xref: /linux/drivers/gpu/drm/i915/gt/intel_sseu.c (revision f6e8dc9edf963dbc99085e54f6ced6da9daa6100)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "i915_drv.h"
11 #include "i915_perf_types.h"
12 #include "intel_engine_regs.h"
13 #include "intel_gt_regs.h"
14 #include "intel_sseu.h"
15 
16 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
17 			 u8 max_subslices, u8 max_eus_per_subslice)
18 {
19 	sseu->max_slices = max_slices;
20 	sseu->max_subslices = max_subslices;
21 	sseu->max_eus_per_subslice = max_eus_per_subslice;
22 }
23 
24 unsigned int
25 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
26 {
27 	unsigned int i, total = 0;
28 
29 	if (sseu->has_xehp_dss)
30 		return bitmap_weight(sseu->subslice_mask.xehp,
31 				     XEHP_BITMAP_BITS(sseu->subslice_mask));
32 
33 	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
34 		total += hweight8(sseu->subslice_mask.hsw[i]);
35 
36 	return total;
37 }
38 
39 unsigned int
40 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
41 {
42 	WARN_ON(sseu->has_xehp_dss);
43 	if (WARN_ON(slice >= sseu->max_slices))
44 		return 0;
45 
46 	return sseu->subslice_mask.hsw[slice];
47 }
48 
49 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
50 			int subslice)
51 {
52 	if (sseu->has_xehp_dss) {
53 		WARN_ON(slice > 0);
54 		return sseu->eu_mask.xehp[subslice];
55 	} else {
56 		return sseu->eu_mask.hsw[slice][subslice];
57 	}
58 }
59 
60 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
61 			 u16 eu_mask)
62 {
63 	GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
64 	if (sseu->has_xehp_dss) {
65 		GEM_WARN_ON(slice > 0);
66 		sseu->eu_mask.xehp[subslice] = eu_mask;
67 	} else {
68 		sseu->eu_mask.hsw[slice][subslice] = eu_mask;
69 	}
70 }
71 
72 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
73 {
74 	int s, ss, total = 0;
75 
76 	for (s = 0; s < sseu->max_slices; s++)
77 		for (ss = 0; ss < sseu->max_subslices; ss++)
78 			if (sseu->has_xehp_dss)
79 				total += hweight16(sseu->eu_mask.xehp[ss]);
80 			else
81 				total += hweight16(sseu->eu_mask.hsw[s][ss]);
82 
83 	return total;
84 }
85 
86 /**
87  * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
88  * @to: Pointer to userspace buffer to copy to
89  * @sseu: SSEU structure containing EU mask to copy
90  *
91  * Copies the EU mask to a userspace buffer in the format expected by
92  * the query ioctl's topology queries.
93  *
94  * Returns the result of the copy_to_user() operation.
95  */
96 int intel_sseu_copy_eumask_to_user(void __user *to,
97 				   const struct sseu_dev_info *sseu)
98 {
99 	u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
100 	int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
101 	int len = sseu->max_slices * sseu->max_subslices * eu_stride;
102 	int s, ss, i;
103 
104 	for (s = 0; s < sseu->max_slices; s++) {
105 		for (ss = 0; ss < sseu->max_subslices; ss++) {
106 			int uapi_offset =
107 				s * sseu->max_subslices * eu_stride +
108 				ss * eu_stride;
109 			u16 mask = sseu_get_eus(sseu, s, ss);
110 
111 			for (i = 0; i < eu_stride; i++)
112 				eu_mask[uapi_offset + i] =
113 					(mask >> (BITS_PER_BYTE * i)) & 0xff;
114 		}
115 	}
116 
117 	return copy_to_user(to, eu_mask, len);
118 }
119 
120 /**
121  * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
122  * @to: Pointer to userspace buffer to copy to
123  * @sseu: SSEU structure containing subslice mask to copy
124  *
125  * Copies the subslice mask to a userspace buffer in the format expected by
126  * the query ioctl's topology queries.
127  *
128  * Returns the result of the copy_to_user() operation.
129  */
130 int intel_sseu_copy_ssmask_to_user(void __user *to,
131 				   const struct sseu_dev_info *sseu)
132 {
133 	u8 ss_mask[GEN_SS_MASK_SIZE] = {};
134 	int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
135 	int len = sseu->max_slices * ss_stride;
136 	int s, ss, i;
137 
138 	for (s = 0; s < sseu->max_slices; s++) {
139 		for (ss = 0; ss < sseu->max_subslices; ss++) {
140 			i = s * ss_stride * BITS_PER_BYTE + ss;
141 
142 			if (!intel_sseu_has_subslice(sseu, s, ss))
143 				continue;
144 
145 			ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
146 		}
147 	}
148 
149 	return copy_to_user(to, ss_mask, len);
150 }
151 
152 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
153 				    u32 ss_en, u16 eu_en)
154 {
155 	u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
156 	int ss;
157 
158 	sseu->slice_mask |= BIT(0);
159 	sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
160 
161 	for (ss = 0; ss < sseu->max_subslices; ss++)
162 		if (intel_sseu_has_subslice(sseu, 0, ss))
163 			sseu_set_eus(sseu, 0, ss, eu_en);
164 
165 	sseu->eu_per_subslice = hweight16(eu_en);
166 	sseu->eu_total = compute_eu_total(sseu);
167 }
168 
169 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
170 				   u16 eu_en)
171 {
172 	int ss;
173 
174 	sseu->slice_mask |= BIT(0);
175 
176 	bitmap_or(sseu->subslice_mask.xehp,
177 		  sseu->compute_subslice_mask.xehp,
178 		  sseu->geometry_subslice_mask.xehp,
179 		  XEHP_BITMAP_BITS(sseu->subslice_mask));
180 
181 	for (ss = 0; ss < sseu->max_subslices; ss++)
182 		if (intel_sseu_has_subslice(sseu, 0, ss))
183 			sseu_set_eus(sseu, 0, ss, eu_en);
184 
185 	sseu->eu_per_subslice = hweight16(eu_en);
186 	sseu->eu_total = compute_eu_total(sseu);
187 }
188 
189 static void
190 xehp_load_dss_mask(struct intel_uncore *uncore,
191 		   intel_sseu_ss_mask_t *ssmask,
192 		   int numregs,
193 		   ...)
194 {
195 	va_list argp;
196 	u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
197 	int i;
198 
199 	if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
200 		numregs = I915_MAX_SS_FUSE_REGS;
201 
202 	va_start(argp, numregs);
203 	for (i = 0; i < numregs; i++)
204 		fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
205 	va_end(argp);
206 
207 	bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
208 }
209 
210 static void xehp_sseu_info_init(struct intel_gt *gt)
211 {
212 	struct sseu_dev_info *sseu = &gt->info.sseu;
213 	struct intel_uncore *uncore = gt->uncore;
214 	u16 eu_en = 0;
215 	u8 eu_en_fuse;
216 	int num_compute_regs, num_geometry_regs;
217 	int eu;
218 
219 	num_geometry_regs = 1;
220 	num_compute_regs = 1;
221 
222 	/*
223 	 * The concept of slice has been removed in Xe_HP.  To be compatible
224 	 * with prior generations, assume a single slice across the entire
225 	 * device. Then calculate out the DSS for each workload type within
226 	 * that software slice.
227 	 */
228 	intel_sseu_set_info(sseu, 1,
229 			    32 * max(num_geometry_regs, num_compute_regs),
230 			    HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
231 	sseu->has_xehp_dss = 1;
232 
233 	xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
234 			   num_geometry_regs,
235 			   GEN12_GT_GEOMETRY_DSS_ENABLE);
236 	xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
237 			   num_compute_regs,
238 			   GEN12_GT_COMPUTE_DSS_ENABLE,
239 			   XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
240 
241 	eu_en_fuse = REG_FIELD_GET(XEHP_EU_ENA_MASK,
242 				   intel_uncore_read(uncore, XEHP_EU_ENABLE));
243 
244 	if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
245 		eu_en = eu_en_fuse;
246 	else
247 		for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
248 			if (eu_en_fuse & BIT(eu))
249 				eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
250 
251 	xehp_compute_sseu_info(sseu, eu_en);
252 }
253 
254 static void gen12_sseu_info_init(struct intel_gt *gt)
255 {
256 	struct sseu_dev_info *sseu = &gt->info.sseu;
257 	struct intel_uncore *uncore = gt->uncore;
258 	u32 g_dss_en;
259 	u16 eu_en = 0;
260 	u8 eu_en_fuse;
261 	u8 s_en;
262 	int eu;
263 
264 	/*
265 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
266 	 * Instead of splitting these, provide userspace with an array
267 	 * of DSS to more closely represent the hardware resource.
268 	 */
269 	intel_sseu_set_info(sseu, 1, 6, 16);
270 
271 	/*
272 	 * Although gen12 architecture supported multiple slices, TGL, RKL,
273 	 * DG1, and ADL only had a single slice.
274 	 */
275 	s_en = REG_FIELD_GET(GEN11_GT_S_ENA_MASK,
276 			     intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE));
277 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
278 
279 	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
280 
281 	/* one bit per pair of EUs */
282 	eu_en_fuse = ~REG_FIELD_GET(GEN11_EU_DIS_MASK,
283 				    intel_uncore_read(uncore, GEN11_EU_DISABLE));
284 
285 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
286 		if (eu_en_fuse & BIT(eu))
287 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
288 
289 	gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
290 
291 	/* TGL only supports slice-level power gating */
292 	sseu->has_slice_pg = 1;
293 }
294 
295 static void gen11_sseu_info_init(struct intel_gt *gt)
296 {
297 	struct sseu_dev_info *sseu = &gt->info.sseu;
298 	struct intel_uncore *uncore = gt->uncore;
299 	u32 ss_en;
300 	u8 eu_en;
301 	u8 s_en;
302 
303 	if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
304 		intel_sseu_set_info(sseu, 1, 4, 8);
305 	else
306 		intel_sseu_set_info(sseu, 1, 8, 8);
307 
308 	/*
309 	 * Although gen11 architecture supported multiple slices, ICL and
310 	 * EHL/JSL only had a single slice in practice.
311 	 */
312 	s_en = REG_FIELD_GET(GEN11_GT_S_ENA_MASK,
313 			     intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE));
314 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
315 
316 	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
317 
318 	eu_en = ~REG_FIELD_GET(GEN11_EU_DIS_MASK,
319 			       intel_uncore_read(uncore, GEN11_EU_DISABLE));
320 
321 	gen11_compute_sseu_info(sseu, ss_en, eu_en);
322 
323 	/* ICL has no power gating restrictions. */
324 	sseu->has_slice_pg = 1;
325 	sseu->has_subslice_pg = 1;
326 	sseu->has_eu_pg = 1;
327 }
328 
329 static void cherryview_sseu_info_init(struct intel_gt *gt)
330 {
331 	struct sseu_dev_info *sseu = &gt->info.sseu;
332 	u32 fuse;
333 
334 	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
335 
336 	sseu->slice_mask = BIT(0);
337 	intel_sseu_set_info(sseu, 1, 2, 8);
338 
339 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
340 		u8 disabled_mask =
341 			REG_FIELD_GET(CHV_FGT_EU_DIS_SS0_R0_MASK, fuse) |
342 			REG_FIELD_GET(CHV_FGT_EU_DIS_SS0_R1_MASK, fuse) << hweight32(CHV_FGT_EU_DIS_SS0_R0_MASK);
343 
344 		sseu->subslice_mask.hsw[0] |= BIT(0);
345 		sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
346 	}
347 
348 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
349 		u8 disabled_mask =
350 			REG_FIELD_GET(CHV_FGT_EU_DIS_SS1_R0_MASK, fuse) |
351 			REG_FIELD_GET(CHV_FGT_EU_DIS_SS1_R1_MASK, fuse) << hweight32(CHV_FGT_EU_DIS_SS1_R0_MASK);
352 
353 		sseu->subslice_mask.hsw[0] |= BIT(1);
354 		sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
355 	}
356 
357 	sseu->eu_total = compute_eu_total(sseu);
358 
359 	/*
360 	 * CHV expected to always have a uniform distribution of EU
361 	 * across subslices.
362 	 */
363 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
364 		sseu->eu_total /
365 		intel_sseu_subslice_total(sseu) :
366 		0;
367 	/*
368 	 * CHV supports subslice power gating on devices with more than
369 	 * one subslice, and supports EU power gating on devices with
370 	 * more than one EU pair per subslice.
371 	 */
372 	sseu->has_slice_pg = 0;
373 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
374 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
375 }
376 
377 static void gen9_sseu_info_init(struct intel_gt *gt)
378 {
379 	struct drm_i915_private *i915 = gt->i915;
380 	struct sseu_dev_info *sseu = &gt->info.sseu;
381 	struct intel_uncore *uncore = gt->uncore;
382 	u32 fuse2, eu_disable, subslice_mask;
383 	const u8 eu_mask = 0xff;
384 	int s, ss;
385 
386 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
387 	sseu->slice_mask = REG_FIELD_GET(GEN8_F2_S_ENA_MASK, fuse2);
388 
389 	/* BXT has a single slice and at most 3 subslices. */
390 	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
391 			    IS_GEN9_LP(i915) ? 3 : 4, 8);
392 
393 	/*
394 	 * The subslice disable field is global, i.e. it applies
395 	 * to each of the enabled slices.
396 	 */
397 	subslice_mask = (1 << sseu->max_subslices) - 1;
398 	subslice_mask &= ~REG_FIELD_GET(GEN9_F2_SS_DIS_MASK, fuse2);
399 
400 	/*
401 	 * Iterate through enabled slices and subslices to
402 	 * count the total enabled EU.
403 	 */
404 	for (s = 0; s < sseu->max_slices; s++) {
405 		if (!(sseu->slice_mask & BIT(s)))
406 			/* skip disabled slice */
407 			continue;
408 
409 		sseu->subslice_mask.hsw[s] = subslice_mask;
410 
411 		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
412 		for (ss = 0; ss < sseu->max_subslices; ss++) {
413 			int eu_per_ss;
414 			u8 eu_disabled_mask;
415 
416 			if (!intel_sseu_has_subslice(sseu, s, ss))
417 				/* skip disabled subslice */
418 				continue;
419 
420 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
421 
422 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
423 
424 			eu_per_ss = sseu->max_eus_per_subslice -
425 				hweight8(eu_disabled_mask);
426 
427 			/*
428 			 * Record which subslice(s) has(have) 7 EUs. we
429 			 * can tune the hash used to spread work among
430 			 * subslices if they are unbalanced.
431 			 */
432 			if (eu_per_ss == 7)
433 				sseu->subslice_7eu[s] |= BIT(ss);
434 		}
435 	}
436 
437 	sseu->eu_total = compute_eu_total(sseu);
438 
439 	/*
440 	 * SKL is expected to always have a uniform distribution
441 	 * of EU across subslices with the exception that any one
442 	 * EU in any one subslice may be fused off for die
443 	 * recovery. BXT is expected to be perfectly uniform in EU
444 	 * distribution.
445 	 */
446 	sseu->eu_per_subslice =
447 		intel_sseu_subslice_total(sseu) ?
448 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
449 		0;
450 
451 	/*
452 	 * SKL+ supports slice power gating on devices with more than
453 	 * one slice, and supports EU power gating on devices with
454 	 * more than one EU pair per subslice. BXT+ supports subslice
455 	 * power gating on devices with more than one subslice, and
456 	 * supports EU power gating on devices with more than one EU
457 	 * pair per subslice.
458 	 */
459 	sseu->has_slice_pg =
460 		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
461 	sseu->has_subslice_pg =
462 		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
463 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
464 
465 	if (IS_GEN9_LP(i915)) {
466 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask.hsw[0] & BIT(ss)))
467 		RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
468 
469 		sseu->min_eu_in_pool = 0;
470 		if (HAS_POOLED_EU(i915)) {
471 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
472 				sseu->min_eu_in_pool = 3;
473 			else if (IS_SS_DISABLED(1))
474 				sseu->min_eu_in_pool = 6;
475 			else
476 				sseu->min_eu_in_pool = 9;
477 		}
478 #undef IS_SS_DISABLED
479 	}
480 }
481 
482 static void bdw_sseu_info_init(struct intel_gt *gt)
483 {
484 	struct sseu_dev_info *sseu = &gt->info.sseu;
485 	struct intel_uncore *uncore = gt->uncore;
486 	int s, ss;
487 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
488 	u32 eu_disable0, eu_disable1, eu_disable2;
489 
490 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
491 	sseu->slice_mask = REG_FIELD_GET(GEN8_F2_S_ENA_MASK, fuse2);
492 	intel_sseu_set_info(sseu, 3, 3, 8);
493 
494 	/*
495 	 * The subslice disable field is global, i.e. it applies
496 	 * to each of the enabled slices.
497 	 */
498 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
499 	subslice_mask &= ~REG_FIELD_GET(GEN8_F2_SS_DIS_MASK, fuse2);
500 	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
501 	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
502 	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
503 	eu_disable[0] =
504 		REG_FIELD_GET(GEN8_EU_DIS0_S0_MASK, eu_disable0);
505 	eu_disable[1] =
506 		REG_FIELD_GET(GEN8_EU_DIS0_S1_MASK, eu_disable0) |
507 		REG_FIELD_GET(GEN8_EU_DIS1_S1_MASK, eu_disable1) << hweight32(GEN8_EU_DIS0_S1_MASK);
508 	eu_disable[2] =
509 		REG_FIELD_GET(GEN8_EU_DIS1_S2_MASK, eu_disable1) |
510 		REG_FIELD_GET(GEN8_EU_DIS2_S2_MASK, eu_disable2) << hweight32(GEN8_EU_DIS1_S2_MASK);
511 
512 	/*
513 	 * Iterate through enabled slices and subslices to
514 	 * count the total enabled EU.
515 	 */
516 	for (s = 0; s < sseu->max_slices; s++) {
517 		if (!(sseu->slice_mask & BIT(s)))
518 			/* skip disabled slice */
519 			continue;
520 
521 		sseu->subslice_mask.hsw[s] = subslice_mask;
522 
523 		for (ss = 0; ss < sseu->max_subslices; ss++) {
524 			u8 eu_disabled_mask;
525 			u32 n_disabled;
526 
527 			if (!intel_sseu_has_subslice(sseu, s, ss))
528 				/* skip disabled subslice */
529 				continue;
530 
531 			eu_disabled_mask =
532 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
533 
534 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
535 
536 			n_disabled = hweight8(eu_disabled_mask);
537 
538 			/*
539 			 * Record which subslices have 7 EUs.
540 			 */
541 			if (sseu->max_eus_per_subslice - n_disabled == 7)
542 				sseu->subslice_7eu[s] |= 1 << ss;
543 		}
544 	}
545 
546 	sseu->eu_total = compute_eu_total(sseu);
547 
548 	/*
549 	 * BDW is expected to always have a uniform distribution of EU across
550 	 * subslices with the exception that any one EU in any one subslice may
551 	 * be fused off for die recovery.
552 	 */
553 	sseu->eu_per_subslice =
554 		intel_sseu_subslice_total(sseu) ?
555 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
556 		0;
557 
558 	/*
559 	 * BDW supports slice power gating on devices with more than
560 	 * one slice.
561 	 */
562 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
563 	sseu->has_subslice_pg = 0;
564 	sseu->has_eu_pg = 0;
565 }
566 
567 static void hsw_sseu_info_init(struct intel_gt *gt)
568 {
569 	struct drm_i915_private *i915 = gt->i915;
570 	struct sseu_dev_info *sseu = &gt->info.sseu;
571 	u32 fuse1;
572 	u8 subslice_mask = 0;
573 	int s, ss;
574 
575 	/*
576 	 * There isn't a register to tell us how many slices/subslices. We
577 	 * work off the PCI-ids here.
578 	 */
579 	switch (INTEL_INFO(i915)->gt) {
580 	default:
581 		MISSING_CASE(INTEL_INFO(i915)->gt);
582 		fallthrough;
583 	case 1:
584 		sseu->slice_mask = BIT(0);
585 		subslice_mask = BIT(0);
586 		break;
587 	case 2:
588 		sseu->slice_mask = BIT(0);
589 		subslice_mask = BIT(0) | BIT(1);
590 		break;
591 	case 3:
592 		sseu->slice_mask = BIT(0) | BIT(1);
593 		subslice_mask = BIT(0) | BIT(1);
594 		break;
595 	}
596 
597 	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
598 	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
599 	default:
600 		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
601 		fallthrough;
602 	case HSW_F1_EU_DIS_10EUS:
603 		sseu->eu_per_subslice = 10;
604 		break;
605 	case HSW_F1_EU_DIS_8EUS:
606 		sseu->eu_per_subslice = 8;
607 		break;
608 	case HSW_F1_EU_DIS_6EUS:
609 		sseu->eu_per_subslice = 6;
610 		break;
611 	}
612 
613 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
614 			    hweight8(subslice_mask),
615 			    sseu->eu_per_subslice);
616 
617 	for (s = 0; s < sseu->max_slices; s++) {
618 		sseu->subslice_mask.hsw[s] = subslice_mask;
619 
620 		for (ss = 0; ss < sseu->max_subslices; ss++) {
621 			sseu_set_eus(sseu, s, ss,
622 				     (1UL << sseu->eu_per_subslice) - 1);
623 		}
624 	}
625 
626 	sseu->eu_total = compute_eu_total(sseu);
627 
628 	/* No powergating for you. */
629 	sseu->has_slice_pg = 0;
630 	sseu->has_subslice_pg = 0;
631 	sseu->has_eu_pg = 0;
632 }
633 
634 void intel_sseu_info_init(struct intel_gt *gt)
635 {
636 	struct drm_i915_private *i915 = gt->i915;
637 
638 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
639 		xehp_sseu_info_init(gt);
640 	else if (GRAPHICS_VER(i915) >= 12)
641 		gen12_sseu_info_init(gt);
642 	else if (GRAPHICS_VER(i915) >= 11)
643 		gen11_sseu_info_init(gt);
644 	else if (GRAPHICS_VER(i915) >= 9)
645 		gen9_sseu_info_init(gt);
646 	else if (IS_BROADWELL(i915))
647 		bdw_sseu_info_init(gt);
648 	else if (IS_CHERRYVIEW(i915))
649 		cherryview_sseu_info_init(gt);
650 	else if (IS_HASWELL(i915))
651 		hsw_sseu_info_init(gt);
652 }
653 
654 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
655 			 const struct intel_sseu *req_sseu)
656 {
657 	struct drm_i915_private *i915 = gt->i915;
658 	const struct sseu_dev_info *sseu = &gt->info.sseu;
659 	bool subslice_pg = sseu->has_subslice_pg;
660 	u8 slices, subslices;
661 	u32 rpcs = 0;
662 
663 	/*
664 	 * No explicit RPCS request is needed to ensure full
665 	 * slice/subslice/EU enablement prior to Gen9.
666 	 */
667 	if (GRAPHICS_VER(i915) < 9)
668 		return 0;
669 
670 	/*
671 	 * If i915/perf is active, we want a stable powergating configuration
672 	 * on the system. Use the configuration pinned by i915/perf.
673 	 */
674 	if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
675 		req_sseu = &gt->perf.sseu;
676 
677 	slices = hweight8(req_sseu->slice_mask);
678 	subslices = hweight8(req_sseu->subslice_mask);
679 
680 	/*
681 	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
682 	 * wide and Icelake has up to eight subslices, specfial programming is
683 	 * needed in order to correctly enable all subslices.
684 	 *
685 	 * According to documentation software must consider the configuration
686 	 * as 2x4x8 and hardware will translate this to 1x8x8.
687 	 *
688 	 * Furthermore, even though SScount is three bits, maximum documented
689 	 * value for it is four. From this some rules/restrictions follow:
690 	 *
691 	 * 1.
692 	 * If enabled subslice count is greater than four, two whole slices must
693 	 * be enabled instead.
694 	 *
695 	 * 2.
696 	 * When more than one slice is enabled, hardware ignores the subslice
697 	 * count altogether.
698 	 *
699 	 * From these restrictions it follows that it is not possible to enable
700 	 * a count of subslices between the SScount maximum of four restriction,
701 	 * and the maximum available number on a particular SKU. Either all
702 	 * subslices are enabled, or a count between one and four on the first
703 	 * slice.
704 	 */
705 	if (GRAPHICS_VER(i915) == 11 &&
706 	    slices == 1 &&
707 	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
708 		GEM_BUG_ON(subslices & 1);
709 
710 		subslice_pg = false;
711 		slices *= 2;
712 	}
713 
714 	/*
715 	 * Starting in Gen9, render power gating can leave
716 	 * slice/subslice/EU in a partially enabled state. We
717 	 * must make an explicit request through RPCS for full
718 	 * enablement.
719 	 */
720 	if (sseu->has_slice_pg) {
721 		u32 mask, val = slices;
722 
723 		if (GRAPHICS_VER(i915) >= 11) {
724 			mask = GEN11_RPCS_S_CNT_MASK;
725 			val <<= GEN11_RPCS_S_CNT_SHIFT;
726 		} else {
727 			mask = GEN8_RPCS_S_CNT_MASK;
728 			val <<= GEN8_RPCS_S_CNT_SHIFT;
729 		}
730 
731 		GEM_BUG_ON(val & ~mask);
732 		val &= mask;
733 
734 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
735 	}
736 
737 	if (subslice_pg) {
738 		u32 val = subslices;
739 
740 		val <<= GEN8_RPCS_SS_CNT_SHIFT;
741 
742 		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
743 		val &= GEN8_RPCS_SS_CNT_MASK;
744 
745 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
746 	}
747 
748 	if (sseu->has_eu_pg) {
749 		u32 val;
750 
751 		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
752 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
753 		val &= GEN8_RPCS_EU_MIN_MASK;
754 
755 		rpcs |= val;
756 
757 		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
758 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
759 		val &= GEN8_RPCS_EU_MAX_MASK;
760 
761 		rpcs |= val;
762 
763 		rpcs |= GEN8_RPCS_ENABLE;
764 	}
765 
766 	return rpcs;
767 }
768 
769 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
770 {
771 	int s;
772 
773 	if (sseu->has_xehp_dss) {
774 		drm_printf(p, "subslice total: %u\n",
775 			   intel_sseu_subslice_total(sseu));
776 		drm_printf(p, "geometry dss mask=%*pb\n",
777 			   XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
778 			   sseu->geometry_subslice_mask.xehp);
779 		drm_printf(p, "compute dss mask=%*pb\n",
780 			   XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
781 			   sseu->compute_subslice_mask.xehp);
782 	} else {
783 		drm_printf(p, "slice total: %u, mask=%04x\n",
784 			   hweight8(sseu->slice_mask), sseu->slice_mask);
785 		drm_printf(p, "subslice total: %u\n",
786 			   intel_sseu_subslice_total(sseu));
787 
788 		for (s = 0; s < sseu->max_slices; s++) {
789 			u8 ss_mask = sseu->subslice_mask.hsw[s];
790 
791 			drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
792 				   s, hweight8(ss_mask), ss_mask);
793 		}
794 	}
795 
796 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
797 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
798 	drm_printf(p, "has slice power gating: %s\n",
799 		   str_yes_no(sseu->has_slice_pg));
800 	drm_printf(p, "has subslice power gating: %s\n",
801 		   str_yes_no(sseu->has_subslice_pg));
802 	drm_printf(p, "has EU power gating: %s\n",
803 		   str_yes_no(sseu->has_eu_pg));
804 }
805 
806 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
807 				    struct drm_printer *p)
808 {
809 	int s, ss;
810 
811 	for (s = 0; s < sseu->max_slices; s++) {
812 		u8 ss_mask = sseu->subslice_mask.hsw[s];
813 
814 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
815 			   s, hweight8(ss_mask), ss_mask);
816 
817 		for (ss = 0; ss < sseu->max_subslices; ss++) {
818 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
819 
820 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
821 				   ss, hweight16(enabled_eus), enabled_eus);
822 		}
823 	}
824 }
825 
826 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
827 				     struct drm_printer *p)
828 {
829 	int dss;
830 
831 	for (dss = 0; dss < sseu->max_subslices; dss++) {
832 		u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
833 
834 		drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
835 			   str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
836 			   str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
837 			   hweight16(enabled_eus), enabled_eus);
838 	}
839 }
840 
841 void intel_sseu_print_topology(struct drm_i915_private *i915,
842 			       const struct sseu_dev_info *sseu,
843 			       struct drm_printer *p)
844 {
845 	if (sseu->max_slices == 0)
846 		drm_printf(p, "Unavailable\n");
847 	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
848 		sseu_print_xehp_topology(sseu, p);
849 	else
850 		sseu_print_hsw_topology(sseu, p);
851 }
852 
853 void intel_sseu_print_ss_info(const char *type,
854 			      const struct sseu_dev_info *sseu,
855 			      struct seq_file *m)
856 {
857 	int s;
858 
859 	if (sseu->has_xehp_dss) {
860 		seq_printf(m, "  %s Geometry DSS: %u\n", type,
861 			   bitmap_weight(sseu->geometry_subslice_mask.xehp,
862 					 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
863 		seq_printf(m, "  %s Compute DSS: %u\n", type,
864 			   bitmap_weight(sseu->compute_subslice_mask.xehp,
865 					 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
866 	} else {
867 		for (s = 0; s < fls(sseu->slice_mask); s++)
868 			seq_printf(m, "  %s Slice%i subslices: %u\n", type,
869 				   s, hweight8(sseu->subslice_mask.hsw[s]));
870 	}
871 }
872 
873 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
874 				      int dss_per_slice)
875 {
876 	intel_sseu_ss_mask_t per_slice_mask = {};
877 	unsigned long slice_mask = 0;
878 	int i;
879 
880 	WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
881 		8 * sizeof(slice_mask));
882 
883 	bitmap_fill(per_slice_mask.xehp, dss_per_slice);
884 	for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
885 		if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
886 			slice_mask |= BIT(i);
887 
888 		bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
889 				   XEHP_BITMAP_BITS(dss_mask));
890 	}
891 
892 	return slice_mask;
893 }
894