xref: /linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 47b60ec7ba22a6359379bce9643bfff7a1ffe9ed)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/i915_drm.h>
9 
10 #include "display/intel_display.h"
11 #include "i915_drv.h"
12 #include "i915_irq.h"
13 #include "intel_breadcrumbs.h"
14 #include "intel_gt.h"
15 #include "intel_gt_clock_utils.h"
16 #include "intel_gt_irq.h"
17 #include "intel_gt_pm_irq.h"
18 #include "intel_gt_regs.h"
19 #include "intel_mchbar_regs.h"
20 #include "intel_pcode.h"
21 #include "intel_rps.h"
22 #include "vlv_sideband.h"
23 #include "../../../platform/x86/intel_ips.h"
24 
25 #define BUSY_MAX_EI	20u /* ms */
26 
27 /*
28  * Lock protecting IPS related data structures
29  */
30 static DEFINE_SPINLOCK(mchdev_lock);
31 
32 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
33 {
34 	return container_of(rps, struct intel_gt, rps);
35 }
36 
37 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
38 {
39 	return rps_to_gt(rps)->i915;
40 }
41 
42 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
43 {
44 	return rps_to_gt(rps)->uncore;
45 }
46 
47 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
48 {
49 	struct intel_gt *gt = rps_to_gt(rps);
50 
51 	return &gt->uc.guc.slpc;
52 }
53 
54 static bool rps_uses_slpc(struct intel_rps *rps)
55 {
56 	struct intel_gt *gt = rps_to_gt(rps);
57 
58 	return intel_uc_uses_guc_slpc(&gt->uc);
59 }
60 
61 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
62 {
63 	return mask & ~rps->pm_intrmsk_mbz;
64 }
65 
66 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
67 {
68 	intel_uncore_write_fw(uncore, reg, val);
69 }
70 
71 static void rps_timer(struct timer_list *t)
72 {
73 	struct intel_rps *rps = from_timer(rps, t, timer);
74 	struct intel_engine_cs *engine;
75 	ktime_t dt, last, timestamp;
76 	enum intel_engine_id id;
77 	s64 max_busy[3] = {};
78 
79 	timestamp = 0;
80 	for_each_engine(engine, rps_to_gt(rps), id) {
81 		s64 busy;
82 		int i;
83 
84 		dt = intel_engine_get_busy_time(engine, &timestamp);
85 		last = engine->stats.rps;
86 		engine->stats.rps = dt;
87 
88 		busy = ktime_to_ns(ktime_sub(dt, last));
89 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
90 			if (busy > max_busy[i])
91 				swap(busy, max_busy[i]);
92 		}
93 	}
94 	last = rps->pm_timestamp;
95 	rps->pm_timestamp = timestamp;
96 
97 	if (intel_rps_is_active(rps)) {
98 		s64 busy;
99 		int i;
100 
101 		dt = ktime_sub(timestamp, last);
102 
103 		/*
104 		 * Our goal is to evaluate each engine independently, so we run
105 		 * at the lowest clocks required to sustain the heaviest
106 		 * workload. However, a task may be split into sequential
107 		 * dependent operations across a set of engines, such that
108 		 * the independent contributions do not account for high load,
109 		 * but overall the task is GPU bound. For example, consider
110 		 * video decode on vcs followed by colour post-processing
111 		 * on vecs, followed by general post-processing on rcs.
112 		 * Since multi-engines being active does imply a single
113 		 * continuous workload across all engines, we hedge our
114 		 * bets by only contributing a factor of the distributed
115 		 * load into our busyness calculation.
116 		 */
117 		busy = max_busy[0];
118 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
119 			if (!max_busy[i])
120 				break;
121 
122 			busy += div_u64(max_busy[i], 1 << i);
123 		}
124 		GT_TRACE(rps_to_gt(rps),
125 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
126 			 busy, (int)div64_u64(100 * busy, dt),
127 			 max_busy[0], max_busy[1], max_busy[2],
128 			 rps->pm_interval);
129 
130 		if (100 * busy > rps->power.up_threshold * dt &&
131 		    rps->cur_freq < rps->max_freq_softlimit) {
132 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
133 			rps->pm_interval = 1;
134 			schedule_work(&rps->work);
135 		} else if (100 * busy < rps->power.down_threshold * dt &&
136 			   rps->cur_freq > rps->min_freq_softlimit) {
137 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
138 			rps->pm_interval = 1;
139 			schedule_work(&rps->work);
140 		} else {
141 			rps->last_adj = 0;
142 		}
143 
144 		mod_timer(&rps->timer,
145 			  jiffies + msecs_to_jiffies(rps->pm_interval));
146 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
147 	}
148 }
149 
150 static void rps_start_timer(struct intel_rps *rps)
151 {
152 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
153 	rps->pm_interval = 1;
154 	mod_timer(&rps->timer, jiffies + 1);
155 }
156 
157 static void rps_stop_timer(struct intel_rps *rps)
158 {
159 	del_timer_sync(&rps->timer);
160 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
161 	cancel_work_sync(&rps->work);
162 }
163 
164 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
165 {
166 	u32 mask = 0;
167 
168 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
169 	if (val > rps->min_freq_softlimit)
170 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
171 			 GEN6_PM_RP_DOWN_THRESHOLD |
172 			 GEN6_PM_RP_DOWN_TIMEOUT);
173 
174 	if (val < rps->max_freq_softlimit)
175 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
176 
177 	mask &= rps->pm_events;
178 
179 	return rps_pm_sanitize_mask(rps, ~mask);
180 }
181 
182 static void rps_reset_ei(struct intel_rps *rps)
183 {
184 	memset(&rps->ei, 0, sizeof(rps->ei));
185 }
186 
187 static void rps_enable_interrupts(struct intel_rps *rps)
188 {
189 	struct intel_gt *gt = rps_to_gt(rps);
190 
191 	GEM_BUG_ON(rps_uses_slpc(rps));
192 
193 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
194 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
195 
196 	rps_reset_ei(rps);
197 
198 	spin_lock_irq(gt->irq_lock);
199 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
200 	spin_unlock_irq(gt->irq_lock);
201 
202 	intel_uncore_write(gt->uncore,
203 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
204 }
205 
206 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
207 {
208 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
209 }
210 
211 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
212 {
213 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
214 		;
215 }
216 
217 static void rps_reset_interrupts(struct intel_rps *rps)
218 {
219 	struct intel_gt *gt = rps_to_gt(rps);
220 
221 	spin_lock_irq(gt->irq_lock);
222 	if (GRAPHICS_VER(gt->i915) >= 11)
223 		gen11_rps_reset_interrupts(rps);
224 	else
225 		gen6_rps_reset_interrupts(rps);
226 
227 	rps->pm_iir = 0;
228 	spin_unlock_irq(gt->irq_lock);
229 }
230 
231 static void rps_disable_interrupts(struct intel_rps *rps)
232 {
233 	struct intel_gt *gt = rps_to_gt(rps);
234 
235 	intel_uncore_write(gt->uncore,
236 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
237 
238 	spin_lock_irq(gt->irq_lock);
239 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
240 	spin_unlock_irq(gt->irq_lock);
241 
242 	intel_synchronize_irq(gt->i915);
243 
244 	/*
245 	 * Now that we will not be generating any more work, flush any
246 	 * outstanding tasks. As we are called on the RPS idle path,
247 	 * we will reset the GPU to minimum frequencies, so the current
248 	 * state of the worker can be discarded.
249 	 */
250 	cancel_work_sync(&rps->work);
251 
252 	rps_reset_interrupts(rps);
253 	GT_TRACE(gt, "interrupts:off\n");
254 }
255 
256 static const struct cparams {
257 	u16 i;
258 	u16 t;
259 	u16 m;
260 	u16 c;
261 } cparams[] = {
262 	{ 1, 1333, 301, 28664 },
263 	{ 1, 1066, 294, 24460 },
264 	{ 1, 800, 294, 25192 },
265 	{ 0, 1333, 276, 27605 },
266 	{ 0, 1066, 276, 27605 },
267 	{ 0, 800, 231, 23784 },
268 };
269 
270 static void gen5_rps_init(struct intel_rps *rps)
271 {
272 	struct drm_i915_private *i915 = rps_to_i915(rps);
273 	struct intel_uncore *uncore = rps_to_uncore(rps);
274 	u8 fmax, fmin, fstart;
275 	u32 rgvmodectl;
276 	int c_m, i;
277 
278 	if (i915->fsb_freq <= 3200)
279 		c_m = 0;
280 	else if (i915->fsb_freq <= 4800)
281 		c_m = 1;
282 	else
283 		c_m = 2;
284 
285 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
286 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
287 			rps->ips.m = cparams[i].m;
288 			rps->ips.c = cparams[i].c;
289 			break;
290 		}
291 	}
292 
293 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
294 
295 	/* Set up min, max, and cur for interrupt handling */
296 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
297 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
298 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
299 		MEMMODE_FSTART_SHIFT;
300 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
301 		fmax, fmin, fstart);
302 
303 	rps->min_freq = fmax;
304 	rps->efficient_freq = fstart;
305 	rps->max_freq = fmin;
306 }
307 
308 static unsigned long
309 __ips_chipset_val(struct intel_ips *ips)
310 {
311 	struct intel_uncore *uncore =
312 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
313 	unsigned long now = jiffies_to_msecs(jiffies), dt;
314 	unsigned long result;
315 	u64 total, delta;
316 
317 	lockdep_assert_held(&mchdev_lock);
318 
319 	/*
320 	 * Prevent division-by-zero if we are asking too fast.
321 	 * Also, we don't get interesting results if we are polling
322 	 * faster than once in 10ms, so just return the saved value
323 	 * in such cases.
324 	 */
325 	dt = now - ips->last_time1;
326 	if (dt <= 10)
327 		return ips->chipset_power;
328 
329 	/* FIXME: handle per-counter overflow */
330 	total = intel_uncore_read(uncore, DMIEC);
331 	total += intel_uncore_read(uncore, DDREC);
332 	total += intel_uncore_read(uncore, CSIEC);
333 
334 	delta = total - ips->last_count1;
335 
336 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
337 
338 	ips->last_count1 = total;
339 	ips->last_time1 = now;
340 
341 	ips->chipset_power = result;
342 
343 	return result;
344 }
345 
346 static unsigned long ips_mch_val(struct intel_uncore *uncore)
347 {
348 	unsigned int m, x, b;
349 	u32 tsfs;
350 
351 	tsfs = intel_uncore_read(uncore, TSFS);
352 	x = intel_uncore_read8(uncore, TR1);
353 
354 	b = tsfs & TSFS_INTR_MASK;
355 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
356 
357 	return m * x / 127 - b;
358 }
359 
360 static int _pxvid_to_vd(u8 pxvid)
361 {
362 	if (pxvid == 0)
363 		return 0;
364 
365 	if (pxvid >= 8 && pxvid < 31)
366 		pxvid = 31;
367 
368 	return (pxvid + 2) * 125;
369 }
370 
371 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
372 {
373 	const int vd = _pxvid_to_vd(pxvid);
374 
375 	if (INTEL_INFO(i915)->is_mobile)
376 		return max(vd - 1125, 0);
377 
378 	return vd;
379 }
380 
381 static void __gen5_ips_update(struct intel_ips *ips)
382 {
383 	struct intel_uncore *uncore =
384 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
385 	u64 now, delta, dt;
386 	u32 count;
387 
388 	lockdep_assert_held(&mchdev_lock);
389 
390 	now = ktime_get_raw_ns();
391 	dt = now - ips->last_time2;
392 	do_div(dt, NSEC_PER_MSEC);
393 
394 	/* Don't divide by 0 */
395 	if (dt <= 10)
396 		return;
397 
398 	count = intel_uncore_read(uncore, GFXEC);
399 	delta = count - ips->last_count2;
400 
401 	ips->last_count2 = count;
402 	ips->last_time2 = now;
403 
404 	/* More magic constants... */
405 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
406 }
407 
408 static void gen5_rps_update(struct intel_rps *rps)
409 {
410 	spin_lock_irq(&mchdev_lock);
411 	__gen5_ips_update(&rps->ips);
412 	spin_unlock_irq(&mchdev_lock);
413 }
414 
415 static unsigned int gen5_invert_freq(struct intel_rps *rps,
416 				     unsigned int val)
417 {
418 	/* Invert the frequency bin into an ips delay */
419 	val = rps->max_freq - val;
420 	val = rps->min_freq + val;
421 
422 	return val;
423 }
424 
425 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
426 {
427 	struct intel_uncore *uncore = rps_to_uncore(rps);
428 	u16 rgvswctl;
429 
430 	lockdep_assert_held(&mchdev_lock);
431 
432 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
433 	if (rgvswctl & MEMCTL_CMD_STS) {
434 		drm_dbg(&rps_to_i915(rps)->drm,
435 			"gpu busy, RCS change rejected\n");
436 		return -EBUSY; /* still busy with another command */
437 	}
438 
439 	/* Invert the frequency bin into an ips delay */
440 	val = gen5_invert_freq(rps, val);
441 
442 	rgvswctl =
443 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
444 		(val << MEMCTL_FREQ_SHIFT) |
445 		MEMCTL_SFCAVM;
446 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
447 	intel_uncore_posting_read16(uncore, MEMSWCTL);
448 
449 	rgvswctl |= MEMCTL_CMD_STS;
450 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
451 
452 	return 0;
453 }
454 
455 static int gen5_rps_set(struct intel_rps *rps, u8 val)
456 {
457 	int err;
458 
459 	spin_lock_irq(&mchdev_lock);
460 	err = __gen5_rps_set(rps, val);
461 	spin_unlock_irq(&mchdev_lock);
462 
463 	return err;
464 }
465 
466 static unsigned long intel_pxfreq(u32 vidfreq)
467 {
468 	int div = (vidfreq & 0x3f0000) >> 16;
469 	int post = (vidfreq & 0x3000) >> 12;
470 	int pre = (vidfreq & 0x7);
471 
472 	if (!pre)
473 		return 0;
474 
475 	return div * 133333 / (pre << post);
476 }
477 
478 static unsigned int init_emon(struct intel_uncore *uncore)
479 {
480 	u8 pxw[16];
481 	int i;
482 
483 	/* Disable to program */
484 	intel_uncore_write(uncore, ECR, 0);
485 	intel_uncore_posting_read(uncore, ECR);
486 
487 	/* Program energy weights for various events */
488 	intel_uncore_write(uncore, SDEW, 0x15040d00);
489 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
490 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
491 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
492 
493 	for (i = 0; i < 5; i++)
494 		intel_uncore_write(uncore, PEW(i), 0);
495 	for (i = 0; i < 3; i++)
496 		intel_uncore_write(uncore, DEW(i), 0);
497 
498 	/* Program P-state weights to account for frequency power adjustment */
499 	for (i = 0; i < 16; i++) {
500 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
501 		unsigned int freq = intel_pxfreq(pxvidfreq);
502 		unsigned int vid =
503 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
504 		unsigned int val;
505 
506 		val = vid * vid * freq / 1000 * 255;
507 		val /= 127 * 127 * 900;
508 
509 		pxw[i] = val;
510 	}
511 	/* Render standby states get 0 weight */
512 	pxw[14] = 0;
513 	pxw[15] = 0;
514 
515 	for (i = 0; i < 4; i++) {
516 		intel_uncore_write(uncore, PXW(i),
517 				   pxw[i * 4 + 0] << 24 |
518 				   pxw[i * 4 + 1] << 16 |
519 				   pxw[i * 4 + 2] <<  8 |
520 				   pxw[i * 4 + 3] <<  0);
521 	}
522 
523 	/* Adjust magic regs to magic values (more experimental results) */
524 	intel_uncore_write(uncore, OGW0, 0);
525 	intel_uncore_write(uncore, OGW1, 0);
526 	intel_uncore_write(uncore, EG0, 0x00007f00);
527 	intel_uncore_write(uncore, EG1, 0x0000000e);
528 	intel_uncore_write(uncore, EG2, 0x000e0000);
529 	intel_uncore_write(uncore, EG3, 0x68000300);
530 	intel_uncore_write(uncore, EG4, 0x42000000);
531 	intel_uncore_write(uncore, EG5, 0x00140031);
532 	intel_uncore_write(uncore, EG6, 0);
533 	intel_uncore_write(uncore, EG7, 0);
534 
535 	for (i = 0; i < 8; i++)
536 		intel_uncore_write(uncore, PXWL(i), 0);
537 
538 	/* Enable PMON + select events */
539 	intel_uncore_write(uncore, ECR, 0x80000019);
540 
541 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
542 }
543 
544 static bool gen5_rps_enable(struct intel_rps *rps)
545 {
546 	struct drm_i915_private *i915 = rps_to_i915(rps);
547 	struct intel_uncore *uncore = rps_to_uncore(rps);
548 	u8 fstart, vstart;
549 	u32 rgvmodectl;
550 
551 	spin_lock_irq(&mchdev_lock);
552 
553 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
554 
555 	/* Enable temp reporting */
556 	intel_uncore_write16(uncore, PMMISC,
557 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
558 	intel_uncore_write16(uncore, TSC1,
559 			     intel_uncore_read16(uncore, TSC1) | TSE);
560 
561 	/* 100ms RC evaluation intervals */
562 	intel_uncore_write(uncore, RCUPEI, 100000);
563 	intel_uncore_write(uncore, RCDNEI, 100000);
564 
565 	/* Set max/min thresholds to 90ms and 80ms respectively */
566 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
567 	intel_uncore_write(uncore, RCBMINAVG, 80000);
568 
569 	intel_uncore_write(uncore, MEMIHYST, 1);
570 
571 	/* Set up min, max, and cur for interrupt handling */
572 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
573 		MEMMODE_FSTART_SHIFT;
574 
575 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
576 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
577 
578 	intel_uncore_write(uncore,
579 			   MEMINTREN,
580 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
581 
582 	intel_uncore_write(uncore, VIDSTART, vstart);
583 	intel_uncore_posting_read(uncore, VIDSTART);
584 
585 	rgvmodectl |= MEMMODE_SWMODE_EN;
586 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
587 
588 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
589 			     MEMCTL_CMD_STS) == 0, 10))
590 		drm_err(&uncore->i915->drm,
591 			"stuck trying to change perf mode\n");
592 	mdelay(1);
593 
594 	__gen5_rps_set(rps, rps->cur_freq);
595 
596 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
597 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
598 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
599 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
600 
601 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
602 	rps->ips.last_time2 = ktime_get_raw_ns();
603 
604 	spin_lock(&i915->irq_lock);
605 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
606 	spin_unlock(&i915->irq_lock);
607 
608 	spin_unlock_irq(&mchdev_lock);
609 
610 	rps->ips.corr = init_emon(uncore);
611 
612 	return true;
613 }
614 
615 static void gen5_rps_disable(struct intel_rps *rps)
616 {
617 	struct drm_i915_private *i915 = rps_to_i915(rps);
618 	struct intel_uncore *uncore = rps_to_uncore(rps);
619 	u16 rgvswctl;
620 
621 	spin_lock_irq(&mchdev_lock);
622 
623 	spin_lock(&i915->irq_lock);
624 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
625 	spin_unlock(&i915->irq_lock);
626 
627 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
628 
629 	/* Ack interrupts, disable EFC interrupt */
630 	intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
631 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
632 
633 	/* Go back to the starting frequency */
634 	__gen5_rps_set(rps, rps->idle_freq);
635 	mdelay(1);
636 	rgvswctl |= MEMCTL_CMD_STS;
637 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
638 	mdelay(1);
639 
640 	spin_unlock_irq(&mchdev_lock);
641 }
642 
643 static u32 rps_limits(struct intel_rps *rps, u8 val)
644 {
645 	u32 limits;
646 
647 	/*
648 	 * Only set the down limit when we've reached the lowest level to avoid
649 	 * getting more interrupts, otherwise leave this clear. This prevents a
650 	 * race in the hw when coming out of rc6: There's a tiny window where
651 	 * the hw runs at the minimal clock before selecting the desired
652 	 * frequency, if the down threshold expires in that window we will not
653 	 * receive a down interrupt.
654 	 */
655 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
656 		limits = rps->max_freq_softlimit << 23;
657 		if (val <= rps->min_freq_softlimit)
658 			limits |= rps->min_freq_softlimit << 14;
659 	} else {
660 		limits = rps->max_freq_softlimit << 24;
661 		if (val <= rps->min_freq_softlimit)
662 			limits |= rps->min_freq_softlimit << 16;
663 	}
664 
665 	return limits;
666 }
667 
668 static void rps_set_power(struct intel_rps *rps, int new_power)
669 {
670 	struct intel_gt *gt = rps_to_gt(rps);
671 	struct intel_uncore *uncore = gt->uncore;
672 	u32 threshold_up = 0, threshold_down = 0; /* in % */
673 	u32 ei_up = 0, ei_down = 0;
674 
675 	lockdep_assert_held(&rps->power.mutex);
676 
677 	if (new_power == rps->power.mode)
678 		return;
679 
680 	threshold_up = 95;
681 	threshold_down = 85;
682 
683 	/* Note the units here are not exactly 1us, but 1280ns. */
684 	switch (new_power) {
685 	case LOW_POWER:
686 		ei_up = 16000;
687 		ei_down = 32000;
688 		break;
689 
690 	case BETWEEN:
691 		ei_up = 13000;
692 		ei_down = 32000;
693 		break;
694 
695 	case HIGH_POWER:
696 		ei_up = 10000;
697 		ei_down = 32000;
698 		break;
699 	}
700 
701 	/* When byt can survive without system hang with dynamic
702 	 * sw freq adjustments, this restriction can be lifted.
703 	 */
704 	if (IS_VALLEYVIEW(gt->i915))
705 		goto skip_hw_write;
706 
707 	GT_TRACE(gt,
708 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
710 
711 	set(uncore, GEN6_RP_UP_EI,
712 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
713 	set(uncore, GEN6_RP_UP_THRESHOLD,
714 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
715 
716 	set(uncore, GEN6_RP_DOWN_EI,
717 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
718 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
719 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
720 
721 	set(uncore, GEN6_RP_CONTROL,
722 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
723 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
724 	    GEN6_RP_MEDIA_IS_GFX |
725 	    GEN6_RP_ENABLE |
726 	    GEN6_RP_UP_BUSY_AVG |
727 	    GEN6_RP_DOWN_IDLE_AVG);
728 
729 skip_hw_write:
730 	rps->power.mode = new_power;
731 	rps->power.up_threshold = threshold_up;
732 	rps->power.down_threshold = threshold_down;
733 }
734 
735 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
736 {
737 	int new_power;
738 
739 	new_power = rps->power.mode;
740 	switch (rps->power.mode) {
741 	case LOW_POWER:
742 		if (val > rps->efficient_freq + 1 &&
743 		    val > rps->cur_freq)
744 			new_power = BETWEEN;
745 		break;
746 
747 	case BETWEEN:
748 		if (val <= rps->efficient_freq &&
749 		    val < rps->cur_freq)
750 			new_power = LOW_POWER;
751 		else if (val >= rps->rp0_freq &&
752 			 val > rps->cur_freq)
753 			new_power = HIGH_POWER;
754 		break;
755 
756 	case HIGH_POWER:
757 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
758 		    val < rps->cur_freq)
759 			new_power = BETWEEN;
760 		break;
761 	}
762 	/* Max/min bins are special */
763 	if (val <= rps->min_freq_softlimit)
764 		new_power = LOW_POWER;
765 	if (val >= rps->max_freq_softlimit)
766 		new_power = HIGH_POWER;
767 
768 	mutex_lock(&rps->power.mutex);
769 	if (rps->power.interactive)
770 		new_power = HIGH_POWER;
771 	rps_set_power(rps, new_power);
772 	mutex_unlock(&rps->power.mutex);
773 }
774 
775 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
776 {
777 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
778 		 str_yes_no(interactive));
779 
780 	mutex_lock(&rps->power.mutex);
781 	if (interactive) {
782 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
783 			rps_set_power(rps, HIGH_POWER);
784 	} else {
785 		GEM_BUG_ON(!rps->power.interactive);
786 		rps->power.interactive--;
787 	}
788 	mutex_unlock(&rps->power.mutex);
789 }
790 
791 static int gen6_rps_set(struct intel_rps *rps, u8 val)
792 {
793 	struct intel_uncore *uncore = rps_to_uncore(rps);
794 	struct drm_i915_private *i915 = rps_to_i915(rps);
795 	u32 swreq;
796 
797 	GEM_BUG_ON(rps_uses_slpc(rps));
798 
799 	if (GRAPHICS_VER(i915) >= 9)
800 		swreq = GEN9_FREQUENCY(val);
801 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
802 		swreq = HSW_FREQUENCY(val);
803 	else
804 		swreq = (GEN6_FREQUENCY(val) |
805 			 GEN6_OFFSET(0) |
806 			 GEN6_AGGRESSIVE_TURBO);
807 	set(uncore, GEN6_RPNSWREQ, swreq);
808 
809 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
810 		 val, intel_gpu_freq(rps, val), swreq);
811 
812 	return 0;
813 }
814 
815 static int vlv_rps_set(struct intel_rps *rps, u8 val)
816 {
817 	struct drm_i915_private *i915 = rps_to_i915(rps);
818 	int err;
819 
820 	vlv_punit_get(i915);
821 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
822 	vlv_punit_put(i915);
823 
824 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
825 		 val, intel_gpu_freq(rps, val));
826 
827 	return err;
828 }
829 
830 static int rps_set(struct intel_rps *rps, u8 val, bool update)
831 {
832 	struct drm_i915_private *i915 = rps_to_i915(rps);
833 	int err;
834 
835 	if (val == rps->last_freq)
836 		return 0;
837 
838 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
839 		err = vlv_rps_set(rps, val);
840 	else if (GRAPHICS_VER(i915) >= 6)
841 		err = gen6_rps_set(rps, val);
842 	else
843 		err = gen5_rps_set(rps, val);
844 	if (err)
845 		return err;
846 
847 	if (update && GRAPHICS_VER(i915) >= 6)
848 		gen6_rps_set_thresholds(rps, val);
849 	rps->last_freq = val;
850 
851 	return 0;
852 }
853 
854 void intel_rps_unpark(struct intel_rps *rps)
855 {
856 	if (!intel_rps_is_enabled(rps))
857 		return;
858 
859 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
860 
861 	/*
862 	 * Use the user's desired frequency as a guide, but for better
863 	 * performance, jump directly to RPe as our starting frequency.
864 	 */
865 	mutex_lock(&rps->lock);
866 
867 	intel_rps_set_active(rps);
868 	intel_rps_set(rps,
869 		      clamp(rps->cur_freq,
870 			    rps->min_freq_softlimit,
871 			    rps->max_freq_softlimit));
872 
873 	mutex_unlock(&rps->lock);
874 
875 	rps->pm_iir = 0;
876 	if (intel_rps_has_interrupts(rps))
877 		rps_enable_interrupts(rps);
878 	if (intel_rps_uses_timer(rps))
879 		rps_start_timer(rps);
880 
881 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
882 		gen5_rps_update(rps);
883 }
884 
885 void intel_rps_park(struct intel_rps *rps)
886 {
887 	int adj;
888 
889 	if (!intel_rps_is_enabled(rps))
890 		return;
891 
892 	if (!intel_rps_clear_active(rps))
893 		return;
894 
895 	if (intel_rps_uses_timer(rps))
896 		rps_stop_timer(rps);
897 	if (intel_rps_has_interrupts(rps))
898 		rps_disable_interrupts(rps);
899 
900 	if (rps->last_freq <= rps->idle_freq)
901 		return;
902 
903 	/*
904 	 * The punit delays the write of the frequency and voltage until it
905 	 * determines the GPU is awake. During normal usage we don't want to
906 	 * waste power changing the frequency if the GPU is sleeping (rc6).
907 	 * However, the GPU and driver is now idle and we do not want to delay
908 	 * switching to minimum voltage (reducing power whilst idle) as we do
909 	 * not expect to be woken in the near future and so must flush the
910 	 * change by waking the device.
911 	 *
912 	 * We choose to take the media powerwell (either would do to trick the
913 	 * punit into committing the voltage change) as that takes a lot less
914 	 * power than the render powerwell.
915 	 */
916 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
917 	rps_set(rps, rps->idle_freq, false);
918 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
919 
920 	/*
921 	 * Since we will try and restart from the previously requested
922 	 * frequency on unparking, treat this idle point as a downclock
923 	 * interrupt and reduce the frequency for resume. If we park/unpark
924 	 * more frequently than the rps worker can run, we will not respond
925 	 * to any EI and never see a change in frequency.
926 	 *
927 	 * (Note we accommodate Cherryview's limitation of only using an
928 	 * even bin by applying it to all.)
929 	 */
930 	adj = rps->last_adj;
931 	if (adj < 0)
932 		adj *= 2;
933 	else /* CHV needs even encode values */
934 		adj = -2;
935 	rps->last_adj = adj;
936 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
937 	if (rps->cur_freq < rps->efficient_freq) {
938 		rps->cur_freq = rps->efficient_freq;
939 		rps->last_adj = 0;
940 	}
941 
942 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
943 }
944 
945 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
946 {
947 	struct intel_guc_slpc *slpc;
948 
949 	if (rps_uses_slpc(rps)) {
950 		slpc = rps_to_slpc(rps);
951 
952 		return slpc->boost_freq;
953 	} else {
954 		return intel_gpu_freq(rps, rps->boost_freq);
955 	}
956 }
957 
958 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
959 {
960 	bool boost = false;
961 
962 	/* Validate against (static) hardware limits */
963 	val = intel_freq_opcode(rps, val);
964 	if (val < rps->min_freq || val > rps->max_freq)
965 		return -EINVAL;
966 
967 	mutex_lock(&rps->lock);
968 	if (val != rps->boost_freq) {
969 		rps->boost_freq = val;
970 		boost = atomic_read(&rps->num_waiters);
971 	}
972 	mutex_unlock(&rps->lock);
973 	if (boost)
974 		schedule_work(&rps->work);
975 
976 	return 0;
977 }
978 
979 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
980 {
981 	struct intel_guc_slpc *slpc;
982 
983 	if (rps_uses_slpc(rps)) {
984 		slpc = rps_to_slpc(rps);
985 
986 		return intel_guc_slpc_set_boost_freq(slpc, freq);
987 	} else {
988 		return rps_set_boost_freq(rps, freq);
989 	}
990 }
991 
992 void intel_rps_dec_waiters(struct intel_rps *rps)
993 {
994 	struct intel_guc_slpc *slpc;
995 
996 	if (rps_uses_slpc(rps)) {
997 		slpc = rps_to_slpc(rps);
998 
999 		intel_guc_slpc_dec_waiters(slpc);
1000 	} else {
1001 		atomic_dec(&rps->num_waiters);
1002 	}
1003 }
1004 
1005 void intel_rps_boost(struct i915_request *rq)
1006 {
1007 	struct intel_guc_slpc *slpc;
1008 
1009 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1010 		return;
1011 
1012 	/* Serializes with i915_request_retire() */
1013 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1014 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1015 
1016 		if (rps_uses_slpc(rps)) {
1017 			slpc = rps_to_slpc(rps);
1018 
1019 			if (slpc->min_freq_softlimit >= slpc->boost_freq)
1020 				return;
1021 
1022 			/* Return if old value is non zero */
1023 			if (!atomic_fetch_inc(&slpc->num_waiters)) {
1024 				GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1025 					 rq->fence.context, rq->fence.seqno);
1026 				schedule_work(&slpc->boost_work);
1027 			}
1028 
1029 			return;
1030 		}
1031 
1032 		if (atomic_fetch_inc(&rps->num_waiters))
1033 			return;
1034 
1035 		if (!intel_rps_is_active(rps))
1036 			return;
1037 
1038 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1039 			 rq->fence.context, rq->fence.seqno);
1040 
1041 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1042 			schedule_work(&rps->work);
1043 
1044 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1045 	}
1046 }
1047 
1048 int intel_rps_set(struct intel_rps *rps, u8 val)
1049 {
1050 	int err;
1051 
1052 	lockdep_assert_held(&rps->lock);
1053 	GEM_BUG_ON(val > rps->max_freq);
1054 	GEM_BUG_ON(val < rps->min_freq);
1055 
1056 	if (intel_rps_is_active(rps)) {
1057 		err = rps_set(rps, val, true);
1058 		if (err)
1059 			return err;
1060 
1061 		/*
1062 		 * Make sure we continue to get interrupts
1063 		 * until we hit the minimum or maximum frequencies.
1064 		 */
1065 		if (intel_rps_has_interrupts(rps)) {
1066 			struct intel_uncore *uncore = rps_to_uncore(rps);
1067 
1068 			set(uncore,
1069 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1070 
1071 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1072 		}
1073 	}
1074 
1075 	rps->cur_freq = val;
1076 	return 0;
1077 }
1078 
1079 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1080 {
1081 	struct drm_i915_private *i915 = rps_to_i915(rps);
1082 	struct intel_uncore *uncore = rps_to_uncore(rps);
1083 
1084 	if (IS_PONTEVECCHIO(i915))
1085 		return intel_uncore_read(uncore, PVC_RP_STATE_CAP);
1086 	else if (IS_XEHPSDV(i915))
1087 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1088 	else if (IS_GEN9_LP(i915))
1089 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1090 	else
1091 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1092 }
1093 
1094 static void
1095 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1096 {
1097 	struct intel_uncore *uncore = rps_to_uncore(rps);
1098 	u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1099 				intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1100 				intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1101 	u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1102 			intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1103 			intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1104 
1105 	/* MTL values are in units of 16.67 MHz */
1106 	caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1107 	caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1108 	caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1109 }
1110 
1111 static void
1112 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1113 {
1114 	struct drm_i915_private *i915 = rps_to_i915(rps);
1115 	u32 rp_state_cap;
1116 
1117 	rp_state_cap = intel_rps_read_state_cap(rps);
1118 
1119 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1120 	if (IS_GEN9_LP(i915)) {
1121 		caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1122 		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1123 		caps->min_freq = (rp_state_cap >>  0) & 0xff;
1124 	} else {
1125 		caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1126 		if (GRAPHICS_VER(i915) >= 10)
1127 			caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1128 						       intel_uncore_read(to_gt(i915)->uncore,
1129 						       GEN10_FREQ_INFO_REC));
1130 		else
1131 			caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1132 		caps->min_freq = (rp_state_cap >> 16) & 0xff;
1133 	}
1134 
1135 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1136 		/*
1137 		 * In this case rp_state_cap register reports frequencies in
1138 		 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1139 		 * units of 16.67 MHz
1140 		 */
1141 		caps->rp0_freq *= GEN9_FREQ_SCALER;
1142 		caps->rp1_freq *= GEN9_FREQ_SCALER;
1143 		caps->min_freq *= GEN9_FREQ_SCALER;
1144 	}
1145 }
1146 
1147 /**
1148  * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1149  * @rps: the intel_rps structure
1150  * @caps: returned freq caps
1151  *
1152  * Returned "caps" frequencies should be converted to MHz using
1153  * intel_gpu_freq()
1154  */
1155 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1156 {
1157 	struct drm_i915_private *i915 = rps_to_i915(rps);
1158 
1159 	if (IS_METEORLAKE(i915))
1160 		return mtl_get_freq_caps(rps, caps);
1161 	else
1162 		return __gen6_rps_get_freq_caps(rps, caps);
1163 }
1164 
1165 static void gen6_rps_init(struct intel_rps *rps)
1166 {
1167 	struct drm_i915_private *i915 = rps_to_i915(rps);
1168 	struct intel_rps_freq_caps caps;
1169 
1170 	gen6_rps_get_freq_caps(rps, &caps);
1171 	rps->rp0_freq = caps.rp0_freq;
1172 	rps->rp1_freq = caps.rp1_freq;
1173 	rps->min_freq = caps.min_freq;
1174 
1175 	/* hw_max = RP0 until we check for overclocking */
1176 	rps->max_freq = rps->rp0_freq;
1177 
1178 	rps->efficient_freq = rps->rp1_freq;
1179 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1180 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1181 		u32 ddcc_status = 0;
1182 		u32 mult = 1;
1183 
1184 		if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1185 			mult = GEN9_FREQ_SCALER;
1186 		if (snb_pcode_read(rps_to_gt(rps)->uncore,
1187 				   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1188 				   &ddcc_status, NULL) == 0)
1189 			rps->efficient_freq =
1190 				clamp_t(u32,
1191 					((ddcc_status >> 8) & 0xff) * mult,
1192 					rps->min_freq,
1193 					rps->max_freq);
1194 	}
1195 }
1196 
1197 static bool rps_reset(struct intel_rps *rps)
1198 {
1199 	struct drm_i915_private *i915 = rps_to_i915(rps);
1200 
1201 	/* force a reset */
1202 	rps->power.mode = -1;
1203 	rps->last_freq = -1;
1204 
1205 	if (rps_set(rps, rps->min_freq, true)) {
1206 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1207 		return false;
1208 	}
1209 
1210 	rps->cur_freq = rps->min_freq;
1211 	return true;
1212 }
1213 
1214 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1215 static bool gen9_rps_enable(struct intel_rps *rps)
1216 {
1217 	struct intel_gt *gt = rps_to_gt(rps);
1218 	struct intel_uncore *uncore = gt->uncore;
1219 
1220 	/* Program defaults and thresholds for RPS */
1221 	if (GRAPHICS_VER(gt->i915) == 9)
1222 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1223 				      GEN9_FREQUENCY(rps->rp1_freq));
1224 
1225 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1226 
1227 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1228 
1229 	return rps_reset(rps);
1230 }
1231 
1232 static bool gen8_rps_enable(struct intel_rps *rps)
1233 {
1234 	struct intel_uncore *uncore = rps_to_uncore(rps);
1235 
1236 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1237 			      HSW_FREQUENCY(rps->rp1_freq));
1238 
1239 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1240 
1241 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1242 
1243 	return rps_reset(rps);
1244 }
1245 
1246 static bool gen6_rps_enable(struct intel_rps *rps)
1247 {
1248 	struct intel_uncore *uncore = rps_to_uncore(rps);
1249 
1250 	/* Power down if completely idle for over 50ms */
1251 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1252 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1253 
1254 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1255 			  GEN6_PM_RP_DOWN_THRESHOLD |
1256 			  GEN6_PM_RP_DOWN_TIMEOUT);
1257 
1258 	return rps_reset(rps);
1259 }
1260 
1261 static int chv_rps_max_freq(struct intel_rps *rps)
1262 {
1263 	struct drm_i915_private *i915 = rps_to_i915(rps);
1264 	struct intel_gt *gt = rps_to_gt(rps);
1265 	u32 val;
1266 
1267 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1268 
1269 	switch (gt->info.sseu.eu_total) {
1270 	case 8:
1271 		/* (2 * 4) config */
1272 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1273 		break;
1274 	case 12:
1275 		/* (2 * 6) config */
1276 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1277 		break;
1278 	case 16:
1279 		/* (2 * 8) config */
1280 	default:
1281 		/* Setting (2 * 8) Min RP0 for any other combination */
1282 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1283 		break;
1284 	}
1285 
1286 	return val & FB_GFX_FREQ_FUSE_MASK;
1287 }
1288 
1289 static int chv_rps_rpe_freq(struct intel_rps *rps)
1290 {
1291 	struct drm_i915_private *i915 = rps_to_i915(rps);
1292 	u32 val;
1293 
1294 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1295 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1296 
1297 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1298 }
1299 
1300 static int chv_rps_guar_freq(struct intel_rps *rps)
1301 {
1302 	struct drm_i915_private *i915 = rps_to_i915(rps);
1303 	u32 val;
1304 
1305 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1306 
1307 	return val & FB_GFX_FREQ_FUSE_MASK;
1308 }
1309 
1310 static u32 chv_rps_min_freq(struct intel_rps *rps)
1311 {
1312 	struct drm_i915_private *i915 = rps_to_i915(rps);
1313 	u32 val;
1314 
1315 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1316 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1317 
1318 	return val & FB_GFX_FREQ_FUSE_MASK;
1319 }
1320 
1321 static bool chv_rps_enable(struct intel_rps *rps)
1322 {
1323 	struct intel_uncore *uncore = rps_to_uncore(rps);
1324 	struct drm_i915_private *i915 = rps_to_i915(rps);
1325 	u32 val;
1326 
1327 	/* 1: Program defaults and thresholds for RPS*/
1328 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1329 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1330 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1331 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1332 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1333 
1334 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1335 
1336 	/* 2: Enable RPS */
1337 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1338 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1339 			      GEN6_RP_MEDIA_IS_GFX |
1340 			      GEN6_RP_ENABLE |
1341 			      GEN6_RP_UP_BUSY_AVG |
1342 			      GEN6_RP_DOWN_IDLE_AVG);
1343 
1344 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1345 			  GEN6_PM_RP_DOWN_THRESHOLD |
1346 			  GEN6_PM_RP_DOWN_TIMEOUT);
1347 
1348 	/* Setting Fixed Bias */
1349 	vlv_punit_get(i915);
1350 
1351 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1352 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1353 
1354 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1355 
1356 	vlv_punit_put(i915);
1357 
1358 	/* RPS code assumes GPLL is used */
1359 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1360 		      "GPLL not enabled\n");
1361 
1362 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1363 		str_yes_no(val & GPLLENABLE));
1364 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1365 
1366 	return rps_reset(rps);
1367 }
1368 
1369 static int vlv_rps_guar_freq(struct intel_rps *rps)
1370 {
1371 	struct drm_i915_private *i915 = rps_to_i915(rps);
1372 	u32 val, rp1;
1373 
1374 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1375 
1376 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1377 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1378 
1379 	return rp1;
1380 }
1381 
1382 static int vlv_rps_max_freq(struct intel_rps *rps)
1383 {
1384 	struct drm_i915_private *i915 = rps_to_i915(rps);
1385 	u32 val, rp0;
1386 
1387 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1388 
1389 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1390 	/* Clamp to max */
1391 	rp0 = min_t(u32, rp0, 0xea);
1392 
1393 	return rp0;
1394 }
1395 
1396 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1397 {
1398 	struct drm_i915_private *i915 = rps_to_i915(rps);
1399 	u32 val, rpe;
1400 
1401 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1402 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1403 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1404 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1405 
1406 	return rpe;
1407 }
1408 
1409 static int vlv_rps_min_freq(struct intel_rps *rps)
1410 {
1411 	struct drm_i915_private *i915 = rps_to_i915(rps);
1412 	u32 val;
1413 
1414 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1415 	/*
1416 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1417 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1418 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1419 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1420 	 * to make sure it matches what Punit accepts.
1421 	 */
1422 	return max_t(u32, val, 0xc0);
1423 }
1424 
1425 static bool vlv_rps_enable(struct intel_rps *rps)
1426 {
1427 	struct intel_uncore *uncore = rps_to_uncore(rps);
1428 	struct drm_i915_private *i915 = rps_to_i915(rps);
1429 	u32 val;
1430 
1431 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1432 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1433 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1434 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1435 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1436 
1437 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1438 
1439 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1440 			      GEN6_RP_MEDIA_TURBO |
1441 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1442 			      GEN6_RP_MEDIA_IS_GFX |
1443 			      GEN6_RP_ENABLE |
1444 			      GEN6_RP_UP_BUSY_AVG |
1445 			      GEN6_RP_DOWN_IDLE_CONT);
1446 
1447 	/* WaGsvRC0ResidencyMethod:vlv */
1448 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1449 
1450 	vlv_punit_get(i915);
1451 
1452 	/* Setting Fixed Bias */
1453 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1454 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1455 
1456 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1457 
1458 	vlv_punit_put(i915);
1459 
1460 	/* RPS code assumes GPLL is used */
1461 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1462 		      "GPLL not enabled\n");
1463 
1464 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1465 		str_yes_no(val & GPLLENABLE));
1466 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1467 
1468 	return rps_reset(rps);
1469 }
1470 
1471 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1472 {
1473 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1474 	struct intel_uncore *uncore = rps_to_uncore(rps);
1475 	unsigned int t, state1, state2;
1476 	u32 pxvid, ext_v;
1477 	u64 corr, corr2;
1478 
1479 	lockdep_assert_held(&mchdev_lock);
1480 
1481 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1482 	pxvid = (pxvid >> 24) & 0x7f;
1483 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1484 
1485 	state1 = ext_v;
1486 
1487 	/* Revel in the empirically derived constants */
1488 
1489 	/* Correction factor in 1/100000 units */
1490 	t = ips_mch_val(uncore);
1491 	if (t > 80)
1492 		corr = t * 2349 + 135940;
1493 	else if (t >= 50)
1494 		corr = t * 964 + 29317;
1495 	else /* < 50 */
1496 		corr = t * 301 + 1004;
1497 
1498 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1499 	corr2 = div_u64(corr, 100000) * ips->corr;
1500 
1501 	state2 = div_u64(corr2 * state1, 10000);
1502 	state2 /= 100; /* convert to mW */
1503 
1504 	__gen5_ips_update(ips);
1505 
1506 	return ips->gfx_power + state2;
1507 }
1508 
1509 static bool has_busy_stats(struct intel_rps *rps)
1510 {
1511 	struct intel_engine_cs *engine;
1512 	enum intel_engine_id id;
1513 
1514 	for_each_engine(engine, rps_to_gt(rps), id) {
1515 		if (!intel_engine_supports_stats(engine))
1516 			return false;
1517 	}
1518 
1519 	return true;
1520 }
1521 
1522 void intel_rps_enable(struct intel_rps *rps)
1523 {
1524 	struct drm_i915_private *i915 = rps_to_i915(rps);
1525 	struct intel_uncore *uncore = rps_to_uncore(rps);
1526 	bool enabled = false;
1527 
1528 	if (!HAS_RPS(i915))
1529 		return;
1530 
1531 	if (rps_uses_slpc(rps))
1532 		return;
1533 
1534 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1535 
1536 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1537 	if (rps->max_freq <= rps->min_freq)
1538 		/* leave disabled, no room for dynamic reclocking */;
1539 	else if (IS_CHERRYVIEW(i915))
1540 		enabled = chv_rps_enable(rps);
1541 	else if (IS_VALLEYVIEW(i915))
1542 		enabled = vlv_rps_enable(rps);
1543 	else if (GRAPHICS_VER(i915) >= 9)
1544 		enabled = gen9_rps_enable(rps);
1545 	else if (GRAPHICS_VER(i915) >= 8)
1546 		enabled = gen8_rps_enable(rps);
1547 	else if (GRAPHICS_VER(i915) >= 6)
1548 		enabled = gen6_rps_enable(rps);
1549 	else if (IS_IRONLAKE_M(i915))
1550 		enabled = gen5_rps_enable(rps);
1551 	else
1552 		MISSING_CASE(GRAPHICS_VER(i915));
1553 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1554 	if (!enabled)
1555 		return;
1556 
1557 	GT_TRACE(rps_to_gt(rps),
1558 		 "min:%x, max:%x, freq:[%d, %d]\n",
1559 		 rps->min_freq, rps->max_freq,
1560 		 intel_gpu_freq(rps, rps->min_freq),
1561 		 intel_gpu_freq(rps, rps->max_freq));
1562 
1563 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1564 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1565 
1566 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1567 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1568 
1569 	if (has_busy_stats(rps))
1570 		intel_rps_set_timer(rps);
1571 	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1572 		intel_rps_set_interrupts(rps);
1573 	else
1574 		/* Ironlake currently uses intel_ips.ko */ {}
1575 
1576 	intel_rps_set_enabled(rps);
1577 }
1578 
1579 static void gen6_rps_disable(struct intel_rps *rps)
1580 {
1581 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1582 }
1583 
1584 void intel_rps_disable(struct intel_rps *rps)
1585 {
1586 	struct drm_i915_private *i915 = rps_to_i915(rps);
1587 
1588 	if (!intel_rps_is_enabled(rps))
1589 		return;
1590 
1591 	intel_rps_clear_enabled(rps);
1592 	intel_rps_clear_interrupts(rps);
1593 	intel_rps_clear_timer(rps);
1594 
1595 	if (GRAPHICS_VER(i915) >= 6)
1596 		gen6_rps_disable(rps);
1597 	else if (IS_IRONLAKE_M(i915))
1598 		gen5_rps_disable(rps);
1599 }
1600 
1601 static int byt_gpu_freq(struct intel_rps *rps, int val)
1602 {
1603 	/*
1604 	 * N = val - 0xb7
1605 	 * Slow = Fast = GPLL ref * N
1606 	 */
1607 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1608 }
1609 
1610 static int byt_freq_opcode(struct intel_rps *rps, int val)
1611 {
1612 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1613 }
1614 
1615 static int chv_gpu_freq(struct intel_rps *rps, int val)
1616 {
1617 	/*
1618 	 * N = val / 2
1619 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1620 	 */
1621 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1622 }
1623 
1624 static int chv_freq_opcode(struct intel_rps *rps, int val)
1625 {
1626 	/* CHV needs even values */
1627 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1628 }
1629 
1630 int intel_gpu_freq(struct intel_rps *rps, int val)
1631 {
1632 	struct drm_i915_private *i915 = rps_to_i915(rps);
1633 
1634 	if (GRAPHICS_VER(i915) >= 9)
1635 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1636 					 GEN9_FREQ_SCALER);
1637 	else if (IS_CHERRYVIEW(i915))
1638 		return chv_gpu_freq(rps, val);
1639 	else if (IS_VALLEYVIEW(i915))
1640 		return byt_gpu_freq(rps, val);
1641 	else if (GRAPHICS_VER(i915) >= 6)
1642 		return val * GT_FREQUENCY_MULTIPLIER;
1643 	else
1644 		return val;
1645 }
1646 
1647 int intel_freq_opcode(struct intel_rps *rps, int val)
1648 {
1649 	struct drm_i915_private *i915 = rps_to_i915(rps);
1650 
1651 	if (GRAPHICS_VER(i915) >= 9)
1652 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1653 					 GT_FREQUENCY_MULTIPLIER);
1654 	else if (IS_CHERRYVIEW(i915))
1655 		return chv_freq_opcode(rps, val);
1656 	else if (IS_VALLEYVIEW(i915))
1657 		return byt_freq_opcode(rps, val);
1658 	else if (GRAPHICS_VER(i915) >= 6)
1659 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1660 	else
1661 		return val;
1662 }
1663 
1664 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1665 {
1666 	struct drm_i915_private *i915 = rps_to_i915(rps);
1667 
1668 	rps->gpll_ref_freq =
1669 		vlv_get_cck_clock(i915, "GPLL ref",
1670 				  CCK_GPLL_CLOCK_CONTROL,
1671 				  i915->czclk_freq);
1672 
1673 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1674 		rps->gpll_ref_freq);
1675 }
1676 
1677 static void vlv_rps_init(struct intel_rps *rps)
1678 {
1679 	struct drm_i915_private *i915 = rps_to_i915(rps);
1680 
1681 	vlv_iosf_sb_get(i915,
1682 			BIT(VLV_IOSF_SB_PUNIT) |
1683 			BIT(VLV_IOSF_SB_NC) |
1684 			BIT(VLV_IOSF_SB_CCK));
1685 
1686 	vlv_init_gpll_ref_freq(rps);
1687 
1688 	rps->max_freq = vlv_rps_max_freq(rps);
1689 	rps->rp0_freq = rps->max_freq;
1690 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1691 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1692 
1693 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1694 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1695 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1696 
1697 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1698 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1699 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1700 
1701 	rps->min_freq = vlv_rps_min_freq(rps);
1702 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1703 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1704 
1705 	vlv_iosf_sb_put(i915,
1706 			BIT(VLV_IOSF_SB_PUNIT) |
1707 			BIT(VLV_IOSF_SB_NC) |
1708 			BIT(VLV_IOSF_SB_CCK));
1709 }
1710 
1711 static void chv_rps_init(struct intel_rps *rps)
1712 {
1713 	struct drm_i915_private *i915 = rps_to_i915(rps);
1714 
1715 	vlv_iosf_sb_get(i915,
1716 			BIT(VLV_IOSF_SB_PUNIT) |
1717 			BIT(VLV_IOSF_SB_NC) |
1718 			BIT(VLV_IOSF_SB_CCK));
1719 
1720 	vlv_init_gpll_ref_freq(rps);
1721 
1722 	rps->max_freq = chv_rps_max_freq(rps);
1723 	rps->rp0_freq = rps->max_freq;
1724 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1725 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1726 
1727 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1728 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1729 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1730 
1731 	rps->rp1_freq = chv_rps_guar_freq(rps);
1732 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1733 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1734 
1735 	rps->min_freq = chv_rps_min_freq(rps);
1736 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1737 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1738 
1739 	vlv_iosf_sb_put(i915,
1740 			BIT(VLV_IOSF_SB_PUNIT) |
1741 			BIT(VLV_IOSF_SB_NC) |
1742 			BIT(VLV_IOSF_SB_CCK));
1743 
1744 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1745 				   rps->rp1_freq | rps->min_freq) & 1,
1746 		      "Odd GPU freq values\n");
1747 }
1748 
1749 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1750 {
1751 	ei->ktime = ktime_get_raw();
1752 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1753 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1754 }
1755 
1756 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1757 {
1758 	struct intel_uncore *uncore = rps_to_uncore(rps);
1759 	const struct intel_rps_ei *prev = &rps->ei;
1760 	struct intel_rps_ei now;
1761 	u32 events = 0;
1762 
1763 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1764 		return 0;
1765 
1766 	vlv_c0_read(uncore, &now);
1767 
1768 	if (prev->ktime) {
1769 		u64 time, c0;
1770 		u32 render, media;
1771 
1772 		time = ktime_us_delta(now.ktime, prev->ktime);
1773 
1774 		time *= rps_to_i915(rps)->czclk_freq;
1775 
1776 		/* Workload can be split between render + media,
1777 		 * e.g. SwapBuffers being blitted in X after being rendered in
1778 		 * mesa. To account for this we need to combine both engines
1779 		 * into our activity counter.
1780 		 */
1781 		render = now.render_c0 - prev->render_c0;
1782 		media = now.media_c0 - prev->media_c0;
1783 		c0 = max(render, media);
1784 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1785 
1786 		if (c0 > time * rps->power.up_threshold)
1787 			events = GEN6_PM_RP_UP_THRESHOLD;
1788 		else if (c0 < time * rps->power.down_threshold)
1789 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1790 	}
1791 
1792 	rps->ei = now;
1793 	return events;
1794 }
1795 
1796 static void rps_work(struct work_struct *work)
1797 {
1798 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1799 	struct intel_gt *gt = rps_to_gt(rps);
1800 	struct drm_i915_private *i915 = rps_to_i915(rps);
1801 	bool client_boost = false;
1802 	int new_freq, adj, min, max;
1803 	u32 pm_iir = 0;
1804 
1805 	spin_lock_irq(gt->irq_lock);
1806 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1807 	client_boost = atomic_read(&rps->num_waiters);
1808 	spin_unlock_irq(gt->irq_lock);
1809 
1810 	/* Make sure we didn't queue anything we're not going to process. */
1811 	if (!pm_iir && !client_boost)
1812 		goto out;
1813 
1814 	mutex_lock(&rps->lock);
1815 	if (!intel_rps_is_active(rps)) {
1816 		mutex_unlock(&rps->lock);
1817 		return;
1818 	}
1819 
1820 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1821 
1822 	adj = rps->last_adj;
1823 	new_freq = rps->cur_freq;
1824 	min = rps->min_freq_softlimit;
1825 	max = rps->max_freq_softlimit;
1826 	if (client_boost)
1827 		max = rps->max_freq;
1828 
1829 	GT_TRACE(gt,
1830 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1831 		 pm_iir, str_yes_no(client_boost),
1832 		 adj, new_freq, min, max);
1833 
1834 	if (client_boost && new_freq < rps->boost_freq) {
1835 		new_freq = rps->boost_freq;
1836 		adj = 0;
1837 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1838 		if (adj > 0)
1839 			adj *= 2;
1840 		else /* CHV needs even encode values */
1841 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1842 
1843 		if (new_freq >= rps->max_freq_softlimit)
1844 			adj = 0;
1845 	} else if (client_boost) {
1846 		adj = 0;
1847 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1848 		if (rps->cur_freq > rps->efficient_freq)
1849 			new_freq = rps->efficient_freq;
1850 		else if (rps->cur_freq > rps->min_freq_softlimit)
1851 			new_freq = rps->min_freq_softlimit;
1852 		adj = 0;
1853 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1854 		if (adj < 0)
1855 			adj *= 2;
1856 		else /* CHV needs even encode values */
1857 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1858 
1859 		if (new_freq <= rps->min_freq_softlimit)
1860 			adj = 0;
1861 	} else { /* unknown event */
1862 		adj = 0;
1863 	}
1864 
1865 	/*
1866 	 * sysfs frequency limits may have snuck in while
1867 	 * servicing the interrupt
1868 	 */
1869 	new_freq += adj;
1870 	new_freq = clamp_t(int, new_freq, min, max);
1871 
1872 	if (intel_rps_set(rps, new_freq)) {
1873 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1874 		adj = 0;
1875 	}
1876 	rps->last_adj = adj;
1877 
1878 	mutex_unlock(&rps->lock);
1879 
1880 out:
1881 	spin_lock_irq(gt->irq_lock);
1882 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1883 	spin_unlock_irq(gt->irq_lock);
1884 }
1885 
1886 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1887 {
1888 	struct intel_gt *gt = rps_to_gt(rps);
1889 	const u32 events = rps->pm_events & pm_iir;
1890 
1891 	lockdep_assert_held(gt->irq_lock);
1892 
1893 	if (unlikely(!events))
1894 		return;
1895 
1896 	GT_TRACE(gt, "irq events:%x\n", events);
1897 
1898 	gen6_gt_pm_mask_irq(gt, events);
1899 
1900 	rps->pm_iir |= events;
1901 	schedule_work(&rps->work);
1902 }
1903 
1904 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1905 {
1906 	struct intel_gt *gt = rps_to_gt(rps);
1907 	u32 events;
1908 
1909 	events = pm_iir & rps->pm_events;
1910 	if (events) {
1911 		spin_lock(gt->irq_lock);
1912 
1913 		GT_TRACE(gt, "irq events:%x\n", events);
1914 
1915 		gen6_gt_pm_mask_irq(gt, events);
1916 		rps->pm_iir |= events;
1917 
1918 		schedule_work(&rps->work);
1919 		spin_unlock(gt->irq_lock);
1920 	}
1921 
1922 	if (GRAPHICS_VER(gt->i915) >= 8)
1923 		return;
1924 
1925 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1926 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1927 
1928 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1929 		drm_dbg(&rps_to_i915(rps)->drm,
1930 			"Command parser error, pm_iir 0x%08x\n", pm_iir);
1931 }
1932 
1933 void gen5_rps_irq_handler(struct intel_rps *rps)
1934 {
1935 	struct intel_uncore *uncore = rps_to_uncore(rps);
1936 	u32 busy_up, busy_down, max_avg, min_avg;
1937 	u8 new_freq;
1938 
1939 	spin_lock(&mchdev_lock);
1940 
1941 	intel_uncore_write16(uncore,
1942 			     MEMINTRSTS,
1943 			     intel_uncore_read(uncore, MEMINTRSTS));
1944 
1945 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1946 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1947 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1948 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1949 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1950 
1951 	/* Handle RCS change request from hw */
1952 	new_freq = rps->cur_freq;
1953 	if (busy_up > max_avg)
1954 		new_freq++;
1955 	else if (busy_down < min_avg)
1956 		new_freq--;
1957 	new_freq = clamp(new_freq,
1958 			 rps->min_freq_softlimit,
1959 			 rps->max_freq_softlimit);
1960 
1961 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1962 		rps->cur_freq = new_freq;
1963 
1964 	spin_unlock(&mchdev_lock);
1965 }
1966 
1967 void intel_rps_init_early(struct intel_rps *rps)
1968 {
1969 	mutex_init(&rps->lock);
1970 	mutex_init(&rps->power.mutex);
1971 
1972 	INIT_WORK(&rps->work, rps_work);
1973 	timer_setup(&rps->timer, rps_timer, 0);
1974 
1975 	atomic_set(&rps->num_waiters, 0);
1976 }
1977 
1978 void intel_rps_init(struct intel_rps *rps)
1979 {
1980 	struct drm_i915_private *i915 = rps_to_i915(rps);
1981 
1982 	if (rps_uses_slpc(rps))
1983 		return;
1984 
1985 	if (IS_CHERRYVIEW(i915))
1986 		chv_rps_init(rps);
1987 	else if (IS_VALLEYVIEW(i915))
1988 		vlv_rps_init(rps);
1989 	else if (GRAPHICS_VER(i915) >= 6)
1990 		gen6_rps_init(rps);
1991 	else if (IS_IRONLAKE_M(i915))
1992 		gen5_rps_init(rps);
1993 
1994 	/* Derive initial user preferences/limits from the hardware limits */
1995 	rps->max_freq_softlimit = rps->max_freq;
1996 	rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
1997 	rps->min_freq_softlimit = rps->min_freq;
1998 	rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
1999 
2000 	/* After setting max-softlimit, find the overclock max freq */
2001 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2002 		u32 params = 0;
2003 
2004 		snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
2005 		if (params & BIT(31)) { /* OC supported */
2006 			drm_dbg(&i915->drm,
2007 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2008 				(rps->max_freq & 0xff) * 50,
2009 				(params & 0xff) * 50);
2010 			rps->max_freq = params & 0xff;
2011 		}
2012 	}
2013 
2014 	/* Finally allow us to boost to max by default */
2015 	rps->boost_freq = rps->max_freq;
2016 	rps->idle_freq = rps->min_freq;
2017 
2018 	/* Start in the middle, from here we will autotune based on workload */
2019 	rps->cur_freq = rps->efficient_freq;
2020 
2021 	rps->pm_intrmsk_mbz = 0;
2022 
2023 	/*
2024 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2025 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
2026 	 *
2027 	 * TODO: verify if this can be reproduced on VLV,CHV.
2028 	 */
2029 	if (GRAPHICS_VER(i915) <= 7)
2030 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2031 
2032 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2033 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2034 
2035 	/* GuC needs ARAT expired interrupt unmasked */
2036 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2037 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2038 }
2039 
2040 void intel_rps_sanitize(struct intel_rps *rps)
2041 {
2042 	if (rps_uses_slpc(rps))
2043 		return;
2044 
2045 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2046 		rps_disable_interrupts(rps);
2047 }
2048 
2049 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2050 {
2051 	struct drm_i915_private *i915 = rps_to_i915(rps);
2052 	i915_reg_t rpstat;
2053 
2054 	rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2055 
2056 	return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2057 }
2058 
2059 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2060 {
2061 	struct drm_i915_private *i915 = rps_to_i915(rps);
2062 	u32 cagf;
2063 
2064 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2065 		cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2066 	else if (GRAPHICS_VER(i915) >= 12)
2067 		cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2068 	else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2069 		cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2070 	else if (GRAPHICS_VER(i915) >= 9)
2071 		cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2072 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2073 		cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2074 	else if (GRAPHICS_VER(i915) >= 6)
2075 		cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2076 	else
2077 		cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2078 
2079 	return cagf;
2080 }
2081 
2082 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2083 {
2084 	struct drm_i915_private *i915 = rps_to_i915(rps);
2085 	struct intel_uncore *uncore = rps_to_uncore(rps);
2086 	i915_reg_t r = INVALID_MMIO_REG;
2087 	u32 freq;
2088 
2089 	/*
2090 	 * For Gen12+ reading freq from HW does not need a forcewake and
2091 	 * registers will return 0 freq when GT is in RC6
2092 	 */
2093 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2094 		r = MTL_MIRROR_TARGET_WP1;
2095 	} else if (GRAPHICS_VER(i915) >= 12) {
2096 		r = GEN12_RPSTAT1;
2097 	} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2098 		vlv_punit_get(i915);
2099 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2100 		vlv_punit_put(i915);
2101 	} else if (GRAPHICS_VER(i915) >= 6) {
2102 		r = GEN6_RPSTAT1;
2103 	} else {
2104 		r = MEMSTAT_ILK;
2105 	}
2106 
2107 	if (i915_mmio_reg_valid(r))
2108 		freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2109 
2110 	return intel_rps_get_cagf(rps, freq);
2111 }
2112 
2113 static u32 read_cagf(struct intel_rps *rps)
2114 {
2115 	return __read_cagf(rps, true);
2116 }
2117 
2118 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2119 {
2120 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2121 	intel_wakeref_t wakeref;
2122 	u32 freq = 0;
2123 
2124 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2125 		freq = intel_gpu_freq(rps, read_cagf(rps));
2126 
2127 	return freq;
2128 }
2129 
2130 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2131 {
2132 	return intel_gpu_freq(rps, __read_cagf(rps, false));
2133 }
2134 
2135 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2136 {
2137 	struct intel_uncore *uncore = rps_to_uncore(rps);
2138 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2139 	intel_wakeref_t wakeref;
2140 	u32 freq = 0;
2141 
2142 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2143 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2144 
2145 	return freq;
2146 }
2147 
2148 static u32 intel_rps_get_req(u32 pureq)
2149 {
2150 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2151 
2152 	return req;
2153 }
2154 
2155 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2156 {
2157 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2158 
2159 	return intel_gpu_freq(rps, freq);
2160 }
2161 
2162 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2163 {
2164 	if (rps_uses_slpc(rps))
2165 		return intel_rps_read_punit_req_frequency(rps);
2166 	else
2167 		return intel_gpu_freq(rps, rps->cur_freq);
2168 }
2169 
2170 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2171 {
2172 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2173 
2174 	if (rps_uses_slpc(rps))
2175 		return slpc->max_freq_softlimit;
2176 	else
2177 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2178 }
2179 
2180 /**
2181  * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2182  * @rps: the intel_rps structure
2183  *
2184  * Returns the max frequency in a raw format. In newer platforms raw is in
2185  * units of 50 MHz.
2186  */
2187 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2188 {
2189 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2190 	u32 freq;
2191 
2192 	if (rps_uses_slpc(rps)) {
2193 		return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2194 					 GT_FREQUENCY_MULTIPLIER);
2195 	} else {
2196 		freq = rps->max_freq;
2197 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2198 			/* Convert GT frequency to 50 MHz units */
2199 			freq /= GEN9_FREQ_SCALER;
2200 		}
2201 		return freq;
2202 	}
2203 }
2204 
2205 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2206 {
2207 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2208 
2209 	if (rps_uses_slpc(rps))
2210 		return slpc->rp0_freq;
2211 	else
2212 		return intel_gpu_freq(rps, rps->rp0_freq);
2213 }
2214 
2215 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2216 {
2217 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2218 
2219 	if (rps_uses_slpc(rps))
2220 		return slpc->rp1_freq;
2221 	else
2222 		return intel_gpu_freq(rps, rps->rp1_freq);
2223 }
2224 
2225 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2226 {
2227 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2228 
2229 	if (rps_uses_slpc(rps))
2230 		return slpc->min_freq;
2231 	else
2232 		return intel_gpu_freq(rps, rps->min_freq);
2233 }
2234 
2235 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2236 {
2237 	struct intel_gt *gt = rps_to_gt(rps);
2238 	struct drm_i915_private *i915 = gt->i915;
2239 	struct intel_uncore *uncore = gt->uncore;
2240 	struct intel_rps_freq_caps caps;
2241 	u32 rp_state_limits;
2242 	u32 gt_perf_status;
2243 	u32 rpmodectl, rpinclimit, rpdeclimit;
2244 	u32 rpstat, cagf, reqf;
2245 	u32 rpcurupei, rpcurup, rpprevup;
2246 	u32 rpcurdownei, rpcurdown, rpprevdown;
2247 	u32 rpupei, rpupt, rpdownei, rpdownt;
2248 	u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2249 
2250 	rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2251 	gen6_rps_get_freq_caps(rps, &caps);
2252 	if (IS_GEN9_LP(i915))
2253 		gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2254 	else
2255 		gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2256 
2257 	/* RPSTAT1 is in the GT power well */
2258 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2259 
2260 	reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2261 	if (GRAPHICS_VER(i915) >= 9) {
2262 		reqf >>= 23;
2263 	} else {
2264 		reqf &= ~GEN6_TURBO_DISABLE;
2265 		if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2266 			reqf >>= 24;
2267 		else
2268 			reqf >>= 25;
2269 	}
2270 	reqf = intel_gpu_freq(rps, reqf);
2271 
2272 	rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2273 	rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2274 	rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2275 
2276 	rpstat = intel_rps_read_rpstat(rps);
2277 	rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2278 	rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2279 	rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2280 	rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2281 	rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2282 	rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2283 
2284 	rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2285 	rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2286 
2287 	rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2288 	rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2289 
2290 	cagf = intel_rps_read_actual_frequency(rps);
2291 
2292 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2293 
2294 	if (GRAPHICS_VER(i915) >= 11) {
2295 		pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2296 		pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2297 		/*
2298 		 * The equivalent to the PM ISR & IIR cannot be read
2299 		 * without affecting the current state of the system
2300 		 */
2301 		pm_isr = 0;
2302 		pm_iir = 0;
2303 	} else if (GRAPHICS_VER(i915) >= 8) {
2304 		pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2305 		pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2306 		pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2307 		pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2308 	} else {
2309 		pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2310 		pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2311 		pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2312 		pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2313 	}
2314 	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2315 
2316 	drm_printf(p, "Video Turbo Mode: %s\n",
2317 		   str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2318 	drm_printf(p, "HW control enabled: %s\n",
2319 		   str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2320 	drm_printf(p, "SW control enabled: %s\n",
2321 		   str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2322 
2323 	drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2324 		   pm_ier, pm_imr, pm_mask);
2325 	if (GRAPHICS_VER(i915) <= 10)
2326 		drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2327 			   pm_isr, pm_iir);
2328 	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2329 		   rps->pm_intrmsk_mbz);
2330 	drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2331 	drm_printf(p, "Render p-state ratio: %d\n",
2332 		   (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2333 	drm_printf(p, "Render p-state VID: %d\n",
2334 		   gt_perf_status & 0xff);
2335 	drm_printf(p, "Render p-state limit: %d\n",
2336 		   rp_state_limits & 0xff);
2337 	drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2338 	drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2339 	drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2340 	drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2341 	drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2342 	drm_printf(p, "CAGF: %dMHz\n", cagf);
2343 	drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2344 		   rpcurupei,
2345 		   intel_gt_pm_interval_to_ns(gt, rpcurupei));
2346 	drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2347 		   rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2348 	drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2349 		   rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2350 	drm_printf(p, "Up threshold: %d%%\n",
2351 		   rps->power.up_threshold);
2352 	drm_printf(p, "RP UP EI: %d (%lldns)\n",
2353 		   rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2354 	drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2355 		   rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2356 
2357 	drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2358 		   rpcurdownei,
2359 		   intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2360 	drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2361 		   rpcurdown,
2362 		   intel_gt_pm_interval_to_ns(gt, rpcurdown));
2363 	drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2364 		   rpprevdown,
2365 		   intel_gt_pm_interval_to_ns(gt, rpprevdown));
2366 	drm_printf(p, "Down threshold: %d%%\n",
2367 		   rps->power.down_threshold);
2368 	drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2369 		   rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2370 	drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2371 		   rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2372 
2373 	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2374 		   intel_gpu_freq(rps, caps.min_freq));
2375 	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2376 		   intel_gpu_freq(rps, caps.rp1_freq));
2377 	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2378 		   intel_gpu_freq(rps, caps.rp0_freq));
2379 	drm_printf(p, "Max overclocked frequency: %dMHz\n",
2380 		   intel_gpu_freq(rps, rps->max_freq));
2381 
2382 	drm_printf(p, "Current freq: %d MHz\n",
2383 		   intel_gpu_freq(rps, rps->cur_freq));
2384 	drm_printf(p, "Actual freq: %d MHz\n", cagf);
2385 	drm_printf(p, "Idle freq: %d MHz\n",
2386 		   intel_gpu_freq(rps, rps->idle_freq));
2387 	drm_printf(p, "Min freq: %d MHz\n",
2388 		   intel_gpu_freq(rps, rps->min_freq));
2389 	drm_printf(p, "Boost freq: %d MHz\n",
2390 		   intel_gpu_freq(rps, rps->boost_freq));
2391 	drm_printf(p, "Max freq: %d MHz\n",
2392 		   intel_gpu_freq(rps, rps->max_freq));
2393 	drm_printf(p,
2394 		   "efficient (RPe) frequency: %d MHz\n",
2395 		   intel_gpu_freq(rps, rps->efficient_freq));
2396 }
2397 
2398 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2399 {
2400 	struct intel_gt *gt = rps_to_gt(rps);
2401 	struct intel_uncore *uncore = gt->uncore;
2402 	struct intel_rps_freq_caps caps;
2403 	u32 pm_mask;
2404 
2405 	gen6_rps_get_freq_caps(rps, &caps);
2406 	pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2407 
2408 	drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2409 	drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2410 		   rps->pm_intrmsk_mbz);
2411 	drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2412 	drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2413 	drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2414 		   intel_gpu_freq(rps, caps.min_freq));
2415 	drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2416 		   intel_gpu_freq(rps, caps.rp1_freq));
2417 	drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2418 		   intel_gpu_freq(rps, caps.rp0_freq));
2419 	drm_printf(p, "Current freq: %d MHz\n",
2420 		   intel_rps_get_requested_frequency(rps));
2421 	drm_printf(p, "Actual freq: %d MHz\n",
2422 		   intel_rps_read_actual_frequency(rps));
2423 	drm_printf(p, "Min freq: %d MHz\n",
2424 		   intel_rps_get_min_frequency(rps));
2425 	drm_printf(p, "Boost freq: %d MHz\n",
2426 		   intel_rps_get_boost_frequency(rps));
2427 	drm_printf(p, "Max freq: %d MHz\n",
2428 		   intel_rps_get_max_frequency(rps));
2429 	drm_printf(p,
2430 		   "efficient (RPe) frequency: %d MHz\n",
2431 		   intel_gpu_freq(rps, caps.rp1_freq));
2432 }
2433 
2434 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2435 {
2436 	if (rps_uses_slpc(rps))
2437 		return slpc_frequency_dump(rps, p);
2438 	else
2439 		return rps_frequency_dump(rps, p);
2440 }
2441 
2442 static int set_max_freq(struct intel_rps *rps, u32 val)
2443 {
2444 	struct drm_i915_private *i915 = rps_to_i915(rps);
2445 	int ret = 0;
2446 
2447 	mutex_lock(&rps->lock);
2448 
2449 	val = intel_freq_opcode(rps, val);
2450 	if (val < rps->min_freq ||
2451 	    val > rps->max_freq ||
2452 	    val < rps->min_freq_softlimit) {
2453 		ret = -EINVAL;
2454 		goto unlock;
2455 	}
2456 
2457 	if (val > rps->rp0_freq)
2458 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2459 			intel_gpu_freq(rps, val));
2460 
2461 	rps->max_freq_softlimit = val;
2462 
2463 	val = clamp_t(int, rps->cur_freq,
2464 		      rps->min_freq_softlimit,
2465 		      rps->max_freq_softlimit);
2466 
2467 	/*
2468 	 * We still need *_set_rps to process the new max_delay and
2469 	 * update the interrupt limits and PMINTRMSK even though
2470 	 * frequency request may be unchanged.
2471 	 */
2472 	intel_rps_set(rps, val);
2473 
2474 unlock:
2475 	mutex_unlock(&rps->lock);
2476 
2477 	return ret;
2478 }
2479 
2480 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2481 {
2482 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2483 
2484 	if (rps_uses_slpc(rps))
2485 		return intel_guc_slpc_set_max_freq(slpc, val);
2486 	else
2487 		return set_max_freq(rps, val);
2488 }
2489 
2490 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2491 {
2492 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2493 
2494 	if (rps_uses_slpc(rps))
2495 		return slpc->min_freq_softlimit;
2496 	else
2497 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2498 }
2499 
2500 /**
2501  * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2502  * @rps: the intel_rps structure
2503  *
2504  * Returns the min frequency in a raw format. In newer platforms raw is in
2505  * units of 50 MHz.
2506  */
2507 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2508 {
2509 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2510 	u32 freq;
2511 
2512 	if (rps_uses_slpc(rps)) {
2513 		return DIV_ROUND_CLOSEST(slpc->min_freq,
2514 					 GT_FREQUENCY_MULTIPLIER);
2515 	} else {
2516 		freq = rps->min_freq;
2517 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2518 			/* Convert GT frequency to 50 MHz units */
2519 			freq /= GEN9_FREQ_SCALER;
2520 		}
2521 		return freq;
2522 	}
2523 }
2524 
2525 static int set_min_freq(struct intel_rps *rps, u32 val)
2526 {
2527 	int ret = 0;
2528 
2529 	mutex_lock(&rps->lock);
2530 
2531 	val = intel_freq_opcode(rps, val);
2532 	if (val < rps->min_freq ||
2533 	    val > rps->max_freq ||
2534 	    val > rps->max_freq_softlimit) {
2535 		ret = -EINVAL;
2536 		goto unlock;
2537 	}
2538 
2539 	rps->min_freq_softlimit = val;
2540 
2541 	val = clamp_t(int, rps->cur_freq,
2542 		      rps->min_freq_softlimit,
2543 		      rps->max_freq_softlimit);
2544 
2545 	/*
2546 	 * We still need *_set_rps to process the new min_delay and
2547 	 * update the interrupt limits and PMINTRMSK even though
2548 	 * frequency request may be unchanged.
2549 	 */
2550 	intel_rps_set(rps, val);
2551 
2552 unlock:
2553 	mutex_unlock(&rps->lock);
2554 
2555 	return ret;
2556 }
2557 
2558 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2559 {
2560 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2561 
2562 	if (rps_uses_slpc(rps))
2563 		return intel_guc_slpc_set_min_freq(slpc, val);
2564 	else
2565 		return set_min_freq(rps, val);
2566 }
2567 
2568 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2569 {
2570 	struct intel_uncore *uncore = rps_to_uncore(rps);
2571 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2572 
2573 	/* Allow punit to process software requests */
2574 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2575 }
2576 
2577 void intel_rps_raise_unslice(struct intel_rps *rps)
2578 {
2579 	struct intel_uncore *uncore = rps_to_uncore(rps);
2580 
2581 	mutex_lock(&rps->lock);
2582 
2583 	if (rps_uses_slpc(rps)) {
2584 		/* RP limits have not been initialized yet for SLPC path */
2585 		struct intel_rps_freq_caps caps;
2586 
2587 		gen6_rps_get_freq_caps(rps, &caps);
2588 
2589 		intel_rps_set_manual(rps, true);
2590 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2591 				   ((caps.rp0_freq <<
2592 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2593 				   GEN9_IGNORE_SLICE_RATIO));
2594 		intel_rps_set_manual(rps, false);
2595 	} else {
2596 		intel_rps_set(rps, rps->rp0_freq);
2597 	}
2598 
2599 	mutex_unlock(&rps->lock);
2600 }
2601 
2602 void intel_rps_lower_unslice(struct intel_rps *rps)
2603 {
2604 	struct intel_uncore *uncore = rps_to_uncore(rps);
2605 
2606 	mutex_lock(&rps->lock);
2607 
2608 	if (rps_uses_slpc(rps)) {
2609 		/* RP limits have not been initialized yet for SLPC path */
2610 		struct intel_rps_freq_caps caps;
2611 
2612 		gen6_rps_get_freq_caps(rps, &caps);
2613 
2614 		intel_rps_set_manual(rps, true);
2615 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2616 				   ((caps.min_freq <<
2617 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2618 				   GEN9_IGNORE_SLICE_RATIO));
2619 		intel_rps_set_manual(rps, false);
2620 	} else {
2621 		intel_rps_set(rps, rps->min_freq);
2622 	}
2623 
2624 	mutex_unlock(&rps->lock);
2625 }
2626 
2627 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2628 {
2629 	struct intel_gt *gt = rps_to_gt(rps);
2630 	intel_wakeref_t wakeref;
2631 	u32 val;
2632 
2633 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2634 		val = intel_uncore_read(gt->uncore, reg32);
2635 
2636 	return val;
2637 }
2638 
2639 bool rps_read_mask_mmio(struct intel_rps *rps,
2640 			i915_reg_t reg32, u32 mask)
2641 {
2642 	return rps_read_mmio(rps, reg32) & mask;
2643 }
2644 
2645 /* External interface for intel_ips.ko */
2646 
2647 static struct drm_i915_private __rcu *ips_mchdev;
2648 
2649 /*
2650  * Tells the intel_ips driver that the i915 driver is now loaded, if
2651  * IPS got loaded first.
2652  *
2653  * This awkward dance is so that neither module has to depend on the
2654  * other in order for IPS to do the appropriate communication of
2655  * GPU turbo limits to i915.
2656  */
2657 static void
2658 ips_ping_for_i915_load(void)
2659 {
2660 	void (*link)(void);
2661 
2662 	link = symbol_get(ips_link_to_i915_driver);
2663 	if (link) {
2664 		link();
2665 		symbol_put(ips_link_to_i915_driver);
2666 	}
2667 }
2668 
2669 void intel_rps_driver_register(struct intel_rps *rps)
2670 {
2671 	struct intel_gt *gt = rps_to_gt(rps);
2672 
2673 	/*
2674 	 * We only register the i915 ips part with intel-ips once everything is
2675 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2676 	 */
2677 	if (GRAPHICS_VER(gt->i915) == 5) {
2678 		GEM_BUG_ON(ips_mchdev);
2679 		rcu_assign_pointer(ips_mchdev, gt->i915);
2680 		ips_ping_for_i915_load();
2681 	}
2682 }
2683 
2684 void intel_rps_driver_unregister(struct intel_rps *rps)
2685 {
2686 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2687 		rcu_assign_pointer(ips_mchdev, NULL);
2688 }
2689 
2690 static struct drm_i915_private *mchdev_get(void)
2691 {
2692 	struct drm_i915_private *i915;
2693 
2694 	rcu_read_lock();
2695 	i915 = rcu_dereference(ips_mchdev);
2696 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2697 		i915 = NULL;
2698 	rcu_read_unlock();
2699 
2700 	return i915;
2701 }
2702 
2703 /**
2704  * i915_read_mch_val - return value for IPS use
2705  *
2706  * Calculate and return a value for the IPS driver to use when deciding whether
2707  * we have thermal and power headroom to increase CPU or GPU power budget.
2708  */
2709 unsigned long i915_read_mch_val(void)
2710 {
2711 	struct drm_i915_private *i915;
2712 	unsigned long chipset_val = 0;
2713 	unsigned long graphics_val = 0;
2714 	intel_wakeref_t wakeref;
2715 
2716 	i915 = mchdev_get();
2717 	if (!i915)
2718 		return 0;
2719 
2720 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2721 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2722 
2723 		spin_lock_irq(&mchdev_lock);
2724 		chipset_val = __ips_chipset_val(ips);
2725 		graphics_val = __ips_gfx_val(ips);
2726 		spin_unlock_irq(&mchdev_lock);
2727 	}
2728 
2729 	drm_dev_put(&i915->drm);
2730 	return chipset_val + graphics_val;
2731 }
2732 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2733 
2734 /**
2735  * i915_gpu_raise - raise GPU frequency limit
2736  *
2737  * Raise the limit; IPS indicates we have thermal headroom.
2738  */
2739 bool i915_gpu_raise(void)
2740 {
2741 	struct drm_i915_private *i915;
2742 	struct intel_rps *rps;
2743 
2744 	i915 = mchdev_get();
2745 	if (!i915)
2746 		return false;
2747 
2748 	rps = &to_gt(i915)->rps;
2749 
2750 	spin_lock_irq(&mchdev_lock);
2751 	if (rps->max_freq_softlimit < rps->max_freq)
2752 		rps->max_freq_softlimit++;
2753 	spin_unlock_irq(&mchdev_lock);
2754 
2755 	drm_dev_put(&i915->drm);
2756 	return true;
2757 }
2758 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2759 
2760 /**
2761  * i915_gpu_lower - lower GPU frequency limit
2762  *
2763  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2764  * frequency maximum.
2765  */
2766 bool i915_gpu_lower(void)
2767 {
2768 	struct drm_i915_private *i915;
2769 	struct intel_rps *rps;
2770 
2771 	i915 = mchdev_get();
2772 	if (!i915)
2773 		return false;
2774 
2775 	rps = &to_gt(i915)->rps;
2776 
2777 	spin_lock_irq(&mchdev_lock);
2778 	if (rps->max_freq_softlimit > rps->min_freq)
2779 		rps->max_freq_softlimit--;
2780 	spin_unlock_irq(&mchdev_lock);
2781 
2782 	drm_dev_put(&i915->drm);
2783 	return true;
2784 }
2785 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2786 
2787 /**
2788  * i915_gpu_busy - indicate GPU business to IPS
2789  *
2790  * Tell the IPS driver whether or not the GPU is busy.
2791  */
2792 bool i915_gpu_busy(void)
2793 {
2794 	struct drm_i915_private *i915;
2795 	bool ret;
2796 
2797 	i915 = mchdev_get();
2798 	if (!i915)
2799 		return false;
2800 
2801 	ret = to_gt(i915)->awake;
2802 
2803 	drm_dev_put(&i915->drm);
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2807 
2808 /**
2809  * i915_gpu_turbo_disable - disable graphics turbo
2810  *
2811  * Disable graphics turbo by resetting the max frequency and setting the
2812  * current frequency to the default.
2813  */
2814 bool i915_gpu_turbo_disable(void)
2815 {
2816 	struct drm_i915_private *i915;
2817 	struct intel_rps *rps;
2818 	bool ret;
2819 
2820 	i915 = mchdev_get();
2821 	if (!i915)
2822 		return false;
2823 
2824 	rps = &to_gt(i915)->rps;
2825 
2826 	spin_lock_irq(&mchdev_lock);
2827 	rps->max_freq_softlimit = rps->min_freq;
2828 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2829 	spin_unlock_irq(&mchdev_lock);
2830 
2831 	drm_dev_put(&i915->drm);
2832 	return ret;
2833 }
2834 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2835 
2836 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2837 #include "selftest_rps.c"
2838 #include "selftest_slpc.c"
2839 #endif
2840