEN11_HASH_CTRL_EXCL_MASK, 2302 GEN11_HASH_CTRL_EXCL_BIT0); 2303 wa_write_clr_set(wal, 2304 GEN11_GLBLINVL, 2305 GEN11_BANK_HASH_ADDR_EXCL_MASK, 2306 GEN11_BANK_HASH_ADDR_EXCL_BIT0); 2307 2308 /* 2309 * Wa_1405733216:icl 2310 * Formerly known as WaDisableCleanEvicts 2311 */ 2312 wa_mcr_write_or(wal, 2313 GEN8_L3SQCREG4, 2314 GEN11_LQSC_CLEAN_EVICT_DISABLE); 2315 2316 /* Wa_1606682166:icl */ 2317 wa_write_or(wal, 2318 GEN7_SARCHKMD, 2319 GEN7_DISABLE_SAMPLER_PREFETCH); 2320 2321 /* Wa_1409178092:icl */ 2322 wa_mcr_write_clr_set(wal, 2323 GEN11_SCRATCH2, 2324 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 2325 0); 2326 2327 /* WaEnable32PlaneMode:icl */ 2328 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, 2329 GEN11_ENABLE_32_PLANE_MODE); 2330 2331 /* 2332 * Wa_1408767742:icl[a2..forever],ehl[all] 2333 * Wa_1605460711:icl[a0..c0] 2334 */ 2335 wa_write_or(wal, 2336 GEN7_FF_THREAD_MODE, 2337 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2338 2339 /* Wa_22010271021 */ 2340 wa_masked_en(wal, 2341 GEN9_CS_DEBUG_MODE1, 2342 FF_DOP_CLOCK_GATE_DISABLE); 2343 } 2344 2345 /* 2346 * Intel platforms that support fine-grained preemption (i.e., gen9 and 2347 * beyond) allow the kernel-mode driver to choose between two different 2348 * options for controlling preemption granularity and behavior. 2349 * 2350 * Option 1 (hardware default): 2351 * Preemption settings are controlled in a global manner via 2352 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity 2353 * and settings chosen by the kernel-mode driver will apply to all 2354 * userspace clients. 2355 * 2356 * Option 2: 2357 * Preemption settings are controlled on a per-context basis via 2358 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on 2359 * context switch and is writable by userspace (e.g., via 2360 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) 2361 * which allows different userspace drivers/clients to select 2362 * different settings, or to change those settings on the fly in 2363 * response to runtime needs. This option was known by name 2364 * "FtrPerCtxtPreemptionGranularityControl" at one time, although 2365 * that name is somewhat misleading as other non-granularity 2366 * preemption settings are also impacted by this decision. 2367 * 2368 * On Linux, our policy has always been to let userspace drivers 2369 * control preemption granularity/settings (Option 2). This was 2370 * originally mandatory on gen9 to prevent ABI breakage (old gen9 2371 * userspace developed before object-level preemption was enabled would 2372 * not behave well if i915 were to go with Option 1 and enable that 2373 * preemption in a global manner). On gen9 each context would have 2374 * object-level preemption disabled by default (see 2375 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but 2376 * userspace drivers could opt-in to object-level preemption as they 2377 * saw fit. For post-gen9 platforms, we continue to utilize Option 2; 2378 * even though it is no longer necessary for ABI compatibility when 2379 * enabling a new platform, it does ensure that userspace will be able 2380 * to implement any workarounds that show up requiring temporary 2381 * adjustments to preemption behavior at runtime. 2382 * 2383 * Notes/Workarounds: 2384 * - Wa_14015141709: On DG2 and early steppings of MTL, 2385 * CS_CHICKEN1[0] does not disable object-level preemption as 2386 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been 2387 * using Option 1). Effectively this means userspace is unable 2388 * to disable object-level preemption on these platforms/steppings 2389 * despite the setting here. 2390 * 2391 * - Wa_16013994831: May require that userspace program 2392 * CS_CHICKEN1[10] when certain runtime conditions are true. 2393 * Userspace requires Option 2 to be in effect for their update of 2394 * CS_CHICKEN1[10] to be effective. 2395 * 2396 * Other workarounds may appear in the future that will also require 2397 * Option 2 behavior to allow proper userspace implementation. 2398 */ 2399 if (GRAPHICS_VER(i915) >= 9) 2400 wa_masked_en(wal, 2401 GEN7_FF_SLICE_CS_CHICKEN1, 2402 GEN9_FFSC_PERCTX_PREEMPT_CTRL); 2403 2404 if (IS_SKYLAKE(i915) || 2405 IS_KABYLAKE(i915) || 2406 IS_COFFEELAKE(i915) || 2407 IS_COMETLAKE(i915)) { 2408 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ 2409 wa_write_or(wal, 2410 GEN8_GARBCNTL, 2411 GEN9_GAPS_TSV_CREDIT_DISABLE); 2412 } 2413 2414 if (IS_BROXTON(i915)) { 2415 /* WaDisablePooledEuLoadBalancingFix:bxt */ 2416 wa_masked_en(wal, 2417 FF_SLICE_CS_CHICKEN2, 2418 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); 2419 } 2420 2421 if (GRAPHICS_VER(i915) == 9) { 2422 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ 2423 wa_masked_en(wal, 2424 GEN9_CSFE_CHICKEN1_RCS, 2425 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); 2426 2427 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ 2428 wa_mcr_write_or(wal, 2429 BDW_SCRATCH1, 2430 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); 2431 2432 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ 2433 if (IS_GEN9_LP(i915)) 2434 wa_mcr_write_clr_set(wal, 2435 GEN8_L3SQCREG1, 2436 L3_PRIO_CREDITS_MASK, 2437 L3_GENERAL_PRIO_CREDITS(62) | 2438 L3_HIGH_PRIO_CREDITS(2)); 2439 2440 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ 2441 wa_mcr_write_or(wal, 2442 GEN8_L3SQCREG4, 2443 GEN8_LQSC_FLUSH_COHERENT_LINES); 2444 2445 /* Disable atomics in L3 to prevent unrecoverable hangs */ 2446 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, 2447 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2448 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, 2449 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2450 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, 2451 EVICTION_PERF_FIX_ENABLE, 0); 2452 } 2453 2454 if (IS_HASWELL(i915)) { 2455 /* WaSampleCChickenBitEnable:hsw */ 2456 wa_masked_en(wal, 2457 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); 2458 2459 wa_masked_dis(wal, 2460 CACHE_MODE_0_GEN7, 2461 /* enable HiZ Raw Stall Optimization */ 2462 HIZ_RAW_STALL_OPT_DISABLE); 2463 } 2464 2465 if (IS_VALLEYVIEW(i915)) { 2466 /* WaDisableEarlyCull:vlv */ 2467 wa_masked_en(wal, 2468 _3D_CHICKEN3, 2469 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2470 2471 /* 2472 * WaVSThreadDispatchOverride:ivb,vlv 2473 * 2474 * This actually overrides the dispatch 2475 * mode for all thread types. 2476 */ 2477 wa_write_clr_set(wal, 2478 GEN7_FF_THREAD_MODE, 2479 GEN7_FF_SCHED_MASK, 2480 GEN7_FF_TS_SCHED_HW | 2481 GEN7_FF_VS_SCHED_HW | 2482 GEN7_FF_DS_SCHED_HW); 2483 2484 /* WaPsdDispatchEnable:vlv */ 2485 /* WaDisablePSDDualDispatchEnable:vlv */ 2486 wa_masked_en(wal, 2487 GEN7_HALF_SLICE_CHICKEN1, 2488 GEN7_MAX_PS_THREAD_DEP | 2489 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2490 } 2491 2492 if (IS_IVYBRIDGE(i915)) { 2493 /* WaDisableEarlyCull:ivb */ 2494 wa_masked_en(wal, 2495 _3D_CHICKEN3, 2496 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2497 2498 if (0) { /* causes HiZ corruption on ivb:gt1 */ 2499 /* enable HiZ Raw Stall Optimization */ 2500 wa_masked_dis(wal, 2501 CACHE_MODE_0_GEN7, 2502 HIZ_RAW_STALL_OPT_DISABLE); 2503 } 2504 2505 /* 2506 * WaVSThreadDispatchOverride:ivb,vlv 2507 * 2508 * This actually overrides the dispatch 2509 * mode for all thread types. 2510 */ 2511 wa_write_clr_set(wal, 2512 GEN7_FF_THREAD_MODE, 2513 GEN7_FF_SCHED_MASK, 2514 GEN7_FF_TS_SCHED_HW | 2515 GEN7_FF_VS_SCHED_HW | 2516 GEN7_FF_DS_SCHED_HW); 2517 2518 /* WaDisablePSDDualDispatchEnable:ivb */ 2519 if (IS_IVB_GT1(i915)) 2520 wa_masked_en(wal, 2521 GEN7_HALF_SLICE_CHICKEN1, 2522 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2523 } 2524 2525 if (GRAPHICS_VER(i915) == 7) { 2526 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 2527 wa_masked_en(wal, 2528 RING_MODE_GEN7(RENDER_RING_BASE), 2529 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); 2530 2531 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ 2532 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); 2533 2534 /* 2535 * BSpec says this must be set, even though 2536 * WaDisable4x2SubspanOptimization:ivb,hsw 2537 * WaDisable4x2SubspanOptimization isn't listed for VLV. 2538 */ 2539 wa_masked_en(wal, 2540 CACHE_MODE_1, 2541 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); 2542 2543 /* 2544 * BSpec recommends 8x4 when MSAA is used, 2545 * however in practice 16x4 seems fastest. 2546 * 2547 * Note that PS/WM thread counts depend on the WIZ hashing 2548 * disable bit, which we don't touch here, but it's good 2549 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2550 */ 2551 wa_masked_field_set(wal, 2552 GEN7_GT_MODE, 2553 GEN6_WIZ_HASHING_MASK, 2554 GEN6_WIZ_HASHING_16x4); 2555 } 2556 2557 if (IS_GRAPHICS_VER(i915, 6, 7)) 2558 /* 2559 * We need to disable the AsyncFlip performance optimisations in 2560 * order to use MI_WAIT_FOR_EVENT within the CS. It should 2561 * already be programmed to '1' on all products. 2562 * 2563 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 2564 */ 2565 wa_masked_en(wal, 2566 RING_MI_MODE(RENDER_RING_BASE), 2567 ASYNC_FLIP_PERF_DISABLE); 2568 2569 if (GRAPHICS_VER(i915) == 6) { 2570 /* 2571 * Required for the hardware to program scanline values for 2572 * waiting 2573 * WaEnableFlushTlbInvalidationMode:snb 2574 */ 2575 wa_masked_en(wal, 2576 GFX_MODE, 2577 GFX_TLB_INVALIDATE_EXPLICIT); 2578 2579 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ 2580 wa_masked_en(wal, 2581 _3D_CHICKEN, 2582 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); 2583 2584 wa_masked_en(wal, 2585 _3D_CHICKEN3, 2586 /* WaStripsFansDisableFastClipPerformanceFix:snb */ 2587 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | 2588 /* 2589 * Bspec says: 2590 * "This bit must be set if 3DSTATE_CLIP clip mode is set 2591 * to normal and 3DSTATE_SF number of SF output attributes 2592 * is more than 16." 2593 */ 2594 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); 2595 2596 /* 2597 * BSpec recommends 8x4 when MSAA is used, 2598 * however in practice 16x4 seems fastest. 2599 * 2600 * Note that PS/WM thread counts depend on the WIZ hashing 2601 * disable bit, which we don't touch here, but it's good 2602 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2603 */ 2604 wa_masked_field_set(wal, 2605 GEN6_GT_MODE, 2606 GEN6_WIZ_HASHING_MASK, 2607 GEN6_WIZ_HASHING_16x4); 2608 2609 /* WaDisable_RenderCache_OperationalFlush:snb */ 2610 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 2611 2612 /* 2613 * From the Sandybridge PRM, volume 1 part 3, page 24: 2614 * "If this bit is set, STCunit will have LRA as replacement 2615 * policy. [...] This bit must be reset. LRA replacement 2616 * policy is not supported." 2617 */ 2618 wa_masked_dis(wal, 2619 CACHE_MODE_0, 2620 CM0_STC_EVICT_DISABLE_LRA_SNB); 2621 } 2622 2623 if (IS_GRAPHICS_VER(i915, 4, 6)) 2624 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 2625 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 2626 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), 2627 /* XXX bit doesn't stick on Broadwater */ 2628 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); 2629 2630 if (GRAPHICS_VER(i915) == 4) 2631 /* 2632 * Disable CONSTANT_BUFFER before it is loaded from the context 2633 * image. For as it is loaded, it is executed and the stored 2634 * address may no longer be valid, leading to a GPU hang. 2635 * 2636 * This imposes the requirement that userspace reload their 2637 * CONSTANT_BUFFER on every batch, fortunately a requirement 2638 * they are already accustomed to from before contexts were 2639 * enabled. 2640 */ 2641 wa_add(wal, ECOSKPD(RENDER_RING_BASE), 2642 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 2643 0 /* XXX bit doesn't stick on Broadwater */, 2644 true); 2645 } 2646 2647 static void 2648 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2649 { 2650 struct drm_i915_private *i915 = engine->i915; 2651 2652 /* WaKBLVECSSemaphoreWaitPoll:kbl */ 2653 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { 2654 wa_write(wal, 2655 RING_SEMA_WAIT_POLL(engine->mmio_base), 2656 1); 2657 } 2658 /* Wa_16018031267, Wa_16018063123 */ 2659 if (NEEDS_FASTCOLOR_BLT_WABB(engine)) 2660 wa_masked_field_set(wal, ECOSKPD(engine->mmio_base), 2661 XEHP_BLITTER_SCHEDULING_MODE_MASK, 2662 XEHP_BLITTER_ROUND_ROBIN_MODE); 2663 } 2664 2665 static void 2666 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2667 { 2668 /* boilerplate for any CCS engine workaround */ 2669 } 2670 2671 /* 2672 * The bspec performance guide has recommended MMIO tuning settings. These 2673 * aren't truly "workarounds" but we want to program them with the same 2674 * workaround infrastructure to ensure that they're automatically added to 2675 * the GuC save/restore lists, re-applied at the right times, and checked for 2676 * any conflicting programming requested by real workarounds. 2677 * 2678 * Programming settings should be added here only if their registers are not 2679 * part of an engine's register state context. If a register is part of a 2680 * context, then any tuning settings should be programmed in an appropriate 2681 * function invoked by __intel_engine_init_ctx_wa(). 2682 */ 2683 static void 2684 add_render_compute_tuning_settings(struct intel_gt *gt, 2685 struct i915_wa_list *wal) 2686 { 2687 struct drm_i915_private *i915 = gt->i915; 2688 2689 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915)) 2690 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); 2691 2692 /* 2693 * This tuning setting proves beneficial only on ATS-M designs; the 2694 * default "age based" setting is optimal on regular DG2 and other 2695 * platforms. 2696 */ 2697 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) 2698 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, 2699 THREAD_EX_ARB_MODE_RR_AFTER_DEP); 2700 2701 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55)) 2702 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC); 2703 } 2704 2705 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2706 { 2707 struct intel_gt *gt = engine->gt; 2708 u32 mode; 2709 2710 if (!IS_DG2(gt->i915)) 2711 return; 2712 2713 /* 2714 * Wa_14019159160: This workaround, along with others, leads to 2715 * significant challenges in utilizing load balancing among the 2716 * CCS slices. Consequently, an architectural decision has been 2717 * made to completely disable automatic CCS load balancing. 2718 */ 2719 wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE); 2720 2721 /* 2722 * After having disabled automatic load balancing we need to 2723 * assign all slices to a single CCS. We will call it CCS mode 1 2724 */ 2725 mode = intel_gt_apply_ccs_mode(gt); 2726 wa_masked_en(wal, XEHP_CCS_MODE, mode); 2727 } 2728 2729 /* 2730 * The workarounds in this function apply to shared registers in 2731 * the general render reset domain that aren't tied to a 2732 * specific engine. Since all render+compute engines get reset 2733 * together, and the contents of these registers are lost during 2734 * the shared render domain reset, we'll define such workarounds 2735 * here and then add them to just a single RCS or CCS engine's 2736 * workaround list (whichever engine has the XXXX flag). 2737 */ 2738 static void 2739 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2740 { 2741 struct drm_i915_private *i915 = engine->i915; 2742 struct intel_gt *gt = engine->gt; 2743 2744 add_render_compute_tuning_settings(gt, wal); 2745 2746 if (GRAPHICS_VER(i915) >= 11) { 2747 /* This is not a Wa (although referred to as 2748 * WaSetInidrectStateOverride in places), this allows 2749 * applications that reference sampler states through 2750 * the BindlessSamplerStateBaseAddress to have their 2751 * border color relative to DynamicStateBaseAddress 2752 * rather than BindlessSamplerStateBaseAddress. 2753 * 2754 * Otherwise SAMPLER_STATE border colors have to be 2755 * copied in multiple heaps (DynamicStateBaseAddress & 2756 * BindlessSamplerStateBaseAddress) 2757 * 2758 * BSpec: 46052 2759 */ 2760 wa_mcr_masked_en(wal, 2761 GEN10_SAMPLER_MODE, 2762 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE); 2763 } 2764 2765 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) || 2766 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) || 2767 IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) { 2768 /* Wa_14017856879 */ 2769 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH); 2770 2771 /* Wa_14020495402 */ 2772 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING); 2773 } 2774 2775 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2776 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) 2777 /* 2778 * Wa_14017066071 2779 * Wa_14017654203 2780 */ 2781 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2782 MTL_DISABLE_SAMPLER_SC_OOO); 2783 2784 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) 2785 /* Wa_22015279794 */ 2786 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2787 DISABLE_PREFETCH_INTO_IC); 2788 2789 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2790 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2791 IS_DG2(i915)) { 2792 /* Wa_22013037850 */ 2793 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, 2794 DISABLE_128B_EVICTION_COMMAND_UDW); 2795 2796 /* Wa_18017747507 */ 2797 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); 2798 } 2799 2800 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2801 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2802 IS_DG2(i915)) { 2803 /* Wa_22014226127 */ 2804 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); 2805 } 2806 2807 if (IS_DG2(i915)) { 2808 /* Wa_14015227452:dg2,pvc */ 2809 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); 2810 2811 /* 2812 * Wa_16011620976:dg2_g11 2813 * Wa_22015475538:dg2 2814 */ 2815 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); 2816 2817 /* Wa_18028616096 */ 2818 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3); 2819 } 2820 2821 if (IS_DG2_G11(i915)) { 2822 /* 2823 * Wa_22012826095:dg2 2824 * Wa_22013059131:dg2 2825 */ 2826 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, 2827 MAXREQS_PER_BANK, 2828 REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); 2829 2830 /* Wa_22013059131:dg2 */ 2831 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, 2832 FORCE_1_SUB_MESSAGE_PER_FRAGMENT); 2833 2834 /* 2835 * Wa_22012654132 2836 * 2837 * Note that register 0xE420 is write-only and cannot be read 2838 * back for verification on DG2 (due to Wa_14012342262), so 2839 * we need to explicitly skip the readback. 2840 */ 2841 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2842 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 2843 0 /* write-only, so skip validation */, 2844 true); 2845 } 2846 } 2847 2848 static void 2849 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2850 { 2851 if (GRAPHICS_VER(engine->i915) < 4) 2852 return; 2853 2854 engine_fake_wa_init(engine, wal); 2855 2856 /* 2857 * These are common workarounds that just need to applied 2858 * to a single RCS/CCS engine's workaround list since 2859 * they're reset as part of the general render domain reset. 2860 */ 2861 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) { 2862 general_render_compute_wa_init(engine, wal); 2863 ccs_engine_wa_mode(engine, wal); 2864 } 2865 2866 if (engine->class == COMPUTE_CLASS) 2867 ccs_engine_wa_init(engine, wal); 2868 else if (engine->class == RENDER_CLASS) 2869 rcs_engine_wa_init(engine, wal); 2870 else 2871 xcs_engine_wa_init(engine, wal); 2872 } 2873 2874 void intel_engine_init_workarounds(struct intel_engine_cs *engine) 2875 { 2876 struct i915_wa_list *wal = &engine->wa_list; 2877 2878 wa_init_start(wal, engine->gt, "engine", engine->name); 2879 engine_init_workarounds(engine, wal); 2880 wa_init_finish(wal); 2881 } 2882 2883 void intel_engine_apply_workarounds(struct intel_engine_cs *engine) 2884 { 2885 wa_list_apply(&engine->wa_list); 2886 } 2887 2888 static const struct i915_range mcr_ranges_gen8[] = { 2889 { .start = 0x5500, .end = 0x55ff }, 2890 { .start = 0x7000, .end = 0x7fff }, 2891 { .start = 0x9400, .end = 0x97ff }, 2892 { .start = 0xb000, .end = 0xb3ff }, 2893 { .start = 0xe000, .end = 0xe7ff }, 2894 {}, 2895 }; 2896 2897 static const struct i915_range mcr_ranges_gen12[] = { 2898 { .start = 0x8150, .end = 0x815f }, 2899 { .start = 0x9520, .end = 0x955f }, 2900 { .start = 0xb100, .end = 0xb3ff }, 2901 { .start = 0xde80, .end = 0xe8ff }, 2902 { .start = 0x24a00, .end = 0x24a7f }, 2903 {}, 2904 }; 2905 2906 static const struct i915_range mcr_ranges_xehp[] = { 2907 { .start = 0x4000, .end = 0x4aff }, 2908 { .start = 0x5200, .end = 0x52ff }, 2909 { .start = 0x5400, .end = 0x7fff }, 2910 { .start = 0x8140, .end = 0x815f }, 2911 { .start = 0x8c80, .end = 0x8dff }, 2912 { .start = 0x94d0, .end = 0x955f }, 2913 { .start = 0x9680, .end = 0x96ff }, 2914 { .start = 0xb000, .end = 0xb3ff }, 2915 { .start = 0xc800, .end = 0xcfff }, 2916 { .start = 0xd800, .end = 0xd8ff }, 2917 { .start = 0xdc00, .end = 0xffff }, 2918 { .start = 0x17000, .end = 0x17fff }, 2919 { .start = 0x24a00, .end = 0x24a7f }, 2920 {}, 2921 }; 2922 2923 static bool mcr_range(struct drm_i915_private *i915, u32 offset) 2924 { 2925 const struct i915_range *mcr_ranges; 2926 int i; 2927 2928 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 2929 mcr_ranges = mcr_ranges_xehp; 2930 else if (GRAPHICS_VER(i915) >= 12) 2931 mcr_ranges = mcr_ranges_gen12; 2932 else if (GRAPHICS_VER(i915) >= 8) 2933 mcr_ranges = mcr_ranges_gen8; 2934 else 2935 return false; 2936 2937 /* 2938 * Registers in these ranges are affected by the MCR selector 2939 * which only controls CPU initiated MMIO. Routing does not 2940 * work for CS access so we cannot verify them on this path. 2941 */ 2942 for (i = 0; mcr_ranges[i].start; i++) 2943 if (offset >= mcr_ranges[i].start && 2944 offset <= mcr_ranges[i].end) 2945 return true; 2946 2947 return false; 2948 } 2949 2950 static int 2951 wa_list_srm(struct i915_request *rq, 2952 const struct i915_wa_list *wal, 2953 struct i915_vma *vma) 2954 { 2955 struct drm_i915_private *i915 = rq->i915; 2956 unsigned int i, count = 0; 2957 const struct i915_wa *wa; 2958 u32 srm, *cs; 2959 2960 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 2961 if (GRAPHICS_VER(i915) >= 8) 2962 srm++; 2963 2964 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 2965 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) 2966 count++; 2967 } 2968 2969 cs = intel_ring_begin(rq, 4 * count); 2970 if (IS_ERR(cs)) 2971 return PTR_ERR(cs); 2972 2973 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 2974 u32 offset = i915_mmio_reg_offset(wa->reg); 2975 2976 if (mcr_range(i915, offset)) 2977 continue; 2978 2979 *cs++ = srm; 2980 *cs++ = offset; 2981 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; 2982 *cs++ = 0; 2983 } 2984 intel_ring_advance(rq, cs); 2985 2986 return 0; 2987 } 2988 2989 static int engine_wa_list_verify(struct intel_context *ce, 2990 const struct i915_wa_list * const wal, 2991 const char *from) 2992 { 2993 const struct i915_wa *wa; 2994 struct i915_request *rq; 2995 struct i915_vma *vma; 2996 struct i915_gem_ww_ctx ww; 2997 unsigned int i; 2998 u32 *results; 2999 int err; 3000 3001 if (!wal->count) 3002 return 0; 3003 3004 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, 3005 wal->count * sizeof(u32)); 3006 if (IS_ERR(vma)) 3007 return PTR_ERR(vma); 3008 3009 intel_engine_pm_get(ce->engine); 3010 i915_gem_ww_ctx_init(&ww, false); 3011 retry: 3012 err = i915_gem_object_lock(vma->obj, &ww); 3013 if (err == 0) 3014 err = intel_context_pin_ww(ce, &ww); 3015 if (err) 3016 goto err_pm; 3017 3018 err = i915_vma_pin_ww(vma, &ww, 0, 0, 3019 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 3020 if (err) 3021 goto err_unpin; 3022 3023 rq = i915_request_create(ce); 3024 if (IS_ERR(rq)) { 3025 err = PTR_ERR(rq); 3026 goto err_vma; 3027 } 3028 3029 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 3030 if (err == 0) 3031 err = wa_list_srm(rq, wal, vma); 3032 3033 i915_request_get(rq); 3034 if (err) 3035 i915_request_set_error_once(rq, err); 3036 i915_request_add(rq); 3037 3038 if (err) 3039 goto err_rq; 3040 3041 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 3042 err = -ETIME; 3043 goto err_rq; 3044 } 3045 3046 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 3047 if (IS_ERR(results)) { 3048 err = PTR_ERR(results); 3049 goto err_rq; 3050 } 3051 3052 err = 0; 3053 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3054 if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg))) 3055 continue; 3056 3057 if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) 3058 err = -ENXIO; 3059 } 3060 3061 i915_gem_object_unpin_map(vma->obj); 3062 3063 err_rq: 3064 i915_request_put(rq); 3065 err_vma: 3066 i915_vma_unpin(vma); 3067 err_unpin: 3068 intel_context_unpin(ce); 3069 err_pm: 3070 if (err == -EDEADLK) { 3071 err = i915_gem_ww_ctx_backoff(&ww); 3072 if (!err) 3073 goto retry; 3074 } 3075 i915_gem_ww_ctx_fini(&ww); 3076 intel_engine_pm_put(ce->engine); 3077 i915_vma_put(vma); 3078 return err; 3079 } 3080 3081 int intel_engine_verify_workarounds(struct intel_engine_cs *engine, 3082 const char *from) 3083 { 3084 return engine_wa_list_verify(engine->kernel_context, 3085 &engine->wa_list, 3086 from); 3087 } 3088 3089 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3090 #include "selftest_workarounds.c" 3091 #endif 3092