xref: /linux/drivers/gpu/drm/i915/gt/intel_sseu.c (revision 6af91e3d2cfc8bb579b1aa2d22cd91f8c34acdf6)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_perf_types.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gt_regs.h"
12 #include "intel_sseu.h"
13 
14 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
15 			 u8 max_subslices, u8 max_eus_per_subslice)
16 {
17 	sseu->max_slices = max_slices;
18 	sseu->max_subslices = max_subslices;
19 	sseu->max_eus_per_subslice = max_eus_per_subslice;
20 }
21 
22 unsigned int
23 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
24 {
25 	unsigned int i, total = 0;
26 
27 	if (sseu->has_xehp_dss)
28 		return bitmap_weight(sseu->subslice_mask.xehp,
29 				     XEHP_BITMAP_BITS(sseu->subslice_mask));
30 
31 	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
32 		total += hweight8(sseu->subslice_mask.hsw[i]);
33 
34 	return total;
35 }
36 
37 unsigned int
38 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
39 {
40 	WARN_ON(sseu->has_xehp_dss);
41 	if (WARN_ON(slice >= sseu->max_slices))
42 		return 0;
43 
44 	return sseu->subslice_mask.hsw[slice];
45 }
46 
47 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
48 			int subslice)
49 {
50 	if (sseu->has_xehp_dss) {
51 		WARN_ON(slice > 0);
52 		return sseu->eu_mask.xehp[subslice];
53 	} else {
54 		return sseu->eu_mask.hsw[slice][subslice];
55 	}
56 }
57 
58 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
59 			 u16 eu_mask)
60 {
61 	GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
62 	if (sseu->has_xehp_dss) {
63 		GEM_WARN_ON(slice > 0);
64 		sseu->eu_mask.xehp[subslice] = eu_mask;
65 	} else {
66 		sseu->eu_mask.hsw[slice][subslice] = eu_mask;
67 	}
68 }
69 
70 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
71 {
72 	int s, ss, total = 0;
73 
74 	for (s = 0; s < sseu->max_slices; s++)
75 		for (ss = 0; ss < sseu->max_subslices; ss++)
76 			if (sseu->has_xehp_dss)
77 				total += hweight16(sseu->eu_mask.xehp[ss]);
78 			else
79 				total += hweight16(sseu->eu_mask.hsw[s][ss]);
80 
81 	return total;
82 }
83 
84 /**
85  * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
86  * @to: Pointer to userspace buffer to copy to
87  * @sseu: SSEU structure containing EU mask to copy
88  *
89  * Copies the EU mask to a userspace buffer in the format expected by
90  * the query ioctl's topology queries.
91  *
92  * Returns the result of the copy_to_user() operation.
93  */
94 int intel_sseu_copy_eumask_to_user(void __user *to,
95 				   const struct sseu_dev_info *sseu)
96 {
97 	u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
98 	int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
99 	int len = sseu->max_slices * sseu->max_subslices * eu_stride;
100 	int s, ss, i;
101 
102 	for (s = 0; s < sseu->max_slices; s++) {
103 		for (ss = 0; ss < sseu->max_subslices; ss++) {
104 			int uapi_offset =
105 				s * sseu->max_subslices * eu_stride +
106 				ss * eu_stride;
107 			u16 mask = sseu_get_eus(sseu, s, ss);
108 
109 			for (i = 0; i < eu_stride; i++)
110 				eu_mask[uapi_offset + i] =
111 					(mask >> (BITS_PER_BYTE * i)) & 0xff;
112 		}
113 	}
114 
115 	return copy_to_user(to, eu_mask, len);
116 }
117 
118 /**
119  * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
120  * @to: Pointer to userspace buffer to copy to
121  * @sseu: SSEU structure containing subslice mask to copy
122  *
123  * Copies the subslice mask to a userspace buffer in the format expected by
124  * the query ioctl's topology queries.
125  *
126  * Returns the result of the copy_to_user() operation.
127  */
128 int intel_sseu_copy_ssmask_to_user(void __user *to,
129 				   const struct sseu_dev_info *sseu)
130 {
131 	u8 ss_mask[GEN_SS_MASK_SIZE] = {};
132 	int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
133 	int len = sseu->max_slices * ss_stride;
134 	int s, ss, i;
135 
136 	for (s = 0; s < sseu->max_slices; s++) {
137 		for (ss = 0; ss < sseu->max_subslices; ss++) {
138 			i = s * ss_stride * BITS_PER_BYTE + ss;
139 
140 			if (!intel_sseu_has_subslice(sseu, s, ss))
141 				continue;
142 
143 			ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
144 		}
145 	}
146 
147 	return copy_to_user(to, ss_mask, len);
148 }
149 
150 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
151 				    u32 ss_en, u16 eu_en)
152 {
153 	u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
154 	int ss;
155 
156 	sseu->slice_mask |= BIT(0);
157 	sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
158 
159 	for (ss = 0; ss < sseu->max_subslices; ss++)
160 		if (intel_sseu_has_subslice(sseu, 0, ss))
161 			sseu_set_eus(sseu, 0, ss, eu_en);
162 
163 	sseu->eu_per_subslice = hweight16(eu_en);
164 	sseu->eu_total = compute_eu_total(sseu);
165 }
166 
167 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
168 				   u16 eu_en)
169 {
170 	int ss;
171 
172 	sseu->slice_mask |= BIT(0);
173 
174 	bitmap_or(sseu->subslice_mask.xehp,
175 		  sseu->compute_subslice_mask.xehp,
176 		  sseu->geometry_subslice_mask.xehp,
177 		  XEHP_BITMAP_BITS(sseu->subslice_mask));
178 
179 	for (ss = 0; ss < sseu->max_subslices; ss++)
180 		if (intel_sseu_has_subslice(sseu, 0, ss))
181 			sseu_set_eus(sseu, 0, ss, eu_en);
182 
183 	sseu->eu_per_subslice = hweight16(eu_en);
184 	sseu->eu_total = compute_eu_total(sseu);
185 }
186 
187 static void
188 xehp_load_dss_mask(struct intel_uncore *uncore,
189 		   intel_sseu_ss_mask_t *ssmask,
190 		   int numregs,
191 		   ...)
192 {
193 	va_list argp;
194 	u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
195 	int i;
196 
197 	if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
198 		numregs = I915_MAX_SS_FUSE_REGS;
199 
200 	va_start(argp, numregs);
201 	for (i = 0; i < numregs; i++)
202 		fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
203 	va_end(argp);
204 
205 	bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
206 }
207 
208 static void xehp_sseu_info_init(struct intel_gt *gt)
209 {
210 	struct sseu_dev_info *sseu = &gt->info.sseu;
211 	struct intel_uncore *uncore = gt->uncore;
212 	u16 eu_en = 0;
213 	u8 eu_en_fuse;
214 	int num_compute_regs, num_geometry_regs;
215 	int eu;
216 
217 	num_geometry_regs = 1;
218 	num_compute_regs = 1;
219 
220 	/*
221 	 * The concept of slice has been removed in Xe_HP.  To be compatible
222 	 * with prior generations, assume a single slice across the entire
223 	 * device. Then calculate out the DSS for each workload type within
224 	 * that software slice.
225 	 */
226 	intel_sseu_set_info(sseu, 1,
227 			    32 * max(num_geometry_regs, num_compute_regs),
228 			    HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
229 	sseu->has_xehp_dss = 1;
230 
231 	xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
232 			   num_geometry_regs,
233 			   GEN12_GT_GEOMETRY_DSS_ENABLE);
234 	xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
235 			   num_compute_regs,
236 			   GEN12_GT_COMPUTE_DSS_ENABLE,
237 			   XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
238 
239 	eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
240 
241 	if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
242 		eu_en = eu_en_fuse;
243 	else
244 		for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
245 			if (eu_en_fuse & BIT(eu))
246 				eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
247 
248 	xehp_compute_sseu_info(sseu, eu_en);
249 }
250 
251 static void gen12_sseu_info_init(struct intel_gt *gt)
252 {
253 	struct sseu_dev_info *sseu = &gt->info.sseu;
254 	struct intel_uncore *uncore = gt->uncore;
255 	u32 g_dss_en;
256 	u16 eu_en = 0;
257 	u8 eu_en_fuse;
258 	u8 s_en;
259 	int eu;
260 
261 	/*
262 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
263 	 * Instead of splitting these, provide userspace with an array
264 	 * of DSS to more closely represent the hardware resource.
265 	 */
266 	intel_sseu_set_info(sseu, 1, 6, 16);
267 
268 	/*
269 	 * Although gen12 architecture supported multiple slices, TGL, RKL,
270 	 * DG1, and ADL only had a single slice.
271 	 */
272 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
273 		GEN11_GT_S_ENA_MASK;
274 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
275 
276 	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
277 
278 	/* one bit per pair of EUs */
279 	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
280 		       GEN11_EU_DIS_MASK);
281 
282 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
283 		if (eu_en_fuse & BIT(eu))
284 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
285 
286 	gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
287 
288 	/* TGL only supports slice-level power gating */
289 	sseu->has_slice_pg = 1;
290 }
291 
292 static void gen11_sseu_info_init(struct intel_gt *gt)
293 {
294 	struct sseu_dev_info *sseu = &gt->info.sseu;
295 	struct intel_uncore *uncore = gt->uncore;
296 	u32 ss_en;
297 	u8 eu_en;
298 	u8 s_en;
299 
300 	if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
301 		intel_sseu_set_info(sseu, 1, 4, 8);
302 	else
303 		intel_sseu_set_info(sseu, 1, 8, 8);
304 
305 	/*
306 	 * Although gen11 architecture supported multiple slices, ICL and
307 	 * EHL/JSL only had a single slice in practice.
308 	 */
309 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
310 		GEN11_GT_S_ENA_MASK;
311 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
312 
313 	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
314 
315 	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
316 		  GEN11_EU_DIS_MASK);
317 
318 	gen11_compute_sseu_info(sseu, ss_en, eu_en);
319 
320 	/* ICL has no power gating restrictions. */
321 	sseu->has_slice_pg = 1;
322 	sseu->has_subslice_pg = 1;
323 	sseu->has_eu_pg = 1;
324 }
325 
326 static void cherryview_sseu_info_init(struct intel_gt *gt)
327 {
328 	struct sseu_dev_info *sseu = &gt->info.sseu;
329 	u32 fuse;
330 
331 	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
332 
333 	sseu->slice_mask = BIT(0);
334 	intel_sseu_set_info(sseu, 1, 2, 8);
335 
336 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
337 		u8 disabled_mask =
338 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
339 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
340 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
341 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
342 
343 		sseu->subslice_mask.hsw[0] |= BIT(0);
344 		sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
345 	}
346 
347 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
348 		u8 disabled_mask =
349 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
350 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
351 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
352 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
353 
354 		sseu->subslice_mask.hsw[0] |= BIT(1);
355 		sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
356 	}
357 
358 	sseu->eu_total = compute_eu_total(sseu);
359 
360 	/*
361 	 * CHV expected to always have a uniform distribution of EU
362 	 * across subslices.
363 	 */
364 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
365 		sseu->eu_total /
366 		intel_sseu_subslice_total(sseu) :
367 		0;
368 	/*
369 	 * CHV supports subslice power gating on devices with more than
370 	 * one subslice, and supports EU power gating on devices with
371 	 * more than one EU pair per subslice.
372 	 */
373 	sseu->has_slice_pg = 0;
374 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
375 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
376 }
377 
378 static void gen9_sseu_info_init(struct intel_gt *gt)
379 {
380 	struct drm_i915_private *i915 = gt->i915;
381 	struct sseu_dev_info *sseu = &gt->info.sseu;
382 	struct intel_uncore *uncore = gt->uncore;
383 	u32 fuse2, eu_disable, subslice_mask;
384 	const u8 eu_mask = 0xff;
385 	int s, ss;
386 
387 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
388 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
389 
390 	/* BXT has a single slice and at most 3 subslices. */
391 	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
392 			    IS_GEN9_LP(i915) ? 3 : 4, 8);
393 
394 	/*
395 	 * The subslice disable field is global, i.e. it applies
396 	 * to each of the enabled slices.
397 	 */
398 	subslice_mask = (1 << sseu->max_subslices) - 1;
399 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
400 			   GEN9_F2_SS_DIS_SHIFT);
401 
402 	/*
403 	 * Iterate through enabled slices and subslices to
404 	 * count the total enabled EU.
405 	 */
406 	for (s = 0; s < sseu->max_slices; s++) {
407 		if (!(sseu->slice_mask & BIT(s)))
408 			/* skip disabled slice */
409 			continue;
410 
411 		sseu->subslice_mask.hsw[s] = subslice_mask;
412 
413 		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
414 		for (ss = 0; ss < sseu->max_subslices; ss++) {
415 			int eu_per_ss;
416 			u8 eu_disabled_mask;
417 
418 			if (!intel_sseu_has_subslice(sseu, s, ss))
419 				/* skip disabled subslice */
420 				continue;
421 
422 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
423 
424 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
425 
426 			eu_per_ss = sseu->max_eus_per_subslice -
427 				hweight8(eu_disabled_mask);
428 
429 			/*
430 			 * Record which subslice(s) has(have) 7 EUs. we
431 			 * can tune the hash used to spread work among
432 			 * subslices if they are unbalanced.
433 			 */
434 			if (eu_per_ss == 7)
435 				sseu->subslice_7eu[s] |= BIT(ss);
436 		}
437 	}
438 
439 	sseu->eu_total = compute_eu_total(sseu);
440 
441 	/*
442 	 * SKL is expected to always have a uniform distribution
443 	 * of EU across subslices with the exception that any one
444 	 * EU in any one subslice may be fused off for die
445 	 * recovery. BXT is expected to be perfectly uniform in EU
446 	 * distribution.
447 	 */
448 	sseu->eu_per_subslice =
449 		intel_sseu_subslice_total(sseu) ?
450 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
451 		0;
452 
453 	/*
454 	 * SKL+ supports slice power gating on devices with more than
455 	 * one slice, and supports EU power gating on devices with
456 	 * more than one EU pair per subslice. BXT+ supports subslice
457 	 * power gating on devices with more than one subslice, and
458 	 * supports EU power gating on devices with more than one EU
459 	 * pair per subslice.
460 	 */
461 	sseu->has_slice_pg =
462 		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
463 	sseu->has_subslice_pg =
464 		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
465 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
466 
467 	if (IS_GEN9_LP(i915)) {
468 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask.hsw[0] & BIT(ss)))
469 		RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
470 
471 		sseu->min_eu_in_pool = 0;
472 		if (HAS_POOLED_EU(i915)) {
473 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
474 				sseu->min_eu_in_pool = 3;
475 			else if (IS_SS_DISABLED(1))
476 				sseu->min_eu_in_pool = 6;
477 			else
478 				sseu->min_eu_in_pool = 9;
479 		}
480 #undef IS_SS_DISABLED
481 	}
482 }
483 
484 static void bdw_sseu_info_init(struct intel_gt *gt)
485 {
486 	struct sseu_dev_info *sseu = &gt->info.sseu;
487 	struct intel_uncore *uncore = gt->uncore;
488 	int s, ss;
489 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
490 	u32 eu_disable0, eu_disable1, eu_disable2;
491 
492 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
493 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
494 	intel_sseu_set_info(sseu, 3, 3, 8);
495 
496 	/*
497 	 * The subslice disable field is global, i.e. it applies
498 	 * to each of the enabled slices.
499 	 */
500 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
501 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
502 			   GEN8_F2_SS_DIS_SHIFT);
503 	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
504 	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
505 	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
506 	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
507 	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
508 		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
509 		 (32 - GEN8_EU_DIS0_S1_SHIFT));
510 	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
511 		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
512 		 (32 - GEN8_EU_DIS1_S2_SHIFT));
513 
514 	/*
515 	 * Iterate through enabled slices and subslices to
516 	 * count the total enabled EU.
517 	 */
518 	for (s = 0; s < sseu->max_slices; s++) {
519 		if (!(sseu->slice_mask & BIT(s)))
520 			/* skip disabled slice */
521 			continue;
522 
523 		sseu->subslice_mask.hsw[s] = subslice_mask;
524 
525 		for (ss = 0; ss < sseu->max_subslices; ss++) {
526 			u8 eu_disabled_mask;
527 			u32 n_disabled;
528 
529 			if (!intel_sseu_has_subslice(sseu, s, ss))
530 				/* skip disabled subslice */
531 				continue;
532 
533 			eu_disabled_mask =
534 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
535 
536 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
537 
538 			n_disabled = hweight8(eu_disabled_mask);
539 
540 			/*
541 			 * Record which subslices have 7 EUs.
542 			 */
543 			if (sseu->max_eus_per_subslice - n_disabled == 7)
544 				sseu->subslice_7eu[s] |= 1 << ss;
545 		}
546 	}
547 
548 	sseu->eu_total = compute_eu_total(sseu);
549 
550 	/*
551 	 * BDW is expected to always have a uniform distribution of EU across
552 	 * subslices with the exception that any one EU in any one subslice may
553 	 * be fused off for die recovery.
554 	 */
555 	sseu->eu_per_subslice =
556 		intel_sseu_subslice_total(sseu) ?
557 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
558 		0;
559 
560 	/*
561 	 * BDW supports slice power gating on devices with more than
562 	 * one slice.
563 	 */
564 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
565 	sseu->has_subslice_pg = 0;
566 	sseu->has_eu_pg = 0;
567 }
568 
569 static void hsw_sseu_info_init(struct intel_gt *gt)
570 {
571 	struct drm_i915_private *i915 = gt->i915;
572 	struct sseu_dev_info *sseu = &gt->info.sseu;
573 	u32 fuse1;
574 	u8 subslice_mask = 0;
575 	int s, ss;
576 
577 	/*
578 	 * There isn't a register to tell us how many slices/subslices. We
579 	 * work off the PCI-ids here.
580 	 */
581 	switch (INTEL_INFO(i915)->gt) {
582 	default:
583 		MISSING_CASE(INTEL_INFO(i915)->gt);
584 		fallthrough;
585 	case 1:
586 		sseu->slice_mask = BIT(0);
587 		subslice_mask = BIT(0);
588 		break;
589 	case 2:
590 		sseu->slice_mask = BIT(0);
591 		subslice_mask = BIT(0) | BIT(1);
592 		break;
593 	case 3:
594 		sseu->slice_mask = BIT(0) | BIT(1);
595 		subslice_mask = BIT(0) | BIT(1);
596 		break;
597 	}
598 
599 	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
600 	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
601 	default:
602 		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
603 		fallthrough;
604 	case HSW_F1_EU_DIS_10EUS:
605 		sseu->eu_per_subslice = 10;
606 		break;
607 	case HSW_F1_EU_DIS_8EUS:
608 		sseu->eu_per_subslice = 8;
609 		break;
610 	case HSW_F1_EU_DIS_6EUS:
611 		sseu->eu_per_subslice = 6;
612 		break;
613 	}
614 
615 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
616 			    hweight8(subslice_mask),
617 			    sseu->eu_per_subslice);
618 
619 	for (s = 0; s < sseu->max_slices; s++) {
620 		sseu->subslice_mask.hsw[s] = subslice_mask;
621 
622 		for (ss = 0; ss < sseu->max_subslices; ss++) {
623 			sseu_set_eus(sseu, s, ss,
624 				     (1UL << sseu->eu_per_subslice) - 1);
625 		}
626 	}
627 
628 	sseu->eu_total = compute_eu_total(sseu);
629 
630 	/* No powergating for you. */
631 	sseu->has_slice_pg = 0;
632 	sseu->has_subslice_pg = 0;
633 	sseu->has_eu_pg = 0;
634 }
635 
636 void intel_sseu_info_init(struct intel_gt *gt)
637 {
638 	struct drm_i915_private *i915 = gt->i915;
639 
640 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
641 		xehp_sseu_info_init(gt);
642 	else if (GRAPHICS_VER(i915) >= 12)
643 		gen12_sseu_info_init(gt);
644 	else if (GRAPHICS_VER(i915) >= 11)
645 		gen11_sseu_info_init(gt);
646 	else if (GRAPHICS_VER(i915) >= 9)
647 		gen9_sseu_info_init(gt);
648 	else if (IS_BROADWELL(i915))
649 		bdw_sseu_info_init(gt);
650 	else if (IS_CHERRYVIEW(i915))
651 		cherryview_sseu_info_init(gt);
652 	else if (IS_HASWELL(i915))
653 		hsw_sseu_info_init(gt);
654 }
655 
656 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
657 			 const struct intel_sseu *req_sseu)
658 {
659 	struct drm_i915_private *i915 = gt->i915;
660 	const struct sseu_dev_info *sseu = &gt->info.sseu;
661 	bool subslice_pg = sseu->has_subslice_pg;
662 	u8 slices, subslices;
663 	u32 rpcs = 0;
664 
665 	/*
666 	 * No explicit RPCS request is needed to ensure full
667 	 * slice/subslice/EU enablement prior to Gen9.
668 	 */
669 	if (GRAPHICS_VER(i915) < 9)
670 		return 0;
671 
672 	/*
673 	 * If i915/perf is active, we want a stable powergating configuration
674 	 * on the system. Use the configuration pinned by i915/perf.
675 	 */
676 	if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
677 		req_sseu = &gt->perf.sseu;
678 
679 	slices = hweight8(req_sseu->slice_mask);
680 	subslices = hweight8(req_sseu->subslice_mask);
681 
682 	/*
683 	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
684 	 * wide and Icelake has up to eight subslices, specfial programming is
685 	 * needed in order to correctly enable all subslices.
686 	 *
687 	 * According to documentation software must consider the configuration
688 	 * as 2x4x8 and hardware will translate this to 1x8x8.
689 	 *
690 	 * Furthemore, even though SScount is three bits, maximum documented
691 	 * value for it is four. From this some rules/restrictions follow:
692 	 *
693 	 * 1.
694 	 * If enabled subslice count is greater than four, two whole slices must
695 	 * be enabled instead.
696 	 *
697 	 * 2.
698 	 * When more than one slice is enabled, hardware ignores the subslice
699 	 * count altogether.
700 	 *
701 	 * From these restrictions it follows that it is not possible to enable
702 	 * a count of subslices between the SScount maximum of four restriction,
703 	 * and the maximum available number on a particular SKU. Either all
704 	 * subslices are enabled, or a count between one and four on the first
705 	 * slice.
706 	 */
707 	if (GRAPHICS_VER(i915) == 11 &&
708 	    slices == 1 &&
709 	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
710 		GEM_BUG_ON(subslices & 1);
711 
712 		subslice_pg = false;
713 		slices *= 2;
714 	}
715 
716 	/*
717 	 * Starting in Gen9, render power gating can leave
718 	 * slice/subslice/EU in a partially enabled state. We
719 	 * must make an explicit request through RPCS for full
720 	 * enablement.
721 	 */
722 	if (sseu->has_slice_pg) {
723 		u32 mask, val = slices;
724 
725 		if (GRAPHICS_VER(i915) >= 11) {
726 			mask = GEN11_RPCS_S_CNT_MASK;
727 			val <<= GEN11_RPCS_S_CNT_SHIFT;
728 		} else {
729 			mask = GEN8_RPCS_S_CNT_MASK;
730 			val <<= GEN8_RPCS_S_CNT_SHIFT;
731 		}
732 
733 		GEM_BUG_ON(val & ~mask);
734 		val &= mask;
735 
736 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
737 	}
738 
739 	if (subslice_pg) {
740 		u32 val = subslices;
741 
742 		val <<= GEN8_RPCS_SS_CNT_SHIFT;
743 
744 		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
745 		val &= GEN8_RPCS_SS_CNT_MASK;
746 
747 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
748 	}
749 
750 	if (sseu->has_eu_pg) {
751 		u32 val;
752 
753 		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
754 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
755 		val &= GEN8_RPCS_EU_MIN_MASK;
756 
757 		rpcs |= val;
758 
759 		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
760 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
761 		val &= GEN8_RPCS_EU_MAX_MASK;
762 
763 		rpcs |= val;
764 
765 		rpcs |= GEN8_RPCS_ENABLE;
766 	}
767 
768 	return rpcs;
769 }
770 
771 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
772 {
773 	int s;
774 
775 	if (sseu->has_xehp_dss) {
776 		drm_printf(p, "subslice total: %u\n",
777 			   intel_sseu_subslice_total(sseu));
778 		drm_printf(p, "geometry dss mask=%*pb\n",
779 			   XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
780 			   sseu->geometry_subslice_mask.xehp);
781 		drm_printf(p, "compute dss mask=%*pb\n",
782 			   XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
783 			   sseu->compute_subslice_mask.xehp);
784 	} else {
785 		drm_printf(p, "slice total: %u, mask=%04x\n",
786 			   hweight8(sseu->slice_mask), sseu->slice_mask);
787 		drm_printf(p, "subslice total: %u\n",
788 			   intel_sseu_subslice_total(sseu));
789 
790 		for (s = 0; s < sseu->max_slices; s++) {
791 			u8 ss_mask = sseu->subslice_mask.hsw[s];
792 
793 			drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
794 				   s, hweight8(ss_mask), ss_mask);
795 		}
796 	}
797 
798 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
799 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
800 	drm_printf(p, "has slice power gating: %s\n",
801 		   str_yes_no(sseu->has_slice_pg));
802 	drm_printf(p, "has subslice power gating: %s\n",
803 		   str_yes_no(sseu->has_subslice_pg));
804 	drm_printf(p, "has EU power gating: %s\n",
805 		   str_yes_no(sseu->has_eu_pg));
806 }
807 
808 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
809 				    struct drm_printer *p)
810 {
811 	int s, ss;
812 
813 	for (s = 0; s < sseu->max_slices; s++) {
814 		u8 ss_mask = sseu->subslice_mask.hsw[s];
815 
816 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
817 			   s, hweight8(ss_mask), ss_mask);
818 
819 		for (ss = 0; ss < sseu->max_subslices; ss++) {
820 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
821 
822 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
823 				   ss, hweight16(enabled_eus), enabled_eus);
824 		}
825 	}
826 }
827 
828 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
829 				     struct drm_printer *p)
830 {
831 	int dss;
832 
833 	for (dss = 0; dss < sseu->max_subslices; dss++) {
834 		u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
835 
836 		drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
837 			   str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
838 			   str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
839 			   hweight16(enabled_eus), enabled_eus);
840 	}
841 }
842 
843 void intel_sseu_print_topology(struct drm_i915_private *i915,
844 			       const struct sseu_dev_info *sseu,
845 			       struct drm_printer *p)
846 {
847 	if (sseu->max_slices == 0)
848 		drm_printf(p, "Unavailable\n");
849 	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
850 		sseu_print_xehp_topology(sseu, p);
851 	else
852 		sseu_print_hsw_topology(sseu, p);
853 }
854 
855 void intel_sseu_print_ss_info(const char *type,
856 			      const struct sseu_dev_info *sseu,
857 			      struct seq_file *m)
858 {
859 	int s;
860 
861 	if (sseu->has_xehp_dss) {
862 		seq_printf(m, "  %s Geometry DSS: %u\n", type,
863 			   bitmap_weight(sseu->geometry_subslice_mask.xehp,
864 					 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
865 		seq_printf(m, "  %s Compute DSS: %u\n", type,
866 			   bitmap_weight(sseu->compute_subslice_mask.xehp,
867 					 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
868 	} else {
869 		for (s = 0; s < fls(sseu->slice_mask); s++)
870 			seq_printf(m, "  %s Slice%i subslices: %u\n", type,
871 				   s, hweight8(sseu->subslice_mask.hsw[s]));
872 	}
873 }
874 
875 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
876 				      int dss_per_slice)
877 {
878 	intel_sseu_ss_mask_t per_slice_mask = {};
879 	unsigned long slice_mask = 0;
880 	int i;
881 
882 	WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
883 		8 * sizeof(slice_mask));
884 
885 	bitmap_fill(per_slice_mask.xehp, dss_per_slice);
886 	for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
887 		if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
888 			slice_mask |= BIT(i);
889 
890 		bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
891 				   XEHP_BITMAP_BITS(dss_mask));
892 	}
893 
894 	return slice_mask;
895 }
896