1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include "i915_drv.h" 9 #include "i915_perf_types.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gt_regs.h" 12 #include "intel_sseu.h" 13 14 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices, 15 u8 max_subslices, u8 max_eus_per_subslice) 16 { 17 sseu->max_slices = max_slices; 18 sseu->max_subslices = max_subslices; 19 sseu->max_eus_per_subslice = max_eus_per_subslice; 20 } 21 22 unsigned int 23 intel_sseu_subslice_total(const struct sseu_dev_info *sseu) 24 { 25 unsigned int i, total = 0; 26 27 if (sseu->has_xehp_dss) 28 return bitmap_weight(sseu->subslice_mask.xehp, 29 XEHP_BITMAP_BITS(sseu->subslice_mask)); 30 31 for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++) 32 total += hweight8(sseu->subslice_mask.hsw[i]); 33 34 return total; 35 } 36 37 unsigned int 38 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice) 39 { 40 WARN_ON(sseu->has_xehp_dss); 41 if (WARN_ON(slice >= sseu->max_slices)) 42 return 0; 43 44 return sseu->subslice_mask.hsw[slice]; 45 } 46 47 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, 48 int subslice) 49 { 50 if (sseu->has_xehp_dss) { 51 WARN_ON(slice > 0); 52 return sseu->eu_mask.xehp[subslice]; 53 } else { 54 return sseu->eu_mask.hsw[slice][subslice]; 55 } 56 } 57 58 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, 59 u16 eu_mask) 60 { 61 GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice); 62 if (sseu->has_xehp_dss) { 63 GEM_WARN_ON(slice > 0); 64 sseu->eu_mask.xehp[subslice] = eu_mask; 65 } else { 66 sseu->eu_mask.hsw[slice][subslice] = eu_mask; 67 } 68 } 69 70 static u16 compute_eu_total(const struct sseu_dev_info *sseu) 71 { 72 int s, ss, total = 0; 73 74 for (s = 0; s < sseu->max_slices; s++) 75 for (ss = 0; ss < sseu->max_subslices; ss++) 76 if (sseu->has_xehp_dss) 77 total += hweight16(sseu->eu_mask.xehp[ss]); 78 else 79 total += hweight16(sseu->eu_mask.hsw[s][ss]); 80 81 return total; 82 } 83 84 /** 85 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer 86 * @to: Pointer to userspace buffer to copy to 87 * @sseu: SSEU structure containing EU mask to copy 88 * 89 * Copies the EU mask to a userspace buffer in the format expected by 90 * the query ioctl's topology queries. 91 * 92 * Returns the result of the copy_to_user() operation. 93 */ 94 int intel_sseu_copy_eumask_to_user(void __user *to, 95 const struct sseu_dev_info *sseu) 96 { 97 u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {}; 98 int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); 99 int len = sseu->max_slices * sseu->max_subslices * eu_stride; 100 int s, ss, i; 101 102 for (s = 0; s < sseu->max_slices; s++) { 103 for (ss = 0; ss < sseu->max_subslices; ss++) { 104 int uapi_offset = 105 s * sseu->max_subslices * eu_stride + 106 ss * eu_stride; 107 u16 mask = sseu_get_eus(sseu, s, ss); 108 109 for (i = 0; i < eu_stride; i++) 110 eu_mask[uapi_offset + i] = 111 (mask >> (BITS_PER_BYTE * i)) & 0xff; 112 } 113 } 114 115 return copy_to_user(to, eu_mask, len); 116 } 117 118 /** 119 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer 120 * @to: Pointer to userspace buffer to copy to 121 * @sseu: SSEU structure containing subslice mask to copy 122 * 123 * Copies the subslice mask to a userspace buffer in the format expected by 124 * the query ioctl's topology queries. 125 * 126 * Returns the result of the copy_to_user() operation. 127 */ 128 int intel_sseu_copy_ssmask_to_user(void __user *to, 129 const struct sseu_dev_info *sseu) 130 { 131 u8 ss_mask[GEN_SS_MASK_SIZE] = {}; 132 int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices); 133 int len = sseu->max_slices * ss_stride; 134 int s, ss, i; 135 136 for (s = 0; s < sseu->max_slices; s++) { 137 for (ss = 0; ss < sseu->max_subslices; ss++) { 138 i = s * ss_stride * BITS_PER_BYTE + ss; 139 140 if (!intel_sseu_has_subslice(sseu, s, ss)) 141 continue; 142 143 ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); 144 } 145 } 146 147 return copy_to_user(to, ss_mask, len); 148 } 149 150 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, 151 u32 ss_en, u16 eu_en) 152 { 153 u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0); 154 int ss; 155 156 sseu->slice_mask |= BIT(0); 157 sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask; 158 159 for (ss = 0; ss < sseu->max_subslices; ss++) 160 if (intel_sseu_has_subslice(sseu, 0, ss)) 161 sseu_set_eus(sseu, 0, ss, eu_en); 162 163 sseu->eu_per_subslice = hweight16(eu_en); 164 sseu->eu_total = compute_eu_total(sseu); 165 } 166 167 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu, 168 u16 eu_en) 169 { 170 int ss; 171 172 sseu->slice_mask |= BIT(0); 173 174 bitmap_or(sseu->subslice_mask.xehp, 175 sseu->compute_subslice_mask.xehp, 176 sseu->geometry_subslice_mask.xehp, 177 XEHP_BITMAP_BITS(sseu->subslice_mask)); 178 179 for (ss = 0; ss < sseu->max_subslices; ss++) 180 if (intel_sseu_has_subslice(sseu, 0, ss)) 181 sseu_set_eus(sseu, 0, ss, eu_en); 182 183 sseu->eu_per_subslice = hweight16(eu_en); 184 sseu->eu_total = compute_eu_total(sseu); 185 } 186 187 static void 188 xehp_load_dss_mask(struct intel_uncore *uncore, 189 intel_sseu_ss_mask_t *ssmask, 190 int numregs, 191 ...) 192 { 193 va_list argp; 194 u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {}; 195 int i; 196 197 if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS)) 198 numregs = I915_MAX_SS_FUSE_REGS; 199 200 va_start(argp, numregs); 201 for (i = 0; i < numregs; i++) 202 fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t)); 203 va_end(argp); 204 205 bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32); 206 } 207 208 static void xehp_sseu_info_init(struct intel_gt *gt) 209 { 210 struct sseu_dev_info *sseu = >->info.sseu; 211 struct intel_uncore *uncore = gt->uncore; 212 u16 eu_en = 0; 213 u8 eu_en_fuse; 214 int num_compute_regs, num_geometry_regs; 215 int eu; 216 217 num_geometry_regs = 1; 218 num_compute_regs = 1; 219 220 /* 221 * The concept of slice has been removed in Xe_HP. To be compatible 222 * with prior generations, assume a single slice across the entire 223 * device. Then calculate out the DSS for each workload type within 224 * that software slice. 225 */ 226 intel_sseu_set_info(sseu, 1, 227 32 * max(num_geometry_regs, num_compute_regs), 228 HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16); 229 sseu->has_xehp_dss = 1; 230 231 xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask, 232 num_geometry_regs, 233 GEN12_GT_GEOMETRY_DSS_ENABLE); 234 xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask, 235 num_compute_regs, 236 GEN12_GT_COMPUTE_DSS_ENABLE, 237 XEHPC_GT_COMPUTE_DSS_ENABLE_EXT); 238 239 eu_en_fuse = REG_FIELD_GET(XEHP_EU_ENA_MASK, 240 intel_uncore_read(uncore, XEHP_EU_ENABLE)); 241 242 if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915)) 243 eu_en = eu_en_fuse; 244 else 245 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) 246 if (eu_en_fuse & BIT(eu)) 247 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); 248 249 xehp_compute_sseu_info(sseu, eu_en); 250 } 251 252 static void gen12_sseu_info_init(struct intel_gt *gt) 253 { 254 struct sseu_dev_info *sseu = >->info.sseu; 255 struct intel_uncore *uncore = gt->uncore; 256 u32 g_dss_en; 257 u16 eu_en = 0; 258 u8 eu_en_fuse; 259 u8 s_en; 260 int eu; 261 262 /* 263 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS. 264 * Instead of splitting these, provide userspace with an array 265 * of DSS to more closely represent the hardware resource. 266 */ 267 intel_sseu_set_info(sseu, 1, 6, 16); 268 269 /* 270 * Although gen12 architecture supported multiple slices, TGL, RKL, 271 * DG1, and ADL only had a single slice. 272 */ 273 s_en = REG_FIELD_GET(GEN11_GT_S_ENA_MASK, 274 intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE)); 275 drm_WARN_ON(>->i915->drm, s_en != 0x1); 276 277 g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE); 278 279 /* one bit per pair of EUs */ 280 eu_en_fuse = ~REG_FIELD_GET(GEN11_EU_DIS_MASK, 281 intel_uncore_read(uncore, GEN11_EU_DISABLE)); 282 283 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) 284 if (eu_en_fuse & BIT(eu)) 285 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); 286 287 gen11_compute_sseu_info(sseu, g_dss_en, eu_en); 288 289 /* TGL only supports slice-level power gating */ 290 sseu->has_slice_pg = 1; 291 } 292 293 static void gen11_sseu_info_init(struct intel_gt *gt) 294 { 295 struct sseu_dev_info *sseu = >->info.sseu; 296 struct intel_uncore *uncore = gt->uncore; 297 u32 ss_en; 298 u8 eu_en; 299 u8 s_en; 300 301 if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915)) 302 intel_sseu_set_info(sseu, 1, 4, 8); 303 else 304 intel_sseu_set_info(sseu, 1, 8, 8); 305 306 /* 307 * Although gen11 architecture supported multiple slices, ICL and 308 * EHL/JSL only had a single slice in practice. 309 */ 310 s_en = REG_FIELD_GET(GEN11_GT_S_ENA_MASK, 311 intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE)); 312 drm_WARN_ON(>->i915->drm, s_en != 0x1); 313 314 ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE); 315 316 eu_en = ~REG_FIELD_GET(GEN11_EU_DIS_MASK, 317 intel_uncore_read(uncore, GEN11_EU_DISABLE)); 318 319 gen11_compute_sseu_info(sseu, ss_en, eu_en); 320 321 /* ICL has no power gating restrictions. */ 322 sseu->has_slice_pg = 1; 323 sseu->has_subslice_pg = 1; 324 sseu->has_eu_pg = 1; 325 } 326 327 static void cherryview_sseu_info_init(struct intel_gt *gt) 328 { 329 struct sseu_dev_info *sseu = >->info.sseu; 330 u32 fuse; 331 332 fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT); 333 334 sseu->slice_mask = BIT(0); 335 intel_sseu_set_info(sseu, 1, 2, 8); 336 337 if (!(fuse & CHV_FGT_DISABLE_SS0)) { 338 u8 disabled_mask = 339 REG_FIELD_GET(CHV_FGT_EU_DIS_SS0_R0_MASK, fuse) | 340 REG_FIELD_GET(CHV_FGT_EU_DIS_SS0_R1_MASK, fuse) << hweight32(CHV_FGT_EU_DIS_SS0_R0_MASK); 341 342 sseu->subslice_mask.hsw[0] |= BIT(0); 343 sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF); 344 } 345 346 if (!(fuse & CHV_FGT_DISABLE_SS1)) { 347 u8 disabled_mask = 348 REG_FIELD_GET(CHV_FGT_EU_DIS_SS1_R0_MASK, fuse) | 349 REG_FIELD_GET(CHV_FGT_EU_DIS_SS1_R1_MASK, fuse) << hweight32(CHV_FGT_EU_DIS_SS1_R0_MASK); 350 351 sseu->subslice_mask.hsw[0] |= BIT(1); 352 sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF); 353 } 354 355 sseu->eu_total = compute_eu_total(sseu); 356 357 /* 358 * CHV expected to always have a uniform distribution of EU 359 * across subslices. 360 */ 361 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? 362 sseu->eu_total / 363 intel_sseu_subslice_total(sseu) : 364 0; 365 /* 366 * CHV supports subslice power gating on devices with more than 367 * one subslice, and supports EU power gating on devices with 368 * more than one EU pair per subslice. 369 */ 370 sseu->has_slice_pg = 0; 371 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; 372 sseu->has_eu_pg = (sseu->eu_per_subslice > 2); 373 } 374 375 static void gen9_sseu_info_init(struct intel_gt *gt) 376 { 377 struct drm_i915_private *i915 = gt->i915; 378 struct sseu_dev_info *sseu = >->info.sseu; 379 struct intel_uncore *uncore = gt->uncore; 380 u32 fuse2, eu_disable, subslice_mask; 381 const u8 eu_mask = 0xff; 382 int s, ss; 383 384 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); 385 sseu->slice_mask = REG_FIELD_GET(GEN8_F2_S_ENA_MASK, fuse2); 386 387 /* BXT has a single slice and at most 3 subslices. */ 388 intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3, 389 IS_GEN9_LP(i915) ? 3 : 4, 8); 390 391 /* 392 * The subslice disable field is global, i.e. it applies 393 * to each of the enabled slices. 394 */ 395 subslice_mask = (1 << sseu->max_subslices) - 1; 396 subslice_mask &= ~REG_FIELD_GET(GEN9_F2_SS_DIS_MASK, fuse2); 397 398 /* 399 * Iterate through enabled slices and subslices to 400 * count the total enabled EU. 401 */ 402 for (s = 0; s < sseu->max_slices; s++) { 403 if (!(sseu->slice_mask & BIT(s))) 404 /* skip disabled slice */ 405 continue; 406 407 sseu->subslice_mask.hsw[s] = subslice_mask; 408 409 eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s)); 410 for (ss = 0; ss < sseu->max_subslices; ss++) { 411 int eu_per_ss; 412 u8 eu_disabled_mask; 413 414 if (!intel_sseu_has_subslice(sseu, s, ss)) 415 /* skip disabled subslice */ 416 continue; 417 418 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; 419 420 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask); 421 422 eu_per_ss = sseu->max_eus_per_subslice - 423 hweight8(eu_disabled_mask); 424 425 /* 426 * Record which subslice(s) has(have) 7 EUs. we 427 * can tune the hash used to spread work among 428 * subslices if they are unbalanced. 429 */ 430 if (eu_per_ss == 7) 431 sseu->subslice_7eu[s] |= BIT(ss); 432 } 433 } 434 435 sseu->eu_total = compute_eu_total(sseu); 436 437 /* 438 * SKL is expected to always have a uniform distribution 439 * of EU across subslices with the exception that any one 440 * EU in any one subslice may be fused off for die 441 * recovery. BXT is expected to be perfectly uniform in EU 442 * distribution. 443 */ 444 sseu->eu_per_subslice = 445 intel_sseu_subslice_total(sseu) ? 446 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 447 0; 448 449 /* 450 * SKL+ supports slice power gating on devices with more than 451 * one slice, and supports EU power gating on devices with 452 * more than one EU pair per subslice. BXT+ supports subslice 453 * power gating on devices with more than one subslice, and 454 * supports EU power gating on devices with more than one EU 455 * pair per subslice. 456 */ 457 sseu->has_slice_pg = 458 !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1; 459 sseu->has_subslice_pg = 460 IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1; 461 sseu->has_eu_pg = sseu->eu_per_subslice > 2; 462 463 if (IS_GEN9_LP(i915)) { 464 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss))) 465 RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3; 466 467 sseu->min_eu_in_pool = 0; 468 if (HAS_POOLED_EU(i915)) { 469 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) 470 sseu->min_eu_in_pool = 3; 471 else if (IS_SS_DISABLED(1)) 472 sseu->min_eu_in_pool = 6; 473 else 474 sseu->min_eu_in_pool = 9; 475 } 476 #undef IS_SS_DISABLED 477 } 478 } 479 480 static void bdw_sseu_info_init(struct intel_gt *gt) 481 { 482 struct sseu_dev_info *sseu = >->info.sseu; 483 struct intel_uncore *uncore = gt->uncore; 484 int s, ss; 485 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ 486 u32 eu_disable0, eu_disable1, eu_disable2; 487 488 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); 489 sseu->slice_mask = REG_FIELD_GET(GEN8_F2_S_ENA_MASK, fuse2); 490 intel_sseu_set_info(sseu, 3, 3, 8); 491 492 /* 493 * The subslice disable field is global, i.e. it applies 494 * to each of the enabled slices. 495 */ 496 subslice_mask = GENMASK(sseu->max_subslices - 1, 0); 497 subslice_mask &= ~REG_FIELD_GET(GEN8_F2_SS_DIS_MASK, fuse2); 498 eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0); 499 eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1); 500 eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2); 501 eu_disable[0] = 502 REG_FIELD_GET(GEN8_EU_DIS0_S0_MASK, eu_disable0); 503 eu_disable[1] = 504 REG_FIELD_GET(GEN8_EU_DIS0_S1_MASK, eu_disable0) | 505 REG_FIELD_GET(GEN8_EU_DIS1_S1_MASK, eu_disable1) << hweight32(GEN8_EU_DIS0_S1_MASK); 506 eu_disable[2] = 507 REG_FIELD_GET(GEN8_EU_DIS1_S2_MASK, eu_disable1) | 508 REG_FIELD_GET(GEN8_EU_DIS2_S2_MASK, eu_disable2) << hweight32(GEN8_EU_DIS1_S2_MASK); 509 510 /* 511 * Iterate through enabled slices and subslices to 512 * count the total enabled EU. 513 */ 514 for (s = 0; s < sseu->max_slices; s++) { 515 if (!(sseu->slice_mask & BIT(s))) 516 /* skip disabled slice */ 517 continue; 518 519 sseu->subslice_mask.hsw[s] = subslice_mask; 520 521 for (ss = 0; ss < sseu->max_subslices; ss++) { 522 u8 eu_disabled_mask; 523 u32 n_disabled; 524 525 if (!intel_sseu_has_subslice(sseu, s, ss)) 526 /* skip disabled subslice */ 527 continue; 528 529 eu_disabled_mask = 530 eu_disable[s] >> (ss * sseu->max_eus_per_subslice); 531 532 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF); 533 534 n_disabled = hweight8(eu_disabled_mask); 535 536 /* 537 * Record which subslices have 7 EUs. 538 */ 539 if (sseu->max_eus_per_subslice - n_disabled == 7) 540 sseu->subslice_7eu[s] |= 1 << ss; 541 } 542 } 543 544 sseu->eu_total = compute_eu_total(sseu); 545 546 /* 547 * BDW is expected to always have a uniform distribution of EU across 548 * subslices with the exception that any one EU in any one subslice may 549 * be fused off for die recovery. 550 */ 551 sseu->eu_per_subslice = 552 intel_sseu_subslice_total(sseu) ? 553 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 554 0; 555 556 /* 557 * BDW supports slice power gating on devices with more than 558 * one slice. 559 */ 560 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; 561 sseu->has_subslice_pg = 0; 562 sseu->has_eu_pg = 0; 563 } 564 565 static void hsw_sseu_info_init(struct intel_gt *gt) 566 { 567 struct drm_i915_private *i915 = gt->i915; 568 struct sseu_dev_info *sseu = >->info.sseu; 569 u32 fuse1; 570 u8 subslice_mask = 0; 571 int s, ss; 572 573 /* 574 * There isn't a register to tell us how many slices/subslices. We 575 * work off the PCI-ids here. 576 */ 577 switch (INTEL_INFO(i915)->gt) { 578 default: 579 MISSING_CASE(INTEL_INFO(i915)->gt); 580 fallthrough; 581 case 1: 582 sseu->slice_mask = BIT(0); 583 subslice_mask = BIT(0); 584 break; 585 case 2: 586 sseu->slice_mask = BIT(0); 587 subslice_mask = BIT(0) | BIT(1); 588 break; 589 case 3: 590 sseu->slice_mask = BIT(0) | BIT(1); 591 subslice_mask = BIT(0) | BIT(1); 592 break; 593 } 594 595 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 596 switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) { 597 default: 598 MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)); 599 fallthrough; 600 case HSW_F1_EU_DIS_10EUS: 601 sseu->eu_per_subslice = 10; 602 break; 603 case HSW_F1_EU_DIS_8EUS: 604 sseu->eu_per_subslice = 8; 605 break; 606 case HSW_F1_EU_DIS_6EUS: 607 sseu->eu_per_subslice = 6; 608 break; 609 } 610 611 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask), 612 hweight8(subslice_mask), 613 sseu->eu_per_subslice); 614 615 for (s = 0; s < sseu->max_slices; s++) { 616 sseu->subslice_mask.hsw[s] = subslice_mask; 617 618 for (ss = 0; ss < sseu->max_subslices; ss++) { 619 sseu_set_eus(sseu, s, ss, 620 (1UL << sseu->eu_per_subslice) - 1); 621 } 622 } 623 624 sseu->eu_total = compute_eu_total(sseu); 625 626 /* No powergating for you. */ 627 sseu->has_slice_pg = 0; 628 sseu->has_subslice_pg = 0; 629 sseu->has_eu_pg = 0; 630 } 631 632 void intel_sseu_info_init(struct intel_gt *gt) 633 { 634 struct drm_i915_private *i915 = gt->i915; 635 636 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 637 xehp_sseu_info_init(gt); 638 else if (GRAPHICS_VER(i915) >= 12) 639 gen12_sseu_info_init(gt); 640 else if (GRAPHICS_VER(i915) >= 11) 641 gen11_sseu_info_init(gt); 642 else if (GRAPHICS_VER(i915) >= 9) 643 gen9_sseu_info_init(gt); 644 else if (IS_BROADWELL(i915)) 645 bdw_sseu_info_init(gt); 646 else if (IS_CHERRYVIEW(i915)) 647 cherryview_sseu_info_init(gt); 648 else if (IS_HASWELL(i915)) 649 hsw_sseu_info_init(gt); 650 } 651 652 u32 intel_sseu_make_rpcs(struct intel_gt *gt, 653 const struct intel_sseu *req_sseu) 654 { 655 struct drm_i915_private *i915 = gt->i915; 656 const struct sseu_dev_info *sseu = >->info.sseu; 657 bool subslice_pg = sseu->has_subslice_pg; 658 u8 slices, subslices; 659 u32 rpcs = 0; 660 661 /* 662 * No explicit RPCS request is needed to ensure full 663 * slice/subslice/EU enablement prior to Gen9. 664 */ 665 if (GRAPHICS_VER(i915) < 9) 666 return 0; 667 668 /* 669 * If i915/perf is active, we want a stable powergating configuration 670 * on the system. Use the configuration pinned by i915/perf. 671 */ 672 if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream) 673 req_sseu = >->perf.sseu; 674 675 slices = hweight8(req_sseu->slice_mask); 676 subslices = hweight8(req_sseu->subslice_mask); 677 678 /* 679 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits 680 * wide and Icelake has up to eight subslices, specfial programming is 681 * needed in order to correctly enable all subslices. 682 * 683 * According to documentation software must consider the configuration 684 * as 2x4x8 and hardware will translate this to 1x8x8. 685 * 686 * Furthermore, even though SScount is three bits, maximum documented 687 * value for it is four. From this some rules/restrictions follow: 688 * 689 * 1. 690 * If enabled subslice count is greater than four, two whole slices must 691 * be enabled instead. 692 * 693 * 2. 694 * When more than one slice is enabled, hardware ignores the subslice 695 * count altogether. 696 * 697 * From these restrictions it follows that it is not possible to enable 698 * a count of subslices between the SScount maximum of four restriction, 699 * and the maximum available number on a particular SKU. Either all 700 * subslices are enabled, or a count between one and four on the first 701 * slice. 702 */ 703 if (GRAPHICS_VER(i915) == 11 && 704 slices == 1 && 705 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) { 706 GEM_BUG_ON(subslices & 1); 707 708 subslice_pg = false; 709 slices *= 2; 710 } 711 712 /* 713 * Starting in Gen9, render power gating can leave 714 * slice/subslice/EU in a partially enabled state. We 715 * must make an explicit request through RPCS for full 716 * enablement. 717 */ 718 if (sseu->has_slice_pg) { 719 u32 mask, val = slices; 720 721 if (GRAPHICS_VER(i915) >= 11) { 722 mask = GEN11_RPCS_S_CNT_MASK; 723 val <<= GEN11_RPCS_S_CNT_SHIFT; 724 } else { 725 mask = GEN8_RPCS_S_CNT_MASK; 726 val <<= GEN8_RPCS_S_CNT_SHIFT; 727 } 728 729 GEM_BUG_ON(val & ~mask); 730 val &= mask; 731 732 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val; 733 } 734 735 if (subslice_pg) { 736 u32 val = subslices; 737 738 val <<= GEN8_RPCS_SS_CNT_SHIFT; 739 740 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK); 741 val &= GEN8_RPCS_SS_CNT_MASK; 742 743 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val; 744 } 745 746 if (sseu->has_eu_pg) { 747 u32 val; 748 749 val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; 750 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK); 751 val &= GEN8_RPCS_EU_MIN_MASK; 752 753 rpcs |= val; 754 755 val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; 756 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK); 757 val &= GEN8_RPCS_EU_MAX_MASK; 758 759 rpcs |= val; 760 761 rpcs |= GEN8_RPCS_ENABLE; 762 } 763 764 return rpcs; 765 } 766 767 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) 768 { 769 int s; 770 771 if (sseu->has_xehp_dss) { 772 drm_printf(p, "subslice total: %u\n", 773 intel_sseu_subslice_total(sseu)); 774 drm_printf(p, "geometry dss mask=%*pb\n", 775 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask), 776 sseu->geometry_subslice_mask.xehp); 777 drm_printf(p, "compute dss mask=%*pb\n", 778 XEHP_BITMAP_BITS(sseu->compute_subslice_mask), 779 sseu->compute_subslice_mask.xehp); 780 } else { 781 drm_printf(p, "slice total: %u, mask=%04x\n", 782 hweight8(sseu->slice_mask), sseu->slice_mask); 783 drm_printf(p, "subslice total: %u\n", 784 intel_sseu_subslice_total(sseu)); 785 786 for (s = 0; s < sseu->max_slices; s++) { 787 u8 ss_mask = sseu->subslice_mask.hsw[s]; 788 789 drm_printf(p, "slice%d: %u subslices, mask=%08x\n", 790 s, hweight8(ss_mask), ss_mask); 791 } 792 } 793 794 drm_printf(p, "EU total: %u\n", sseu->eu_total); 795 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); 796 drm_printf(p, "has slice power gating: %s\n", 797 str_yes_no(sseu->has_slice_pg)); 798 drm_printf(p, "has subslice power gating: %s\n", 799 str_yes_no(sseu->has_subslice_pg)); 800 drm_printf(p, "has EU power gating: %s\n", 801 str_yes_no(sseu->has_eu_pg)); 802 } 803 804 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu, 805 struct drm_printer *p) 806 { 807 int s, ss; 808 809 for (s = 0; s < sseu->max_slices; s++) { 810 u8 ss_mask = sseu->subslice_mask.hsw[s]; 811 812 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n", 813 s, hweight8(ss_mask), ss_mask); 814 815 for (ss = 0; ss < sseu->max_subslices; ss++) { 816 u16 enabled_eus = sseu_get_eus(sseu, s, ss); 817 818 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", 819 ss, hweight16(enabled_eus), enabled_eus); 820 } 821 } 822 } 823 824 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu, 825 struct drm_printer *p) 826 { 827 int dss; 828 829 for (dss = 0; dss < sseu->max_subslices; dss++) { 830 u16 enabled_eus = sseu_get_eus(sseu, 0, dss); 831 832 drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss, 833 str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)), 834 str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)), 835 hweight16(enabled_eus), enabled_eus); 836 } 837 } 838 839 void intel_sseu_print_topology(struct drm_i915_private *i915, 840 const struct sseu_dev_info *sseu, 841 struct drm_printer *p) 842 { 843 if (sseu->max_slices == 0) 844 drm_printf(p, "Unavailable\n"); 845 else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 846 sseu_print_xehp_topology(sseu, p); 847 else 848 sseu_print_hsw_topology(sseu, p); 849 } 850 851 void intel_sseu_print_ss_info(const char *type, 852 const struct sseu_dev_info *sseu, 853 struct seq_file *m) 854 { 855 int s; 856 857 if (sseu->has_xehp_dss) { 858 seq_printf(m, " %s Geometry DSS: %u\n", type, 859 bitmap_weight(sseu->geometry_subslice_mask.xehp, 860 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask))); 861 seq_printf(m, " %s Compute DSS: %u\n", type, 862 bitmap_weight(sseu->compute_subslice_mask.xehp, 863 XEHP_BITMAP_BITS(sseu->compute_subslice_mask))); 864 } else { 865 for (s = 0; s < fls(sseu->slice_mask); s++) 866 seq_printf(m, " %s Slice%i subslices: %u\n", type, 867 s, hweight8(sseu->subslice_mask.hsw[s])); 868 } 869 } 870 871 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask, 872 int dss_per_slice) 873 { 874 intel_sseu_ss_mask_t per_slice_mask = {}; 875 unsigned long slice_mask = 0; 876 int i; 877 878 WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) > 879 8 * sizeof(slice_mask)); 880 881 bitmap_fill(per_slice_mask.xehp, dss_per_slice); 882 for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) { 883 if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice)) 884 slice_mask |= BIT(i); 885 886 bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice, 887 XEHP_BITMAP_BITS(dss_mask)); 888 } 889 890 return slice_mask; 891 } 892