xref: /linux/drivers/gpu/drm/i915/gt/intel_sseu_debugfs.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: MIT
2 
3 /*
4  * Copyright © 2020 Intel Corporation
5  */
6 
7 #include <linux/bitmap.h>
8 #include <linux/string_helpers.h>
9 
10 #include "i915_drv.h"
11 #include "intel_gt_debugfs.h"
12 #include "intel_gt_regs.h"
13 #include "intel_sseu_debugfs.h"
14 
15 static void cherryview_sseu_device_status(struct intel_gt *gt,
16 					  struct sseu_dev_info *sseu)
17 {
18 #define SS_MAX 2
19 	struct intel_uncore *uncore = gt->uncore;
20 	const int ss_max = SS_MAX;
21 	u32 sig1[SS_MAX], sig2[SS_MAX];
22 	int ss;
23 
24 	sig1[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG1);
25 	sig1[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG1);
26 	sig2[0] = intel_uncore_read(uncore, CHV_POWER_SS0_SIG2);
27 	sig2[1] = intel_uncore_read(uncore, CHV_POWER_SS1_SIG2);
28 
29 	for (ss = 0; ss < ss_max; ss++) {
30 		unsigned int eu_cnt;
31 
32 		if (sig1[ss] & CHV_SS_PG_ENABLE)
33 			/* skip disabled subslice */
34 			continue;
35 
36 		sseu->slice_mask = BIT(0);
37 		sseu->subslice_mask.hsw[0] |= BIT(ss);
38 		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
39 			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
40 			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
41 			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
42 		sseu->eu_total += eu_cnt;
43 		sseu->eu_per_subslice = max_t(unsigned int,
44 					      sseu->eu_per_subslice, eu_cnt);
45 	}
46 #undef SS_MAX
47 }
48 
49 static void gen11_sseu_device_status(struct intel_gt *gt,
50 				     struct sseu_dev_info *sseu)
51 {
52 #define SS_MAX 8
53 	struct intel_uncore *uncore = gt->uncore;
54 	const struct intel_gt_info *info = &gt->info;
55 	u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
56 	int s, ss;
57 
58 	for (s = 0; s < info->sseu.max_slices; s++) {
59 		/*
60 		 * FIXME: Valid SS Mask respects the spec and read
61 		 * only valid bits for those registers, excluding reserved
62 		 * although this seems wrong because it would leave many
63 		 * subslices without ACK.
64 		 */
65 		s_reg[s] = intel_uncore_read(uncore, GEN10_SLICE_PGCTL_ACK(s)) &
66 			GEN10_PGCTL_VALID_SS_MASK(s);
67 		eu_reg[2 * s] = intel_uncore_read(uncore,
68 						  GEN10_SS01_EU_PGCTL_ACK(s));
69 		eu_reg[2 * s + 1] = intel_uncore_read(uncore,
70 						      GEN10_SS23_EU_PGCTL_ACK(s));
71 	}
72 
73 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
74 		     GEN9_PGCTL_SSA_EU19_ACK |
75 		     GEN9_PGCTL_SSA_EU210_ACK |
76 		     GEN9_PGCTL_SSA_EU311_ACK;
77 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
78 		     GEN9_PGCTL_SSB_EU19_ACK |
79 		     GEN9_PGCTL_SSB_EU210_ACK |
80 		     GEN9_PGCTL_SSB_EU311_ACK;
81 
82 	for (s = 0; s < info->sseu.max_slices; s++) {
83 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
84 			/* skip disabled slice */
85 			continue;
86 
87 		sseu->slice_mask |= BIT(s);
88 		sseu->subslice_mask.hsw[s] = info->sseu.subslice_mask.hsw[s];
89 
90 		for (ss = 0; ss < info->sseu.max_subslices; ss++) {
91 			unsigned int eu_cnt;
92 
93 			if (info->sseu.has_subslice_pg &&
94 			    !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
95 				/* skip disabled subslice */
96 				continue;
97 
98 			eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
99 					       eu_mask[ss % 2]);
100 			sseu->eu_total += eu_cnt;
101 			sseu->eu_per_subslice = max_t(unsigned int,
102 						      sseu->eu_per_subslice,
103 						      eu_cnt);
104 		}
105 	}
106 #undef SS_MAX
107 }
108 
109 static void gen9_sseu_device_status(struct intel_gt *gt,
110 				    struct sseu_dev_info *sseu)
111 {
112 #define SS_MAX 3
113 	struct intel_uncore *uncore = gt->uncore;
114 	const struct intel_gt_info *info = &gt->info;
115 	u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
116 	int s, ss;
117 
118 	for (s = 0; s < info->sseu.max_slices; s++) {
119 		s_reg[s] = intel_uncore_read(uncore, GEN9_SLICE_PGCTL_ACK(s));
120 		eu_reg[2 * s] =
121 			intel_uncore_read(uncore, GEN9_SS01_EU_PGCTL_ACK(s));
122 		eu_reg[2 * s + 1] =
123 			intel_uncore_read(uncore, GEN9_SS23_EU_PGCTL_ACK(s));
124 	}
125 
126 	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
127 		     GEN9_PGCTL_SSA_EU19_ACK |
128 		     GEN9_PGCTL_SSA_EU210_ACK |
129 		     GEN9_PGCTL_SSA_EU311_ACK;
130 	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
131 		     GEN9_PGCTL_SSB_EU19_ACK |
132 		     GEN9_PGCTL_SSB_EU210_ACK |
133 		     GEN9_PGCTL_SSB_EU311_ACK;
134 
135 	for (s = 0; s < info->sseu.max_slices; s++) {
136 		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
137 			/* skip disabled slice */
138 			continue;
139 
140 		sseu->slice_mask |= BIT(s);
141 
142 		if (IS_GEN9_BC(gt->i915))
143 			sseu->subslice_mask.hsw[s] = info->sseu.subslice_mask.hsw[s];
144 
145 		for (ss = 0; ss < info->sseu.max_subslices; ss++) {
146 			unsigned int eu_cnt;
147 
148 			if (IS_GEN9_LP(gt->i915)) {
149 				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
150 					/* skip disabled subslice */
151 					continue;
152 
153 				sseu->subslice_mask.hsw[s] |= BIT(ss);
154 			}
155 
156 			eu_cnt = eu_reg[2 * s + ss / 2] & eu_mask[ss % 2];
157 			eu_cnt = 2 * hweight32(eu_cnt);
158 
159 			sseu->eu_total += eu_cnt;
160 			sseu->eu_per_subslice = max_t(unsigned int,
161 						      sseu->eu_per_subslice,
162 						      eu_cnt);
163 		}
164 	}
165 #undef SS_MAX
166 }
167 
168 static void bdw_sseu_device_status(struct intel_gt *gt,
169 				   struct sseu_dev_info *sseu)
170 {
171 	const struct intel_gt_info *info = &gt->info;
172 	u32 slice_info = intel_uncore_read(gt->uncore, GEN8_GT_SLICE_INFO);
173 	int s;
174 
175 	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
176 
177 	if (sseu->slice_mask) {
178 		sseu->eu_per_subslice = info->sseu.eu_per_subslice;
179 		for (s = 0; s < fls(sseu->slice_mask); s++)
180 			sseu->subslice_mask.hsw[s] = info->sseu.subslice_mask.hsw[s];
181 		sseu->eu_total = sseu->eu_per_subslice *
182 				 intel_sseu_subslice_total(sseu);
183 
184 		/* subtract fused off EU(s) from enabled slice(s) */
185 		for (s = 0; s < fls(sseu->slice_mask); s++) {
186 			u8 subslice_7eu = info->sseu.subslice_7eu[s];
187 
188 			sseu->eu_total -= hweight8(subslice_7eu);
189 		}
190 	}
191 }
192 
193 static void i915_print_sseu_info(struct seq_file *m,
194 				 bool is_available_info,
195 				 bool has_pooled_eu,
196 				 const struct sseu_dev_info *sseu)
197 {
198 	const char *type = is_available_info ? "Available" : "Enabled";
199 
200 	seq_printf(m, "  %s Slice Mask: %04x\n", type,
201 		   sseu->slice_mask);
202 	seq_printf(m, "  %s Slice Total: %u\n", type,
203 		   hweight8(sseu->slice_mask));
204 	seq_printf(m, "  %s Subslice Total: %u\n", type,
205 		   intel_sseu_subslice_total(sseu));
206 	intel_sseu_print_ss_info(type, sseu, m);
207 	seq_printf(m, "  %s EU Total: %u\n", type,
208 		   sseu->eu_total);
209 	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
210 		   sseu->eu_per_subslice);
211 
212 	if (!is_available_info)
213 		return;
214 
215 	seq_printf(m, "  Has Pooled EU: %s\n", str_yes_no(has_pooled_eu));
216 	if (has_pooled_eu)
217 		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
218 
219 	seq_printf(m, "  Has Slice Power Gating: %s\n",
220 		   str_yes_no(sseu->has_slice_pg));
221 	seq_printf(m, "  Has Subslice Power Gating: %s\n",
222 		   str_yes_no(sseu->has_subslice_pg));
223 	seq_printf(m, "  Has EU Power Gating: %s\n",
224 		   str_yes_no(sseu->has_eu_pg));
225 }
226 
227 /*
228  * this is called from top-level debugfs as well, so we can't get the gt from
229  * the seq_file.
230  */
231 int intel_sseu_status(struct seq_file *m, struct intel_gt *gt)
232 {
233 	struct drm_i915_private *i915 = gt->i915;
234 	const struct intel_gt_info *info = &gt->info;
235 	struct sseu_dev_info *sseu;
236 	intel_wakeref_t wakeref;
237 
238 	if (GRAPHICS_VER(i915) < 8)
239 		return -ENODEV;
240 
241 	seq_puts(m, "SSEU Device Info\n");
242 	i915_print_sseu_info(m, true, HAS_POOLED_EU(i915), &info->sseu);
243 
244 	seq_puts(m, "SSEU Device Status\n");
245 
246 	sseu = kzalloc(sizeof(*sseu), GFP_KERNEL);
247 	if (!sseu)
248 		return -ENOMEM;
249 
250 	intel_sseu_set_info(sseu, info->sseu.max_slices,
251 			    info->sseu.max_subslices,
252 			    info->sseu.max_eus_per_subslice);
253 
254 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
255 		if (IS_CHERRYVIEW(i915))
256 			cherryview_sseu_device_status(gt, sseu);
257 		else if (IS_BROADWELL(i915))
258 			bdw_sseu_device_status(gt, sseu);
259 		else if (GRAPHICS_VER(i915) == 9)
260 			gen9_sseu_device_status(gt, sseu);
261 		else if (GRAPHICS_VER(i915) >= 11)
262 			gen11_sseu_device_status(gt, sseu);
263 	}
264 
265 	i915_print_sseu_info(m, false, HAS_POOLED_EU(i915), sseu);
266 
267 	kfree(sseu);
268 
269 	return 0;
270 }
271 
272 static int sseu_status_show(struct seq_file *m, void *unused)
273 {
274 	struct intel_gt *gt = m->private;
275 
276 	return intel_sseu_status(m, gt);
277 }
278 DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(sseu_status);
279 
280 static int sseu_topology_show(struct seq_file *m, void *unused)
281 {
282 	struct intel_gt *gt = m->private;
283 	struct drm_printer p = drm_seq_file_printer(m);
284 
285 	intel_sseu_print_topology(gt->i915, &gt->info.sseu, &p);
286 
287 	return 0;
288 }
289 DEFINE_INTEL_GT_DEBUGFS_ATTRIBUTE(sseu_topology);
290 
291 void intel_sseu_debugfs_register(struct intel_gt *gt, struct dentry *root)
292 {
293 	static const struct intel_gt_debugfs_file files[] = {
294 		{ "sseu_status", &sseu_status_fops, NULL },
295 		{ "sseu_topology", &sseu_topology_fops, NULL },
296 	};
297 
298 	intel_gt_debugfs_register_files(root, files, ARRAY_SIZE(files), gt);
299 }
300