xref: /linux/drivers/gpu/drm/i915/gt/intel_sseu.c (revision 0ddd7eaffa644baa78e247bbd220ab7195b1eed6)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "intel_lrc_reg.h"
8 #include "intel_sseu.h"
9 
10 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
11 			 u8 max_subslices, u8 max_eus_per_subslice)
12 {
13 	sseu->max_slices = max_slices;
14 	sseu->max_subslices = max_subslices;
15 	sseu->max_eus_per_subslice = max_eus_per_subslice;
16 
17 	sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
18 	GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
19 	sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
20 	GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
21 }
22 
23 unsigned int
24 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
25 {
26 	unsigned int i, total = 0;
27 
28 	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
29 		total += hweight8(sseu->subslice_mask[i]);
30 
31 	return total;
32 }
33 
34 u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
35 {
36 	int i, offset = slice * sseu->ss_stride;
37 	u32 mask = 0;
38 
39 	GEM_BUG_ON(slice >= sseu->max_slices);
40 
41 	for (i = 0; i < sseu->ss_stride; i++)
42 		mask |= (u32)sseu->subslice_mask[offset + i] <<
43 			i * BITS_PER_BYTE;
44 
45 	return mask;
46 }
47 
48 void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
49 			      u32 ss_mask)
50 {
51 	int offset = slice * sseu->ss_stride;
52 
53 	memcpy(&sseu->subslice_mask[offset], &ss_mask, sseu->ss_stride);
54 }
55 
56 unsigned int
57 intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
58 {
59 	return hweight32(intel_sseu_get_subslices(sseu, slice));
60 }
61 
62 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
63 		       int subslice)
64 {
65 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
66 
67 	return slice * slice_stride + subslice * sseu->eu_stride;
68 }
69 
70 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
71 			int subslice)
72 {
73 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
74 	u16 eu_mask = 0;
75 
76 	for (i = 0; i < sseu->eu_stride; i++)
77 		eu_mask |=
78 			((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
79 
80 	return eu_mask;
81 }
82 
83 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
84 			 u16 eu_mask)
85 {
86 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
87 
88 	for (i = 0; i < sseu->eu_stride; i++)
89 		sseu->eu_mask[offset + i] =
90 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
91 }
92 
93 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
94 {
95 	u16 i, total = 0;
96 
97 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
98 		total += hweight8(sseu->eu_mask[i]);
99 
100 	return total;
101 }
102 
103 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
104 				    u8 s_en, u32 ss_en, u16 eu_en)
105 {
106 	int s, ss;
107 
108 	/* ss_en represents entire subslice mask across all slices */
109 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
110 		   sizeof(ss_en) * BITS_PER_BYTE);
111 
112 	for (s = 0; s < sseu->max_slices; s++) {
113 		if ((s_en & BIT(s)) == 0)
114 			continue;
115 
116 		sseu->slice_mask |= BIT(s);
117 
118 		intel_sseu_set_subslices(sseu, s, ss_en);
119 
120 		for (ss = 0; ss < sseu->max_subslices; ss++)
121 			if (intel_sseu_has_subslice(sseu, s, ss))
122 				sseu_set_eus(sseu, s, ss, eu_en);
123 	}
124 	sseu->eu_per_subslice = hweight16(eu_en);
125 	sseu->eu_total = compute_eu_total(sseu);
126 }
127 
128 static void gen12_sseu_info_init(struct intel_gt *gt)
129 {
130 	struct sseu_dev_info *sseu = &gt->info.sseu;
131 	struct intel_uncore *uncore = gt->uncore;
132 	u32 dss_en;
133 	u16 eu_en = 0;
134 	u8 eu_en_fuse;
135 	u8 s_en;
136 	int eu;
137 
138 	/*
139 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
140 	 * Instead of splitting these, provide userspace with an array
141 	 * of DSS to more closely represent the hardware resource.
142 	 */
143 	intel_sseu_set_info(sseu, 1, 6, 16);
144 
145 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
146 		GEN11_GT_S_ENA_MASK;
147 
148 	dss_en = intel_uncore_read(uncore, GEN12_GT_DSS_ENABLE);
149 
150 	/* one bit per pair of EUs */
151 	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
152 		       GEN11_EU_DIS_MASK);
153 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
154 		if (eu_en_fuse & BIT(eu))
155 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
156 
157 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
158 
159 	/* TGL only supports slice-level power gating */
160 	sseu->has_slice_pg = 1;
161 }
162 
163 static void gen11_sseu_info_init(struct intel_gt *gt)
164 {
165 	struct sseu_dev_info *sseu = &gt->info.sseu;
166 	struct intel_uncore *uncore = gt->uncore;
167 	u32 ss_en;
168 	u8 eu_en;
169 	u8 s_en;
170 
171 	if (IS_JSL_EHL(gt->i915))
172 		intel_sseu_set_info(sseu, 1, 4, 8);
173 	else
174 		intel_sseu_set_info(sseu, 1, 8, 8);
175 
176 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
177 		GEN11_GT_S_ENA_MASK;
178 	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
179 
180 	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
181 		  GEN11_EU_DIS_MASK);
182 
183 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
184 
185 	/* ICL has no power gating restrictions. */
186 	sseu->has_slice_pg = 1;
187 	sseu->has_subslice_pg = 1;
188 	sseu->has_eu_pg = 1;
189 }
190 
191 static void gen10_sseu_info_init(struct intel_gt *gt)
192 {
193 	struct intel_uncore *uncore = gt->uncore;
194 	struct sseu_dev_info *sseu = &gt->info.sseu;
195 	const u32 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
196 	const int eu_mask = 0xff;
197 	u32 subslice_mask, eu_en;
198 	int s, ss;
199 
200 	intel_sseu_set_info(sseu, 6, 4, 8);
201 
202 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
203 		GEN10_F2_S_ENA_SHIFT;
204 
205 	/* Slice0 */
206 	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE0);
207 	for (ss = 0; ss < sseu->max_subslices; ss++)
208 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
209 	/* Slice1 */
210 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
211 	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE1);
212 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
213 	/* Slice2 */
214 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
215 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
216 	/* Slice3 */
217 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
218 	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE2);
219 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
220 	/* Slice4 */
221 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
222 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
223 	/* Slice5 */
224 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
225 	eu_en = ~intel_uncore_read(uncore, GEN10_EU_DISABLE3);
226 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
227 
228 	subslice_mask = (1 << 4) - 1;
229 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
230 			   GEN10_F2_SS_DIS_SHIFT);
231 
232 	for (s = 0; s < sseu->max_slices; s++) {
233 		u32 subslice_mask_with_eus = subslice_mask;
234 
235 		for (ss = 0; ss < sseu->max_subslices; ss++) {
236 			if (sseu_get_eus(sseu, s, ss) == 0)
237 				subslice_mask_with_eus &= ~BIT(ss);
238 		}
239 
240 		/*
241 		 * Slice0 can have up to 3 subslices, but there are only 2 in
242 		 * slice1/2.
243 		 */
244 		intel_sseu_set_subslices(sseu, s, s == 0 ?
245 					 subslice_mask_with_eus :
246 					 subslice_mask_with_eus & 0x3);
247 	}
248 
249 	sseu->eu_total = compute_eu_total(sseu);
250 
251 	/*
252 	 * CNL is expected to always have a uniform distribution
253 	 * of EU across subslices with the exception that any one
254 	 * EU in any one subslice may be fused off for die
255 	 * recovery.
256 	 */
257 	sseu->eu_per_subslice =
258 		intel_sseu_subslice_total(sseu) ?
259 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
260 		0;
261 
262 	/* No restrictions on Power Gating */
263 	sseu->has_slice_pg = 1;
264 	sseu->has_subslice_pg = 1;
265 	sseu->has_eu_pg = 1;
266 }
267 
268 static void cherryview_sseu_info_init(struct intel_gt *gt)
269 {
270 	struct sseu_dev_info *sseu = &gt->info.sseu;
271 	u32 fuse;
272 	u8 subslice_mask = 0;
273 
274 	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
275 
276 	sseu->slice_mask = BIT(0);
277 	intel_sseu_set_info(sseu, 1, 2, 8);
278 
279 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
280 		u8 disabled_mask =
281 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
282 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
283 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
284 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
285 
286 		subslice_mask |= BIT(0);
287 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
288 	}
289 
290 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
291 		u8 disabled_mask =
292 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
293 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
294 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
295 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
296 
297 		subslice_mask |= BIT(1);
298 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
299 	}
300 
301 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
302 
303 	sseu->eu_total = compute_eu_total(sseu);
304 
305 	/*
306 	 * CHV expected to always have a uniform distribution of EU
307 	 * across subslices.
308 	 */
309 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
310 		sseu->eu_total /
311 		intel_sseu_subslice_total(sseu) :
312 		0;
313 	/*
314 	 * CHV supports subslice power gating on devices with more than
315 	 * one subslice, and supports EU power gating on devices with
316 	 * more than one EU pair per subslice.
317 	 */
318 	sseu->has_slice_pg = 0;
319 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
320 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
321 }
322 
323 static void gen9_sseu_info_init(struct intel_gt *gt)
324 {
325 	struct drm_i915_private *i915 = gt->i915;
326 	struct intel_device_info *info = mkwrite_device_info(i915);
327 	struct sseu_dev_info *sseu = &gt->info.sseu;
328 	struct intel_uncore *uncore = gt->uncore;
329 	u32 fuse2, eu_disable, subslice_mask;
330 	const u8 eu_mask = 0xff;
331 	int s, ss;
332 
333 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
334 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
335 
336 	/* BXT has a single slice and at most 3 subslices. */
337 	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
338 			    IS_GEN9_LP(i915) ? 3 : 4, 8);
339 
340 	/*
341 	 * The subslice disable field is global, i.e. it applies
342 	 * to each of the enabled slices.
343 	 */
344 	subslice_mask = (1 << sseu->max_subslices) - 1;
345 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
346 			   GEN9_F2_SS_DIS_SHIFT);
347 
348 	/*
349 	 * Iterate through enabled slices and subslices to
350 	 * count the total enabled EU.
351 	 */
352 	for (s = 0; s < sseu->max_slices; s++) {
353 		if (!(sseu->slice_mask & BIT(s)))
354 			/* skip disabled slice */
355 			continue;
356 
357 		intel_sseu_set_subslices(sseu, s, subslice_mask);
358 
359 		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
360 		for (ss = 0; ss < sseu->max_subslices; ss++) {
361 			int eu_per_ss;
362 			u8 eu_disabled_mask;
363 
364 			if (!intel_sseu_has_subslice(sseu, s, ss))
365 				/* skip disabled subslice */
366 				continue;
367 
368 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
369 
370 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
371 
372 			eu_per_ss = sseu->max_eus_per_subslice -
373 				hweight8(eu_disabled_mask);
374 
375 			/*
376 			 * Record which subslice(s) has(have) 7 EUs. we
377 			 * can tune the hash used to spread work among
378 			 * subslices if they are unbalanced.
379 			 */
380 			if (eu_per_ss == 7)
381 				sseu->subslice_7eu[s] |= BIT(ss);
382 		}
383 	}
384 
385 	sseu->eu_total = compute_eu_total(sseu);
386 
387 	/*
388 	 * SKL is expected to always have a uniform distribution
389 	 * of EU across subslices with the exception that any one
390 	 * EU in any one subslice may be fused off for die
391 	 * recovery. BXT is expected to be perfectly uniform in EU
392 	 * distribution.
393 	 */
394 	sseu->eu_per_subslice =
395 		intel_sseu_subslice_total(sseu) ?
396 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
397 		0;
398 
399 	/*
400 	 * SKL+ supports slice power gating on devices with more than
401 	 * one slice, and supports EU power gating on devices with
402 	 * more than one EU pair per subslice. BXT+ supports subslice
403 	 * power gating on devices with more than one subslice, and
404 	 * supports EU power gating on devices with more than one EU
405 	 * pair per subslice.
406 	 */
407 	sseu->has_slice_pg =
408 		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
409 	sseu->has_subslice_pg =
410 		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
411 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
412 
413 	if (IS_GEN9_LP(i915)) {
414 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
415 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
416 
417 		sseu->min_eu_in_pool = 0;
418 		if (info->has_pooled_eu) {
419 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
420 				sseu->min_eu_in_pool = 3;
421 			else if (IS_SS_DISABLED(1))
422 				sseu->min_eu_in_pool = 6;
423 			else
424 				sseu->min_eu_in_pool = 9;
425 		}
426 #undef IS_SS_DISABLED
427 	}
428 }
429 
430 static void bdw_sseu_info_init(struct intel_gt *gt)
431 {
432 	struct sseu_dev_info *sseu = &gt->info.sseu;
433 	struct intel_uncore *uncore = gt->uncore;
434 	int s, ss;
435 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
436 	u32 eu_disable0, eu_disable1, eu_disable2;
437 
438 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
439 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
440 	intel_sseu_set_info(sseu, 3, 3, 8);
441 
442 	/*
443 	 * The subslice disable field is global, i.e. it applies
444 	 * to each of the enabled slices.
445 	 */
446 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
447 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
448 			   GEN8_F2_SS_DIS_SHIFT);
449 	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
450 	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
451 	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
452 	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
453 	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
454 		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
455 		 (32 - GEN8_EU_DIS0_S1_SHIFT));
456 	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
457 		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
458 		 (32 - GEN8_EU_DIS1_S2_SHIFT));
459 
460 	/*
461 	 * Iterate through enabled slices and subslices to
462 	 * count the total enabled EU.
463 	 */
464 	for (s = 0; s < sseu->max_slices; s++) {
465 		if (!(sseu->slice_mask & BIT(s)))
466 			/* skip disabled slice */
467 			continue;
468 
469 		intel_sseu_set_subslices(sseu, s, subslice_mask);
470 
471 		for (ss = 0; ss < sseu->max_subslices; ss++) {
472 			u8 eu_disabled_mask;
473 			u32 n_disabled;
474 
475 			if (!intel_sseu_has_subslice(sseu, s, ss))
476 				/* skip disabled subslice */
477 				continue;
478 
479 			eu_disabled_mask =
480 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
481 
482 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
483 
484 			n_disabled = hweight8(eu_disabled_mask);
485 
486 			/*
487 			 * Record which subslices have 7 EUs.
488 			 */
489 			if (sseu->max_eus_per_subslice - n_disabled == 7)
490 				sseu->subslice_7eu[s] |= 1 << ss;
491 		}
492 	}
493 
494 	sseu->eu_total = compute_eu_total(sseu);
495 
496 	/*
497 	 * BDW is expected to always have a uniform distribution of EU across
498 	 * subslices with the exception that any one EU in any one subslice may
499 	 * be fused off for die recovery.
500 	 */
501 	sseu->eu_per_subslice =
502 		intel_sseu_subslice_total(sseu) ?
503 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
504 		0;
505 
506 	/*
507 	 * BDW supports slice power gating on devices with more than
508 	 * one slice.
509 	 */
510 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
511 	sseu->has_subslice_pg = 0;
512 	sseu->has_eu_pg = 0;
513 }
514 
515 static void hsw_sseu_info_init(struct intel_gt *gt)
516 {
517 	struct drm_i915_private *i915 = gt->i915;
518 	struct sseu_dev_info *sseu = &gt->info.sseu;
519 	u32 fuse1;
520 	u8 subslice_mask = 0;
521 	int s, ss;
522 
523 	/*
524 	 * There isn't a register to tell us how many slices/subslices. We
525 	 * work off the PCI-ids here.
526 	 */
527 	switch (INTEL_INFO(i915)->gt) {
528 	default:
529 		MISSING_CASE(INTEL_INFO(i915)->gt);
530 		fallthrough;
531 	case 1:
532 		sseu->slice_mask = BIT(0);
533 		subslice_mask = BIT(0);
534 		break;
535 	case 2:
536 		sseu->slice_mask = BIT(0);
537 		subslice_mask = BIT(0) | BIT(1);
538 		break;
539 	case 3:
540 		sseu->slice_mask = BIT(0) | BIT(1);
541 		subslice_mask = BIT(0) | BIT(1);
542 		break;
543 	}
544 
545 	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
546 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
547 	default:
548 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
549 			     HSW_F1_EU_DIS_SHIFT);
550 		fallthrough;
551 	case HSW_F1_EU_DIS_10EUS:
552 		sseu->eu_per_subslice = 10;
553 		break;
554 	case HSW_F1_EU_DIS_8EUS:
555 		sseu->eu_per_subslice = 8;
556 		break;
557 	case HSW_F1_EU_DIS_6EUS:
558 		sseu->eu_per_subslice = 6;
559 		break;
560 	}
561 
562 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
563 			    hweight8(subslice_mask),
564 			    sseu->eu_per_subslice);
565 
566 	for (s = 0; s < sseu->max_slices; s++) {
567 		intel_sseu_set_subslices(sseu, s, subslice_mask);
568 
569 		for (ss = 0; ss < sseu->max_subslices; ss++) {
570 			sseu_set_eus(sseu, s, ss,
571 				     (1UL << sseu->eu_per_subslice) - 1);
572 		}
573 	}
574 
575 	sseu->eu_total = compute_eu_total(sseu);
576 
577 	/* No powergating for you. */
578 	sseu->has_slice_pg = 0;
579 	sseu->has_subslice_pg = 0;
580 	sseu->has_eu_pg = 0;
581 }
582 
583 void intel_sseu_info_init(struct intel_gt *gt)
584 {
585 	struct drm_i915_private *i915 = gt->i915;
586 
587 	if (IS_HASWELL(i915))
588 		hsw_sseu_info_init(gt);
589 	else if (IS_CHERRYVIEW(i915))
590 		cherryview_sseu_info_init(gt);
591 	else if (IS_BROADWELL(i915))
592 		bdw_sseu_info_init(gt);
593 	else if (IS_GEN(i915, 9))
594 		gen9_sseu_info_init(gt);
595 	else if (IS_GEN(i915, 10))
596 		gen10_sseu_info_init(gt);
597 	else if (IS_GEN(i915, 11))
598 		gen11_sseu_info_init(gt);
599 	else if (INTEL_GEN(i915) >= 12)
600 		gen12_sseu_info_init(gt);
601 }
602 
603 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
604 			 const struct intel_sseu *req_sseu)
605 {
606 	struct drm_i915_private *i915 = gt->i915;
607 	const struct sseu_dev_info *sseu = &gt->info.sseu;
608 	bool subslice_pg = sseu->has_subslice_pg;
609 	u8 slices, subslices;
610 	u32 rpcs = 0;
611 
612 	/*
613 	 * No explicit RPCS request is needed to ensure full
614 	 * slice/subslice/EU enablement prior to Gen9.
615 	 */
616 	if (INTEL_GEN(i915) < 9)
617 		return 0;
618 
619 	/*
620 	 * If i915/perf is active, we want a stable powergating configuration
621 	 * on the system. Use the configuration pinned by i915/perf.
622 	 */
623 	if (i915->perf.exclusive_stream)
624 		req_sseu = &i915->perf.sseu;
625 
626 	slices = hweight8(req_sseu->slice_mask);
627 	subslices = hweight8(req_sseu->subslice_mask);
628 
629 	/*
630 	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
631 	 * wide and Icelake has up to eight subslices, specfial programming is
632 	 * needed in order to correctly enable all subslices.
633 	 *
634 	 * According to documentation software must consider the configuration
635 	 * as 2x4x8 and hardware will translate this to 1x8x8.
636 	 *
637 	 * Furthemore, even though SScount is three bits, maximum documented
638 	 * value for it is four. From this some rules/restrictions follow:
639 	 *
640 	 * 1.
641 	 * If enabled subslice count is greater than four, two whole slices must
642 	 * be enabled instead.
643 	 *
644 	 * 2.
645 	 * When more than one slice is enabled, hardware ignores the subslice
646 	 * count altogether.
647 	 *
648 	 * From these restrictions it follows that it is not possible to enable
649 	 * a count of subslices between the SScount maximum of four restriction,
650 	 * and the maximum available number on a particular SKU. Either all
651 	 * subslices are enabled, or a count between one and four on the first
652 	 * slice.
653 	 */
654 	if (IS_GEN(i915, 11) &&
655 	    slices == 1 &&
656 	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
657 		GEM_BUG_ON(subslices & 1);
658 
659 		subslice_pg = false;
660 		slices *= 2;
661 	}
662 
663 	/*
664 	 * Starting in Gen9, render power gating can leave
665 	 * slice/subslice/EU in a partially enabled state. We
666 	 * must make an explicit request through RPCS for full
667 	 * enablement.
668 	 */
669 	if (sseu->has_slice_pg) {
670 		u32 mask, val = slices;
671 
672 		if (INTEL_GEN(i915) >= 11) {
673 			mask = GEN11_RPCS_S_CNT_MASK;
674 			val <<= GEN11_RPCS_S_CNT_SHIFT;
675 		} else {
676 			mask = GEN8_RPCS_S_CNT_MASK;
677 			val <<= GEN8_RPCS_S_CNT_SHIFT;
678 		}
679 
680 		GEM_BUG_ON(val & ~mask);
681 		val &= mask;
682 
683 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
684 	}
685 
686 	if (subslice_pg) {
687 		u32 val = subslices;
688 
689 		val <<= GEN8_RPCS_SS_CNT_SHIFT;
690 
691 		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
692 		val &= GEN8_RPCS_SS_CNT_MASK;
693 
694 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
695 	}
696 
697 	if (sseu->has_eu_pg) {
698 		u32 val;
699 
700 		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
701 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
702 		val &= GEN8_RPCS_EU_MIN_MASK;
703 
704 		rpcs |= val;
705 
706 		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
707 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
708 		val &= GEN8_RPCS_EU_MAX_MASK;
709 
710 		rpcs |= val;
711 
712 		rpcs |= GEN8_RPCS_ENABLE;
713 	}
714 
715 	return rpcs;
716 }
717 
718 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
719 {
720 	int s;
721 
722 	drm_printf(p, "slice total: %u, mask=%04x\n",
723 		   hweight8(sseu->slice_mask), sseu->slice_mask);
724 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
725 	for (s = 0; s < sseu->max_slices; s++) {
726 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
727 			   s, intel_sseu_subslices_per_slice(sseu, s),
728 			   intel_sseu_get_subslices(sseu, s));
729 	}
730 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
731 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
732 	drm_printf(p, "has slice power gating: %s\n",
733 		   yesno(sseu->has_slice_pg));
734 	drm_printf(p, "has subslice power gating: %s\n",
735 		   yesno(sseu->has_subslice_pg));
736 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
737 }
738 
739 void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
740 			       struct drm_printer *p)
741 {
742 	int s, ss;
743 
744 	if (sseu->max_slices == 0) {
745 		drm_printf(p, "Unavailable\n");
746 		return;
747 	}
748 
749 	for (s = 0; s < sseu->max_slices; s++) {
750 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
751 			   s, intel_sseu_subslices_per_slice(sseu, s),
752 			   intel_sseu_get_subslices(sseu, s));
753 
754 		for (ss = 0; ss < sseu->max_subslices; ss++) {
755 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
756 
757 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
758 				   ss, hweight16(enabled_eus), enabled_eus);
759 		}
760 	}
761 }
762