xref: /linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/intel/i915_drm.h>
9 
10 #include "display/intel_display.h"
11 #include "display/intel_display_irq.h"
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_gt.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_irq.h"
19 #include "intel_gt_pm.h"
20 #include "intel_gt_pm_irq.h"
21 #include "intel_gt_print.h"
22 #include "intel_gt_regs.h"
23 #include "intel_mchbar_regs.h"
24 #include "intel_pcode.h"
25 #include "intel_rps.h"
26 #include "vlv_sideband.h"
27 #include "../../../platform/x86/intel_ips.h"
28 
29 #define BUSY_MAX_EI	20u /* ms */
30 
31 /*
32  * Lock protecting IPS related data structures
33  */
34 static DEFINE_SPINLOCK(mchdev_lock);
35 
36 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
37 {
38 	return container_of(rps, struct intel_gt, rps);
39 }
40 
41 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
42 {
43 	return rps_to_gt(rps)->i915;
44 }
45 
46 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
47 {
48 	return rps_to_gt(rps)->uncore;
49 }
50 
51 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
52 {
53 	struct intel_gt *gt = rps_to_gt(rps);
54 
55 	return &gt_to_guc(gt)->slpc;
56 }
57 
58 static bool rps_uses_slpc(struct intel_rps *rps)
59 {
60 	struct intel_gt *gt = rps_to_gt(rps);
61 
62 	return intel_uc_uses_guc_slpc(&gt->uc);
63 }
64 
65 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
66 {
67 	return mask & ~rps->pm_intrmsk_mbz;
68 }
69 
70 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
71 {
72 	intel_uncore_write_fw(uncore, reg, val);
73 }
74 
75 static void rps_timer(struct timer_list *t)
76 {
77 	struct intel_rps *rps = from_timer(rps, t, timer);
78 	struct intel_gt *gt = rps_to_gt(rps);
79 	struct intel_engine_cs *engine;
80 	ktime_t dt, last, timestamp;
81 	enum intel_engine_id id;
82 	s64 max_busy[3] = {};
83 
84 	timestamp = 0;
85 	for_each_engine(engine, gt, id) {
86 		s64 busy;
87 		int i;
88 
89 		dt = intel_engine_get_busy_time(engine, &timestamp);
90 		last = engine->stats.rps;
91 		engine->stats.rps = dt;
92 
93 		busy = ktime_to_ns(ktime_sub(dt, last));
94 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
95 			if (busy > max_busy[i])
96 				swap(busy, max_busy[i]);
97 		}
98 	}
99 	last = rps->pm_timestamp;
100 	rps->pm_timestamp = timestamp;
101 
102 	if (intel_rps_is_active(rps)) {
103 		s64 busy;
104 		int i;
105 
106 		dt = ktime_sub(timestamp, last);
107 
108 		/*
109 		 * Our goal is to evaluate each engine independently, so we run
110 		 * at the lowest clocks required to sustain the heaviest
111 		 * workload. However, a task may be split into sequential
112 		 * dependent operations across a set of engines, such that
113 		 * the independent contributions do not account for high load,
114 		 * but overall the task is GPU bound. For example, consider
115 		 * video decode on vcs followed by colour post-processing
116 		 * on vecs, followed by general post-processing on rcs.
117 		 * Since multi-engines being active does imply a single
118 		 * continuous workload across all engines, we hedge our
119 		 * bets by only contributing a factor of the distributed
120 		 * load into our busyness calculation.
121 		 */
122 		busy = max_busy[0];
123 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
124 			if (!max_busy[i])
125 				break;
126 
127 			busy += div_u64(max_busy[i], 1 << i);
128 		}
129 		GT_TRACE(gt,
130 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
131 			 busy, (int)div64_u64(100 * busy, dt),
132 			 max_busy[0], max_busy[1], max_busy[2],
133 			 rps->pm_interval);
134 
135 		if (100 * busy > rps->power.up_threshold * dt &&
136 		    rps->cur_freq < rps->max_freq_softlimit) {
137 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
138 			rps->pm_interval = 1;
139 			queue_work(gt->i915->unordered_wq, &rps->work);
140 		} else if (100 * busy < rps->power.down_threshold * dt &&
141 			   rps->cur_freq > rps->min_freq_softlimit) {
142 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
143 			rps->pm_interval = 1;
144 			queue_work(gt->i915->unordered_wq, &rps->work);
145 		} else {
146 			rps->last_adj = 0;
147 		}
148 
149 		mod_timer(&rps->timer,
150 			  jiffies + msecs_to_jiffies(rps->pm_interval));
151 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
152 	}
153 }
154 
155 static void rps_start_timer(struct intel_rps *rps)
156 {
157 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
158 	rps->pm_interval = 1;
159 	mod_timer(&rps->timer, jiffies + 1);
160 }
161 
162 static void rps_stop_timer(struct intel_rps *rps)
163 {
164 	del_timer_sync(&rps->timer);
165 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
166 	cancel_work_sync(&rps->work);
167 }
168 
169 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
170 {
171 	u32 mask = 0;
172 
173 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
174 	if (val > rps->min_freq_softlimit)
175 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
176 			 GEN6_PM_RP_DOWN_THRESHOLD |
177 			 GEN6_PM_RP_DOWN_TIMEOUT);
178 
179 	if (val < rps->max_freq_softlimit)
180 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
181 
182 	mask &= rps->pm_events;
183 
184 	return rps_pm_sanitize_mask(rps, ~mask);
185 }
186 
187 static void rps_reset_ei(struct intel_rps *rps)
188 {
189 	memset(&rps->ei, 0, sizeof(rps->ei));
190 }
191 
192 static void rps_enable_interrupts(struct intel_rps *rps)
193 {
194 	struct intel_gt *gt = rps_to_gt(rps);
195 
196 	GEM_BUG_ON(rps_uses_slpc(rps));
197 
198 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
199 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
200 
201 	rps_reset_ei(rps);
202 
203 	spin_lock_irq(gt->irq_lock);
204 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
205 	spin_unlock_irq(gt->irq_lock);
206 
207 	intel_uncore_write(gt->uncore,
208 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
209 }
210 
211 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
212 {
213 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
214 }
215 
216 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
217 {
218 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
219 		;
220 }
221 
222 static void rps_reset_interrupts(struct intel_rps *rps)
223 {
224 	struct intel_gt *gt = rps_to_gt(rps);
225 
226 	spin_lock_irq(gt->irq_lock);
227 	if (GRAPHICS_VER(gt->i915) >= 11)
228 		gen11_rps_reset_interrupts(rps);
229 	else
230 		gen6_rps_reset_interrupts(rps);
231 
232 	rps->pm_iir = 0;
233 	spin_unlock_irq(gt->irq_lock);
234 }
235 
236 static void rps_disable_interrupts(struct intel_rps *rps)
237 {
238 	struct intel_gt *gt = rps_to_gt(rps);
239 
240 	intel_uncore_write(gt->uncore,
241 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
242 
243 	spin_lock_irq(gt->irq_lock);
244 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
245 	spin_unlock_irq(gt->irq_lock);
246 
247 	intel_synchronize_irq(gt->i915);
248 
249 	/*
250 	 * Now that we will not be generating any more work, flush any
251 	 * outstanding tasks. As we are called on the RPS idle path,
252 	 * we will reset the GPU to minimum frequencies, so the current
253 	 * state of the worker can be discarded.
254 	 */
255 	cancel_work_sync(&rps->work);
256 
257 	rps_reset_interrupts(rps);
258 	GT_TRACE(gt, "interrupts:off\n");
259 }
260 
261 static const struct cparams {
262 	u16 i;
263 	u16 t;
264 	u16 m;
265 	u16 c;
266 } cparams[] = {
267 	{ 1, 1333, 301, 28664 },
268 	{ 1, 1067, 294, 24460 },
269 	{ 1, 800, 294, 25192 },
270 	{ 0, 1333, 276, 27605 },
271 	{ 0, 1067, 276, 27605 },
272 	{ 0, 800, 231, 23784 },
273 };
274 
275 static void gen5_rps_init(struct intel_rps *rps)
276 {
277 	struct drm_i915_private *i915 = rps_to_i915(rps);
278 	struct intel_uncore *uncore = rps_to_uncore(rps);
279 	u8 fmax, fmin, fstart;
280 	u32 rgvmodectl;
281 	int c_m, i;
282 
283 	if (i915->fsb_freq <= 3200000)
284 		c_m = 0;
285 	else if (i915->fsb_freq <= 4800000)
286 		c_m = 1;
287 	else
288 		c_m = 2;
289 
290 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
291 		if (cparams[i].i == c_m &&
292 		    cparams[i].t == DIV_ROUND_CLOSEST(i915->mem_freq, 1000)) {
293 			rps->ips.m = cparams[i].m;
294 			rps->ips.c = cparams[i].c;
295 			break;
296 		}
297 	}
298 
299 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
300 
301 	/* Set up min, max, and cur for interrupt handling */
302 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
303 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
304 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
305 		MEMMODE_FSTART_SHIFT;
306 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
307 		fmax, fmin, fstart);
308 
309 	rps->min_freq = fmax;
310 	rps->efficient_freq = fstart;
311 	rps->max_freq = fmin;
312 }
313 
314 static unsigned long
315 __ips_chipset_val(struct intel_ips *ips)
316 {
317 	struct intel_uncore *uncore =
318 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
319 	unsigned long now = jiffies_to_msecs(jiffies), dt;
320 	unsigned long result;
321 	u64 total, delta;
322 
323 	lockdep_assert_held(&mchdev_lock);
324 
325 	/*
326 	 * Prevent division-by-zero if we are asking too fast.
327 	 * Also, we don't get interesting results if we are polling
328 	 * faster than once in 10ms, so just return the saved value
329 	 * in such cases.
330 	 */
331 	dt = now - ips->last_time1;
332 	if (dt <= 10)
333 		return ips->chipset_power;
334 
335 	/* FIXME: handle per-counter overflow */
336 	total = intel_uncore_read(uncore, DMIEC);
337 	total += intel_uncore_read(uncore, DDREC);
338 	total += intel_uncore_read(uncore, CSIEC);
339 
340 	delta = total - ips->last_count1;
341 
342 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
343 
344 	ips->last_count1 = total;
345 	ips->last_time1 = now;
346 
347 	ips->chipset_power = result;
348 
349 	return result;
350 }
351 
352 static unsigned long ips_mch_val(struct intel_uncore *uncore)
353 {
354 	unsigned int m, x, b;
355 	u32 tsfs;
356 
357 	tsfs = intel_uncore_read(uncore, TSFS);
358 	x = intel_uncore_read8(uncore, TR1);
359 
360 	b = tsfs & TSFS_INTR_MASK;
361 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
362 
363 	return m * x / 127 - b;
364 }
365 
366 static int _pxvid_to_vd(u8 pxvid)
367 {
368 	if (pxvid == 0)
369 		return 0;
370 
371 	if (pxvid >= 8 && pxvid < 31)
372 		pxvid = 31;
373 
374 	return (pxvid + 2) * 125;
375 }
376 
377 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
378 {
379 	const int vd = _pxvid_to_vd(pxvid);
380 
381 	if (INTEL_INFO(i915)->is_mobile)
382 		return max(vd - 1125, 0);
383 
384 	return vd;
385 }
386 
387 static void __gen5_ips_update(struct intel_ips *ips)
388 {
389 	struct intel_uncore *uncore =
390 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
391 	u64 now, delta, dt;
392 	u32 count;
393 
394 	lockdep_assert_held(&mchdev_lock);
395 
396 	now = ktime_get_raw_ns();
397 	dt = now - ips->last_time2;
398 	do_div(dt, NSEC_PER_MSEC);
399 
400 	/* Don't divide by 0 */
401 	if (dt <= 10)
402 		return;
403 
404 	count = intel_uncore_read(uncore, GFXEC);
405 	delta = count - ips->last_count2;
406 
407 	ips->last_count2 = count;
408 	ips->last_time2 = now;
409 
410 	/* More magic constants... */
411 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
412 }
413 
414 static void gen5_rps_update(struct intel_rps *rps)
415 {
416 	spin_lock_irq(&mchdev_lock);
417 	__gen5_ips_update(&rps->ips);
418 	spin_unlock_irq(&mchdev_lock);
419 }
420 
421 static unsigned int gen5_invert_freq(struct intel_rps *rps,
422 				     unsigned int val)
423 {
424 	/* Invert the frequency bin into an ips delay */
425 	val = rps->max_freq - val;
426 	val = rps->min_freq + val;
427 
428 	return val;
429 }
430 
431 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
432 {
433 	struct intel_uncore *uncore = rps_to_uncore(rps);
434 	u16 rgvswctl;
435 
436 	lockdep_assert_held(&mchdev_lock);
437 
438 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
439 	if (rgvswctl & MEMCTL_CMD_STS) {
440 		drm_dbg(&rps_to_i915(rps)->drm,
441 			"gpu busy, RCS change rejected\n");
442 		return -EBUSY; /* still busy with another command */
443 	}
444 
445 	/* Invert the frequency bin into an ips delay */
446 	val = gen5_invert_freq(rps, val);
447 
448 	rgvswctl =
449 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
450 		(val << MEMCTL_FREQ_SHIFT) |
451 		MEMCTL_SFCAVM;
452 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
453 	intel_uncore_posting_read16(uncore, MEMSWCTL);
454 
455 	rgvswctl |= MEMCTL_CMD_STS;
456 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
457 
458 	return 0;
459 }
460 
461 static int gen5_rps_set(struct intel_rps *rps, u8 val)
462 {
463 	int err;
464 
465 	spin_lock_irq(&mchdev_lock);
466 	err = __gen5_rps_set(rps, val);
467 	spin_unlock_irq(&mchdev_lock);
468 
469 	return err;
470 }
471 
472 static unsigned long intel_pxfreq(u32 vidfreq)
473 {
474 	int div = (vidfreq & 0x3f0000) >> 16;
475 	int post = (vidfreq & 0x3000) >> 12;
476 	int pre = (vidfreq & 0x7);
477 
478 	if (!pre)
479 		return 0;
480 
481 	return div * 133333 / (pre << post);
482 }
483 
484 static unsigned int init_emon(struct intel_uncore *uncore)
485 {
486 	u8 pxw[16];
487 	int i;
488 
489 	/* Disable to program */
490 	intel_uncore_write(uncore, ECR, 0);
491 	intel_uncore_posting_read(uncore, ECR);
492 
493 	/* Program energy weights for various events */
494 	intel_uncore_write(uncore, SDEW, 0x15040d00);
495 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
496 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
497 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
498 
499 	for (i = 0; i < 5; i++)
500 		intel_uncore_write(uncore, PEW(i), 0);
501 	for (i = 0; i < 3; i++)
502 		intel_uncore_write(uncore, DEW(i), 0);
503 
504 	/* Program P-state weights to account for frequency power adjustment */
505 	for (i = 0; i < 16; i++) {
506 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
507 		unsigned int freq = intel_pxfreq(pxvidfreq);
508 		unsigned int vid =
509 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
510 		unsigned int val;
511 
512 		val = vid * vid * freq / 1000 * 255;
513 		val /= 127 * 127 * 900;
514 
515 		pxw[i] = val;
516 	}
517 	/* Render standby states get 0 weight */
518 	pxw[14] = 0;
519 	pxw[15] = 0;
520 
521 	for (i = 0; i < 4; i++) {
522 		intel_uncore_write(uncore, PXW(i),
523 				   pxw[i * 4 + 0] << 24 |
524 				   pxw[i * 4 + 1] << 16 |
525 				   pxw[i * 4 + 2] <<  8 |
526 				   pxw[i * 4 + 3] <<  0);
527 	}
528 
529 	/* Adjust magic regs to magic values (more experimental results) */
530 	intel_uncore_write(uncore, OGW0, 0);
531 	intel_uncore_write(uncore, OGW1, 0);
532 	intel_uncore_write(uncore, EG0, 0x00007f00);
533 	intel_uncore_write(uncore, EG1, 0x0000000e);
534 	intel_uncore_write(uncore, EG2, 0x000e0000);
535 	intel_uncore_write(uncore, EG3, 0x68000300);
536 	intel_uncore_write(uncore, EG4, 0x42000000);
537 	intel_uncore_write(uncore, EG5, 0x00140031);
538 	intel_uncore_write(uncore, EG6, 0);
539 	intel_uncore_write(uncore, EG7, 0);
540 
541 	for (i = 0; i < 8; i++)
542 		intel_uncore_write(uncore, PXWL(i), 0);
543 
544 	/* Enable PMON + select events */
545 	intel_uncore_write(uncore, ECR, 0x80000019);
546 
547 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
548 }
549 
550 static bool gen5_rps_enable(struct intel_rps *rps)
551 {
552 	struct drm_i915_private *i915 = rps_to_i915(rps);
553 	struct intel_uncore *uncore = rps_to_uncore(rps);
554 	u8 fstart, vstart;
555 	u32 rgvmodectl;
556 
557 	spin_lock_irq(&mchdev_lock);
558 
559 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
560 
561 	/* Enable temp reporting */
562 	intel_uncore_write16(uncore, PMMISC,
563 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
564 	intel_uncore_write16(uncore, TSC1,
565 			     intel_uncore_read16(uncore, TSC1) | TSE);
566 
567 	/* 100ms RC evaluation intervals */
568 	intel_uncore_write(uncore, RCUPEI, 100000);
569 	intel_uncore_write(uncore, RCDNEI, 100000);
570 
571 	/* Set max/min thresholds to 90ms and 80ms respectively */
572 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
573 	intel_uncore_write(uncore, RCBMINAVG, 80000);
574 
575 	intel_uncore_write(uncore, MEMIHYST, 1);
576 
577 	/* Set up min, max, and cur for interrupt handling */
578 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
579 		MEMMODE_FSTART_SHIFT;
580 
581 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
582 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
583 
584 	intel_uncore_write(uncore,
585 			   MEMINTREN,
586 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
587 
588 	intel_uncore_write(uncore, VIDSTART, vstart);
589 	intel_uncore_posting_read(uncore, VIDSTART);
590 
591 	rgvmodectl |= MEMMODE_SWMODE_EN;
592 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
593 
594 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
595 			     MEMCTL_CMD_STS) == 0, 10))
596 		drm_err(&uncore->i915->drm,
597 			"stuck trying to change perf mode\n");
598 	mdelay(1);
599 
600 	__gen5_rps_set(rps, rps->cur_freq);
601 
602 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
603 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
604 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
605 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
606 
607 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
608 	rps->ips.last_time2 = ktime_get_raw_ns();
609 
610 	spin_lock(&i915->irq_lock);
611 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
612 	spin_unlock(&i915->irq_lock);
613 
614 	spin_unlock_irq(&mchdev_lock);
615 
616 	rps->ips.corr = init_emon(uncore);
617 
618 	return true;
619 }
620 
621 static void gen5_rps_disable(struct intel_rps *rps)
622 {
623 	struct drm_i915_private *i915 = rps_to_i915(rps);
624 	struct intel_uncore *uncore = rps_to_uncore(rps);
625 	u16 rgvswctl;
626 
627 	spin_lock_irq(&mchdev_lock);
628 
629 	spin_lock(&i915->irq_lock);
630 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
631 	spin_unlock(&i915->irq_lock);
632 
633 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
634 
635 	/* Ack interrupts, disable EFC interrupt */
636 	intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
637 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
638 
639 	/* Go back to the starting frequency */
640 	__gen5_rps_set(rps, rps->idle_freq);
641 	mdelay(1);
642 	rgvswctl |= MEMCTL_CMD_STS;
643 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
644 	mdelay(1);
645 
646 	spin_unlock_irq(&mchdev_lock);
647 }
648 
649 static u32 rps_limits(struct intel_rps *rps, u8 val)
650 {
651 	u32 limits;
652 
653 	/*
654 	 * Only set the down limit when we've reached the lowest level to avoid
655 	 * getting more interrupts, otherwise leave this clear. This prevents a
656 	 * race in the hw when coming out of rc6: There's a tiny window where
657 	 * the hw runs at the minimal clock before selecting the desired
658 	 * frequency, if the down threshold expires in that window we will not
659 	 * receive a down interrupt.
660 	 */
661 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
662 		limits = rps->max_freq_softlimit << 23;
663 		if (val <= rps->min_freq_softlimit)
664 			limits |= rps->min_freq_softlimit << 14;
665 	} else {
666 		limits = rps->max_freq_softlimit << 24;
667 		if (val <= rps->min_freq_softlimit)
668 			limits |= rps->min_freq_softlimit << 16;
669 	}
670 
671 	return limits;
672 }
673 
674 static void rps_set_power(struct intel_rps *rps, int new_power)
675 {
676 	struct intel_gt *gt = rps_to_gt(rps);
677 	struct intel_uncore *uncore = gt->uncore;
678 	u32 ei_up = 0, ei_down = 0;
679 
680 	lockdep_assert_held(&rps->power.mutex);
681 
682 	if (new_power == rps->power.mode)
683 		return;
684 
685 	/* Note the units here are not exactly 1us, but 1280ns. */
686 	switch (new_power) {
687 	case LOW_POWER:
688 		ei_up = 16000;
689 		ei_down = 32000;
690 		break;
691 
692 	case BETWEEN:
693 		ei_up = 13000;
694 		ei_down = 32000;
695 		break;
696 
697 	case HIGH_POWER:
698 		ei_up = 10000;
699 		ei_down = 32000;
700 		break;
701 	}
702 
703 	/* When byt can survive without system hang with dynamic
704 	 * sw freq adjustments, this restriction can be lifted.
705 	 */
706 	if (IS_VALLEYVIEW(gt->i915))
707 		goto skip_hw_write;
708 
709 	GT_TRACE(gt,
710 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
711 		 new_power,
712 		 rps->power.up_threshold, ei_up,
713 		 rps->power.down_threshold, ei_down);
714 
715 	set(uncore, GEN6_RP_UP_EI,
716 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
717 	set(uncore, GEN6_RP_UP_THRESHOLD,
718 	    intel_gt_ns_to_pm_interval(gt,
719 				       ei_up * rps->power.up_threshold * 10));
720 
721 	set(uncore, GEN6_RP_DOWN_EI,
722 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
723 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
724 	    intel_gt_ns_to_pm_interval(gt,
725 				       ei_down *
726 				       rps->power.down_threshold * 10));
727 
728 	set(uncore, GEN6_RP_CONTROL,
729 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
730 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
731 	    GEN6_RP_MEDIA_IS_GFX |
732 	    GEN6_RP_ENABLE |
733 	    GEN6_RP_UP_BUSY_AVG |
734 	    GEN6_RP_DOWN_IDLE_AVG);
735 
736 skip_hw_write:
737 	rps->power.mode = new_power;
738 }
739 
740 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
741 {
742 	int new_power;
743 
744 	new_power = rps->power.mode;
745 	switch (rps->power.mode) {
746 	case LOW_POWER:
747 		if (val > rps->efficient_freq + 1 &&
748 		    val > rps->cur_freq)
749 			new_power = BETWEEN;
750 		break;
751 
752 	case BETWEEN:
753 		if (val <= rps->efficient_freq &&
754 		    val < rps->cur_freq)
755 			new_power = LOW_POWER;
756 		else if (val >= rps->rp0_freq &&
757 			 val > rps->cur_freq)
758 			new_power = HIGH_POWER;
759 		break;
760 
761 	case HIGH_POWER:
762 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
763 		    val < rps->cur_freq)
764 			new_power = BETWEEN;
765 		break;
766 	}
767 	/* Max/min bins are special */
768 	if (val <= rps->min_freq_softlimit)
769 		new_power = LOW_POWER;
770 	if (val >= rps->max_freq_softlimit)
771 		new_power = HIGH_POWER;
772 
773 	mutex_lock(&rps->power.mutex);
774 	if (rps->power.interactive)
775 		new_power = HIGH_POWER;
776 	rps_set_power(rps, new_power);
777 	mutex_unlock(&rps->power.mutex);
778 }
779 
780 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
781 {
782 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
783 		 str_yes_no(interactive));
784 
785 	mutex_lock(&rps->power.mutex);
786 	if (interactive) {
787 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
788 			rps_set_power(rps, HIGH_POWER);
789 	} else {
790 		GEM_BUG_ON(!rps->power.interactive);
791 		rps->power.interactive--;
792 	}
793 	mutex_unlock(&rps->power.mutex);
794 }
795 
796 static int gen6_rps_set(struct intel_rps *rps, u8 val)
797 {
798 	struct intel_uncore *uncore = rps_to_uncore(rps);
799 	struct drm_i915_private *i915 = rps_to_i915(rps);
800 	u32 swreq;
801 
802 	GEM_BUG_ON(rps_uses_slpc(rps));
803 
804 	if (GRAPHICS_VER(i915) >= 9)
805 		swreq = GEN9_FREQUENCY(val);
806 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
807 		swreq = HSW_FREQUENCY(val);
808 	else
809 		swreq = (GEN6_FREQUENCY(val) |
810 			 GEN6_OFFSET(0) |
811 			 GEN6_AGGRESSIVE_TURBO);
812 	set(uncore, GEN6_RPNSWREQ, swreq);
813 
814 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
815 		 val, intel_gpu_freq(rps, val), swreq);
816 
817 	return 0;
818 }
819 
820 static int vlv_rps_set(struct intel_rps *rps, u8 val)
821 {
822 	struct drm_i915_private *i915 = rps_to_i915(rps);
823 	int err;
824 
825 	vlv_punit_get(i915);
826 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
827 	vlv_punit_put(i915);
828 
829 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
830 		 val, intel_gpu_freq(rps, val));
831 
832 	return err;
833 }
834 
835 static int rps_set(struct intel_rps *rps, u8 val, bool update)
836 {
837 	struct drm_i915_private *i915 = rps_to_i915(rps);
838 	int err;
839 
840 	if (val == rps->last_freq)
841 		return 0;
842 
843 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
844 		err = vlv_rps_set(rps, val);
845 	else if (GRAPHICS_VER(i915) >= 6)
846 		err = gen6_rps_set(rps, val);
847 	else
848 		err = gen5_rps_set(rps, val);
849 	if (err)
850 		return err;
851 
852 	if (update && GRAPHICS_VER(i915) >= 6)
853 		gen6_rps_set_thresholds(rps, val);
854 	rps->last_freq = val;
855 
856 	return 0;
857 }
858 
859 void intel_rps_unpark(struct intel_rps *rps)
860 {
861 	if (!intel_rps_is_enabled(rps))
862 		return;
863 
864 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
865 
866 	/*
867 	 * Use the user's desired frequency as a guide, but for better
868 	 * performance, jump directly to RPe as our starting frequency.
869 	 */
870 	mutex_lock(&rps->lock);
871 
872 	intel_rps_set_active(rps);
873 	intel_rps_set(rps,
874 		      clamp(rps->cur_freq,
875 			    rps->min_freq_softlimit,
876 			    rps->max_freq_softlimit));
877 
878 	mutex_unlock(&rps->lock);
879 
880 	rps->pm_iir = 0;
881 	if (intel_rps_has_interrupts(rps))
882 		rps_enable_interrupts(rps);
883 	if (intel_rps_uses_timer(rps))
884 		rps_start_timer(rps);
885 
886 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
887 		gen5_rps_update(rps);
888 }
889 
890 void intel_rps_park(struct intel_rps *rps)
891 {
892 	int adj;
893 
894 	if (!intel_rps_is_enabled(rps))
895 		return;
896 
897 	if (!intel_rps_clear_active(rps))
898 		return;
899 
900 	if (intel_rps_uses_timer(rps))
901 		rps_stop_timer(rps);
902 	if (intel_rps_has_interrupts(rps))
903 		rps_disable_interrupts(rps);
904 
905 	if (rps->last_freq <= rps->idle_freq)
906 		return;
907 
908 	/*
909 	 * The punit delays the write of the frequency and voltage until it
910 	 * determines the GPU is awake. During normal usage we don't want to
911 	 * waste power changing the frequency if the GPU is sleeping (rc6).
912 	 * However, the GPU and driver is now idle and we do not want to delay
913 	 * switching to minimum voltage (reducing power whilst idle) as we do
914 	 * not expect to be woken in the near future and so must flush the
915 	 * change by waking the device.
916 	 *
917 	 * We choose to take the media powerwell (either would do to trick the
918 	 * punit into committing the voltage change) as that takes a lot less
919 	 * power than the render powerwell.
920 	 */
921 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
922 	rps_set(rps, rps->idle_freq, false);
923 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
924 
925 	/*
926 	 * Since we will try and restart from the previously requested
927 	 * frequency on unparking, treat this idle point as a downclock
928 	 * interrupt and reduce the frequency for resume. If we park/unpark
929 	 * more frequently than the rps worker can run, we will not respond
930 	 * to any EI and never see a change in frequency.
931 	 *
932 	 * (Note we accommodate Cherryview's limitation of only using an
933 	 * even bin by applying it to all.)
934 	 */
935 	adj = rps->last_adj;
936 	if (adj < 0)
937 		adj *= 2;
938 	else /* CHV needs even encode values */
939 		adj = -2;
940 	rps->last_adj = adj;
941 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
942 	if (rps->cur_freq < rps->efficient_freq) {
943 		rps->cur_freq = rps->efficient_freq;
944 		rps->last_adj = 0;
945 	}
946 
947 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
948 }
949 
950 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
951 {
952 	struct intel_guc_slpc *slpc;
953 
954 	if (rps_uses_slpc(rps)) {
955 		slpc = rps_to_slpc(rps);
956 
957 		return slpc->boost_freq;
958 	} else {
959 		return intel_gpu_freq(rps, rps->boost_freq);
960 	}
961 }
962 
963 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
964 {
965 	bool boost = false;
966 
967 	/* Validate against (static) hardware limits */
968 	val = intel_freq_opcode(rps, val);
969 	if (val < rps->min_freq || val > rps->max_freq)
970 		return -EINVAL;
971 
972 	mutex_lock(&rps->lock);
973 	if (val != rps->boost_freq) {
974 		rps->boost_freq = val;
975 		boost = atomic_read(&rps->num_waiters);
976 	}
977 	mutex_unlock(&rps->lock);
978 	if (boost)
979 		queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
980 
981 	return 0;
982 }
983 
984 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
985 {
986 	struct intel_guc_slpc *slpc;
987 
988 	if (rps_uses_slpc(rps)) {
989 		slpc = rps_to_slpc(rps);
990 
991 		return intel_guc_slpc_set_boost_freq(slpc, freq);
992 	} else {
993 		return rps_set_boost_freq(rps, freq);
994 	}
995 }
996 
997 void intel_rps_dec_waiters(struct intel_rps *rps)
998 {
999 	struct intel_guc_slpc *slpc;
1000 
1001 	if (rps_uses_slpc(rps)) {
1002 		slpc = rps_to_slpc(rps);
1003 
1004 		intel_guc_slpc_dec_waiters(slpc);
1005 	} else {
1006 		atomic_dec(&rps->num_waiters);
1007 	}
1008 }
1009 
1010 void intel_rps_boost(struct i915_request *rq)
1011 {
1012 	struct intel_guc_slpc *slpc;
1013 
1014 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1015 		return;
1016 
1017 	/* Waitboost is not needed for contexts marked with a Freq hint */
1018 	if (test_bit(CONTEXT_LOW_LATENCY, &rq->context->flags))
1019 		return;
1020 
1021 	/* Serializes with i915_request_retire() */
1022 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1023 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1024 
1025 		if (rps_uses_slpc(rps)) {
1026 			slpc = rps_to_slpc(rps);
1027 
1028 			if (slpc->min_freq_softlimit >= slpc->boost_freq)
1029 				return;
1030 
1031 			/* Return if old value is non zero */
1032 			if (!atomic_fetch_inc(&slpc->num_waiters)) {
1033 				GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1034 					 rq->fence.context, rq->fence.seqno);
1035 				queue_work(rps_to_gt(rps)->i915->unordered_wq,
1036 					   &slpc->boost_work);
1037 			}
1038 
1039 			return;
1040 		}
1041 
1042 		if (atomic_fetch_inc(&rps->num_waiters))
1043 			return;
1044 
1045 		if (!intel_rps_is_active(rps))
1046 			return;
1047 
1048 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1049 			 rq->fence.context, rq->fence.seqno);
1050 
1051 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1052 			queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1053 
1054 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1055 	}
1056 }
1057 
1058 int intel_rps_set(struct intel_rps *rps, u8 val)
1059 {
1060 	int err;
1061 
1062 	lockdep_assert_held(&rps->lock);
1063 	GEM_BUG_ON(val > rps->max_freq);
1064 	GEM_BUG_ON(val < rps->min_freq);
1065 
1066 	if (intel_rps_is_active(rps)) {
1067 		err = rps_set(rps, val, true);
1068 		if (err)
1069 			return err;
1070 
1071 		/*
1072 		 * Make sure we continue to get interrupts
1073 		 * until we hit the minimum or maximum frequencies.
1074 		 */
1075 		if (intel_rps_has_interrupts(rps)) {
1076 			struct intel_uncore *uncore = rps_to_uncore(rps);
1077 
1078 			set(uncore,
1079 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1080 
1081 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1082 		}
1083 	}
1084 
1085 	rps->cur_freq = val;
1086 	return 0;
1087 }
1088 
1089 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1090 {
1091 	struct drm_i915_private *i915 = rps_to_i915(rps);
1092 	struct intel_uncore *uncore = rps_to_uncore(rps);
1093 
1094 	if (IS_GEN9_LP(i915))
1095 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1096 	else
1097 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1098 }
1099 
1100 static void
1101 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1102 {
1103 	struct intel_uncore *uncore = rps_to_uncore(rps);
1104 	u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1105 				intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1106 				intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1107 	u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1108 			intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1109 			intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1110 
1111 	/* MTL values are in units of 16.67 MHz */
1112 	caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1113 	caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1114 	caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1115 }
1116 
1117 static void
1118 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1119 {
1120 	struct drm_i915_private *i915 = rps_to_i915(rps);
1121 	u32 rp_state_cap;
1122 
1123 	rp_state_cap = intel_rps_read_state_cap(rps);
1124 
1125 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1126 	if (IS_GEN9_LP(i915)) {
1127 		caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1128 		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1129 		caps->min_freq = (rp_state_cap >>  0) & 0xff;
1130 	} else {
1131 		caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1132 		if (GRAPHICS_VER(i915) >= 10)
1133 			caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1134 						       intel_uncore_read(to_gt(i915)->uncore,
1135 						       GEN10_FREQ_INFO_REC));
1136 		else
1137 			caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1138 		caps->min_freq = (rp_state_cap >> 16) & 0xff;
1139 	}
1140 
1141 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1142 		/*
1143 		 * In this case rp_state_cap register reports frequencies in
1144 		 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1145 		 * units of 16.67 MHz
1146 		 */
1147 		caps->rp0_freq *= GEN9_FREQ_SCALER;
1148 		caps->rp1_freq *= GEN9_FREQ_SCALER;
1149 		caps->min_freq *= GEN9_FREQ_SCALER;
1150 	}
1151 }
1152 
1153 /**
1154  * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1155  * @rps: the intel_rps structure
1156  * @caps: returned freq caps
1157  *
1158  * Returned "caps" frequencies should be converted to MHz using
1159  * intel_gpu_freq()
1160  */
1161 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1162 {
1163 	struct drm_i915_private *i915 = rps_to_i915(rps);
1164 
1165 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1166 		return mtl_get_freq_caps(rps, caps);
1167 	else
1168 		return __gen6_rps_get_freq_caps(rps, caps);
1169 }
1170 
1171 static void gen6_rps_init(struct intel_rps *rps)
1172 {
1173 	struct drm_i915_private *i915 = rps_to_i915(rps);
1174 	struct intel_rps_freq_caps caps;
1175 
1176 	gen6_rps_get_freq_caps(rps, &caps);
1177 	rps->rp0_freq = caps.rp0_freq;
1178 	rps->rp1_freq = caps.rp1_freq;
1179 	rps->min_freq = caps.min_freq;
1180 
1181 	/* hw_max = RP0 until we check for overclocking */
1182 	rps->max_freq = rps->rp0_freq;
1183 
1184 	rps->efficient_freq = rps->rp1_freq;
1185 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1186 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1187 		u32 ddcc_status = 0;
1188 		u32 mult = 1;
1189 
1190 		if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1191 			mult = GEN9_FREQ_SCALER;
1192 		if (snb_pcode_read(rps_to_gt(rps)->uncore,
1193 				   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1194 				   &ddcc_status, NULL) == 0)
1195 			rps->efficient_freq =
1196 				clamp_t(u32,
1197 					((ddcc_status >> 8) & 0xff) * mult,
1198 					rps->min_freq,
1199 					rps->max_freq);
1200 	}
1201 }
1202 
1203 static bool rps_reset(struct intel_rps *rps)
1204 {
1205 	struct drm_i915_private *i915 = rps_to_i915(rps);
1206 
1207 	/* force a reset */
1208 	rps->power.mode = -1;
1209 	rps->last_freq = -1;
1210 
1211 	if (rps_set(rps, rps->min_freq, true)) {
1212 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1213 		return false;
1214 	}
1215 
1216 	rps->cur_freq = rps->min_freq;
1217 	return true;
1218 }
1219 
1220 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1221 static bool gen9_rps_enable(struct intel_rps *rps)
1222 {
1223 	struct intel_gt *gt = rps_to_gt(rps);
1224 	struct intel_uncore *uncore = gt->uncore;
1225 
1226 	/* Program defaults and thresholds for RPS */
1227 	if (GRAPHICS_VER(gt->i915) == 9)
1228 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1229 				      GEN9_FREQUENCY(rps->rp1_freq));
1230 
1231 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1232 
1233 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1234 
1235 	return rps_reset(rps);
1236 }
1237 
1238 static bool gen8_rps_enable(struct intel_rps *rps)
1239 {
1240 	struct intel_uncore *uncore = rps_to_uncore(rps);
1241 
1242 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1243 			      HSW_FREQUENCY(rps->rp1_freq));
1244 
1245 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1246 
1247 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1248 
1249 	return rps_reset(rps);
1250 }
1251 
1252 static bool gen6_rps_enable(struct intel_rps *rps)
1253 {
1254 	struct intel_uncore *uncore = rps_to_uncore(rps);
1255 
1256 	/* Power down if completely idle for over 50ms */
1257 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1258 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1259 
1260 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1261 			  GEN6_PM_RP_DOWN_THRESHOLD |
1262 			  GEN6_PM_RP_DOWN_TIMEOUT);
1263 
1264 	return rps_reset(rps);
1265 }
1266 
1267 static int chv_rps_max_freq(struct intel_rps *rps)
1268 {
1269 	struct drm_i915_private *i915 = rps_to_i915(rps);
1270 	struct intel_gt *gt = rps_to_gt(rps);
1271 	u32 val;
1272 
1273 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1274 
1275 	switch (gt->info.sseu.eu_total) {
1276 	case 8:
1277 		/* (2 * 4) config */
1278 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1279 		break;
1280 	case 12:
1281 		/* (2 * 6) config */
1282 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1283 		break;
1284 	case 16:
1285 		/* (2 * 8) config */
1286 	default:
1287 		/* Setting (2 * 8) Min RP0 for any other combination */
1288 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1289 		break;
1290 	}
1291 
1292 	return val & FB_GFX_FREQ_FUSE_MASK;
1293 }
1294 
1295 static int chv_rps_rpe_freq(struct intel_rps *rps)
1296 {
1297 	struct drm_i915_private *i915 = rps_to_i915(rps);
1298 	u32 val;
1299 
1300 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1301 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1302 
1303 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1304 }
1305 
1306 static int chv_rps_guar_freq(struct intel_rps *rps)
1307 {
1308 	struct drm_i915_private *i915 = rps_to_i915(rps);
1309 	u32 val;
1310 
1311 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1312 
1313 	return val & FB_GFX_FREQ_FUSE_MASK;
1314 }
1315 
1316 static u32 chv_rps_min_freq(struct intel_rps *rps)
1317 {
1318 	struct drm_i915_private *i915 = rps_to_i915(rps);
1319 	u32 val;
1320 
1321 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1322 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1323 
1324 	return val & FB_GFX_FREQ_FUSE_MASK;
1325 }
1326 
1327 static bool chv_rps_enable(struct intel_rps *rps)
1328 {
1329 	struct intel_uncore *uncore = rps_to_uncore(rps);
1330 	struct drm_i915_private *i915 = rps_to_i915(rps);
1331 	u32 val;
1332 
1333 	/* 1: Program defaults and thresholds for RPS*/
1334 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1335 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1336 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1337 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1338 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1339 
1340 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1341 
1342 	/* 2: Enable RPS */
1343 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1344 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1345 			      GEN6_RP_MEDIA_IS_GFX |
1346 			      GEN6_RP_ENABLE |
1347 			      GEN6_RP_UP_BUSY_AVG |
1348 			      GEN6_RP_DOWN_IDLE_AVG);
1349 
1350 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1351 			  GEN6_PM_RP_DOWN_THRESHOLD |
1352 			  GEN6_PM_RP_DOWN_TIMEOUT);
1353 
1354 	/* Setting Fixed Bias */
1355 	vlv_punit_get(i915);
1356 
1357 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1358 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1359 
1360 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1361 
1362 	vlv_punit_put(i915);
1363 
1364 	/* RPS code assumes GPLL is used */
1365 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1366 		      "GPLL not enabled\n");
1367 
1368 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1369 		str_yes_no(val & GPLLENABLE));
1370 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1371 
1372 	return rps_reset(rps);
1373 }
1374 
1375 static int vlv_rps_guar_freq(struct intel_rps *rps)
1376 {
1377 	struct drm_i915_private *i915 = rps_to_i915(rps);
1378 	u32 val, rp1;
1379 
1380 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1381 
1382 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1383 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1384 
1385 	return rp1;
1386 }
1387 
1388 static int vlv_rps_max_freq(struct intel_rps *rps)
1389 {
1390 	struct drm_i915_private *i915 = rps_to_i915(rps);
1391 	u32 val, rp0;
1392 
1393 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1394 
1395 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1396 	/* Clamp to max */
1397 	rp0 = min_t(u32, rp0, 0xea);
1398 
1399 	return rp0;
1400 }
1401 
1402 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1403 {
1404 	struct drm_i915_private *i915 = rps_to_i915(rps);
1405 	u32 val, rpe;
1406 
1407 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1408 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1409 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1410 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1411 
1412 	return rpe;
1413 }
1414 
1415 static int vlv_rps_min_freq(struct intel_rps *rps)
1416 {
1417 	struct drm_i915_private *i915 = rps_to_i915(rps);
1418 	u32 val;
1419 
1420 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1421 	/*
1422 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1423 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1424 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1425 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1426 	 * to make sure it matches what Punit accepts.
1427 	 */
1428 	return max_t(u32, val, 0xc0);
1429 }
1430 
1431 static bool vlv_rps_enable(struct intel_rps *rps)
1432 {
1433 	struct intel_uncore *uncore = rps_to_uncore(rps);
1434 	struct drm_i915_private *i915 = rps_to_i915(rps);
1435 	u32 val;
1436 
1437 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1438 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1439 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1440 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1441 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1442 
1443 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1444 
1445 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1446 			      GEN6_RP_MEDIA_TURBO |
1447 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1448 			      GEN6_RP_MEDIA_IS_GFX |
1449 			      GEN6_RP_ENABLE |
1450 			      GEN6_RP_UP_BUSY_AVG |
1451 			      GEN6_RP_DOWN_IDLE_CONT);
1452 
1453 	/* WaGsvRC0ResidencyMethod:vlv */
1454 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1455 
1456 	vlv_punit_get(i915);
1457 
1458 	/* Setting Fixed Bias */
1459 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1460 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1461 
1462 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1463 
1464 	vlv_punit_put(i915);
1465 
1466 	/* RPS code assumes GPLL is used */
1467 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1468 		      "GPLL not enabled\n");
1469 
1470 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1471 		str_yes_no(val & GPLLENABLE));
1472 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1473 
1474 	return rps_reset(rps);
1475 }
1476 
1477 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1478 {
1479 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1480 	struct intel_uncore *uncore = rps_to_uncore(rps);
1481 	unsigned int t, state1, state2;
1482 	u32 pxvid, ext_v;
1483 	u64 corr, corr2;
1484 
1485 	lockdep_assert_held(&mchdev_lock);
1486 
1487 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1488 	pxvid = (pxvid >> 24) & 0x7f;
1489 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1490 
1491 	state1 = ext_v;
1492 
1493 	/* Revel in the empirically derived constants */
1494 
1495 	/* Correction factor in 1/100000 units */
1496 	t = ips_mch_val(uncore);
1497 	if (t > 80)
1498 		corr = t * 2349 + 135940;
1499 	else if (t >= 50)
1500 		corr = t * 964 + 29317;
1501 	else /* < 50 */
1502 		corr = t * 301 + 1004;
1503 
1504 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1505 	corr2 = div_u64(corr, 100000) * ips->corr;
1506 
1507 	state2 = div_u64(corr2 * state1, 10000);
1508 	state2 /= 100; /* convert to mW */
1509 
1510 	__gen5_ips_update(ips);
1511 
1512 	return ips->gfx_power + state2;
1513 }
1514 
1515 static bool has_busy_stats(struct intel_rps *rps)
1516 {
1517 	struct intel_engine_cs *engine;
1518 	enum intel_engine_id id;
1519 
1520 	for_each_engine(engine, rps_to_gt(rps), id) {
1521 		if (!intel_engine_supports_stats(engine))
1522 			return false;
1523 	}
1524 
1525 	return true;
1526 }
1527 
1528 void intel_rps_enable(struct intel_rps *rps)
1529 {
1530 	struct drm_i915_private *i915 = rps_to_i915(rps);
1531 	struct intel_uncore *uncore = rps_to_uncore(rps);
1532 	bool enabled = false;
1533 
1534 	if (!HAS_RPS(i915))
1535 		return;
1536 
1537 	if (rps_uses_slpc(rps))
1538 		return;
1539 
1540 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1541 
1542 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1543 	if (rps->max_freq <= rps->min_freq)
1544 		/* leave disabled, no room for dynamic reclocking */;
1545 	else if (IS_CHERRYVIEW(i915))
1546 		enabled = chv_rps_enable(rps);
1547 	else if (IS_VALLEYVIEW(i915))
1548 		enabled = vlv_rps_enable(rps);
1549 	else if (GRAPHICS_VER(i915) >= 9)
1550 		enabled = gen9_rps_enable(rps);
1551 	else if (GRAPHICS_VER(i915) >= 8)
1552 		enabled = gen8_rps_enable(rps);
1553 	else if (GRAPHICS_VER(i915) >= 6)
1554 		enabled = gen6_rps_enable(rps);
1555 	else if (IS_IRONLAKE_M(i915))
1556 		enabled = gen5_rps_enable(rps);
1557 	else
1558 		MISSING_CASE(GRAPHICS_VER(i915));
1559 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1560 	if (!enabled)
1561 		return;
1562 
1563 	GT_TRACE(rps_to_gt(rps),
1564 		 "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1565 		 rps->min_freq, rps->max_freq,
1566 		 intel_gpu_freq(rps, rps->min_freq),
1567 		 intel_gpu_freq(rps, rps->max_freq),
1568 		 rps->power.up_threshold,
1569 		 rps->power.down_threshold);
1570 
1571 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1572 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1573 
1574 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1575 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1576 
1577 	if (has_busy_stats(rps))
1578 		intel_rps_set_timer(rps);
1579 	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1580 		intel_rps_set_interrupts(rps);
1581 	else
1582 		/* Ironlake currently uses intel_ips.ko */ {}
1583 
1584 	intel_rps_set_enabled(rps);
1585 }
1586 
1587 static void gen6_rps_disable(struct intel_rps *rps)
1588 {
1589 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1590 }
1591 
1592 void intel_rps_disable(struct intel_rps *rps)
1593 {
1594 	struct drm_i915_private *i915 = rps_to_i915(rps);
1595 
1596 	if (!intel_rps_is_enabled(rps))
1597 		return;
1598 
1599 	intel_rps_clear_enabled(rps);
1600 	intel_rps_clear_interrupts(rps);
1601 	intel_rps_clear_timer(rps);
1602 
1603 	if (GRAPHICS_VER(i915) >= 6)
1604 		gen6_rps_disable(rps);
1605 	else if (IS_IRONLAKE_M(i915))
1606 		gen5_rps_disable(rps);
1607 }
1608 
1609 static int byt_gpu_freq(struct intel_rps *rps, int val)
1610 {
1611 	/*
1612 	 * N = val - 0xb7
1613 	 * Slow = Fast = GPLL ref * N
1614 	 */
1615 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1616 }
1617 
1618 static int byt_freq_opcode(struct intel_rps *rps, int val)
1619 {
1620 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1621 }
1622 
1623 static int chv_gpu_freq(struct intel_rps *rps, int val)
1624 {
1625 	/*
1626 	 * N = val / 2
1627 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1628 	 */
1629 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1630 }
1631 
1632 static int chv_freq_opcode(struct intel_rps *rps, int val)
1633 {
1634 	/* CHV needs even values */
1635 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1636 }
1637 
1638 int intel_gpu_freq(struct intel_rps *rps, int val)
1639 {
1640 	struct drm_i915_private *i915 = rps_to_i915(rps);
1641 
1642 	if (GRAPHICS_VER(i915) >= 9)
1643 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1644 					 GEN9_FREQ_SCALER);
1645 	else if (IS_CHERRYVIEW(i915))
1646 		return chv_gpu_freq(rps, val);
1647 	else if (IS_VALLEYVIEW(i915))
1648 		return byt_gpu_freq(rps, val);
1649 	else if (GRAPHICS_VER(i915) >= 6)
1650 		return val * GT_FREQUENCY_MULTIPLIER;
1651 	else
1652 		return val;
1653 }
1654 
1655 int intel_freq_opcode(struct intel_rps *rps, int val)
1656 {
1657 	struct drm_i915_private *i915 = rps_to_i915(rps);
1658 
1659 	if (GRAPHICS_VER(i915) >= 9)
1660 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1661 					 GT_FREQUENCY_MULTIPLIER);
1662 	else if (IS_CHERRYVIEW(i915))
1663 		return chv_freq_opcode(rps, val);
1664 	else if (IS_VALLEYVIEW(i915))
1665 		return byt_freq_opcode(rps, val);
1666 	else if (GRAPHICS_VER(i915) >= 6)
1667 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1668 	else
1669 		return val;
1670 }
1671 
1672 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1673 {
1674 	struct drm_i915_private *i915 = rps_to_i915(rps);
1675 
1676 	rps->gpll_ref_freq =
1677 		vlv_get_cck_clock(i915, "GPLL ref",
1678 				  CCK_GPLL_CLOCK_CONTROL,
1679 				  i915->czclk_freq);
1680 
1681 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1682 		rps->gpll_ref_freq);
1683 }
1684 
1685 static void vlv_rps_init(struct intel_rps *rps)
1686 {
1687 	struct drm_i915_private *i915 = rps_to_i915(rps);
1688 
1689 	vlv_iosf_sb_get(i915,
1690 			BIT(VLV_IOSF_SB_PUNIT) |
1691 			BIT(VLV_IOSF_SB_NC) |
1692 			BIT(VLV_IOSF_SB_CCK));
1693 
1694 	vlv_init_gpll_ref_freq(rps);
1695 
1696 	rps->max_freq = vlv_rps_max_freq(rps);
1697 	rps->rp0_freq = rps->max_freq;
1698 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1699 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1700 
1701 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1702 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1703 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1704 
1705 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1706 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1707 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1708 
1709 	rps->min_freq = vlv_rps_min_freq(rps);
1710 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1711 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1712 
1713 	vlv_iosf_sb_put(i915,
1714 			BIT(VLV_IOSF_SB_PUNIT) |
1715 			BIT(VLV_IOSF_SB_NC) |
1716 			BIT(VLV_IOSF_SB_CCK));
1717 }
1718 
1719 static void chv_rps_init(struct intel_rps *rps)
1720 {
1721 	struct drm_i915_private *i915 = rps_to_i915(rps);
1722 
1723 	vlv_iosf_sb_get(i915,
1724 			BIT(VLV_IOSF_SB_PUNIT) |
1725 			BIT(VLV_IOSF_SB_NC) |
1726 			BIT(VLV_IOSF_SB_CCK));
1727 
1728 	vlv_init_gpll_ref_freq(rps);
1729 
1730 	rps->max_freq = chv_rps_max_freq(rps);
1731 	rps->rp0_freq = rps->max_freq;
1732 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1733 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1734 
1735 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1736 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1737 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1738 
1739 	rps->rp1_freq = chv_rps_guar_freq(rps);
1740 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1741 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1742 
1743 	rps->min_freq = chv_rps_min_freq(rps);
1744 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1745 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1746 
1747 	vlv_iosf_sb_put(i915,
1748 			BIT(VLV_IOSF_SB_PUNIT) |
1749 			BIT(VLV_IOSF_SB_NC) |
1750 			BIT(VLV_IOSF_SB_CCK));
1751 
1752 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1753 				   rps->rp1_freq | rps->min_freq) & 1,
1754 		      "Odd GPU freq values\n");
1755 }
1756 
1757 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1758 {
1759 	ei->ktime = ktime_get_raw();
1760 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1761 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1762 }
1763 
1764 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1765 {
1766 	struct intel_uncore *uncore = rps_to_uncore(rps);
1767 	const struct intel_rps_ei *prev = &rps->ei;
1768 	struct intel_rps_ei now;
1769 	u32 events = 0;
1770 
1771 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1772 		return 0;
1773 
1774 	vlv_c0_read(uncore, &now);
1775 
1776 	if (prev->ktime) {
1777 		u64 time, c0;
1778 		u32 render, media;
1779 
1780 		time = ktime_us_delta(now.ktime, prev->ktime);
1781 
1782 		time *= rps_to_i915(rps)->czclk_freq;
1783 
1784 		/* Workload can be split between render + media,
1785 		 * e.g. SwapBuffers being blitted in X after being rendered in
1786 		 * mesa. To account for this we need to combine both engines
1787 		 * into our activity counter.
1788 		 */
1789 		render = now.render_c0 - prev->render_c0;
1790 		media = now.media_c0 - prev->media_c0;
1791 		c0 = max(render, media);
1792 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1793 
1794 		if (c0 > time * rps->power.up_threshold)
1795 			events = GEN6_PM_RP_UP_THRESHOLD;
1796 		else if (c0 < time * rps->power.down_threshold)
1797 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1798 	}
1799 
1800 	rps->ei = now;
1801 	return events;
1802 }
1803 
1804 static void rps_work(struct work_struct *work)
1805 {
1806 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1807 	struct intel_gt *gt = rps_to_gt(rps);
1808 	struct drm_i915_private *i915 = rps_to_i915(rps);
1809 	bool client_boost = false;
1810 	int new_freq, adj, min, max;
1811 	u32 pm_iir = 0;
1812 
1813 	spin_lock_irq(gt->irq_lock);
1814 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1815 	client_boost = atomic_read(&rps->num_waiters);
1816 	spin_unlock_irq(gt->irq_lock);
1817 
1818 	/* Make sure we didn't queue anything we're not going to process. */
1819 	if (!pm_iir && !client_boost)
1820 		goto out;
1821 
1822 	mutex_lock(&rps->lock);
1823 	if (!intel_rps_is_active(rps)) {
1824 		mutex_unlock(&rps->lock);
1825 		return;
1826 	}
1827 
1828 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1829 
1830 	adj = rps->last_adj;
1831 	new_freq = rps->cur_freq;
1832 	min = rps->min_freq_softlimit;
1833 	max = rps->max_freq_softlimit;
1834 	if (client_boost)
1835 		max = rps->max_freq;
1836 
1837 	GT_TRACE(gt,
1838 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1839 		 pm_iir, str_yes_no(client_boost),
1840 		 adj, new_freq, min, max);
1841 
1842 	if (client_boost && new_freq < rps->boost_freq) {
1843 		new_freq = rps->boost_freq;
1844 		adj = 0;
1845 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1846 		if (adj > 0)
1847 			adj *= 2;
1848 		else /* CHV needs even encode values */
1849 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1850 
1851 		if (new_freq >= rps->max_freq_softlimit)
1852 			adj = 0;
1853 	} else if (client_boost) {
1854 		adj = 0;
1855 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1856 		if (rps->cur_freq > rps->efficient_freq)
1857 			new_freq = rps->efficient_freq;
1858 		else if (rps->cur_freq > rps->min_freq_softlimit)
1859 			new_freq = rps->min_freq_softlimit;
1860 		adj = 0;
1861 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1862 		if (adj < 0)
1863 			adj *= 2;
1864 		else /* CHV needs even encode values */
1865 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1866 
1867 		if (new_freq <= rps->min_freq_softlimit)
1868 			adj = 0;
1869 	} else { /* unknown event */
1870 		adj = 0;
1871 	}
1872 
1873 	/*
1874 	 * sysfs frequency limits may have snuck in while
1875 	 * servicing the interrupt
1876 	 */
1877 	new_freq += adj;
1878 	new_freq = clamp_t(int, new_freq, min, max);
1879 
1880 	if (intel_rps_set(rps, new_freq)) {
1881 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1882 		adj = 0;
1883 	}
1884 	rps->last_adj = adj;
1885 
1886 	mutex_unlock(&rps->lock);
1887 
1888 out:
1889 	spin_lock_irq(gt->irq_lock);
1890 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1891 	spin_unlock_irq(gt->irq_lock);
1892 }
1893 
1894 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1895 {
1896 	struct intel_gt *gt = rps_to_gt(rps);
1897 	const u32 events = rps->pm_events & pm_iir;
1898 
1899 	lockdep_assert_held(gt->irq_lock);
1900 
1901 	if (unlikely(!events))
1902 		return;
1903 
1904 	GT_TRACE(gt, "irq events:%x\n", events);
1905 
1906 	gen6_gt_pm_mask_irq(gt, events);
1907 
1908 	rps->pm_iir |= events;
1909 	queue_work(gt->i915->unordered_wq, &rps->work);
1910 }
1911 
1912 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1913 {
1914 	struct intel_gt *gt = rps_to_gt(rps);
1915 	u32 events;
1916 
1917 	events = pm_iir & rps->pm_events;
1918 	if (events) {
1919 		spin_lock(gt->irq_lock);
1920 
1921 		GT_TRACE(gt, "irq events:%x\n", events);
1922 
1923 		gen6_gt_pm_mask_irq(gt, events);
1924 		rps->pm_iir |= events;
1925 
1926 		queue_work(gt->i915->unordered_wq, &rps->work);
1927 		spin_unlock(gt->irq_lock);
1928 	}
1929 
1930 	if (GRAPHICS_VER(gt->i915) >= 8)
1931 		return;
1932 
1933 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1934 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1935 
1936 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1937 		drm_dbg(&rps_to_i915(rps)->drm,
1938 			"Command parser error, pm_iir 0x%08x\n", pm_iir);
1939 }
1940 
1941 void gen5_rps_irq_handler(struct intel_rps *rps)
1942 {
1943 	struct intel_uncore *uncore = rps_to_uncore(rps);
1944 	u32 busy_up, busy_down, max_avg, min_avg;
1945 	u8 new_freq;
1946 
1947 	spin_lock(&mchdev_lock);
1948 
1949 	intel_uncore_write16(uncore,
1950 			     MEMINTRSTS,
1951 			     intel_uncore_read(uncore, MEMINTRSTS));
1952 
1953 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1954 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1955 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1956 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1957 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1958 
1959 	/* Handle RCS change request from hw */
1960 	new_freq = rps->cur_freq;
1961 	if (busy_up > max_avg)
1962 		new_freq++;
1963 	else if (busy_down < min_avg)
1964 		new_freq--;
1965 	new_freq = clamp(new_freq,
1966 			 rps->min_freq_softlimit,
1967 			 rps->max_freq_softlimit);
1968 
1969 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1970 		rps->cur_freq = new_freq;
1971 
1972 	spin_unlock(&mchdev_lock);
1973 }
1974 
1975 void intel_rps_init_early(struct intel_rps *rps)
1976 {
1977 	mutex_init(&rps->lock);
1978 	mutex_init(&rps->power.mutex);
1979 
1980 	INIT_WORK(&rps->work, rps_work);
1981 	timer_setup(&rps->timer, rps_timer, 0);
1982 
1983 	atomic_set(&rps->num_waiters, 0);
1984 }
1985 
1986 void intel_rps_init(struct intel_rps *rps)
1987 {
1988 	struct drm_i915_private *i915 = rps_to_i915(rps);
1989 
1990 	if (rps_uses_slpc(rps))
1991 		return;
1992 
1993 	if (IS_CHERRYVIEW(i915))
1994 		chv_rps_init(rps);
1995 	else if (IS_VALLEYVIEW(i915))
1996 		vlv_rps_init(rps);
1997 	else if (GRAPHICS_VER(i915) >= 6)
1998 		gen6_rps_init(rps);
1999 	else if (IS_IRONLAKE_M(i915))
2000 		gen5_rps_init(rps);
2001 
2002 	/* Derive initial user preferences/limits from the hardware limits */
2003 	rps->max_freq_softlimit = rps->max_freq;
2004 	rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2005 	rps->min_freq_softlimit = rps->min_freq;
2006 	rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2007 
2008 	/* After setting max-softlimit, find the overclock max freq */
2009 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2010 		u32 params = 0;
2011 
2012 		snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
2013 		if (params & BIT(31)) { /* OC supported */
2014 			drm_dbg(&i915->drm,
2015 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2016 				(rps->max_freq & 0xff) * 50,
2017 				(params & 0xff) * 50);
2018 			rps->max_freq = params & 0xff;
2019 		}
2020 	}
2021 
2022 	/* Set default thresholds in % */
2023 	rps->power.up_threshold = 95;
2024 	rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2025 	rps->power.down_threshold = 85;
2026 	rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2027 
2028 	/* Finally allow us to boost to max by default */
2029 	rps->boost_freq = rps->max_freq;
2030 	rps->idle_freq = rps->min_freq;
2031 
2032 	/* Start in the middle, from here we will autotune based on workload */
2033 	rps->cur_freq = rps->efficient_freq;
2034 
2035 	rps->pm_intrmsk_mbz = 0;
2036 
2037 	/*
2038 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2039 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
2040 	 *
2041 	 * TODO: verify if this can be reproduced on VLV,CHV.
2042 	 */
2043 	if (GRAPHICS_VER(i915) <= 7)
2044 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2045 
2046 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2047 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2048 
2049 	/* GuC needs ARAT expired interrupt unmasked */
2050 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2051 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2052 }
2053 
2054 void intel_rps_sanitize(struct intel_rps *rps)
2055 {
2056 	if (rps_uses_slpc(rps))
2057 		return;
2058 
2059 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2060 		rps_disable_interrupts(rps);
2061 }
2062 
2063 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2064 {
2065 	struct drm_i915_private *i915 = rps_to_i915(rps);
2066 	i915_reg_t rpstat;
2067 
2068 	rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2069 
2070 	return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2071 }
2072 
2073 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2074 {
2075 	struct drm_i915_private *i915 = rps_to_i915(rps);
2076 	u32 cagf;
2077 
2078 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2079 		cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2080 	else if (GRAPHICS_VER(i915) >= 12)
2081 		cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2082 	else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2083 		cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2084 	else if (GRAPHICS_VER(i915) >= 9)
2085 		cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2086 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2087 		cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2088 	else if (GRAPHICS_VER(i915) >= 6)
2089 		cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2090 	else
2091 		cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2092 
2093 	return cagf;
2094 }
2095 
2096 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2097 {
2098 	struct drm_i915_private *i915 = rps_to_i915(rps);
2099 	struct intel_uncore *uncore = rps_to_uncore(rps);
2100 	i915_reg_t r = INVALID_MMIO_REG;
2101 	u32 freq;
2102 
2103 	/*
2104 	 * For Gen12+ reading freq from HW does not need a forcewake and
2105 	 * registers will return 0 freq when GT is in RC6
2106 	 */
2107 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2108 		r = MTL_MIRROR_TARGET_WP1;
2109 	} else if (GRAPHICS_VER(i915) >= 12) {
2110 		r = GEN12_RPSTAT1;
2111 	} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2112 		vlv_punit_get(i915);
2113 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2114 		vlv_punit_put(i915);
2115 	} else if (GRAPHICS_VER(i915) >= 6) {
2116 		r = GEN6_RPSTAT1;
2117 	} else {
2118 		r = MEMSTAT_ILK;
2119 	}
2120 
2121 	if (i915_mmio_reg_valid(r))
2122 		freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2123 
2124 	return intel_rps_get_cagf(rps, freq);
2125 }
2126 
2127 static u32 read_cagf(struct intel_rps *rps)
2128 {
2129 	return __read_cagf(rps, true);
2130 }
2131 
2132 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2133 {
2134 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2135 	intel_wakeref_t wakeref;
2136 	u32 freq = 0;
2137 
2138 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2139 		freq = intel_gpu_freq(rps, read_cagf(rps));
2140 
2141 	return freq;
2142 }
2143 
2144 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2145 {
2146 	return intel_gpu_freq(rps, __read_cagf(rps, false));
2147 }
2148 
2149 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2150 {
2151 	struct intel_uncore *uncore = rps_to_uncore(rps);
2152 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2153 	intel_wakeref_t wakeref;
2154 	u32 freq = 0;
2155 
2156 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2157 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2158 
2159 	return freq;
2160 }
2161 
2162 static u32 intel_rps_get_req(u32 pureq)
2163 {
2164 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2165 
2166 	return req;
2167 }
2168 
2169 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2170 {
2171 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2172 
2173 	return intel_gpu_freq(rps, freq);
2174 }
2175 
2176 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2177 {
2178 	if (rps_uses_slpc(rps))
2179 		return intel_rps_read_punit_req_frequency(rps);
2180 	else
2181 		return intel_gpu_freq(rps, rps->cur_freq);
2182 }
2183 
2184 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2185 {
2186 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2187 
2188 	if (rps_uses_slpc(rps))
2189 		return slpc->max_freq_softlimit;
2190 	else
2191 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2192 }
2193 
2194 /**
2195  * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2196  * @rps: the intel_rps structure
2197  *
2198  * Returns the max frequency in a raw format. In newer platforms raw is in
2199  * units of 50 MHz.
2200  */
2201 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2202 {
2203 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2204 	u32 freq;
2205 
2206 	if (rps_uses_slpc(rps)) {
2207 		return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2208 					 GT_FREQUENCY_MULTIPLIER);
2209 	} else {
2210 		freq = rps->max_freq;
2211 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2212 			/* Convert GT frequency to 50 MHz units */
2213 			freq /= GEN9_FREQ_SCALER;
2214 		}
2215 		return freq;
2216 	}
2217 }
2218 
2219 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2220 {
2221 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2222 
2223 	if (rps_uses_slpc(rps))
2224 		return slpc->rp0_freq;
2225 	else
2226 		return intel_gpu_freq(rps, rps->rp0_freq);
2227 }
2228 
2229 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2230 {
2231 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2232 
2233 	if (rps_uses_slpc(rps))
2234 		return slpc->rp1_freq;
2235 	else
2236 		return intel_gpu_freq(rps, rps->rp1_freq);
2237 }
2238 
2239 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2240 {
2241 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2242 
2243 	if (rps_uses_slpc(rps))
2244 		return slpc->min_freq;
2245 	else
2246 		return intel_gpu_freq(rps, rps->min_freq);
2247 }
2248 
2249 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2250 {
2251 	struct intel_gt *gt = rps_to_gt(rps);
2252 	struct drm_i915_private *i915 = gt->i915;
2253 	struct intel_uncore *uncore = gt->uncore;
2254 	struct intel_rps_freq_caps caps;
2255 	u32 rp_state_limits;
2256 	u32 gt_perf_status;
2257 	u32 rpmodectl, rpinclimit, rpdeclimit;
2258 	u32 rpstat, cagf, reqf;
2259 	u32 rpcurupei, rpcurup, rpprevup;
2260 	u32 rpcurdownei, rpcurdown, rpprevdown;
2261 	u32 rpupei, rpupt, rpdownei, rpdownt;
2262 	u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2263 
2264 	rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2265 	gen6_rps_get_freq_caps(rps, &caps);
2266 	if (IS_GEN9_LP(i915))
2267 		gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2268 	else
2269 		gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2270 
2271 	/* RPSTAT1 is in the GT power well */
2272 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2273 
2274 	reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2275 	if (GRAPHICS_VER(i915) >= 9) {
2276 		reqf >>= 23;
2277 	} else {
2278 		reqf &= ~GEN6_TURBO_DISABLE;
2279 		if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2280 			reqf >>= 24;
2281 		else
2282 			reqf >>= 25;
2283 	}
2284 	reqf = intel_gpu_freq(rps, reqf);
2285 
2286 	rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2287 	rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2288 	rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2289 
2290 	rpstat = intel_rps_read_rpstat(rps);
2291 	rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2292 	rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2293 	rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2294 	rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2295 	rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2296 	rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2297 
2298 	rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2299 	rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2300 
2301 	rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2302 	rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2303 
2304 	cagf = intel_rps_read_actual_frequency(rps);
2305 
2306 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2307 
2308 	if (GRAPHICS_VER(i915) >= 11) {
2309 		pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2310 		pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2311 		/*
2312 		 * The equivalent to the PM ISR & IIR cannot be read
2313 		 * without affecting the current state of the system
2314 		 */
2315 		pm_isr = 0;
2316 		pm_iir = 0;
2317 	} else if (GRAPHICS_VER(i915) >= 8) {
2318 		pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2319 		pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2320 		pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2321 		pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2322 	} else {
2323 		pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2324 		pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2325 		pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2326 		pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2327 	}
2328 	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2329 
2330 	drm_printf(p, "Video Turbo Mode: %s\n",
2331 		   str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2332 	drm_printf(p, "HW control enabled: %s\n",
2333 		   str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2334 	drm_printf(p, "SW control enabled: %s\n",
2335 		   str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2336 
2337 	drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2338 		   pm_ier, pm_imr, pm_mask);
2339 	if (GRAPHICS_VER(i915) <= 10)
2340 		drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2341 			   pm_isr, pm_iir);
2342 	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2343 		   rps->pm_intrmsk_mbz);
2344 	drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2345 	drm_printf(p, "Render p-state ratio: %d\n",
2346 		   (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2347 	drm_printf(p, "Render p-state VID: %d\n",
2348 		   gt_perf_status & 0xff);
2349 	drm_printf(p, "Render p-state limit: %d\n",
2350 		   rp_state_limits & 0xff);
2351 	drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2352 	drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2353 	drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2354 	drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2355 	drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2356 	drm_printf(p, "CAGF: %dMHz\n", cagf);
2357 	drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2358 		   rpcurupei,
2359 		   intel_gt_pm_interval_to_ns(gt, rpcurupei));
2360 	drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2361 		   rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2362 	drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2363 		   rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2364 	drm_printf(p, "Up threshold: %d%%\n",
2365 		   rps->power.up_threshold);
2366 	drm_printf(p, "RP UP EI: %d (%lldns)\n",
2367 		   rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2368 	drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2369 		   rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2370 
2371 	drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2372 		   rpcurdownei,
2373 		   intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2374 	drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2375 		   rpcurdown,
2376 		   intel_gt_pm_interval_to_ns(gt, rpcurdown));
2377 	drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2378 		   rpprevdown,
2379 		   intel_gt_pm_interval_to_ns(gt, rpprevdown));
2380 	drm_printf(p, "Down threshold: %d%%\n",
2381 		   rps->power.down_threshold);
2382 	drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2383 		   rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2384 	drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2385 		   rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2386 
2387 	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2388 		   intel_gpu_freq(rps, caps.min_freq));
2389 	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2390 		   intel_gpu_freq(rps, caps.rp1_freq));
2391 	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2392 		   intel_gpu_freq(rps, caps.rp0_freq));
2393 	drm_printf(p, "Max overclocked frequency: %dMHz\n",
2394 		   intel_gpu_freq(rps, rps->max_freq));
2395 
2396 	drm_printf(p, "Current freq: %d MHz\n",
2397 		   intel_gpu_freq(rps, rps->cur_freq));
2398 	drm_printf(p, "Actual freq: %d MHz\n", cagf);
2399 	drm_printf(p, "Idle freq: %d MHz\n",
2400 		   intel_gpu_freq(rps, rps->idle_freq));
2401 	drm_printf(p, "Min freq: %d MHz\n",
2402 		   intel_gpu_freq(rps, rps->min_freq));
2403 	drm_printf(p, "Boost freq: %d MHz\n",
2404 		   intel_gpu_freq(rps, rps->boost_freq));
2405 	drm_printf(p, "Max freq: %d MHz\n",
2406 		   intel_gpu_freq(rps, rps->max_freq));
2407 	drm_printf(p,
2408 		   "efficient (RPe) frequency: %d MHz\n",
2409 		   intel_gpu_freq(rps, rps->efficient_freq));
2410 }
2411 
2412 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2413 {
2414 	struct intel_gt *gt = rps_to_gt(rps);
2415 	struct intel_uncore *uncore = gt->uncore;
2416 	struct intel_rps_freq_caps caps;
2417 	u32 pm_mask;
2418 
2419 	gen6_rps_get_freq_caps(rps, &caps);
2420 	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2421 
2422 	drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2423 	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2424 		   rps->pm_intrmsk_mbz);
2425 	drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2426 	drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2427 	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2428 		   intel_gpu_freq(rps, caps.min_freq));
2429 	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2430 		   intel_gpu_freq(rps, caps.rp1_freq));
2431 	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2432 		   intel_gpu_freq(rps, caps.rp0_freq));
2433 	drm_printf(p, "Current freq: %d MHz\n",
2434 		   intel_rps_get_requested_frequency(rps));
2435 	drm_printf(p, "Actual freq: %d MHz\n",
2436 		   intel_rps_read_actual_frequency(rps));
2437 	drm_printf(p, "Min freq: %d MHz\n",
2438 		   intel_rps_get_min_frequency(rps));
2439 	drm_printf(p, "Boost freq: %d MHz\n",
2440 		   intel_rps_get_boost_frequency(rps));
2441 	drm_printf(p, "Max freq: %d MHz\n",
2442 		   intel_rps_get_max_frequency(rps));
2443 	drm_printf(p,
2444 		   "efficient (RPe) frequency: %d MHz\n",
2445 		   intel_gpu_freq(rps, caps.rp1_freq));
2446 }
2447 
2448 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2449 {
2450 	if (rps_uses_slpc(rps))
2451 		return slpc_frequency_dump(rps, p);
2452 	else
2453 		return rps_frequency_dump(rps, p);
2454 }
2455 
2456 static int set_max_freq(struct intel_rps *rps, u32 val)
2457 {
2458 	struct drm_i915_private *i915 = rps_to_i915(rps);
2459 	int ret = 0;
2460 
2461 	mutex_lock(&rps->lock);
2462 
2463 	val = intel_freq_opcode(rps, val);
2464 	if (val < rps->min_freq ||
2465 	    val > rps->max_freq ||
2466 	    val < rps->min_freq_softlimit) {
2467 		ret = -EINVAL;
2468 		goto unlock;
2469 	}
2470 
2471 	if (val > rps->rp0_freq)
2472 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2473 			intel_gpu_freq(rps, val));
2474 
2475 	rps->max_freq_softlimit = val;
2476 
2477 	val = clamp_t(int, rps->cur_freq,
2478 		      rps->min_freq_softlimit,
2479 		      rps->max_freq_softlimit);
2480 
2481 	/*
2482 	 * We still need *_set_rps to process the new max_delay and
2483 	 * update the interrupt limits and PMINTRMSK even though
2484 	 * frequency request may be unchanged.
2485 	 */
2486 	intel_rps_set(rps, val);
2487 
2488 unlock:
2489 	mutex_unlock(&rps->lock);
2490 
2491 	return ret;
2492 }
2493 
2494 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2495 {
2496 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2497 
2498 	if (rps_uses_slpc(rps))
2499 		return intel_guc_slpc_set_max_freq(slpc, val);
2500 	else
2501 		return set_max_freq(rps, val);
2502 }
2503 
2504 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2505 {
2506 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2507 
2508 	if (rps_uses_slpc(rps))
2509 		return slpc->min_freq_softlimit;
2510 	else
2511 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2512 }
2513 
2514 /**
2515  * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2516  * @rps: the intel_rps structure
2517  *
2518  * Returns the min frequency in a raw format. In newer platforms raw is in
2519  * units of 50 MHz.
2520  */
2521 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2522 {
2523 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2524 	u32 freq;
2525 
2526 	if (rps_uses_slpc(rps)) {
2527 		return DIV_ROUND_CLOSEST(slpc->min_freq,
2528 					 GT_FREQUENCY_MULTIPLIER);
2529 	} else {
2530 		freq = rps->min_freq;
2531 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2532 			/* Convert GT frequency to 50 MHz units */
2533 			freq /= GEN9_FREQ_SCALER;
2534 		}
2535 		return freq;
2536 	}
2537 }
2538 
2539 static int set_min_freq(struct intel_rps *rps, u32 val)
2540 {
2541 	int ret = 0;
2542 
2543 	mutex_lock(&rps->lock);
2544 
2545 	val = intel_freq_opcode(rps, val);
2546 	if (val < rps->min_freq ||
2547 	    val > rps->max_freq ||
2548 	    val > rps->max_freq_softlimit) {
2549 		ret = -EINVAL;
2550 		goto unlock;
2551 	}
2552 
2553 	rps->min_freq_softlimit = val;
2554 
2555 	val = clamp_t(int, rps->cur_freq,
2556 		      rps->min_freq_softlimit,
2557 		      rps->max_freq_softlimit);
2558 
2559 	/*
2560 	 * We still need *_set_rps to process the new min_delay and
2561 	 * update the interrupt limits and PMINTRMSK even though
2562 	 * frequency request may be unchanged.
2563 	 */
2564 	intel_rps_set(rps, val);
2565 
2566 unlock:
2567 	mutex_unlock(&rps->lock);
2568 
2569 	return ret;
2570 }
2571 
2572 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2573 {
2574 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2575 
2576 	if (rps_uses_slpc(rps))
2577 		return intel_guc_slpc_set_min_freq(slpc, val);
2578 	else
2579 		return set_min_freq(rps, val);
2580 }
2581 
2582 u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2583 {
2584 	return rps->power.up_threshold;
2585 }
2586 
2587 static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2588 {
2589 	int ret;
2590 
2591 	if (val > 100)
2592 		return -EINVAL;
2593 
2594 	ret = mutex_lock_interruptible(&rps->lock);
2595 	if (ret)
2596 		return ret;
2597 
2598 	if (*threshold == val)
2599 		goto out_unlock;
2600 
2601 	*threshold = val;
2602 
2603 	/* Force reset. */
2604 	rps->last_freq = -1;
2605 	mutex_lock(&rps->power.mutex);
2606 	rps->power.mode = -1;
2607 	mutex_unlock(&rps->power.mutex);
2608 
2609 	intel_rps_set(rps, clamp(rps->cur_freq,
2610 				 rps->min_freq_softlimit,
2611 				 rps->max_freq_softlimit));
2612 
2613 out_unlock:
2614 	mutex_unlock(&rps->lock);
2615 
2616 	return ret;
2617 }
2618 
2619 int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2620 {
2621 	return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2622 }
2623 
2624 u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2625 {
2626 	return rps->power.down_threshold;
2627 }
2628 
2629 int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2630 {
2631 	return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2632 }
2633 
2634 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2635 {
2636 	struct intel_uncore *uncore = rps_to_uncore(rps);
2637 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2638 
2639 	/* Allow punit to process software requests */
2640 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2641 }
2642 
2643 void intel_rps_raise_unslice(struct intel_rps *rps)
2644 {
2645 	struct intel_uncore *uncore = rps_to_uncore(rps);
2646 
2647 	mutex_lock(&rps->lock);
2648 
2649 	if (rps_uses_slpc(rps)) {
2650 		/* RP limits have not been initialized yet for SLPC path */
2651 		struct intel_rps_freq_caps caps;
2652 
2653 		gen6_rps_get_freq_caps(rps, &caps);
2654 
2655 		intel_rps_set_manual(rps, true);
2656 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2657 				   ((caps.rp0_freq <<
2658 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2659 				   GEN9_IGNORE_SLICE_RATIO));
2660 		intel_rps_set_manual(rps, false);
2661 	} else {
2662 		intel_rps_set(rps, rps->rp0_freq);
2663 	}
2664 
2665 	mutex_unlock(&rps->lock);
2666 }
2667 
2668 void intel_rps_lower_unslice(struct intel_rps *rps)
2669 {
2670 	struct intel_uncore *uncore = rps_to_uncore(rps);
2671 
2672 	mutex_lock(&rps->lock);
2673 
2674 	if (rps_uses_slpc(rps)) {
2675 		/* RP limits have not been initialized yet for SLPC path */
2676 		struct intel_rps_freq_caps caps;
2677 
2678 		gen6_rps_get_freq_caps(rps, &caps);
2679 
2680 		intel_rps_set_manual(rps, true);
2681 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2682 				   ((caps.min_freq <<
2683 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2684 				   GEN9_IGNORE_SLICE_RATIO));
2685 		intel_rps_set_manual(rps, false);
2686 	} else {
2687 		intel_rps_set(rps, rps->min_freq);
2688 	}
2689 
2690 	mutex_unlock(&rps->lock);
2691 }
2692 
2693 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2694 {
2695 	struct intel_gt *gt = rps_to_gt(rps);
2696 	intel_wakeref_t wakeref;
2697 	u32 val;
2698 
2699 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2700 		val = intel_uncore_read(gt->uncore, reg32);
2701 
2702 	return val;
2703 }
2704 
2705 bool rps_read_mask_mmio(struct intel_rps *rps,
2706 			i915_reg_t reg32, u32 mask)
2707 {
2708 	return rps_read_mmio(rps, reg32) & mask;
2709 }
2710 
2711 /* External interface for intel_ips.ko */
2712 
2713 static struct drm_i915_private __rcu *ips_mchdev;
2714 
2715 /*
2716  * Tells the intel_ips driver that the i915 driver is now loaded, if
2717  * IPS got loaded first.
2718  *
2719  * This awkward dance is so that neither module has to depend on the
2720  * other in order for IPS to do the appropriate communication of
2721  * GPU turbo limits to i915.
2722  */
2723 static void
2724 ips_ping_for_i915_load(void)
2725 {
2726 	void (*link)(void);
2727 
2728 	link = symbol_get(ips_link_to_i915_driver);
2729 	if (link) {
2730 		link();
2731 		symbol_put(ips_link_to_i915_driver);
2732 	}
2733 }
2734 
2735 void intel_rps_driver_register(struct intel_rps *rps)
2736 {
2737 	struct intel_gt *gt = rps_to_gt(rps);
2738 
2739 	/*
2740 	 * We only register the i915 ips part with intel-ips once everything is
2741 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2742 	 */
2743 	if (GRAPHICS_VER(gt->i915) == 5) {
2744 		GEM_BUG_ON(ips_mchdev);
2745 		rcu_assign_pointer(ips_mchdev, gt->i915);
2746 		ips_ping_for_i915_load();
2747 	}
2748 }
2749 
2750 void intel_rps_driver_unregister(struct intel_rps *rps)
2751 {
2752 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2753 		rcu_assign_pointer(ips_mchdev, NULL);
2754 }
2755 
2756 static struct drm_i915_private *mchdev_get(void)
2757 {
2758 	struct drm_i915_private *i915;
2759 
2760 	rcu_read_lock();
2761 	i915 = rcu_dereference(ips_mchdev);
2762 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2763 		i915 = NULL;
2764 	rcu_read_unlock();
2765 
2766 	return i915;
2767 }
2768 
2769 /**
2770  * i915_read_mch_val - return value for IPS use
2771  *
2772  * Calculate and return a value for the IPS driver to use when deciding whether
2773  * we have thermal and power headroom to increase CPU or GPU power budget.
2774  */
2775 unsigned long i915_read_mch_val(void)
2776 {
2777 	struct drm_i915_private *i915;
2778 	unsigned long chipset_val = 0;
2779 	unsigned long graphics_val = 0;
2780 	intel_wakeref_t wakeref;
2781 
2782 	i915 = mchdev_get();
2783 	if (!i915)
2784 		return 0;
2785 
2786 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2787 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2788 
2789 		spin_lock_irq(&mchdev_lock);
2790 		chipset_val = __ips_chipset_val(ips);
2791 		graphics_val = __ips_gfx_val(ips);
2792 		spin_unlock_irq(&mchdev_lock);
2793 	}
2794 
2795 	drm_dev_put(&i915->drm);
2796 	return chipset_val + graphics_val;
2797 }
2798 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2799 
2800 /**
2801  * i915_gpu_raise - raise GPU frequency limit
2802  *
2803  * Raise the limit; IPS indicates we have thermal headroom.
2804  */
2805 bool i915_gpu_raise(void)
2806 {
2807 	struct drm_i915_private *i915;
2808 	struct intel_rps *rps;
2809 
2810 	i915 = mchdev_get();
2811 	if (!i915)
2812 		return false;
2813 
2814 	rps = &to_gt(i915)->rps;
2815 
2816 	spin_lock_irq(&mchdev_lock);
2817 	if (rps->max_freq_softlimit < rps->max_freq)
2818 		rps->max_freq_softlimit++;
2819 	spin_unlock_irq(&mchdev_lock);
2820 
2821 	drm_dev_put(&i915->drm);
2822 	return true;
2823 }
2824 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2825 
2826 /**
2827  * i915_gpu_lower - lower GPU frequency limit
2828  *
2829  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2830  * frequency maximum.
2831  */
2832 bool i915_gpu_lower(void)
2833 {
2834 	struct drm_i915_private *i915;
2835 	struct intel_rps *rps;
2836 
2837 	i915 = mchdev_get();
2838 	if (!i915)
2839 		return false;
2840 
2841 	rps = &to_gt(i915)->rps;
2842 
2843 	spin_lock_irq(&mchdev_lock);
2844 	if (rps->max_freq_softlimit > rps->min_freq)
2845 		rps->max_freq_softlimit--;
2846 	spin_unlock_irq(&mchdev_lock);
2847 
2848 	drm_dev_put(&i915->drm);
2849 	return true;
2850 }
2851 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2852 
2853 /**
2854  * i915_gpu_busy - indicate GPU business to IPS
2855  *
2856  * Tell the IPS driver whether or not the GPU is busy.
2857  */
2858 bool i915_gpu_busy(void)
2859 {
2860 	struct drm_i915_private *i915;
2861 	bool ret;
2862 
2863 	i915 = mchdev_get();
2864 	if (!i915)
2865 		return false;
2866 
2867 	ret = to_gt(i915)->awake;
2868 
2869 	drm_dev_put(&i915->drm);
2870 	return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2873 
2874 /**
2875  * i915_gpu_turbo_disable - disable graphics turbo
2876  *
2877  * Disable graphics turbo by resetting the max frequency and setting the
2878  * current frequency to the default.
2879  */
2880 bool i915_gpu_turbo_disable(void)
2881 {
2882 	struct drm_i915_private *i915;
2883 	struct intel_rps *rps;
2884 	bool ret;
2885 
2886 	i915 = mchdev_get();
2887 	if (!i915)
2888 		return false;
2889 
2890 	rps = &to_gt(i915)->rps;
2891 
2892 	spin_lock_irq(&mchdev_lock);
2893 	rps->max_freq_softlimit = rps->min_freq;
2894 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2895 	spin_unlock_irq(&mchdev_lock);
2896 
2897 	drm_dev_put(&i915->drm);
2898 	return ret;
2899 }
2900 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2901 
2902 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2903 #include "selftest_rps.c"
2904 #include "selftest_slpc.c"
2905 #endif
2906