xref: /linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include <drm/i915_drm.h>
8 
9 #include "i915_drv.h"
10 #include "intel_breadcrumbs.h"
11 #include "intel_gt.h"
12 #include "intel_gt_clock_utils.h"
13 #include "intel_gt_irq.h"
14 #include "intel_gt_pm_irq.h"
15 #include "intel_rps.h"
16 #include "intel_sideband.h"
17 #include "../../../platform/x86/intel_ips.h"
18 
19 #define BUSY_MAX_EI	20u /* ms */
20 
21 /*
22  * Lock protecting IPS related data structures
23  */
24 static DEFINE_SPINLOCK(mchdev_lock);
25 
26 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
27 {
28 	return container_of(rps, struct intel_gt, rps);
29 }
30 
31 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
32 {
33 	return rps_to_gt(rps)->i915;
34 }
35 
36 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->uncore;
39 }
40 
41 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
42 {
43 	return mask & ~rps->pm_intrmsk_mbz;
44 }
45 
46 static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
47 {
48 	intel_uncore_write_fw(uncore, reg, val);
49 }
50 
51 static void rps_timer(struct timer_list *t)
52 {
53 	struct intel_rps *rps = from_timer(rps, t, timer);
54 	struct intel_engine_cs *engine;
55 	ktime_t dt, last, timestamp;
56 	enum intel_engine_id id;
57 	s64 max_busy[3] = {};
58 
59 	timestamp = 0;
60 	for_each_engine(engine, rps_to_gt(rps), id) {
61 		s64 busy;
62 		int i;
63 
64 		dt = intel_engine_get_busy_time(engine, &timestamp);
65 		last = engine->stats.rps;
66 		engine->stats.rps = dt;
67 
68 		busy = ktime_to_ns(ktime_sub(dt, last));
69 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
70 			if (busy > max_busy[i])
71 				swap(busy, max_busy[i]);
72 		}
73 	}
74 	last = rps->pm_timestamp;
75 	rps->pm_timestamp = timestamp;
76 
77 	if (intel_rps_is_active(rps)) {
78 		s64 busy;
79 		int i;
80 
81 		dt = ktime_sub(timestamp, last);
82 
83 		/*
84 		 * Our goal is to evaluate each engine independently, so we run
85 		 * at the lowest clocks required to sustain the heaviest
86 		 * workload. However, a task may be split into sequential
87 		 * dependent operations across a set of engines, such that
88 		 * the independent contributions do not account for high load,
89 		 * but overall the task is GPU bound. For example, consider
90 		 * video decode on vcs followed by colour post-processing
91 		 * on vecs, followed by general post-processing on rcs.
92 		 * Since multi-engines being active does imply a single
93 		 * continuous workload across all engines, we hedge our
94 		 * bets by only contributing a factor of the distributed
95 		 * load into our busyness calculation.
96 		 */
97 		busy = max_busy[0];
98 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
99 			if (!max_busy[i])
100 				break;
101 
102 			busy += div_u64(max_busy[i], 1 << i);
103 		}
104 		GT_TRACE(rps_to_gt(rps),
105 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
106 			 busy, (int)div64_u64(100 * busy, dt),
107 			 max_busy[0], max_busy[1], max_busy[2],
108 			 rps->pm_interval);
109 
110 		if (100 * busy > rps->power.up_threshold * dt &&
111 		    rps->cur_freq < rps->max_freq_softlimit) {
112 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
113 			rps->pm_interval = 1;
114 			schedule_work(&rps->work);
115 		} else if (100 * busy < rps->power.down_threshold * dt &&
116 			   rps->cur_freq > rps->min_freq_softlimit) {
117 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
118 			rps->pm_interval = 1;
119 			schedule_work(&rps->work);
120 		} else {
121 			rps->last_adj = 0;
122 		}
123 
124 		mod_timer(&rps->timer,
125 			  jiffies + msecs_to_jiffies(rps->pm_interval));
126 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
127 	}
128 }
129 
130 static void rps_start_timer(struct intel_rps *rps)
131 {
132 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
133 	rps->pm_interval = 1;
134 	mod_timer(&rps->timer, jiffies + 1);
135 }
136 
137 static void rps_stop_timer(struct intel_rps *rps)
138 {
139 	del_timer_sync(&rps->timer);
140 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
141 	cancel_work_sync(&rps->work);
142 }
143 
144 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
145 {
146 	u32 mask = 0;
147 
148 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
149 	if (val > rps->min_freq_softlimit)
150 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
151 			 GEN6_PM_RP_DOWN_THRESHOLD |
152 			 GEN6_PM_RP_DOWN_TIMEOUT);
153 
154 	if (val < rps->max_freq_softlimit)
155 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
156 
157 	mask &= rps->pm_events;
158 
159 	return rps_pm_sanitize_mask(rps, ~mask);
160 }
161 
162 static void rps_reset_ei(struct intel_rps *rps)
163 {
164 	memset(&rps->ei, 0, sizeof(rps->ei));
165 }
166 
167 static void rps_enable_interrupts(struct intel_rps *rps)
168 {
169 	struct intel_gt *gt = rps_to_gt(rps);
170 
171 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
172 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
173 
174 	rps_reset_ei(rps);
175 
176 	spin_lock_irq(&gt->irq_lock);
177 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
178 	spin_unlock_irq(&gt->irq_lock);
179 
180 	intel_uncore_write(gt->uncore,
181 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
182 }
183 
184 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
185 {
186 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
187 }
188 
189 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
190 {
191 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
192 		;
193 }
194 
195 static void rps_reset_interrupts(struct intel_rps *rps)
196 {
197 	struct intel_gt *gt = rps_to_gt(rps);
198 
199 	spin_lock_irq(&gt->irq_lock);
200 	if (INTEL_GEN(gt->i915) >= 11)
201 		gen11_rps_reset_interrupts(rps);
202 	else
203 		gen6_rps_reset_interrupts(rps);
204 
205 	rps->pm_iir = 0;
206 	spin_unlock_irq(&gt->irq_lock);
207 }
208 
209 static void rps_disable_interrupts(struct intel_rps *rps)
210 {
211 	struct intel_gt *gt = rps_to_gt(rps);
212 
213 	intel_uncore_write(gt->uncore,
214 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
215 
216 	spin_lock_irq(&gt->irq_lock);
217 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
218 	spin_unlock_irq(&gt->irq_lock);
219 
220 	intel_synchronize_irq(gt->i915);
221 
222 	/*
223 	 * Now that we will not be generating any more work, flush any
224 	 * outstanding tasks. As we are called on the RPS idle path,
225 	 * we will reset the GPU to minimum frequencies, so the current
226 	 * state of the worker can be discarded.
227 	 */
228 	cancel_work_sync(&rps->work);
229 
230 	rps_reset_interrupts(rps);
231 	GT_TRACE(gt, "interrupts:off\n");
232 }
233 
234 static const struct cparams {
235 	u16 i;
236 	u16 t;
237 	u16 m;
238 	u16 c;
239 } cparams[] = {
240 	{ 1, 1333, 301, 28664 },
241 	{ 1, 1066, 294, 24460 },
242 	{ 1, 800, 294, 25192 },
243 	{ 0, 1333, 276, 27605 },
244 	{ 0, 1066, 276, 27605 },
245 	{ 0, 800, 231, 23784 },
246 };
247 
248 static void gen5_rps_init(struct intel_rps *rps)
249 {
250 	struct drm_i915_private *i915 = rps_to_i915(rps);
251 	struct intel_uncore *uncore = rps_to_uncore(rps);
252 	u8 fmax, fmin, fstart;
253 	u32 rgvmodectl;
254 	int c_m, i;
255 
256 	if (i915->fsb_freq <= 3200)
257 		c_m = 0;
258 	else if (i915->fsb_freq <= 4800)
259 		c_m = 1;
260 	else
261 		c_m = 2;
262 
263 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
264 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
265 			rps->ips.m = cparams[i].m;
266 			rps->ips.c = cparams[i].c;
267 			break;
268 		}
269 	}
270 
271 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
272 
273 	/* Set up min, max, and cur for interrupt handling */
274 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
275 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
276 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
277 		MEMMODE_FSTART_SHIFT;
278 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
279 		fmax, fmin, fstart);
280 
281 	rps->min_freq = fmax;
282 	rps->efficient_freq = fstart;
283 	rps->max_freq = fmin;
284 }
285 
286 static unsigned long
287 __ips_chipset_val(struct intel_ips *ips)
288 {
289 	struct intel_uncore *uncore =
290 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
291 	unsigned long now = jiffies_to_msecs(jiffies), dt;
292 	unsigned long result;
293 	u64 total, delta;
294 
295 	lockdep_assert_held(&mchdev_lock);
296 
297 	/*
298 	 * Prevent division-by-zero if we are asking too fast.
299 	 * Also, we don't get interesting results if we are polling
300 	 * faster than once in 10ms, so just return the saved value
301 	 * in such cases.
302 	 */
303 	dt = now - ips->last_time1;
304 	if (dt <= 10)
305 		return ips->chipset_power;
306 
307 	/* FIXME: handle per-counter overflow */
308 	total = intel_uncore_read(uncore, DMIEC);
309 	total += intel_uncore_read(uncore, DDREC);
310 	total += intel_uncore_read(uncore, CSIEC);
311 
312 	delta = total - ips->last_count1;
313 
314 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
315 
316 	ips->last_count1 = total;
317 	ips->last_time1 = now;
318 
319 	ips->chipset_power = result;
320 
321 	return result;
322 }
323 
324 static unsigned long ips_mch_val(struct intel_uncore *uncore)
325 {
326 	unsigned int m, x, b;
327 	u32 tsfs;
328 
329 	tsfs = intel_uncore_read(uncore, TSFS);
330 	x = intel_uncore_read8(uncore, TR1);
331 
332 	b = tsfs & TSFS_INTR_MASK;
333 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
334 
335 	return m * x / 127 - b;
336 }
337 
338 static int _pxvid_to_vd(u8 pxvid)
339 {
340 	if (pxvid == 0)
341 		return 0;
342 
343 	if (pxvid >= 8 && pxvid < 31)
344 		pxvid = 31;
345 
346 	return (pxvid + 2) * 125;
347 }
348 
349 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
350 {
351 	const int vd = _pxvid_to_vd(pxvid);
352 
353 	if (INTEL_INFO(i915)->is_mobile)
354 		return max(vd - 1125, 0);
355 
356 	return vd;
357 }
358 
359 static void __gen5_ips_update(struct intel_ips *ips)
360 {
361 	struct intel_uncore *uncore =
362 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
363 	u64 now, delta, dt;
364 	u32 count;
365 
366 	lockdep_assert_held(&mchdev_lock);
367 
368 	now = ktime_get_raw_ns();
369 	dt = now - ips->last_time2;
370 	do_div(dt, NSEC_PER_MSEC);
371 
372 	/* Don't divide by 0 */
373 	if (dt <= 10)
374 		return;
375 
376 	count = intel_uncore_read(uncore, GFXEC);
377 	delta = count - ips->last_count2;
378 
379 	ips->last_count2 = count;
380 	ips->last_time2 = now;
381 
382 	/* More magic constants... */
383 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
384 }
385 
386 static void gen5_rps_update(struct intel_rps *rps)
387 {
388 	spin_lock_irq(&mchdev_lock);
389 	__gen5_ips_update(&rps->ips);
390 	spin_unlock_irq(&mchdev_lock);
391 }
392 
393 static unsigned int gen5_invert_freq(struct intel_rps *rps,
394 				     unsigned int val)
395 {
396 	/* Invert the frequency bin into an ips delay */
397 	val = rps->max_freq - val;
398 	val = rps->min_freq + val;
399 
400 	return val;
401 }
402 
403 static bool gen5_rps_set(struct intel_rps *rps, u8 val)
404 {
405 	struct intel_uncore *uncore = rps_to_uncore(rps);
406 	u16 rgvswctl;
407 
408 	lockdep_assert_held(&mchdev_lock);
409 
410 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
411 	if (rgvswctl & MEMCTL_CMD_STS) {
412 		DRM_DEBUG("gpu busy, RCS change rejected\n");
413 		return false; /* still busy with another command */
414 	}
415 
416 	/* Invert the frequency bin into an ips delay */
417 	val = gen5_invert_freq(rps, val);
418 
419 	rgvswctl =
420 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
421 		(val << MEMCTL_FREQ_SHIFT) |
422 		MEMCTL_SFCAVM;
423 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
424 	intel_uncore_posting_read16(uncore, MEMSWCTL);
425 
426 	rgvswctl |= MEMCTL_CMD_STS;
427 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
428 
429 	return true;
430 }
431 
432 static unsigned long intel_pxfreq(u32 vidfreq)
433 {
434 	int div = (vidfreq & 0x3f0000) >> 16;
435 	int post = (vidfreq & 0x3000) >> 12;
436 	int pre = (vidfreq & 0x7);
437 
438 	if (!pre)
439 		return 0;
440 
441 	return div * 133333 / (pre << post);
442 }
443 
444 static unsigned int init_emon(struct intel_uncore *uncore)
445 {
446 	u8 pxw[16];
447 	int i;
448 
449 	/* Disable to program */
450 	intel_uncore_write(uncore, ECR, 0);
451 	intel_uncore_posting_read(uncore, ECR);
452 
453 	/* Program energy weights for various events */
454 	intel_uncore_write(uncore, SDEW, 0x15040d00);
455 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
456 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
457 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
458 
459 	for (i = 0; i < 5; i++)
460 		intel_uncore_write(uncore, PEW(i), 0);
461 	for (i = 0; i < 3; i++)
462 		intel_uncore_write(uncore, DEW(i), 0);
463 
464 	/* Program P-state weights to account for frequency power adjustment */
465 	for (i = 0; i < 16; i++) {
466 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
467 		unsigned int freq = intel_pxfreq(pxvidfreq);
468 		unsigned int vid =
469 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
470 		unsigned int val;
471 
472 		val = vid * vid * freq / 1000 * 255;
473 		val /= 127 * 127 * 900;
474 
475 		pxw[i] = val;
476 	}
477 	/* Render standby states get 0 weight */
478 	pxw[14] = 0;
479 	pxw[15] = 0;
480 
481 	for (i = 0; i < 4; i++) {
482 		intel_uncore_write(uncore, PXW(i),
483 				   pxw[i * 4 + 0] << 24 |
484 				   pxw[i * 4 + 1] << 16 |
485 				   pxw[i * 4 + 2] <<  8 |
486 				   pxw[i * 4 + 3] <<  0);
487 	}
488 
489 	/* Adjust magic regs to magic values (more experimental results) */
490 	intel_uncore_write(uncore, OGW0, 0);
491 	intel_uncore_write(uncore, OGW1, 0);
492 	intel_uncore_write(uncore, EG0, 0x00007f00);
493 	intel_uncore_write(uncore, EG1, 0x0000000e);
494 	intel_uncore_write(uncore, EG2, 0x000e0000);
495 	intel_uncore_write(uncore, EG3, 0x68000300);
496 	intel_uncore_write(uncore, EG4, 0x42000000);
497 	intel_uncore_write(uncore, EG5, 0x00140031);
498 	intel_uncore_write(uncore, EG6, 0);
499 	intel_uncore_write(uncore, EG7, 0);
500 
501 	for (i = 0; i < 8; i++)
502 		intel_uncore_write(uncore, PXWL(i), 0);
503 
504 	/* Enable PMON + select events */
505 	intel_uncore_write(uncore, ECR, 0x80000019);
506 
507 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
508 }
509 
510 static bool gen5_rps_enable(struct intel_rps *rps)
511 {
512 	struct drm_i915_private *i915 = rps_to_i915(rps);
513 	struct intel_uncore *uncore = rps_to_uncore(rps);
514 	u8 fstart, vstart;
515 	u32 rgvmodectl;
516 
517 	spin_lock_irq(&mchdev_lock);
518 
519 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
520 
521 	/* Enable temp reporting */
522 	intel_uncore_write16(uncore, PMMISC,
523 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
524 	intel_uncore_write16(uncore, TSC1,
525 			     intel_uncore_read16(uncore, TSC1) | TSE);
526 
527 	/* 100ms RC evaluation intervals */
528 	intel_uncore_write(uncore, RCUPEI, 100000);
529 	intel_uncore_write(uncore, RCDNEI, 100000);
530 
531 	/* Set max/min thresholds to 90ms and 80ms respectively */
532 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
533 	intel_uncore_write(uncore, RCBMINAVG, 80000);
534 
535 	intel_uncore_write(uncore, MEMIHYST, 1);
536 
537 	/* Set up min, max, and cur for interrupt handling */
538 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
539 		MEMMODE_FSTART_SHIFT;
540 
541 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
542 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
543 
544 	intel_uncore_write(uncore,
545 			   MEMINTREN,
546 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
547 
548 	intel_uncore_write(uncore, VIDSTART, vstart);
549 	intel_uncore_posting_read(uncore, VIDSTART);
550 
551 	rgvmodectl |= MEMMODE_SWMODE_EN;
552 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
553 
554 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
555 			     MEMCTL_CMD_STS) == 0, 10))
556 		drm_err(&uncore->i915->drm,
557 			"stuck trying to change perf mode\n");
558 	mdelay(1);
559 
560 	gen5_rps_set(rps, rps->cur_freq);
561 
562 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
563 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
564 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
565 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
566 
567 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
568 	rps->ips.last_time2 = ktime_get_raw_ns();
569 
570 	spin_lock(&i915->irq_lock);
571 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
572 	spin_unlock(&i915->irq_lock);
573 
574 	spin_unlock_irq(&mchdev_lock);
575 
576 	rps->ips.corr = init_emon(uncore);
577 
578 	return true;
579 }
580 
581 static void gen5_rps_disable(struct intel_rps *rps)
582 {
583 	struct drm_i915_private *i915 = rps_to_i915(rps);
584 	struct intel_uncore *uncore = rps_to_uncore(rps);
585 	u16 rgvswctl;
586 
587 	spin_lock_irq(&mchdev_lock);
588 
589 	spin_lock(&i915->irq_lock);
590 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
591 	spin_unlock(&i915->irq_lock);
592 
593 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
594 
595 	/* Ack interrupts, disable EFC interrupt */
596 	intel_uncore_write(uncore, MEMINTREN,
597 			   intel_uncore_read(uncore, MEMINTREN) &
598 			   ~MEMINT_EVAL_CHG_EN);
599 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
600 
601 	/* Go back to the starting frequency */
602 	gen5_rps_set(rps, rps->idle_freq);
603 	mdelay(1);
604 	rgvswctl |= MEMCTL_CMD_STS;
605 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
606 	mdelay(1);
607 
608 	spin_unlock_irq(&mchdev_lock);
609 }
610 
611 static u32 rps_limits(struct intel_rps *rps, u8 val)
612 {
613 	u32 limits;
614 
615 	/*
616 	 * Only set the down limit when we've reached the lowest level to avoid
617 	 * getting more interrupts, otherwise leave this clear. This prevents a
618 	 * race in the hw when coming out of rc6: There's a tiny window where
619 	 * the hw runs at the minimal clock before selecting the desired
620 	 * frequency, if the down threshold expires in that window we will not
621 	 * receive a down interrupt.
622 	 */
623 	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
624 		limits = rps->max_freq_softlimit << 23;
625 		if (val <= rps->min_freq_softlimit)
626 			limits |= rps->min_freq_softlimit << 14;
627 	} else {
628 		limits = rps->max_freq_softlimit << 24;
629 		if (val <= rps->min_freq_softlimit)
630 			limits |= rps->min_freq_softlimit << 16;
631 	}
632 
633 	return limits;
634 }
635 
636 static void rps_set_power(struct intel_rps *rps, int new_power)
637 {
638 	struct intel_gt *gt = rps_to_gt(rps);
639 	struct intel_uncore *uncore = gt->uncore;
640 	u32 threshold_up = 0, threshold_down = 0; /* in % */
641 	u32 ei_up = 0, ei_down = 0;
642 
643 	lockdep_assert_held(&rps->power.mutex);
644 
645 	if (new_power == rps->power.mode)
646 		return;
647 
648 	threshold_up = 95;
649 	threshold_down = 85;
650 
651 	/* Note the units here are not exactly 1us, but 1280ns. */
652 	switch (new_power) {
653 	case LOW_POWER:
654 		ei_up = 16000;
655 		ei_down = 32000;
656 		break;
657 
658 	case BETWEEN:
659 		ei_up = 13000;
660 		ei_down = 32000;
661 		break;
662 
663 	case HIGH_POWER:
664 		ei_up = 10000;
665 		ei_down = 32000;
666 		break;
667 	}
668 
669 	/* When byt can survive without system hang with dynamic
670 	 * sw freq adjustments, this restriction can be lifted.
671 	 */
672 	if (IS_VALLEYVIEW(gt->i915))
673 		goto skip_hw_write;
674 
675 	GT_TRACE(gt,
676 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
677 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
678 
679 	set(uncore, GEN6_RP_UP_EI,
680 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
681 	set(uncore, GEN6_RP_UP_THRESHOLD,
682 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
683 
684 	set(uncore, GEN6_RP_DOWN_EI,
685 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
686 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
687 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
688 
689 	set(uncore, GEN6_RP_CONTROL,
690 	    (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
691 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
692 	    GEN6_RP_MEDIA_IS_GFX |
693 	    GEN6_RP_ENABLE |
694 	    GEN6_RP_UP_BUSY_AVG |
695 	    GEN6_RP_DOWN_IDLE_AVG);
696 
697 skip_hw_write:
698 	rps->power.mode = new_power;
699 	rps->power.up_threshold = threshold_up;
700 	rps->power.down_threshold = threshold_down;
701 }
702 
703 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
704 {
705 	int new_power;
706 
707 	new_power = rps->power.mode;
708 	switch (rps->power.mode) {
709 	case LOW_POWER:
710 		if (val > rps->efficient_freq + 1 &&
711 		    val > rps->cur_freq)
712 			new_power = BETWEEN;
713 		break;
714 
715 	case BETWEEN:
716 		if (val <= rps->efficient_freq &&
717 		    val < rps->cur_freq)
718 			new_power = LOW_POWER;
719 		else if (val >= rps->rp0_freq &&
720 			 val > rps->cur_freq)
721 			new_power = HIGH_POWER;
722 		break;
723 
724 	case HIGH_POWER:
725 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
726 		    val < rps->cur_freq)
727 			new_power = BETWEEN;
728 		break;
729 	}
730 	/* Max/min bins are special */
731 	if (val <= rps->min_freq_softlimit)
732 		new_power = LOW_POWER;
733 	if (val >= rps->max_freq_softlimit)
734 		new_power = HIGH_POWER;
735 
736 	mutex_lock(&rps->power.mutex);
737 	if (rps->power.interactive)
738 		new_power = HIGH_POWER;
739 	rps_set_power(rps, new_power);
740 	mutex_unlock(&rps->power.mutex);
741 }
742 
743 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
744 {
745 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
746 
747 	mutex_lock(&rps->power.mutex);
748 	if (interactive) {
749 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
750 			rps_set_power(rps, HIGH_POWER);
751 	} else {
752 		GEM_BUG_ON(!rps->power.interactive);
753 		rps->power.interactive--;
754 	}
755 	mutex_unlock(&rps->power.mutex);
756 }
757 
758 static int gen6_rps_set(struct intel_rps *rps, u8 val)
759 {
760 	struct intel_uncore *uncore = rps_to_uncore(rps);
761 	struct drm_i915_private *i915 = rps_to_i915(rps);
762 	u32 swreq;
763 
764 	if (INTEL_GEN(i915) >= 9)
765 		swreq = GEN9_FREQUENCY(val);
766 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
767 		swreq = HSW_FREQUENCY(val);
768 	else
769 		swreq = (GEN6_FREQUENCY(val) |
770 			 GEN6_OFFSET(0) |
771 			 GEN6_AGGRESSIVE_TURBO);
772 	set(uncore, GEN6_RPNSWREQ, swreq);
773 
774 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
775 		 val, intel_gpu_freq(rps, val), swreq);
776 
777 	return 0;
778 }
779 
780 static int vlv_rps_set(struct intel_rps *rps, u8 val)
781 {
782 	struct drm_i915_private *i915 = rps_to_i915(rps);
783 	int err;
784 
785 	vlv_punit_get(i915);
786 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
787 	vlv_punit_put(i915);
788 
789 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
790 		 val, intel_gpu_freq(rps, val));
791 
792 	return err;
793 }
794 
795 static int rps_set(struct intel_rps *rps, u8 val, bool update)
796 {
797 	struct drm_i915_private *i915 = rps_to_i915(rps);
798 	int err;
799 
800 	if (INTEL_GEN(i915) < 6)
801 		return 0;
802 
803 	if (val == rps->last_freq)
804 		return 0;
805 
806 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
807 		err = vlv_rps_set(rps, val);
808 	else
809 		err = gen6_rps_set(rps, val);
810 	if (err)
811 		return err;
812 
813 	if (update)
814 		gen6_rps_set_thresholds(rps, val);
815 	rps->last_freq = val;
816 
817 	return 0;
818 }
819 
820 void intel_rps_unpark(struct intel_rps *rps)
821 {
822 	if (!intel_rps_is_enabled(rps))
823 		return;
824 
825 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
826 
827 	/*
828 	 * Use the user's desired frequency as a guide, but for better
829 	 * performance, jump directly to RPe as our starting frequency.
830 	 */
831 	mutex_lock(&rps->lock);
832 
833 	intel_rps_set_active(rps);
834 	intel_rps_set(rps,
835 		      clamp(rps->cur_freq,
836 			    rps->min_freq_softlimit,
837 			    rps->max_freq_softlimit));
838 
839 	mutex_unlock(&rps->lock);
840 
841 	rps->pm_iir = 0;
842 	if (intel_rps_has_interrupts(rps))
843 		rps_enable_interrupts(rps);
844 	if (intel_rps_uses_timer(rps))
845 		rps_start_timer(rps);
846 
847 	if (IS_GEN(rps_to_i915(rps), 5))
848 		gen5_rps_update(rps);
849 }
850 
851 void intel_rps_park(struct intel_rps *rps)
852 {
853 	int adj;
854 
855 	if (!intel_rps_clear_active(rps))
856 		return;
857 
858 	if (intel_rps_uses_timer(rps))
859 		rps_stop_timer(rps);
860 	if (intel_rps_has_interrupts(rps))
861 		rps_disable_interrupts(rps);
862 
863 	if (rps->last_freq <= rps->idle_freq)
864 		return;
865 
866 	/*
867 	 * The punit delays the write of the frequency and voltage until it
868 	 * determines the GPU is awake. During normal usage we don't want to
869 	 * waste power changing the frequency if the GPU is sleeping (rc6).
870 	 * However, the GPU and driver is now idle and we do not want to delay
871 	 * switching to minimum voltage (reducing power whilst idle) as we do
872 	 * not expect to be woken in the near future and so must flush the
873 	 * change by waking the device.
874 	 *
875 	 * We choose to take the media powerwell (either would do to trick the
876 	 * punit into committing the voltage change) as that takes a lot less
877 	 * power than the render powerwell.
878 	 */
879 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
880 	rps_set(rps, rps->idle_freq, false);
881 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
882 
883 	/*
884 	 * Since we will try and restart from the previously requested
885 	 * frequency on unparking, treat this idle point as a downclock
886 	 * interrupt and reduce the frequency for resume. If we park/unpark
887 	 * more frequently than the rps worker can run, we will not respond
888 	 * to any EI and never see a change in frequency.
889 	 *
890 	 * (Note we accommodate Cherryview's limitation of only using an
891 	 * even bin by applying it to all.)
892 	 */
893 	adj = rps->last_adj;
894 	if (adj < 0)
895 		adj *= 2;
896 	else /* CHV needs even encode values */
897 		adj = -2;
898 	rps->last_adj = adj;
899 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
900 	if (rps->cur_freq < rps->efficient_freq) {
901 		rps->cur_freq = rps->efficient_freq;
902 		rps->last_adj = 0;
903 	}
904 
905 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
906 }
907 
908 void intel_rps_boost(struct i915_request *rq)
909 {
910 	struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
911 	unsigned long flags;
912 
913 	if (i915_request_signaled(rq) || !intel_rps_is_active(rps))
914 		return;
915 
916 	/* Serializes with i915_request_retire() */
917 	spin_lock_irqsave(&rq->lock, flags);
918 	if (!i915_request_has_waitboost(rq) &&
919 	    !dma_fence_is_signaled_locked(&rq->fence)) {
920 		set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
921 
922 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
923 			 rq->fence.context, rq->fence.seqno);
924 
925 		if (!atomic_fetch_inc(&rps->num_waiters) &&
926 		    READ_ONCE(rps->cur_freq) < rps->boost_freq)
927 			schedule_work(&rps->work);
928 
929 		atomic_inc(&rps->boosts);
930 	}
931 	spin_unlock_irqrestore(&rq->lock, flags);
932 }
933 
934 int intel_rps_set(struct intel_rps *rps, u8 val)
935 {
936 	int err;
937 
938 	lockdep_assert_held(&rps->lock);
939 	GEM_BUG_ON(val > rps->max_freq);
940 	GEM_BUG_ON(val < rps->min_freq);
941 
942 	if (intel_rps_is_active(rps)) {
943 		err = rps_set(rps, val, true);
944 		if (err)
945 			return err;
946 
947 		/*
948 		 * Make sure we continue to get interrupts
949 		 * until we hit the minimum or maximum frequencies.
950 		 */
951 		if (intel_rps_has_interrupts(rps)) {
952 			struct intel_uncore *uncore = rps_to_uncore(rps);
953 
954 			set(uncore,
955 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
956 
957 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
958 		}
959 	}
960 
961 	rps->cur_freq = val;
962 	return 0;
963 }
964 
965 static void gen6_rps_init(struct intel_rps *rps)
966 {
967 	struct drm_i915_private *i915 = rps_to_i915(rps);
968 	struct intel_uncore *uncore = rps_to_uncore(rps);
969 
970 	/* All of these values are in units of 50MHz */
971 
972 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
973 	if (IS_GEN9_LP(i915)) {
974 		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
975 
976 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
977 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
978 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
979 	} else {
980 		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
981 
982 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
983 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
984 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
985 	}
986 
987 	/* hw_max = RP0 until we check for overclocking */
988 	rps->max_freq = rps->rp0_freq;
989 
990 	rps->efficient_freq = rps->rp1_freq;
991 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
992 	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
993 		u32 ddcc_status = 0;
994 
995 		if (sandybridge_pcode_read(i915,
996 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
997 					   &ddcc_status, NULL) == 0)
998 			rps->efficient_freq =
999 				clamp_t(u8,
1000 					(ddcc_status >> 8) & 0xff,
1001 					rps->min_freq,
1002 					rps->max_freq);
1003 	}
1004 
1005 	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
1006 		/* Store the frequency values in 16.66 MHZ units, which is
1007 		 * the natural hardware unit for SKL
1008 		 */
1009 		rps->rp0_freq *= GEN9_FREQ_SCALER;
1010 		rps->rp1_freq *= GEN9_FREQ_SCALER;
1011 		rps->min_freq *= GEN9_FREQ_SCALER;
1012 		rps->max_freq *= GEN9_FREQ_SCALER;
1013 		rps->efficient_freq *= GEN9_FREQ_SCALER;
1014 	}
1015 }
1016 
1017 static bool rps_reset(struct intel_rps *rps)
1018 {
1019 	struct drm_i915_private *i915 = rps_to_i915(rps);
1020 
1021 	/* force a reset */
1022 	rps->power.mode = -1;
1023 	rps->last_freq = -1;
1024 
1025 	if (rps_set(rps, rps->min_freq, true)) {
1026 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1027 		return false;
1028 	}
1029 
1030 	rps->cur_freq = rps->min_freq;
1031 	return true;
1032 }
1033 
1034 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1035 static bool gen9_rps_enable(struct intel_rps *rps)
1036 {
1037 	struct intel_gt *gt = rps_to_gt(rps);
1038 	struct intel_uncore *uncore = gt->uncore;
1039 
1040 	/* Program defaults and thresholds for RPS */
1041 	if (IS_GEN(gt->i915, 9))
1042 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1043 				      GEN9_FREQUENCY(rps->rp1_freq));
1044 
1045 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1046 
1047 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1048 
1049 	return rps_reset(rps);
1050 }
1051 
1052 static bool gen8_rps_enable(struct intel_rps *rps)
1053 {
1054 	struct intel_uncore *uncore = rps_to_uncore(rps);
1055 
1056 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1057 			      HSW_FREQUENCY(rps->rp1_freq));
1058 
1059 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1060 
1061 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1062 
1063 	return rps_reset(rps);
1064 }
1065 
1066 static bool gen6_rps_enable(struct intel_rps *rps)
1067 {
1068 	struct intel_uncore *uncore = rps_to_uncore(rps);
1069 
1070 	/* Power down if completely idle for over 50ms */
1071 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1072 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1073 
1074 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1075 			  GEN6_PM_RP_DOWN_THRESHOLD |
1076 			  GEN6_PM_RP_DOWN_TIMEOUT);
1077 
1078 	return rps_reset(rps);
1079 }
1080 
1081 static int chv_rps_max_freq(struct intel_rps *rps)
1082 {
1083 	struct drm_i915_private *i915 = rps_to_i915(rps);
1084 	struct intel_gt *gt = rps_to_gt(rps);
1085 	u32 val;
1086 
1087 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1088 
1089 	switch (gt->info.sseu.eu_total) {
1090 	case 8:
1091 		/* (2 * 4) config */
1092 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1093 		break;
1094 	case 12:
1095 		/* (2 * 6) config */
1096 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1097 		break;
1098 	case 16:
1099 		/* (2 * 8) config */
1100 	default:
1101 		/* Setting (2 * 8) Min RP0 for any other combination */
1102 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1103 		break;
1104 	}
1105 
1106 	return val & FB_GFX_FREQ_FUSE_MASK;
1107 }
1108 
1109 static int chv_rps_rpe_freq(struct intel_rps *rps)
1110 {
1111 	struct drm_i915_private *i915 = rps_to_i915(rps);
1112 	u32 val;
1113 
1114 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1115 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1116 
1117 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1118 }
1119 
1120 static int chv_rps_guar_freq(struct intel_rps *rps)
1121 {
1122 	struct drm_i915_private *i915 = rps_to_i915(rps);
1123 	u32 val;
1124 
1125 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1126 
1127 	return val & FB_GFX_FREQ_FUSE_MASK;
1128 }
1129 
1130 static u32 chv_rps_min_freq(struct intel_rps *rps)
1131 {
1132 	struct drm_i915_private *i915 = rps_to_i915(rps);
1133 	u32 val;
1134 
1135 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1136 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1137 
1138 	return val & FB_GFX_FREQ_FUSE_MASK;
1139 }
1140 
1141 static bool chv_rps_enable(struct intel_rps *rps)
1142 {
1143 	struct intel_uncore *uncore = rps_to_uncore(rps);
1144 	struct drm_i915_private *i915 = rps_to_i915(rps);
1145 	u32 val;
1146 
1147 	/* 1: Program defaults and thresholds for RPS*/
1148 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1149 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1150 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1151 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1152 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1153 
1154 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1155 
1156 	/* 2: Enable RPS */
1157 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1158 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1159 			      GEN6_RP_MEDIA_IS_GFX |
1160 			      GEN6_RP_ENABLE |
1161 			      GEN6_RP_UP_BUSY_AVG |
1162 			      GEN6_RP_DOWN_IDLE_AVG);
1163 
1164 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1165 			  GEN6_PM_RP_DOWN_THRESHOLD |
1166 			  GEN6_PM_RP_DOWN_TIMEOUT);
1167 
1168 	/* Setting Fixed Bias */
1169 	vlv_punit_get(i915);
1170 
1171 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1172 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1173 
1174 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1175 
1176 	vlv_punit_put(i915);
1177 
1178 	/* RPS code assumes GPLL is used */
1179 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1180 		      "GPLL not enabled\n");
1181 
1182 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1183 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1184 
1185 	return rps_reset(rps);
1186 }
1187 
1188 static int vlv_rps_guar_freq(struct intel_rps *rps)
1189 {
1190 	struct drm_i915_private *i915 = rps_to_i915(rps);
1191 	u32 val, rp1;
1192 
1193 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1194 
1195 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1196 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1197 
1198 	return rp1;
1199 }
1200 
1201 static int vlv_rps_max_freq(struct intel_rps *rps)
1202 {
1203 	struct drm_i915_private *i915 = rps_to_i915(rps);
1204 	u32 val, rp0;
1205 
1206 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1207 
1208 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1209 	/* Clamp to max */
1210 	rp0 = min_t(u32, rp0, 0xea);
1211 
1212 	return rp0;
1213 }
1214 
1215 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1216 {
1217 	struct drm_i915_private *i915 = rps_to_i915(rps);
1218 	u32 val, rpe;
1219 
1220 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1221 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1222 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1223 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1224 
1225 	return rpe;
1226 }
1227 
1228 static int vlv_rps_min_freq(struct intel_rps *rps)
1229 {
1230 	struct drm_i915_private *i915 = rps_to_i915(rps);
1231 	u32 val;
1232 
1233 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1234 	/*
1235 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1236 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1237 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1238 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1239 	 * to make sure it matches what Punit accepts.
1240 	 */
1241 	return max_t(u32, val, 0xc0);
1242 }
1243 
1244 static bool vlv_rps_enable(struct intel_rps *rps)
1245 {
1246 	struct intel_uncore *uncore = rps_to_uncore(rps);
1247 	struct drm_i915_private *i915 = rps_to_i915(rps);
1248 	u32 val;
1249 
1250 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1251 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1252 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1253 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1254 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1255 
1256 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1257 
1258 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1259 			      GEN6_RP_MEDIA_TURBO |
1260 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1261 			      GEN6_RP_MEDIA_IS_GFX |
1262 			      GEN6_RP_ENABLE |
1263 			      GEN6_RP_UP_BUSY_AVG |
1264 			      GEN6_RP_DOWN_IDLE_CONT);
1265 
1266 	/* WaGsvRC0ResidencyMethod:vlv */
1267 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1268 
1269 	vlv_punit_get(i915);
1270 
1271 	/* Setting Fixed Bias */
1272 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1273 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1274 
1275 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1276 
1277 	vlv_punit_put(i915);
1278 
1279 	/* RPS code assumes GPLL is used */
1280 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1281 		      "GPLL not enabled\n");
1282 
1283 	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1284 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1285 
1286 	return rps_reset(rps);
1287 }
1288 
1289 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1290 {
1291 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1292 	struct intel_uncore *uncore = rps_to_uncore(rps);
1293 	unsigned int t, state1, state2;
1294 	u32 pxvid, ext_v;
1295 	u64 corr, corr2;
1296 
1297 	lockdep_assert_held(&mchdev_lock);
1298 
1299 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1300 	pxvid = (pxvid >> 24) & 0x7f;
1301 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1302 
1303 	state1 = ext_v;
1304 
1305 	/* Revel in the empirically derived constants */
1306 
1307 	/* Correction factor in 1/100000 units */
1308 	t = ips_mch_val(uncore);
1309 	if (t > 80)
1310 		corr = t * 2349 + 135940;
1311 	else if (t >= 50)
1312 		corr = t * 964 + 29317;
1313 	else /* < 50 */
1314 		corr = t * 301 + 1004;
1315 
1316 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1317 	corr2 = div_u64(corr, 100000) * ips->corr;
1318 
1319 	state2 = div_u64(corr2 * state1, 10000);
1320 	state2 /= 100; /* convert to mW */
1321 
1322 	__gen5_ips_update(ips);
1323 
1324 	return ips->gfx_power + state2;
1325 }
1326 
1327 static bool has_busy_stats(struct intel_rps *rps)
1328 {
1329 	struct intel_engine_cs *engine;
1330 	enum intel_engine_id id;
1331 
1332 	for_each_engine(engine, rps_to_gt(rps), id) {
1333 		if (!intel_engine_supports_stats(engine))
1334 			return false;
1335 	}
1336 
1337 	return true;
1338 }
1339 
1340 void intel_rps_enable(struct intel_rps *rps)
1341 {
1342 	struct drm_i915_private *i915 = rps_to_i915(rps);
1343 	struct intel_uncore *uncore = rps_to_uncore(rps);
1344 	bool enabled = false;
1345 
1346 	if (!HAS_RPS(i915))
1347 		return;
1348 
1349 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1350 
1351 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1352 	if (rps->max_freq <= rps->min_freq)
1353 		/* leave disabled, no room for dynamic reclocking */;
1354 	else if (IS_CHERRYVIEW(i915))
1355 		enabled = chv_rps_enable(rps);
1356 	else if (IS_VALLEYVIEW(i915))
1357 		enabled = vlv_rps_enable(rps);
1358 	else if (INTEL_GEN(i915) >= 9)
1359 		enabled = gen9_rps_enable(rps);
1360 	else if (INTEL_GEN(i915) >= 8)
1361 		enabled = gen8_rps_enable(rps);
1362 	else if (INTEL_GEN(i915) >= 6)
1363 		enabled = gen6_rps_enable(rps);
1364 	else if (IS_IRONLAKE_M(i915))
1365 		enabled = gen5_rps_enable(rps);
1366 	else
1367 		MISSING_CASE(INTEL_GEN(i915));
1368 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1369 	if (!enabled)
1370 		return;
1371 
1372 	GT_TRACE(rps_to_gt(rps),
1373 		 "min:%x, max:%x, freq:[%d, %d]\n",
1374 		 rps->min_freq, rps->max_freq,
1375 		 intel_gpu_freq(rps, rps->min_freq),
1376 		 intel_gpu_freq(rps, rps->max_freq));
1377 
1378 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1379 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1380 
1381 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1382 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1383 
1384 	if (has_busy_stats(rps))
1385 		intel_rps_set_timer(rps);
1386 	else if (INTEL_GEN(i915) >= 6)
1387 		intel_rps_set_interrupts(rps);
1388 	else
1389 		/* Ironlake currently uses intel_ips.ko */ {}
1390 
1391 	intel_rps_set_enabled(rps);
1392 }
1393 
1394 static void gen6_rps_disable(struct intel_rps *rps)
1395 {
1396 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1397 }
1398 
1399 void intel_rps_disable(struct intel_rps *rps)
1400 {
1401 	struct drm_i915_private *i915 = rps_to_i915(rps);
1402 
1403 	intel_rps_clear_enabled(rps);
1404 	intel_rps_clear_interrupts(rps);
1405 	intel_rps_clear_timer(rps);
1406 
1407 	if (INTEL_GEN(i915) >= 6)
1408 		gen6_rps_disable(rps);
1409 	else if (IS_IRONLAKE_M(i915))
1410 		gen5_rps_disable(rps);
1411 }
1412 
1413 static int byt_gpu_freq(struct intel_rps *rps, int val)
1414 {
1415 	/*
1416 	 * N = val - 0xb7
1417 	 * Slow = Fast = GPLL ref * N
1418 	 */
1419 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1420 }
1421 
1422 static int byt_freq_opcode(struct intel_rps *rps, int val)
1423 {
1424 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1425 }
1426 
1427 static int chv_gpu_freq(struct intel_rps *rps, int val)
1428 {
1429 	/*
1430 	 * N = val / 2
1431 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1432 	 */
1433 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1434 }
1435 
1436 static int chv_freq_opcode(struct intel_rps *rps, int val)
1437 {
1438 	/* CHV needs even values */
1439 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1440 }
1441 
1442 int intel_gpu_freq(struct intel_rps *rps, int val)
1443 {
1444 	struct drm_i915_private *i915 = rps_to_i915(rps);
1445 
1446 	if (INTEL_GEN(i915) >= 9)
1447 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1448 					 GEN9_FREQ_SCALER);
1449 	else if (IS_CHERRYVIEW(i915))
1450 		return chv_gpu_freq(rps, val);
1451 	else if (IS_VALLEYVIEW(i915))
1452 		return byt_gpu_freq(rps, val);
1453 	else if (INTEL_GEN(i915) >= 6)
1454 		return val * GT_FREQUENCY_MULTIPLIER;
1455 	else
1456 		return val;
1457 }
1458 
1459 int intel_freq_opcode(struct intel_rps *rps, int val)
1460 {
1461 	struct drm_i915_private *i915 = rps_to_i915(rps);
1462 
1463 	if (INTEL_GEN(i915) >= 9)
1464 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1465 					 GT_FREQUENCY_MULTIPLIER);
1466 	else if (IS_CHERRYVIEW(i915))
1467 		return chv_freq_opcode(rps, val);
1468 	else if (IS_VALLEYVIEW(i915))
1469 		return byt_freq_opcode(rps, val);
1470 	else if (INTEL_GEN(i915) >= 6)
1471 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1472 	else
1473 		return val;
1474 }
1475 
1476 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1477 {
1478 	struct drm_i915_private *i915 = rps_to_i915(rps);
1479 
1480 	rps->gpll_ref_freq =
1481 		vlv_get_cck_clock(i915, "GPLL ref",
1482 				  CCK_GPLL_CLOCK_CONTROL,
1483 				  i915->czclk_freq);
1484 
1485 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1486 		rps->gpll_ref_freq);
1487 }
1488 
1489 static void vlv_rps_init(struct intel_rps *rps)
1490 {
1491 	struct drm_i915_private *i915 = rps_to_i915(rps);
1492 	u32 val;
1493 
1494 	vlv_iosf_sb_get(i915,
1495 			BIT(VLV_IOSF_SB_PUNIT) |
1496 			BIT(VLV_IOSF_SB_NC) |
1497 			BIT(VLV_IOSF_SB_CCK));
1498 
1499 	vlv_init_gpll_ref_freq(rps);
1500 
1501 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1502 	switch ((val >> 6) & 3) {
1503 	case 0:
1504 	case 1:
1505 		i915->mem_freq = 800;
1506 		break;
1507 	case 2:
1508 		i915->mem_freq = 1066;
1509 		break;
1510 	case 3:
1511 		i915->mem_freq = 1333;
1512 		break;
1513 	}
1514 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1515 
1516 	rps->max_freq = vlv_rps_max_freq(rps);
1517 	rps->rp0_freq = rps->max_freq;
1518 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1519 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1520 
1521 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1522 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1523 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1524 
1525 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1526 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1527 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1528 
1529 	rps->min_freq = vlv_rps_min_freq(rps);
1530 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1531 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1532 
1533 	vlv_iosf_sb_put(i915,
1534 			BIT(VLV_IOSF_SB_PUNIT) |
1535 			BIT(VLV_IOSF_SB_NC) |
1536 			BIT(VLV_IOSF_SB_CCK));
1537 }
1538 
1539 static void chv_rps_init(struct intel_rps *rps)
1540 {
1541 	struct drm_i915_private *i915 = rps_to_i915(rps);
1542 	u32 val;
1543 
1544 	vlv_iosf_sb_get(i915,
1545 			BIT(VLV_IOSF_SB_PUNIT) |
1546 			BIT(VLV_IOSF_SB_NC) |
1547 			BIT(VLV_IOSF_SB_CCK));
1548 
1549 	vlv_init_gpll_ref_freq(rps);
1550 
1551 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1552 
1553 	switch ((val >> 2) & 0x7) {
1554 	case 3:
1555 		i915->mem_freq = 2000;
1556 		break;
1557 	default:
1558 		i915->mem_freq = 1600;
1559 		break;
1560 	}
1561 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1562 
1563 	rps->max_freq = chv_rps_max_freq(rps);
1564 	rps->rp0_freq = rps->max_freq;
1565 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1566 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1567 
1568 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1569 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1570 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1571 
1572 	rps->rp1_freq = chv_rps_guar_freq(rps);
1573 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1574 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1575 
1576 	rps->min_freq = chv_rps_min_freq(rps);
1577 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1578 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1579 
1580 	vlv_iosf_sb_put(i915,
1581 			BIT(VLV_IOSF_SB_PUNIT) |
1582 			BIT(VLV_IOSF_SB_NC) |
1583 			BIT(VLV_IOSF_SB_CCK));
1584 
1585 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1586 				   rps->rp1_freq | rps->min_freq) & 1,
1587 		      "Odd GPU freq values\n");
1588 }
1589 
1590 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1591 {
1592 	ei->ktime = ktime_get_raw();
1593 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1594 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1595 }
1596 
1597 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1598 {
1599 	struct intel_uncore *uncore = rps_to_uncore(rps);
1600 	const struct intel_rps_ei *prev = &rps->ei;
1601 	struct intel_rps_ei now;
1602 	u32 events = 0;
1603 
1604 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1605 		return 0;
1606 
1607 	vlv_c0_read(uncore, &now);
1608 
1609 	if (prev->ktime) {
1610 		u64 time, c0;
1611 		u32 render, media;
1612 
1613 		time = ktime_us_delta(now.ktime, prev->ktime);
1614 
1615 		time *= rps_to_i915(rps)->czclk_freq;
1616 
1617 		/* Workload can be split between render + media,
1618 		 * e.g. SwapBuffers being blitted in X after being rendered in
1619 		 * mesa. To account for this we need to combine both engines
1620 		 * into our activity counter.
1621 		 */
1622 		render = now.render_c0 - prev->render_c0;
1623 		media = now.media_c0 - prev->media_c0;
1624 		c0 = max(render, media);
1625 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1626 
1627 		if (c0 > time * rps->power.up_threshold)
1628 			events = GEN6_PM_RP_UP_THRESHOLD;
1629 		else if (c0 < time * rps->power.down_threshold)
1630 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1631 	}
1632 
1633 	rps->ei = now;
1634 	return events;
1635 }
1636 
1637 static void rps_work(struct work_struct *work)
1638 {
1639 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1640 	struct intel_gt *gt = rps_to_gt(rps);
1641 	struct drm_i915_private *i915 = rps_to_i915(rps);
1642 	bool client_boost = false;
1643 	int new_freq, adj, min, max;
1644 	u32 pm_iir = 0;
1645 
1646 	spin_lock_irq(&gt->irq_lock);
1647 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1648 	client_boost = atomic_read(&rps->num_waiters);
1649 	spin_unlock_irq(&gt->irq_lock);
1650 
1651 	/* Make sure we didn't queue anything we're not going to process. */
1652 	if (!pm_iir && !client_boost)
1653 		goto out;
1654 
1655 	mutex_lock(&rps->lock);
1656 	if (!intel_rps_is_active(rps)) {
1657 		mutex_unlock(&rps->lock);
1658 		return;
1659 	}
1660 
1661 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1662 
1663 	adj = rps->last_adj;
1664 	new_freq = rps->cur_freq;
1665 	min = rps->min_freq_softlimit;
1666 	max = rps->max_freq_softlimit;
1667 	if (client_boost)
1668 		max = rps->max_freq;
1669 
1670 	GT_TRACE(gt,
1671 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1672 		 pm_iir, yesno(client_boost),
1673 		 adj, new_freq, min, max);
1674 
1675 	if (client_boost && new_freq < rps->boost_freq) {
1676 		new_freq = rps->boost_freq;
1677 		adj = 0;
1678 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1679 		if (adj > 0)
1680 			adj *= 2;
1681 		else /* CHV needs even encode values */
1682 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1683 
1684 		if (new_freq >= rps->max_freq_softlimit)
1685 			adj = 0;
1686 	} else if (client_boost) {
1687 		adj = 0;
1688 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1689 		if (rps->cur_freq > rps->efficient_freq)
1690 			new_freq = rps->efficient_freq;
1691 		else if (rps->cur_freq > rps->min_freq_softlimit)
1692 			new_freq = rps->min_freq_softlimit;
1693 		adj = 0;
1694 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1695 		if (adj < 0)
1696 			adj *= 2;
1697 		else /* CHV needs even encode values */
1698 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1699 
1700 		if (new_freq <= rps->min_freq_softlimit)
1701 			adj = 0;
1702 	} else { /* unknown event */
1703 		adj = 0;
1704 	}
1705 
1706 	/*
1707 	 * sysfs frequency limits may have snuck in while
1708 	 * servicing the interrupt
1709 	 */
1710 	new_freq += adj;
1711 	new_freq = clamp_t(int, new_freq, min, max);
1712 
1713 	if (intel_rps_set(rps, new_freq)) {
1714 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1715 		adj = 0;
1716 	}
1717 	rps->last_adj = adj;
1718 
1719 	mutex_unlock(&rps->lock);
1720 
1721 out:
1722 	spin_lock_irq(&gt->irq_lock);
1723 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1724 	spin_unlock_irq(&gt->irq_lock);
1725 }
1726 
1727 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1728 {
1729 	struct intel_gt *gt = rps_to_gt(rps);
1730 	const u32 events = rps->pm_events & pm_iir;
1731 
1732 	lockdep_assert_held(&gt->irq_lock);
1733 
1734 	if (unlikely(!events))
1735 		return;
1736 
1737 	GT_TRACE(gt, "irq events:%x\n", events);
1738 
1739 	gen6_gt_pm_mask_irq(gt, events);
1740 
1741 	rps->pm_iir |= events;
1742 	schedule_work(&rps->work);
1743 }
1744 
1745 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1746 {
1747 	struct intel_gt *gt = rps_to_gt(rps);
1748 	u32 events;
1749 
1750 	events = pm_iir & rps->pm_events;
1751 	if (events) {
1752 		spin_lock(&gt->irq_lock);
1753 
1754 		GT_TRACE(gt, "irq events:%x\n", events);
1755 
1756 		gen6_gt_pm_mask_irq(gt, events);
1757 		rps->pm_iir |= events;
1758 
1759 		schedule_work(&rps->work);
1760 		spin_unlock(&gt->irq_lock);
1761 	}
1762 
1763 	if (INTEL_GEN(gt->i915) >= 8)
1764 		return;
1765 
1766 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1767 		intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1768 
1769 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1770 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1771 }
1772 
1773 void gen5_rps_irq_handler(struct intel_rps *rps)
1774 {
1775 	struct intel_uncore *uncore = rps_to_uncore(rps);
1776 	u32 busy_up, busy_down, max_avg, min_avg;
1777 	u8 new_freq;
1778 
1779 	spin_lock(&mchdev_lock);
1780 
1781 	intel_uncore_write16(uncore,
1782 			     MEMINTRSTS,
1783 			     intel_uncore_read(uncore, MEMINTRSTS));
1784 
1785 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1786 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1787 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1788 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1789 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1790 
1791 	/* Handle RCS change request from hw */
1792 	new_freq = rps->cur_freq;
1793 	if (busy_up > max_avg)
1794 		new_freq++;
1795 	else if (busy_down < min_avg)
1796 		new_freq--;
1797 	new_freq = clamp(new_freq,
1798 			 rps->min_freq_softlimit,
1799 			 rps->max_freq_softlimit);
1800 
1801 	if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
1802 		rps->cur_freq = new_freq;
1803 
1804 	spin_unlock(&mchdev_lock);
1805 }
1806 
1807 void intel_rps_init_early(struct intel_rps *rps)
1808 {
1809 	mutex_init(&rps->lock);
1810 	mutex_init(&rps->power.mutex);
1811 
1812 	INIT_WORK(&rps->work, rps_work);
1813 	timer_setup(&rps->timer, rps_timer, 0);
1814 
1815 	atomic_set(&rps->num_waiters, 0);
1816 }
1817 
1818 void intel_rps_init(struct intel_rps *rps)
1819 {
1820 	struct drm_i915_private *i915 = rps_to_i915(rps);
1821 
1822 	if (IS_CHERRYVIEW(i915))
1823 		chv_rps_init(rps);
1824 	else if (IS_VALLEYVIEW(i915))
1825 		vlv_rps_init(rps);
1826 	else if (INTEL_GEN(i915) >= 6)
1827 		gen6_rps_init(rps);
1828 	else if (IS_IRONLAKE_M(i915))
1829 		gen5_rps_init(rps);
1830 
1831 	/* Derive initial user preferences/limits from the hardware limits */
1832 	rps->max_freq_softlimit = rps->max_freq;
1833 	rps->min_freq_softlimit = rps->min_freq;
1834 
1835 	/* After setting max-softlimit, find the overclock max freq */
1836 	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1837 		u32 params = 0;
1838 
1839 		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1840 				       &params, NULL);
1841 		if (params & BIT(31)) { /* OC supported */
1842 			drm_dbg(&i915->drm,
1843 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1844 				(rps->max_freq & 0xff) * 50,
1845 				(params & 0xff) * 50);
1846 			rps->max_freq = params & 0xff;
1847 		}
1848 	}
1849 
1850 	/* Finally allow us to boost to max by default */
1851 	rps->boost_freq = rps->max_freq;
1852 	rps->idle_freq = rps->min_freq;
1853 
1854 	/* Start in the middle, from here we will autotune based on workload */
1855 	rps->cur_freq = rps->efficient_freq;
1856 
1857 	rps->pm_intrmsk_mbz = 0;
1858 
1859 	/*
1860 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1861 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1862 	 *
1863 	 * TODO: verify if this can be reproduced on VLV,CHV.
1864 	 */
1865 	if (INTEL_GEN(i915) <= 7)
1866 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1867 
1868 	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1869 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1870 }
1871 
1872 void intel_rps_sanitize(struct intel_rps *rps)
1873 {
1874 	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
1875 		rps_disable_interrupts(rps);
1876 }
1877 
1878 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1879 {
1880 	struct drm_i915_private *i915 = rps_to_i915(rps);
1881 	u32 cagf;
1882 
1883 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1884 		cagf = (rpstat >> 8) & 0xff;
1885 	else if (INTEL_GEN(i915) >= 9)
1886 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1887 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1888 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1889 	else if (INTEL_GEN(i915) >= 6)
1890 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1891 	else
1892 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
1893 					MEMSTAT_PSTATE_SHIFT);
1894 
1895 	return cagf;
1896 }
1897 
1898 static u32 read_cagf(struct intel_rps *rps)
1899 {
1900 	struct drm_i915_private *i915 = rps_to_i915(rps);
1901 	struct intel_uncore *uncore = rps_to_uncore(rps);
1902 	u32 freq;
1903 
1904 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1905 		vlv_punit_get(i915);
1906 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1907 		vlv_punit_put(i915);
1908 	} else if (INTEL_GEN(i915) >= 6) {
1909 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
1910 	} else {
1911 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
1912 	}
1913 
1914 	return intel_rps_get_cagf(rps, freq);
1915 }
1916 
1917 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1918 {
1919 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1920 	intel_wakeref_t wakeref;
1921 	u32 freq = 0;
1922 
1923 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1924 		freq = intel_gpu_freq(rps, read_cagf(rps));
1925 
1926 	return freq;
1927 }
1928 
1929 /* External interface for intel_ips.ko */
1930 
1931 static struct drm_i915_private __rcu *ips_mchdev;
1932 
1933 /**
1934  * Tells the intel_ips driver that the i915 driver is now loaded, if
1935  * IPS got loaded first.
1936  *
1937  * This awkward dance is so that neither module has to depend on the
1938  * other in order for IPS to do the appropriate communication of
1939  * GPU turbo limits to i915.
1940  */
1941 static void
1942 ips_ping_for_i915_load(void)
1943 {
1944 	void (*link)(void);
1945 
1946 	link = symbol_get(ips_link_to_i915_driver);
1947 	if (link) {
1948 		link();
1949 		symbol_put(ips_link_to_i915_driver);
1950 	}
1951 }
1952 
1953 void intel_rps_driver_register(struct intel_rps *rps)
1954 {
1955 	struct intel_gt *gt = rps_to_gt(rps);
1956 
1957 	/*
1958 	 * We only register the i915 ips part with intel-ips once everything is
1959 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
1960 	 */
1961 	if (IS_GEN(gt->i915, 5)) {
1962 		GEM_BUG_ON(ips_mchdev);
1963 		rcu_assign_pointer(ips_mchdev, gt->i915);
1964 		ips_ping_for_i915_load();
1965 	}
1966 }
1967 
1968 void intel_rps_driver_unregister(struct intel_rps *rps)
1969 {
1970 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1971 		rcu_assign_pointer(ips_mchdev, NULL);
1972 }
1973 
1974 static struct drm_i915_private *mchdev_get(void)
1975 {
1976 	struct drm_i915_private *i915;
1977 
1978 	rcu_read_lock();
1979 	i915 = rcu_dereference(ips_mchdev);
1980 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
1981 		i915 = NULL;
1982 	rcu_read_unlock();
1983 
1984 	return i915;
1985 }
1986 
1987 /**
1988  * i915_read_mch_val - return value for IPS use
1989  *
1990  * Calculate and return a value for the IPS driver to use when deciding whether
1991  * we have thermal and power headroom to increase CPU or GPU power budget.
1992  */
1993 unsigned long i915_read_mch_val(void)
1994 {
1995 	struct drm_i915_private *i915;
1996 	unsigned long chipset_val = 0;
1997 	unsigned long graphics_val = 0;
1998 	intel_wakeref_t wakeref;
1999 
2000 	i915 = mchdev_get();
2001 	if (!i915)
2002 		return 0;
2003 
2004 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2005 		struct intel_ips *ips = &i915->gt.rps.ips;
2006 
2007 		spin_lock_irq(&mchdev_lock);
2008 		chipset_val = __ips_chipset_val(ips);
2009 		graphics_val = __ips_gfx_val(ips);
2010 		spin_unlock_irq(&mchdev_lock);
2011 	}
2012 
2013 	drm_dev_put(&i915->drm);
2014 	return chipset_val + graphics_val;
2015 }
2016 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2017 
2018 /**
2019  * i915_gpu_raise - raise GPU frequency limit
2020  *
2021  * Raise the limit; IPS indicates we have thermal headroom.
2022  */
2023 bool i915_gpu_raise(void)
2024 {
2025 	struct drm_i915_private *i915;
2026 	struct intel_rps *rps;
2027 
2028 	i915 = mchdev_get();
2029 	if (!i915)
2030 		return false;
2031 
2032 	rps = &i915->gt.rps;
2033 
2034 	spin_lock_irq(&mchdev_lock);
2035 	if (rps->max_freq_softlimit < rps->max_freq)
2036 		rps->max_freq_softlimit++;
2037 	spin_unlock_irq(&mchdev_lock);
2038 
2039 	drm_dev_put(&i915->drm);
2040 	return true;
2041 }
2042 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2043 
2044 /**
2045  * i915_gpu_lower - lower GPU frequency limit
2046  *
2047  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2048  * frequency maximum.
2049  */
2050 bool i915_gpu_lower(void)
2051 {
2052 	struct drm_i915_private *i915;
2053 	struct intel_rps *rps;
2054 
2055 	i915 = mchdev_get();
2056 	if (!i915)
2057 		return false;
2058 
2059 	rps = &i915->gt.rps;
2060 
2061 	spin_lock_irq(&mchdev_lock);
2062 	if (rps->max_freq_softlimit > rps->min_freq)
2063 		rps->max_freq_softlimit--;
2064 	spin_unlock_irq(&mchdev_lock);
2065 
2066 	drm_dev_put(&i915->drm);
2067 	return true;
2068 }
2069 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2070 
2071 /**
2072  * i915_gpu_busy - indicate GPU business to IPS
2073  *
2074  * Tell the IPS driver whether or not the GPU is busy.
2075  */
2076 bool i915_gpu_busy(void)
2077 {
2078 	struct drm_i915_private *i915;
2079 	bool ret;
2080 
2081 	i915 = mchdev_get();
2082 	if (!i915)
2083 		return false;
2084 
2085 	ret = i915->gt.awake;
2086 
2087 	drm_dev_put(&i915->drm);
2088 	return ret;
2089 }
2090 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2091 
2092 /**
2093  * i915_gpu_turbo_disable - disable graphics turbo
2094  *
2095  * Disable graphics turbo by resetting the max frequency and setting the
2096  * current frequency to the default.
2097  */
2098 bool i915_gpu_turbo_disable(void)
2099 {
2100 	struct drm_i915_private *i915;
2101 	struct intel_rps *rps;
2102 	bool ret;
2103 
2104 	i915 = mchdev_get();
2105 	if (!i915)
2106 		return false;
2107 
2108 	rps = &i915->gt.rps;
2109 
2110 	spin_lock_irq(&mchdev_lock);
2111 	rps->max_freq_softlimit = rps->min_freq;
2112 	ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
2113 	spin_unlock_irq(&mchdev_lock);
2114 
2115 	drm_dev_put(&i915->drm);
2116 	return ret;
2117 }
2118 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2119 
2120 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2121 #include "selftest_rps.c"
2122 #endif
2123