1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include "i915_drv.h" 9 #include "i915_perf_types.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gt_regs.h" 12 #include "intel_sseu.h" 13 14 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices, 15 u8 max_subslices, u8 max_eus_per_subslice) 16 { 17 sseu->max_slices = max_slices; 18 sseu->max_subslices = max_subslices; 19 sseu->max_eus_per_subslice = max_eus_per_subslice; 20 } 21 22 unsigned int 23 intel_sseu_subslice_total(const struct sseu_dev_info *sseu) 24 { 25 unsigned int i, total = 0; 26 27 if (sseu->has_xehp_dss) 28 return bitmap_weight(sseu->subslice_mask.xehp, 29 XEHP_BITMAP_BITS(sseu->subslice_mask)); 30 31 for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++) 32 total += hweight8(sseu->subslice_mask.hsw[i]); 33 34 return total; 35 } 36 37 unsigned int 38 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice) 39 { 40 WARN_ON(sseu->has_xehp_dss); 41 if (WARN_ON(slice >= sseu->max_slices)) 42 return 0; 43 44 return sseu->subslice_mask.hsw[slice]; 45 } 46 47 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, 48 int subslice) 49 { 50 if (sseu->has_xehp_dss) { 51 WARN_ON(slice > 0); 52 return sseu->eu_mask.xehp[subslice]; 53 } else { 54 return sseu->eu_mask.hsw[slice][subslice]; 55 } 56 } 57 58 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, 59 u16 eu_mask) 60 { 61 GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice); 62 if (sseu->has_xehp_dss) { 63 GEM_WARN_ON(slice > 0); 64 sseu->eu_mask.xehp[subslice] = eu_mask; 65 } else { 66 sseu->eu_mask.hsw[slice][subslice] = eu_mask; 67 } 68 } 69 70 static u16 compute_eu_total(const struct sseu_dev_info *sseu) 71 { 72 int s, ss, total = 0; 73 74 for (s = 0; s < sseu->max_slices; s++) 75 for (ss = 0; ss < sseu->max_subslices; ss++) 76 if (sseu->has_xehp_dss) 77 total += hweight16(sseu->eu_mask.xehp[ss]); 78 else 79 total += hweight16(sseu->eu_mask.hsw[s][ss]); 80 81 return total; 82 } 83 84 /** 85 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer 86 * @to: Pointer to userspace buffer to copy to 87 * @sseu: SSEU structure containing EU mask to copy 88 * 89 * Copies the EU mask to a userspace buffer in the format expected by 90 * the query ioctl's topology queries. 91 * 92 * Returns the result of the copy_to_user() operation. 93 */ 94 int intel_sseu_copy_eumask_to_user(void __user *to, 95 const struct sseu_dev_info *sseu) 96 { 97 u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {}; 98 int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); 99 int len = sseu->max_slices * sseu->max_subslices * eu_stride; 100 int s, ss, i; 101 102 for (s = 0; s < sseu->max_slices; s++) { 103 for (ss = 0; ss < sseu->max_subslices; ss++) { 104 int uapi_offset = 105 s * sseu->max_subslices * eu_stride + 106 ss * eu_stride; 107 u16 mask = sseu_get_eus(sseu, s, ss); 108 109 for (i = 0; i < eu_stride; i++) 110 eu_mask[uapi_offset + i] = 111 (mask >> (BITS_PER_BYTE * i)) & 0xff; 112 } 113 } 114 115 return copy_to_user(to, eu_mask, len); 116 } 117 118 /** 119 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer 120 * @to: Pointer to userspace buffer to copy to 121 * @sseu: SSEU structure containing subslice mask to copy 122 * 123 * Copies the subslice mask to a userspace buffer in the format expected by 124 * the query ioctl's topology queries. 125 * 126 * Returns the result of the copy_to_user() operation. 127 */ 128 int intel_sseu_copy_ssmask_to_user(void __user *to, 129 const struct sseu_dev_info *sseu) 130 { 131 u8 ss_mask[GEN_SS_MASK_SIZE] = {}; 132 int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices); 133 int len = sseu->max_slices * ss_stride; 134 int s, ss, i; 135 136 for (s = 0; s < sseu->max_slices; s++) { 137 for (ss = 0; ss < sseu->max_subslices; ss++) { 138 i = s * ss_stride * BITS_PER_BYTE + ss; 139 140 if (!intel_sseu_has_subslice(sseu, s, ss)) 141 continue; 142 143 ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); 144 } 145 } 146 147 return copy_to_user(to, ss_mask, len); 148 } 149 150 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, 151 u32 ss_en, u16 eu_en) 152 { 153 u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0); 154 int ss; 155 156 sseu->slice_mask |= BIT(0); 157 sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask; 158 159 for (ss = 0; ss < sseu->max_subslices; ss++) 160 if (intel_sseu_has_subslice(sseu, 0, ss)) 161 sseu_set_eus(sseu, 0, ss, eu_en); 162 163 sseu->eu_per_subslice = hweight16(eu_en); 164 sseu->eu_total = compute_eu_total(sseu); 165 } 166 167 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu, 168 u16 eu_en) 169 { 170 int ss; 171 172 sseu->slice_mask |= BIT(0); 173 174 bitmap_or(sseu->subslice_mask.xehp, 175 sseu->compute_subslice_mask.xehp, 176 sseu->geometry_subslice_mask.xehp, 177 XEHP_BITMAP_BITS(sseu->subslice_mask)); 178 179 for (ss = 0; ss < sseu->max_subslices; ss++) 180 if (intel_sseu_has_subslice(sseu, 0, ss)) 181 sseu_set_eus(sseu, 0, ss, eu_en); 182 183 sseu->eu_per_subslice = hweight16(eu_en); 184 sseu->eu_total = compute_eu_total(sseu); 185 } 186 187 static void 188 xehp_load_dss_mask(struct intel_uncore *uncore, 189 intel_sseu_ss_mask_t *ssmask, 190 int numregs, 191 ...) 192 { 193 va_list argp; 194 u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {}; 195 int i; 196 197 if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS)) 198 numregs = I915_MAX_SS_FUSE_REGS; 199 200 va_start(argp, numregs); 201 for (i = 0; i < numregs; i++) 202 fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t)); 203 va_end(argp); 204 205 bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32); 206 } 207 208 static void xehp_sseu_info_init(struct intel_gt *gt) 209 { 210 struct sseu_dev_info *sseu = >->info.sseu; 211 struct intel_uncore *uncore = gt->uncore; 212 u16 eu_en = 0; 213 u8 eu_en_fuse; 214 int num_compute_regs, num_geometry_regs; 215 int eu; 216 217 num_geometry_regs = 1; 218 num_compute_regs = 1; 219 220 /* 221 * The concept of slice has been removed in Xe_HP. To be compatible 222 * with prior generations, assume a single slice across the entire 223 * device. Then calculate out the DSS for each workload type within 224 * that software slice. 225 */ 226 intel_sseu_set_info(sseu, 1, 227 32 * max(num_geometry_regs, num_compute_regs), 228 HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16); 229 sseu->has_xehp_dss = 1; 230 231 xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask, 232 num_geometry_regs, 233 GEN12_GT_GEOMETRY_DSS_ENABLE); 234 xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask, 235 num_compute_regs, 236 GEN12_GT_COMPUTE_DSS_ENABLE, 237 XEHPC_GT_COMPUTE_DSS_ENABLE_EXT); 238 239 eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK; 240 241 if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915)) 242 eu_en = eu_en_fuse; 243 else 244 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) 245 if (eu_en_fuse & BIT(eu)) 246 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); 247 248 xehp_compute_sseu_info(sseu, eu_en); 249 } 250 251 static void gen12_sseu_info_init(struct intel_gt *gt) 252 { 253 struct sseu_dev_info *sseu = >->info.sseu; 254 struct intel_uncore *uncore = gt->uncore; 255 u32 g_dss_en; 256 u16 eu_en = 0; 257 u8 eu_en_fuse; 258 u8 s_en; 259 int eu; 260 261 /* 262 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS. 263 * Instead of splitting these, provide userspace with an array 264 * of DSS to more closely represent the hardware resource. 265 */ 266 intel_sseu_set_info(sseu, 1, 6, 16); 267 268 /* 269 * Although gen12 architecture supported multiple slices, TGL, RKL, 270 * DG1, and ADL only had a single slice. 271 */ 272 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & 273 GEN11_GT_S_ENA_MASK; 274 drm_WARN_ON(>->i915->drm, s_en != 0x1); 275 276 g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE); 277 278 /* one bit per pair of EUs */ 279 eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & 280 GEN11_EU_DIS_MASK); 281 282 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) 283 if (eu_en_fuse & BIT(eu)) 284 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); 285 286 gen11_compute_sseu_info(sseu, g_dss_en, eu_en); 287 288 /* TGL only supports slice-level power gating */ 289 sseu->has_slice_pg = 1; 290 } 291 292 static void gen11_sseu_info_init(struct intel_gt *gt) 293 { 294 struct sseu_dev_info *sseu = >->info.sseu; 295 struct intel_uncore *uncore = gt->uncore; 296 u32 ss_en; 297 u8 eu_en; 298 u8 s_en; 299 300 if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915)) 301 intel_sseu_set_info(sseu, 1, 4, 8); 302 else 303 intel_sseu_set_info(sseu, 1, 8, 8); 304 305 /* 306 * Although gen11 architecture supported multiple slices, ICL and 307 * EHL/JSL only had a single slice in practice. 308 */ 309 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & 310 GEN11_GT_S_ENA_MASK; 311 drm_WARN_ON(>->i915->drm, s_en != 0x1); 312 313 ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE); 314 315 eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & 316 GEN11_EU_DIS_MASK); 317 318 gen11_compute_sseu_info(sseu, ss_en, eu_en); 319 320 /* ICL has no power gating restrictions. */ 321 sseu->has_slice_pg = 1; 322 sseu->has_subslice_pg = 1; 323 sseu->has_eu_pg = 1; 324 } 325 326 static void cherryview_sseu_info_init(struct intel_gt *gt) 327 { 328 struct sseu_dev_info *sseu = >->info.sseu; 329 u32 fuse; 330 331 fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT); 332 333 sseu->slice_mask = BIT(0); 334 intel_sseu_set_info(sseu, 1, 2, 8); 335 336 if (!(fuse & CHV_FGT_DISABLE_SS0)) { 337 u8 disabled_mask = 338 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> 339 CHV_FGT_EU_DIS_SS0_R0_SHIFT) | 340 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> 341 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); 342 343 sseu->subslice_mask.hsw[0] |= BIT(0); 344 sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF); 345 } 346 347 if (!(fuse & CHV_FGT_DISABLE_SS1)) { 348 u8 disabled_mask = 349 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> 350 CHV_FGT_EU_DIS_SS1_R0_SHIFT) | 351 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> 352 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); 353 354 sseu->subslice_mask.hsw[0] |= BIT(1); 355 sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF); 356 } 357 358 sseu->eu_total = compute_eu_total(sseu); 359 360 /* 361 * CHV expected to always have a uniform distribution of EU 362 * across subslices. 363 */ 364 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? 365 sseu->eu_total / 366 intel_sseu_subslice_total(sseu) : 367 0; 368 /* 369 * CHV supports subslice power gating on devices with more than 370 * one subslice, and supports EU power gating on devices with 371 * more than one EU pair per subslice. 372 */ 373 sseu->has_slice_pg = 0; 374 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; 375 sseu->has_eu_pg = (sseu->eu_per_subslice > 2); 376 } 377 378 static void gen9_sseu_info_init(struct intel_gt *gt) 379 { 380 struct drm_i915_private *i915 = gt->i915; 381 struct sseu_dev_info *sseu = >->info.sseu; 382 struct intel_uncore *uncore = gt->uncore; 383 u32 fuse2, eu_disable, subslice_mask; 384 const u8 eu_mask = 0xff; 385 int s, ss; 386 387 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); 388 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 389 390 /* BXT has a single slice and at most 3 subslices. */ 391 intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3, 392 IS_GEN9_LP(i915) ? 3 : 4, 8); 393 394 /* 395 * The subslice disable field is global, i.e. it applies 396 * to each of the enabled slices. 397 */ 398 subslice_mask = (1 << sseu->max_subslices) - 1; 399 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> 400 GEN9_F2_SS_DIS_SHIFT); 401 402 /* 403 * Iterate through enabled slices and subslices to 404 * count the total enabled EU. 405 */ 406 for (s = 0; s < sseu->max_slices; s++) { 407 if (!(sseu->slice_mask & BIT(s))) 408 /* skip disabled slice */ 409 continue; 410 411 sseu->subslice_mask.hsw[s] = subslice_mask; 412 413 eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s)); 414 for (ss = 0; ss < sseu->max_subslices; ss++) { 415 int eu_per_ss; 416 u8 eu_disabled_mask; 417 418 if (!intel_sseu_has_subslice(sseu, s, ss)) 419 /* skip disabled subslice */ 420 continue; 421 422 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; 423 424 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask); 425 426 eu_per_ss = sseu->max_eus_per_subslice - 427 hweight8(eu_disabled_mask); 428 429 /* 430 * Record which subslice(s) has(have) 7 EUs. we 431 * can tune the hash used to spread work among 432 * subslices if they are unbalanced. 433 */ 434 if (eu_per_ss == 7) 435 sseu->subslice_7eu[s] |= BIT(ss); 436 } 437 } 438 439 sseu->eu_total = compute_eu_total(sseu); 440 441 /* 442 * SKL is expected to always have a uniform distribution 443 * of EU across subslices with the exception that any one 444 * EU in any one subslice may be fused off for die 445 * recovery. BXT is expected to be perfectly uniform in EU 446 * distribution. 447 */ 448 sseu->eu_per_subslice = 449 intel_sseu_subslice_total(sseu) ? 450 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 451 0; 452 453 /* 454 * SKL+ supports slice power gating on devices with more than 455 * one slice, and supports EU power gating on devices with 456 * more than one EU pair per subslice. BXT+ supports subslice 457 * power gating on devices with more than one subslice, and 458 * supports EU power gating on devices with more than one EU 459 * pair per subslice. 460 */ 461 sseu->has_slice_pg = 462 !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1; 463 sseu->has_subslice_pg = 464 IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1; 465 sseu->has_eu_pg = sseu->eu_per_subslice > 2; 466 467 if (IS_GEN9_LP(i915)) { 468 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss))) 469 RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3; 470 471 sseu->min_eu_in_pool = 0; 472 if (HAS_POOLED_EU(i915)) { 473 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) 474 sseu->min_eu_in_pool = 3; 475 else if (IS_SS_DISABLED(1)) 476 sseu->min_eu_in_pool = 6; 477 else 478 sseu->min_eu_in_pool = 9; 479 } 480 #undef IS_SS_DISABLED 481 } 482 } 483 484 static void bdw_sseu_info_init(struct intel_gt *gt) 485 { 486 struct sseu_dev_info *sseu = >->info.sseu; 487 struct intel_uncore *uncore = gt->uncore; 488 int s, ss; 489 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ 490 u32 eu_disable0, eu_disable1, eu_disable2; 491 492 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); 493 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 494 intel_sseu_set_info(sseu, 3, 3, 8); 495 496 /* 497 * The subslice disable field is global, i.e. it applies 498 * to each of the enabled slices. 499 */ 500 subslice_mask = GENMASK(sseu->max_subslices - 1, 0); 501 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> 502 GEN8_F2_SS_DIS_SHIFT); 503 eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0); 504 eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1); 505 eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2); 506 eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK; 507 eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) | 508 ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) << 509 (32 - GEN8_EU_DIS0_S1_SHIFT)); 510 eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) | 511 ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) << 512 (32 - GEN8_EU_DIS1_S2_SHIFT)); 513 514 /* 515 * Iterate through enabled slices and subslices to 516 * count the total enabled EU. 517 */ 518 for (s = 0; s < sseu->max_slices; s++) { 519 if (!(sseu->slice_mask & BIT(s))) 520 /* skip disabled slice */ 521 continue; 522 523 sseu->subslice_mask.hsw[s] = subslice_mask; 524 525 for (ss = 0; ss < sseu->max_subslices; ss++) { 526 u8 eu_disabled_mask; 527 u32 n_disabled; 528 529 if (!intel_sseu_has_subslice(sseu, s, ss)) 530 /* skip disabled subslice */ 531 continue; 532 533 eu_disabled_mask = 534 eu_disable[s] >> (ss * sseu->max_eus_per_subslice); 535 536 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF); 537 538 n_disabled = hweight8(eu_disabled_mask); 539 540 /* 541 * Record which subslices have 7 EUs. 542 */ 543 if (sseu->max_eus_per_subslice - n_disabled == 7) 544 sseu->subslice_7eu[s] |= 1 << ss; 545 } 546 } 547 548 sseu->eu_total = compute_eu_total(sseu); 549 550 /* 551 * BDW is expected to always have a uniform distribution of EU across 552 * subslices with the exception that any one EU in any one subslice may 553 * be fused off for die recovery. 554 */ 555 sseu->eu_per_subslice = 556 intel_sseu_subslice_total(sseu) ? 557 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 558 0; 559 560 /* 561 * BDW supports slice power gating on devices with more than 562 * one slice. 563 */ 564 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; 565 sseu->has_subslice_pg = 0; 566 sseu->has_eu_pg = 0; 567 } 568 569 static void hsw_sseu_info_init(struct intel_gt *gt) 570 { 571 struct drm_i915_private *i915 = gt->i915; 572 struct sseu_dev_info *sseu = >->info.sseu; 573 u32 fuse1; 574 u8 subslice_mask = 0; 575 int s, ss; 576 577 /* 578 * There isn't a register to tell us how many slices/subslices. We 579 * work off the PCI-ids here. 580 */ 581 switch (INTEL_INFO(i915)->gt) { 582 default: 583 MISSING_CASE(INTEL_INFO(i915)->gt); 584 fallthrough; 585 case 1: 586 sseu->slice_mask = BIT(0); 587 subslice_mask = BIT(0); 588 break; 589 case 2: 590 sseu->slice_mask = BIT(0); 591 subslice_mask = BIT(0) | BIT(1); 592 break; 593 case 3: 594 sseu->slice_mask = BIT(0) | BIT(1); 595 subslice_mask = BIT(0) | BIT(1); 596 break; 597 } 598 599 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 600 switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) { 601 default: 602 MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)); 603 fallthrough; 604 case HSW_F1_EU_DIS_10EUS: 605 sseu->eu_per_subslice = 10; 606 break; 607 case HSW_F1_EU_DIS_8EUS: 608 sseu->eu_per_subslice = 8; 609 break; 610 case HSW_F1_EU_DIS_6EUS: 611 sseu->eu_per_subslice = 6; 612 break; 613 } 614 615 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask), 616 hweight8(subslice_mask), 617 sseu->eu_per_subslice); 618 619 for (s = 0; s < sseu->max_slices; s++) { 620 sseu->subslice_mask.hsw[s] = subslice_mask; 621 622 for (ss = 0; ss < sseu->max_subslices; ss++) { 623 sseu_set_eus(sseu, s, ss, 624 (1UL << sseu->eu_per_subslice) - 1); 625 } 626 } 627 628 sseu->eu_total = compute_eu_total(sseu); 629 630 /* No powergating for you. */ 631 sseu->has_slice_pg = 0; 632 sseu->has_subslice_pg = 0; 633 sseu->has_eu_pg = 0; 634 } 635 636 void intel_sseu_info_init(struct intel_gt *gt) 637 { 638 struct drm_i915_private *i915 = gt->i915; 639 640 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 641 xehp_sseu_info_init(gt); 642 else if (GRAPHICS_VER(i915) >= 12) 643 gen12_sseu_info_init(gt); 644 else if (GRAPHICS_VER(i915) >= 11) 645 gen11_sseu_info_init(gt); 646 else if (GRAPHICS_VER(i915) >= 9) 647 gen9_sseu_info_init(gt); 648 else if (IS_BROADWELL(i915)) 649 bdw_sseu_info_init(gt); 650 else if (IS_CHERRYVIEW(i915)) 651 cherryview_sseu_info_init(gt); 652 else if (IS_HASWELL(i915)) 653 hsw_sseu_info_init(gt); 654 } 655 656 u32 intel_sseu_make_rpcs(struct intel_gt *gt, 657 const struct intel_sseu *req_sseu) 658 { 659 struct drm_i915_private *i915 = gt->i915; 660 const struct sseu_dev_info *sseu = >->info.sseu; 661 bool subslice_pg = sseu->has_subslice_pg; 662 u8 slices, subslices; 663 u32 rpcs = 0; 664 665 /* 666 * No explicit RPCS request is needed to ensure full 667 * slice/subslice/EU enablement prior to Gen9. 668 */ 669 if (GRAPHICS_VER(i915) < 9) 670 return 0; 671 672 /* 673 * If i915/perf is active, we want a stable powergating configuration 674 * on the system. Use the configuration pinned by i915/perf. 675 */ 676 if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream) 677 req_sseu = >->perf.sseu; 678 679 slices = hweight8(req_sseu->slice_mask); 680 subslices = hweight8(req_sseu->subslice_mask); 681 682 /* 683 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits 684 * wide and Icelake has up to eight subslices, specfial programming is 685 * needed in order to correctly enable all subslices. 686 * 687 * According to documentation software must consider the configuration 688 * as 2x4x8 and hardware will translate this to 1x8x8. 689 * 690 * Furthemore, even though SScount is three bits, maximum documented 691 * value for it is four. From this some rules/restrictions follow: 692 * 693 * 1. 694 * If enabled subslice count is greater than four, two whole slices must 695 * be enabled instead. 696 * 697 * 2. 698 * When more than one slice is enabled, hardware ignores the subslice 699 * count altogether. 700 * 701 * From these restrictions it follows that it is not possible to enable 702 * a count of subslices between the SScount maximum of four restriction, 703 * and the maximum available number on a particular SKU. Either all 704 * subslices are enabled, or a count between one and four on the first 705 * slice. 706 */ 707 if (GRAPHICS_VER(i915) == 11 && 708 slices == 1 && 709 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) { 710 GEM_BUG_ON(subslices & 1); 711 712 subslice_pg = false; 713 slices *= 2; 714 } 715 716 /* 717 * Starting in Gen9, render power gating can leave 718 * slice/subslice/EU in a partially enabled state. We 719 * must make an explicit request through RPCS for full 720 * enablement. 721 */ 722 if (sseu->has_slice_pg) { 723 u32 mask, val = slices; 724 725 if (GRAPHICS_VER(i915) >= 11) { 726 mask = GEN11_RPCS_S_CNT_MASK; 727 val <<= GEN11_RPCS_S_CNT_SHIFT; 728 } else { 729 mask = GEN8_RPCS_S_CNT_MASK; 730 val <<= GEN8_RPCS_S_CNT_SHIFT; 731 } 732 733 GEM_BUG_ON(val & ~mask); 734 val &= mask; 735 736 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val; 737 } 738 739 if (subslice_pg) { 740 u32 val = subslices; 741 742 val <<= GEN8_RPCS_SS_CNT_SHIFT; 743 744 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK); 745 val &= GEN8_RPCS_SS_CNT_MASK; 746 747 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val; 748 } 749 750 if (sseu->has_eu_pg) { 751 u32 val; 752 753 val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; 754 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK); 755 val &= GEN8_RPCS_EU_MIN_MASK; 756 757 rpcs |= val; 758 759 val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; 760 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK); 761 val &= GEN8_RPCS_EU_MAX_MASK; 762 763 rpcs |= val; 764 765 rpcs |= GEN8_RPCS_ENABLE; 766 } 767 768 return rpcs; 769 } 770 771 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) 772 { 773 int s; 774 775 if (sseu->has_xehp_dss) { 776 drm_printf(p, "subslice total: %u\n", 777 intel_sseu_subslice_total(sseu)); 778 drm_printf(p, "geometry dss mask=%*pb\n", 779 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask), 780 sseu->geometry_subslice_mask.xehp); 781 drm_printf(p, "compute dss mask=%*pb\n", 782 XEHP_BITMAP_BITS(sseu->compute_subslice_mask), 783 sseu->compute_subslice_mask.xehp); 784 } else { 785 drm_printf(p, "slice total: %u, mask=%04x\n", 786 hweight8(sseu->slice_mask), sseu->slice_mask); 787 drm_printf(p, "subslice total: %u\n", 788 intel_sseu_subslice_total(sseu)); 789 790 for (s = 0; s < sseu->max_slices; s++) { 791 u8 ss_mask = sseu->subslice_mask.hsw[s]; 792 793 drm_printf(p, "slice%d: %u subslices, mask=%08x\n", 794 s, hweight8(ss_mask), ss_mask); 795 } 796 } 797 798 drm_printf(p, "EU total: %u\n", sseu->eu_total); 799 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); 800 drm_printf(p, "has slice power gating: %s\n", 801 str_yes_no(sseu->has_slice_pg)); 802 drm_printf(p, "has subslice power gating: %s\n", 803 str_yes_no(sseu->has_subslice_pg)); 804 drm_printf(p, "has EU power gating: %s\n", 805 str_yes_no(sseu->has_eu_pg)); 806 } 807 808 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu, 809 struct drm_printer *p) 810 { 811 int s, ss; 812 813 for (s = 0; s < sseu->max_slices; s++) { 814 u8 ss_mask = sseu->subslice_mask.hsw[s]; 815 816 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n", 817 s, hweight8(ss_mask), ss_mask); 818 819 for (ss = 0; ss < sseu->max_subslices; ss++) { 820 u16 enabled_eus = sseu_get_eus(sseu, s, ss); 821 822 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", 823 ss, hweight16(enabled_eus), enabled_eus); 824 } 825 } 826 } 827 828 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu, 829 struct drm_printer *p) 830 { 831 int dss; 832 833 for (dss = 0; dss < sseu->max_subslices; dss++) { 834 u16 enabled_eus = sseu_get_eus(sseu, 0, dss); 835 836 drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss, 837 str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)), 838 str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)), 839 hweight16(enabled_eus), enabled_eus); 840 } 841 } 842 843 void intel_sseu_print_topology(struct drm_i915_private *i915, 844 const struct sseu_dev_info *sseu, 845 struct drm_printer *p) 846 { 847 if (sseu->max_slices == 0) 848 drm_printf(p, "Unavailable\n"); 849 else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) 850 sseu_print_xehp_topology(sseu, p); 851 else 852 sseu_print_hsw_topology(sseu, p); 853 } 854 855 void intel_sseu_print_ss_info(const char *type, 856 const struct sseu_dev_info *sseu, 857 struct seq_file *m) 858 { 859 int s; 860 861 if (sseu->has_xehp_dss) { 862 seq_printf(m, " %s Geometry DSS: %u\n", type, 863 bitmap_weight(sseu->geometry_subslice_mask.xehp, 864 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask))); 865 seq_printf(m, " %s Compute DSS: %u\n", type, 866 bitmap_weight(sseu->compute_subslice_mask.xehp, 867 XEHP_BITMAP_BITS(sseu->compute_subslice_mask))); 868 } else { 869 for (s = 0; s < fls(sseu->slice_mask); s++) 870 seq_printf(m, " %s Slice%i subslices: %u\n", type, 871 s, hweight8(sseu->subslice_mask.hsw[s])); 872 } 873 } 874 875 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask, 876 int dss_per_slice) 877 { 878 intel_sseu_ss_mask_t per_slice_mask = {}; 879 unsigned long slice_mask = 0; 880 int i; 881 882 WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) > 883 8 * sizeof(slice_mask)); 884 885 bitmap_fill(per_slice_mask.xehp, dss_per_slice); 886 for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) { 887 if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice)) 888 slice_mask |= BIT(i); 889 890 bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice, 891 XEHP_BITMAP_BITS(dss_mask)); 892 } 893 894 return slice_mask; 895 } 896