xref: /linux/drivers/gpu/drm/i915/gt/intel_rps.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/i915_drm.h>
9 
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_gt.h"
14 #include "intel_gt_clock_utils.h"
15 #include "intel_gt_irq.h"
16 #include "intel_gt_pm_irq.h"
17 #include "intel_gt_regs.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pcode.h"
20 #include "intel_rps.h"
21 #include "vlv_sideband.h"
22 #include "../../../platform/x86/intel_ips.h"
23 
24 #define BUSY_MAX_EI	20u /* ms */
25 
26 /*
27  * Lock protecting IPS related data structures
28  */
29 static DEFINE_SPINLOCK(mchdev_lock);
30 
31 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
32 {
33 	return container_of(rps, struct intel_gt, rps);
34 }
35 
36 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
37 {
38 	return rps_to_gt(rps)->i915;
39 }
40 
41 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
42 {
43 	return rps_to_gt(rps)->uncore;
44 }
45 
46 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
47 {
48 	struct intel_gt *gt = rps_to_gt(rps);
49 
50 	return &gt->uc.guc.slpc;
51 }
52 
53 static bool rps_uses_slpc(struct intel_rps *rps)
54 {
55 	struct intel_gt *gt = rps_to_gt(rps);
56 
57 	return intel_uc_uses_guc_slpc(&gt->uc);
58 }
59 
60 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
61 {
62 	return mask & ~rps->pm_intrmsk_mbz;
63 }
64 
65 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
66 {
67 	intel_uncore_write_fw(uncore, reg, val);
68 }
69 
70 static void rps_timer(struct timer_list *t)
71 {
72 	struct intel_rps *rps = from_timer(rps, t, timer);
73 	struct intel_engine_cs *engine;
74 	ktime_t dt, last, timestamp;
75 	enum intel_engine_id id;
76 	s64 max_busy[3] = {};
77 
78 	timestamp = 0;
79 	for_each_engine(engine, rps_to_gt(rps), id) {
80 		s64 busy;
81 		int i;
82 
83 		dt = intel_engine_get_busy_time(engine, &timestamp);
84 		last = engine->stats.rps;
85 		engine->stats.rps = dt;
86 
87 		busy = ktime_to_ns(ktime_sub(dt, last));
88 		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
89 			if (busy > max_busy[i])
90 				swap(busy, max_busy[i]);
91 		}
92 	}
93 	last = rps->pm_timestamp;
94 	rps->pm_timestamp = timestamp;
95 
96 	if (intel_rps_is_active(rps)) {
97 		s64 busy;
98 		int i;
99 
100 		dt = ktime_sub(timestamp, last);
101 
102 		/*
103 		 * Our goal is to evaluate each engine independently, so we run
104 		 * at the lowest clocks required to sustain the heaviest
105 		 * workload. However, a task may be split into sequential
106 		 * dependent operations across a set of engines, such that
107 		 * the independent contributions do not account for high load,
108 		 * but overall the task is GPU bound. For example, consider
109 		 * video decode on vcs followed by colour post-processing
110 		 * on vecs, followed by general post-processing on rcs.
111 		 * Since multi-engines being active does imply a single
112 		 * continuous workload across all engines, we hedge our
113 		 * bets by only contributing a factor of the distributed
114 		 * load into our busyness calculation.
115 		 */
116 		busy = max_busy[0];
117 		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
118 			if (!max_busy[i])
119 				break;
120 
121 			busy += div_u64(max_busy[i], 1 << i);
122 		}
123 		GT_TRACE(rps_to_gt(rps),
124 			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
125 			 busy, (int)div64_u64(100 * busy, dt),
126 			 max_busy[0], max_busy[1], max_busy[2],
127 			 rps->pm_interval);
128 
129 		if (100 * busy > rps->power.up_threshold * dt &&
130 		    rps->cur_freq < rps->max_freq_softlimit) {
131 			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
132 			rps->pm_interval = 1;
133 			schedule_work(&rps->work);
134 		} else if (100 * busy < rps->power.down_threshold * dt &&
135 			   rps->cur_freq > rps->min_freq_softlimit) {
136 			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
137 			rps->pm_interval = 1;
138 			schedule_work(&rps->work);
139 		} else {
140 			rps->last_adj = 0;
141 		}
142 
143 		mod_timer(&rps->timer,
144 			  jiffies + msecs_to_jiffies(rps->pm_interval));
145 		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
146 	}
147 }
148 
149 static void rps_start_timer(struct intel_rps *rps)
150 {
151 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
152 	rps->pm_interval = 1;
153 	mod_timer(&rps->timer, jiffies + 1);
154 }
155 
156 static void rps_stop_timer(struct intel_rps *rps)
157 {
158 	del_timer_sync(&rps->timer);
159 	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
160 	cancel_work_sync(&rps->work);
161 }
162 
163 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
164 {
165 	u32 mask = 0;
166 
167 	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
168 	if (val > rps->min_freq_softlimit)
169 		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
170 			 GEN6_PM_RP_DOWN_THRESHOLD |
171 			 GEN6_PM_RP_DOWN_TIMEOUT);
172 
173 	if (val < rps->max_freq_softlimit)
174 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
175 
176 	mask &= rps->pm_events;
177 
178 	return rps_pm_sanitize_mask(rps, ~mask);
179 }
180 
181 static void rps_reset_ei(struct intel_rps *rps)
182 {
183 	memset(&rps->ei, 0, sizeof(rps->ei));
184 }
185 
186 static void rps_enable_interrupts(struct intel_rps *rps)
187 {
188 	struct intel_gt *gt = rps_to_gt(rps);
189 
190 	GEM_BUG_ON(rps_uses_slpc(rps));
191 
192 	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
193 		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
194 
195 	rps_reset_ei(rps);
196 
197 	spin_lock_irq(&gt->irq_lock);
198 	gen6_gt_pm_enable_irq(gt, rps->pm_events);
199 	spin_unlock_irq(&gt->irq_lock);
200 
201 	intel_uncore_write(gt->uncore,
202 			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
203 }
204 
205 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
206 {
207 	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
208 }
209 
210 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
211 {
212 	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
213 		;
214 }
215 
216 static void rps_reset_interrupts(struct intel_rps *rps)
217 {
218 	struct intel_gt *gt = rps_to_gt(rps);
219 
220 	spin_lock_irq(&gt->irq_lock);
221 	if (GRAPHICS_VER(gt->i915) >= 11)
222 		gen11_rps_reset_interrupts(rps);
223 	else
224 		gen6_rps_reset_interrupts(rps);
225 
226 	rps->pm_iir = 0;
227 	spin_unlock_irq(&gt->irq_lock);
228 }
229 
230 static void rps_disable_interrupts(struct intel_rps *rps)
231 {
232 	struct intel_gt *gt = rps_to_gt(rps);
233 
234 	intel_uncore_write(gt->uncore,
235 			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
236 
237 	spin_lock_irq(&gt->irq_lock);
238 	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
239 	spin_unlock_irq(&gt->irq_lock);
240 
241 	intel_synchronize_irq(gt->i915);
242 
243 	/*
244 	 * Now that we will not be generating any more work, flush any
245 	 * outstanding tasks. As we are called on the RPS idle path,
246 	 * we will reset the GPU to minimum frequencies, so the current
247 	 * state of the worker can be discarded.
248 	 */
249 	cancel_work_sync(&rps->work);
250 
251 	rps_reset_interrupts(rps);
252 	GT_TRACE(gt, "interrupts:off\n");
253 }
254 
255 static const struct cparams {
256 	u16 i;
257 	u16 t;
258 	u16 m;
259 	u16 c;
260 } cparams[] = {
261 	{ 1, 1333, 301, 28664 },
262 	{ 1, 1066, 294, 24460 },
263 	{ 1, 800, 294, 25192 },
264 	{ 0, 1333, 276, 27605 },
265 	{ 0, 1066, 276, 27605 },
266 	{ 0, 800, 231, 23784 },
267 };
268 
269 static void gen5_rps_init(struct intel_rps *rps)
270 {
271 	struct drm_i915_private *i915 = rps_to_i915(rps);
272 	struct intel_uncore *uncore = rps_to_uncore(rps);
273 	u8 fmax, fmin, fstart;
274 	u32 rgvmodectl;
275 	int c_m, i;
276 
277 	if (i915->fsb_freq <= 3200)
278 		c_m = 0;
279 	else if (i915->fsb_freq <= 4800)
280 		c_m = 1;
281 	else
282 		c_m = 2;
283 
284 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
285 		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
286 			rps->ips.m = cparams[i].m;
287 			rps->ips.c = cparams[i].c;
288 			break;
289 		}
290 	}
291 
292 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
293 
294 	/* Set up min, max, and cur for interrupt handling */
295 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
296 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
297 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
298 		MEMMODE_FSTART_SHIFT;
299 	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
300 		fmax, fmin, fstart);
301 
302 	rps->min_freq = fmax;
303 	rps->efficient_freq = fstart;
304 	rps->max_freq = fmin;
305 }
306 
307 static unsigned long
308 __ips_chipset_val(struct intel_ips *ips)
309 {
310 	struct intel_uncore *uncore =
311 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
312 	unsigned long now = jiffies_to_msecs(jiffies), dt;
313 	unsigned long result;
314 	u64 total, delta;
315 
316 	lockdep_assert_held(&mchdev_lock);
317 
318 	/*
319 	 * Prevent division-by-zero if we are asking too fast.
320 	 * Also, we don't get interesting results if we are polling
321 	 * faster than once in 10ms, so just return the saved value
322 	 * in such cases.
323 	 */
324 	dt = now - ips->last_time1;
325 	if (dt <= 10)
326 		return ips->chipset_power;
327 
328 	/* FIXME: handle per-counter overflow */
329 	total = intel_uncore_read(uncore, DMIEC);
330 	total += intel_uncore_read(uncore, DDREC);
331 	total += intel_uncore_read(uncore, CSIEC);
332 
333 	delta = total - ips->last_count1;
334 
335 	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
336 
337 	ips->last_count1 = total;
338 	ips->last_time1 = now;
339 
340 	ips->chipset_power = result;
341 
342 	return result;
343 }
344 
345 static unsigned long ips_mch_val(struct intel_uncore *uncore)
346 {
347 	unsigned int m, x, b;
348 	u32 tsfs;
349 
350 	tsfs = intel_uncore_read(uncore, TSFS);
351 	x = intel_uncore_read8(uncore, TR1);
352 
353 	b = tsfs & TSFS_INTR_MASK;
354 	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
355 
356 	return m * x / 127 - b;
357 }
358 
359 static int _pxvid_to_vd(u8 pxvid)
360 {
361 	if (pxvid == 0)
362 		return 0;
363 
364 	if (pxvid >= 8 && pxvid < 31)
365 		pxvid = 31;
366 
367 	return (pxvid + 2) * 125;
368 }
369 
370 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
371 {
372 	const int vd = _pxvid_to_vd(pxvid);
373 
374 	if (INTEL_INFO(i915)->is_mobile)
375 		return max(vd - 1125, 0);
376 
377 	return vd;
378 }
379 
380 static void __gen5_ips_update(struct intel_ips *ips)
381 {
382 	struct intel_uncore *uncore =
383 		rps_to_uncore(container_of(ips, struct intel_rps, ips));
384 	u64 now, delta, dt;
385 	u32 count;
386 
387 	lockdep_assert_held(&mchdev_lock);
388 
389 	now = ktime_get_raw_ns();
390 	dt = now - ips->last_time2;
391 	do_div(dt, NSEC_PER_MSEC);
392 
393 	/* Don't divide by 0 */
394 	if (dt <= 10)
395 		return;
396 
397 	count = intel_uncore_read(uncore, GFXEC);
398 	delta = count - ips->last_count2;
399 
400 	ips->last_count2 = count;
401 	ips->last_time2 = now;
402 
403 	/* More magic constants... */
404 	ips->gfx_power = div_u64(delta * 1181, dt * 10);
405 }
406 
407 static void gen5_rps_update(struct intel_rps *rps)
408 {
409 	spin_lock_irq(&mchdev_lock);
410 	__gen5_ips_update(&rps->ips);
411 	spin_unlock_irq(&mchdev_lock);
412 }
413 
414 static unsigned int gen5_invert_freq(struct intel_rps *rps,
415 				     unsigned int val)
416 {
417 	/* Invert the frequency bin into an ips delay */
418 	val = rps->max_freq - val;
419 	val = rps->min_freq + val;
420 
421 	return val;
422 }
423 
424 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
425 {
426 	struct intel_uncore *uncore = rps_to_uncore(rps);
427 	u16 rgvswctl;
428 
429 	lockdep_assert_held(&mchdev_lock);
430 
431 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
432 	if (rgvswctl & MEMCTL_CMD_STS) {
433 		DRM_DEBUG("gpu busy, RCS change rejected\n");
434 		return -EBUSY; /* still busy with another command */
435 	}
436 
437 	/* Invert the frequency bin into an ips delay */
438 	val = gen5_invert_freq(rps, val);
439 
440 	rgvswctl =
441 		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
442 		(val << MEMCTL_FREQ_SHIFT) |
443 		MEMCTL_SFCAVM;
444 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
445 	intel_uncore_posting_read16(uncore, MEMSWCTL);
446 
447 	rgvswctl |= MEMCTL_CMD_STS;
448 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
449 
450 	return 0;
451 }
452 
453 static int gen5_rps_set(struct intel_rps *rps, u8 val)
454 {
455 	int err;
456 
457 	spin_lock_irq(&mchdev_lock);
458 	err = __gen5_rps_set(rps, val);
459 	spin_unlock_irq(&mchdev_lock);
460 
461 	return err;
462 }
463 
464 static unsigned long intel_pxfreq(u32 vidfreq)
465 {
466 	int div = (vidfreq & 0x3f0000) >> 16;
467 	int post = (vidfreq & 0x3000) >> 12;
468 	int pre = (vidfreq & 0x7);
469 
470 	if (!pre)
471 		return 0;
472 
473 	return div * 133333 / (pre << post);
474 }
475 
476 static unsigned int init_emon(struct intel_uncore *uncore)
477 {
478 	u8 pxw[16];
479 	int i;
480 
481 	/* Disable to program */
482 	intel_uncore_write(uncore, ECR, 0);
483 	intel_uncore_posting_read(uncore, ECR);
484 
485 	/* Program energy weights for various events */
486 	intel_uncore_write(uncore, SDEW, 0x15040d00);
487 	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
488 	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
489 	intel_uncore_write(uncore, CSIEW2, 0x04000004);
490 
491 	for (i = 0; i < 5; i++)
492 		intel_uncore_write(uncore, PEW(i), 0);
493 	for (i = 0; i < 3; i++)
494 		intel_uncore_write(uncore, DEW(i), 0);
495 
496 	/* Program P-state weights to account for frequency power adjustment */
497 	for (i = 0; i < 16; i++) {
498 		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
499 		unsigned int freq = intel_pxfreq(pxvidfreq);
500 		unsigned int vid =
501 			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
502 		unsigned int val;
503 
504 		val = vid * vid * freq / 1000 * 255;
505 		val /= 127 * 127 * 900;
506 
507 		pxw[i] = val;
508 	}
509 	/* Render standby states get 0 weight */
510 	pxw[14] = 0;
511 	pxw[15] = 0;
512 
513 	for (i = 0; i < 4; i++) {
514 		intel_uncore_write(uncore, PXW(i),
515 				   pxw[i * 4 + 0] << 24 |
516 				   pxw[i * 4 + 1] << 16 |
517 				   pxw[i * 4 + 2] <<  8 |
518 				   pxw[i * 4 + 3] <<  0);
519 	}
520 
521 	/* Adjust magic regs to magic values (more experimental results) */
522 	intel_uncore_write(uncore, OGW0, 0);
523 	intel_uncore_write(uncore, OGW1, 0);
524 	intel_uncore_write(uncore, EG0, 0x00007f00);
525 	intel_uncore_write(uncore, EG1, 0x0000000e);
526 	intel_uncore_write(uncore, EG2, 0x000e0000);
527 	intel_uncore_write(uncore, EG3, 0x68000300);
528 	intel_uncore_write(uncore, EG4, 0x42000000);
529 	intel_uncore_write(uncore, EG5, 0x00140031);
530 	intel_uncore_write(uncore, EG6, 0);
531 	intel_uncore_write(uncore, EG7, 0);
532 
533 	for (i = 0; i < 8; i++)
534 		intel_uncore_write(uncore, PXWL(i), 0);
535 
536 	/* Enable PMON + select events */
537 	intel_uncore_write(uncore, ECR, 0x80000019);
538 
539 	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
540 }
541 
542 static bool gen5_rps_enable(struct intel_rps *rps)
543 {
544 	struct drm_i915_private *i915 = rps_to_i915(rps);
545 	struct intel_uncore *uncore = rps_to_uncore(rps);
546 	u8 fstart, vstart;
547 	u32 rgvmodectl;
548 
549 	spin_lock_irq(&mchdev_lock);
550 
551 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
552 
553 	/* Enable temp reporting */
554 	intel_uncore_write16(uncore, PMMISC,
555 			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
556 	intel_uncore_write16(uncore, TSC1,
557 			     intel_uncore_read16(uncore, TSC1) | TSE);
558 
559 	/* 100ms RC evaluation intervals */
560 	intel_uncore_write(uncore, RCUPEI, 100000);
561 	intel_uncore_write(uncore, RCDNEI, 100000);
562 
563 	/* Set max/min thresholds to 90ms and 80ms respectively */
564 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
565 	intel_uncore_write(uncore, RCBMINAVG, 80000);
566 
567 	intel_uncore_write(uncore, MEMIHYST, 1);
568 
569 	/* Set up min, max, and cur for interrupt handling */
570 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
571 		MEMMODE_FSTART_SHIFT;
572 
573 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
574 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
575 
576 	intel_uncore_write(uncore,
577 			   MEMINTREN,
578 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
579 
580 	intel_uncore_write(uncore, VIDSTART, vstart);
581 	intel_uncore_posting_read(uncore, VIDSTART);
582 
583 	rgvmodectl |= MEMMODE_SWMODE_EN;
584 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
585 
586 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
587 			     MEMCTL_CMD_STS) == 0, 10))
588 		drm_err(&uncore->i915->drm,
589 			"stuck trying to change perf mode\n");
590 	mdelay(1);
591 
592 	__gen5_rps_set(rps, rps->cur_freq);
593 
594 	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
595 	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
596 	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
597 	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
598 
599 	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
600 	rps->ips.last_time2 = ktime_get_raw_ns();
601 
602 	spin_lock(&i915->irq_lock);
603 	ilk_enable_display_irq(i915, DE_PCU_EVENT);
604 	spin_unlock(&i915->irq_lock);
605 
606 	spin_unlock_irq(&mchdev_lock);
607 
608 	rps->ips.corr = init_emon(uncore);
609 
610 	return true;
611 }
612 
613 static void gen5_rps_disable(struct intel_rps *rps)
614 {
615 	struct drm_i915_private *i915 = rps_to_i915(rps);
616 	struct intel_uncore *uncore = rps_to_uncore(rps);
617 	u16 rgvswctl;
618 
619 	spin_lock_irq(&mchdev_lock);
620 
621 	spin_lock(&i915->irq_lock);
622 	ilk_disable_display_irq(i915, DE_PCU_EVENT);
623 	spin_unlock(&i915->irq_lock);
624 
625 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
626 
627 	/* Ack interrupts, disable EFC interrupt */
628 	intel_uncore_write(uncore, MEMINTREN,
629 			   intel_uncore_read(uncore, MEMINTREN) &
630 			   ~MEMINT_EVAL_CHG_EN);
631 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
632 
633 	/* Go back to the starting frequency */
634 	__gen5_rps_set(rps, rps->idle_freq);
635 	mdelay(1);
636 	rgvswctl |= MEMCTL_CMD_STS;
637 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
638 	mdelay(1);
639 
640 	spin_unlock_irq(&mchdev_lock);
641 }
642 
643 static u32 rps_limits(struct intel_rps *rps, u8 val)
644 {
645 	u32 limits;
646 
647 	/*
648 	 * Only set the down limit when we've reached the lowest level to avoid
649 	 * getting more interrupts, otherwise leave this clear. This prevents a
650 	 * race in the hw when coming out of rc6: There's a tiny window where
651 	 * the hw runs at the minimal clock before selecting the desired
652 	 * frequency, if the down threshold expires in that window we will not
653 	 * receive a down interrupt.
654 	 */
655 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
656 		limits = rps->max_freq_softlimit << 23;
657 		if (val <= rps->min_freq_softlimit)
658 			limits |= rps->min_freq_softlimit << 14;
659 	} else {
660 		limits = rps->max_freq_softlimit << 24;
661 		if (val <= rps->min_freq_softlimit)
662 			limits |= rps->min_freq_softlimit << 16;
663 	}
664 
665 	return limits;
666 }
667 
668 static void rps_set_power(struct intel_rps *rps, int new_power)
669 {
670 	struct intel_gt *gt = rps_to_gt(rps);
671 	struct intel_uncore *uncore = gt->uncore;
672 	u32 threshold_up = 0, threshold_down = 0; /* in % */
673 	u32 ei_up = 0, ei_down = 0;
674 
675 	lockdep_assert_held(&rps->power.mutex);
676 
677 	if (new_power == rps->power.mode)
678 		return;
679 
680 	threshold_up = 95;
681 	threshold_down = 85;
682 
683 	/* Note the units here are not exactly 1us, but 1280ns. */
684 	switch (new_power) {
685 	case LOW_POWER:
686 		ei_up = 16000;
687 		ei_down = 32000;
688 		break;
689 
690 	case BETWEEN:
691 		ei_up = 13000;
692 		ei_down = 32000;
693 		break;
694 
695 	case HIGH_POWER:
696 		ei_up = 10000;
697 		ei_down = 32000;
698 		break;
699 	}
700 
701 	/* When byt can survive without system hang with dynamic
702 	 * sw freq adjustments, this restriction can be lifted.
703 	 */
704 	if (IS_VALLEYVIEW(gt->i915))
705 		goto skip_hw_write;
706 
707 	GT_TRACE(gt,
708 		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709 		 new_power, threshold_up, ei_up, threshold_down, ei_down);
710 
711 	set(uncore, GEN6_RP_UP_EI,
712 	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
713 	set(uncore, GEN6_RP_UP_THRESHOLD,
714 	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
715 
716 	set(uncore, GEN6_RP_DOWN_EI,
717 	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
718 	set(uncore, GEN6_RP_DOWN_THRESHOLD,
719 	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
720 
721 	set(uncore, GEN6_RP_CONTROL,
722 	    (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
723 	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
724 	    GEN6_RP_MEDIA_IS_GFX |
725 	    GEN6_RP_ENABLE |
726 	    GEN6_RP_UP_BUSY_AVG |
727 	    GEN6_RP_DOWN_IDLE_AVG);
728 
729 skip_hw_write:
730 	rps->power.mode = new_power;
731 	rps->power.up_threshold = threshold_up;
732 	rps->power.down_threshold = threshold_down;
733 }
734 
735 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
736 {
737 	int new_power;
738 
739 	new_power = rps->power.mode;
740 	switch (rps->power.mode) {
741 	case LOW_POWER:
742 		if (val > rps->efficient_freq + 1 &&
743 		    val > rps->cur_freq)
744 			new_power = BETWEEN;
745 		break;
746 
747 	case BETWEEN:
748 		if (val <= rps->efficient_freq &&
749 		    val < rps->cur_freq)
750 			new_power = LOW_POWER;
751 		else if (val >= rps->rp0_freq &&
752 			 val > rps->cur_freq)
753 			new_power = HIGH_POWER;
754 		break;
755 
756 	case HIGH_POWER:
757 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
758 		    val < rps->cur_freq)
759 			new_power = BETWEEN;
760 		break;
761 	}
762 	/* Max/min bins are special */
763 	if (val <= rps->min_freq_softlimit)
764 		new_power = LOW_POWER;
765 	if (val >= rps->max_freq_softlimit)
766 		new_power = HIGH_POWER;
767 
768 	mutex_lock(&rps->power.mutex);
769 	if (rps->power.interactive)
770 		new_power = HIGH_POWER;
771 	rps_set_power(rps, new_power);
772 	mutex_unlock(&rps->power.mutex);
773 }
774 
775 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
776 {
777 	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
778 		 str_yes_no(interactive));
779 
780 	mutex_lock(&rps->power.mutex);
781 	if (interactive) {
782 		if (!rps->power.interactive++ && intel_rps_is_active(rps))
783 			rps_set_power(rps, HIGH_POWER);
784 	} else {
785 		GEM_BUG_ON(!rps->power.interactive);
786 		rps->power.interactive--;
787 	}
788 	mutex_unlock(&rps->power.mutex);
789 }
790 
791 static int gen6_rps_set(struct intel_rps *rps, u8 val)
792 {
793 	struct intel_uncore *uncore = rps_to_uncore(rps);
794 	struct drm_i915_private *i915 = rps_to_i915(rps);
795 	u32 swreq;
796 
797 	GEM_BUG_ON(rps_uses_slpc(rps));
798 
799 	if (GRAPHICS_VER(i915) >= 9)
800 		swreq = GEN9_FREQUENCY(val);
801 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
802 		swreq = HSW_FREQUENCY(val);
803 	else
804 		swreq = (GEN6_FREQUENCY(val) |
805 			 GEN6_OFFSET(0) |
806 			 GEN6_AGGRESSIVE_TURBO);
807 	set(uncore, GEN6_RPNSWREQ, swreq);
808 
809 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
810 		 val, intel_gpu_freq(rps, val), swreq);
811 
812 	return 0;
813 }
814 
815 static int vlv_rps_set(struct intel_rps *rps, u8 val)
816 {
817 	struct drm_i915_private *i915 = rps_to_i915(rps);
818 	int err;
819 
820 	vlv_punit_get(i915);
821 	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
822 	vlv_punit_put(i915);
823 
824 	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
825 		 val, intel_gpu_freq(rps, val));
826 
827 	return err;
828 }
829 
830 static int rps_set(struct intel_rps *rps, u8 val, bool update)
831 {
832 	struct drm_i915_private *i915 = rps_to_i915(rps);
833 	int err;
834 
835 	if (val == rps->last_freq)
836 		return 0;
837 
838 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
839 		err = vlv_rps_set(rps, val);
840 	else if (GRAPHICS_VER(i915) >= 6)
841 		err = gen6_rps_set(rps, val);
842 	else
843 		err = gen5_rps_set(rps, val);
844 	if (err)
845 		return err;
846 
847 	if (update && GRAPHICS_VER(i915) >= 6)
848 		gen6_rps_set_thresholds(rps, val);
849 	rps->last_freq = val;
850 
851 	return 0;
852 }
853 
854 void intel_rps_unpark(struct intel_rps *rps)
855 {
856 	if (!intel_rps_is_enabled(rps))
857 		return;
858 
859 	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
860 
861 	/*
862 	 * Use the user's desired frequency as a guide, but for better
863 	 * performance, jump directly to RPe as our starting frequency.
864 	 */
865 	mutex_lock(&rps->lock);
866 
867 	intel_rps_set_active(rps);
868 	intel_rps_set(rps,
869 		      clamp(rps->cur_freq,
870 			    rps->min_freq_softlimit,
871 			    rps->max_freq_softlimit));
872 
873 	mutex_unlock(&rps->lock);
874 
875 	rps->pm_iir = 0;
876 	if (intel_rps_has_interrupts(rps))
877 		rps_enable_interrupts(rps);
878 	if (intel_rps_uses_timer(rps))
879 		rps_start_timer(rps);
880 
881 	if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
882 		gen5_rps_update(rps);
883 }
884 
885 void intel_rps_park(struct intel_rps *rps)
886 {
887 	int adj;
888 
889 	if (!intel_rps_is_enabled(rps))
890 		return;
891 
892 	if (!intel_rps_clear_active(rps))
893 		return;
894 
895 	if (intel_rps_uses_timer(rps))
896 		rps_stop_timer(rps);
897 	if (intel_rps_has_interrupts(rps))
898 		rps_disable_interrupts(rps);
899 
900 	if (rps->last_freq <= rps->idle_freq)
901 		return;
902 
903 	/*
904 	 * The punit delays the write of the frequency and voltage until it
905 	 * determines the GPU is awake. During normal usage we don't want to
906 	 * waste power changing the frequency if the GPU is sleeping (rc6).
907 	 * However, the GPU and driver is now idle and we do not want to delay
908 	 * switching to minimum voltage (reducing power whilst idle) as we do
909 	 * not expect to be woken in the near future and so must flush the
910 	 * change by waking the device.
911 	 *
912 	 * We choose to take the media powerwell (either would do to trick the
913 	 * punit into committing the voltage change) as that takes a lot less
914 	 * power than the render powerwell.
915 	 */
916 	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
917 	rps_set(rps, rps->idle_freq, false);
918 	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
919 
920 	/*
921 	 * Since we will try and restart from the previously requested
922 	 * frequency on unparking, treat this idle point as a downclock
923 	 * interrupt and reduce the frequency for resume. If we park/unpark
924 	 * more frequently than the rps worker can run, we will not respond
925 	 * to any EI and never see a change in frequency.
926 	 *
927 	 * (Note we accommodate Cherryview's limitation of only using an
928 	 * even bin by applying it to all.)
929 	 */
930 	adj = rps->last_adj;
931 	if (adj < 0)
932 		adj *= 2;
933 	else /* CHV needs even encode values */
934 		adj = -2;
935 	rps->last_adj = adj;
936 	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
937 	if (rps->cur_freq < rps->efficient_freq) {
938 		rps->cur_freq = rps->efficient_freq;
939 		rps->last_adj = 0;
940 	}
941 
942 	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
943 }
944 
945 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
946 {
947 	struct intel_guc_slpc *slpc;
948 
949 	if (rps_uses_slpc(rps)) {
950 		slpc = rps_to_slpc(rps);
951 
952 		return slpc->boost_freq;
953 	} else {
954 		return intel_gpu_freq(rps, rps->boost_freq);
955 	}
956 }
957 
958 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
959 {
960 	bool boost = false;
961 
962 	/* Validate against (static) hardware limits */
963 	val = intel_freq_opcode(rps, val);
964 	if (val < rps->min_freq || val > rps->max_freq)
965 		return -EINVAL;
966 
967 	mutex_lock(&rps->lock);
968 	if (val != rps->boost_freq) {
969 		rps->boost_freq = val;
970 		boost = atomic_read(&rps->num_waiters);
971 	}
972 	mutex_unlock(&rps->lock);
973 	if (boost)
974 		schedule_work(&rps->work);
975 
976 	return 0;
977 }
978 
979 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
980 {
981 	struct intel_guc_slpc *slpc;
982 
983 	if (rps_uses_slpc(rps)) {
984 		slpc = rps_to_slpc(rps);
985 
986 		return intel_guc_slpc_set_boost_freq(slpc, freq);
987 	} else {
988 		return rps_set_boost_freq(rps, freq);
989 	}
990 }
991 
992 void intel_rps_dec_waiters(struct intel_rps *rps)
993 {
994 	struct intel_guc_slpc *slpc;
995 
996 	if (rps_uses_slpc(rps)) {
997 		slpc = rps_to_slpc(rps);
998 
999 		intel_guc_slpc_dec_waiters(slpc);
1000 	} else {
1001 		atomic_dec(&rps->num_waiters);
1002 	}
1003 }
1004 
1005 void intel_rps_boost(struct i915_request *rq)
1006 {
1007 	struct intel_guc_slpc *slpc;
1008 
1009 	if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1010 		return;
1011 
1012 	/* Serializes with i915_request_retire() */
1013 	if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1014 		struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1015 
1016 		if (rps_uses_slpc(rps)) {
1017 			slpc = rps_to_slpc(rps);
1018 
1019 			/* Return if old value is non zero */
1020 			if (!atomic_fetch_inc(&slpc->num_waiters))
1021 				schedule_work(&slpc->boost_work);
1022 
1023 			return;
1024 		}
1025 
1026 		if (atomic_fetch_inc(&rps->num_waiters))
1027 			return;
1028 
1029 		if (!intel_rps_is_active(rps))
1030 			return;
1031 
1032 		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1033 			 rq->fence.context, rq->fence.seqno);
1034 
1035 		if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1036 			schedule_work(&rps->work);
1037 
1038 		WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1039 	}
1040 }
1041 
1042 int intel_rps_set(struct intel_rps *rps, u8 val)
1043 {
1044 	int err;
1045 
1046 	lockdep_assert_held(&rps->lock);
1047 	GEM_BUG_ON(val > rps->max_freq);
1048 	GEM_BUG_ON(val < rps->min_freq);
1049 
1050 	if (intel_rps_is_active(rps)) {
1051 		err = rps_set(rps, val, true);
1052 		if (err)
1053 			return err;
1054 
1055 		/*
1056 		 * Make sure we continue to get interrupts
1057 		 * until we hit the minimum or maximum frequencies.
1058 		 */
1059 		if (intel_rps_has_interrupts(rps)) {
1060 			struct intel_uncore *uncore = rps_to_uncore(rps);
1061 
1062 			set(uncore,
1063 			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1064 
1065 			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1066 		}
1067 	}
1068 
1069 	rps->cur_freq = val;
1070 	return 0;
1071 }
1072 
1073 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1074 {
1075 	struct drm_i915_private *i915 = rps_to_i915(rps);
1076 	struct intel_uncore *uncore = rps_to_uncore(rps);
1077 
1078 	if (IS_PONTEVECCHIO(i915))
1079 		return intel_uncore_read(uncore, PVC_RP_STATE_CAP);
1080 	else if (IS_XEHPSDV(i915))
1081 		return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1082 	else if (IS_GEN9_LP(i915))
1083 		return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1084 	else
1085 		return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1086 }
1087 
1088 /**
1089  * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1090  * @rps: the intel_rps structure
1091  * @caps: returned freq caps
1092  *
1093  * Returned "caps" frequencies should be converted to MHz using
1094  * intel_gpu_freq()
1095  */
1096 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1097 {
1098 	struct drm_i915_private *i915 = rps_to_i915(rps);
1099 	u32 rp_state_cap;
1100 
1101 	rp_state_cap = intel_rps_read_state_cap(rps);
1102 
1103 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
1104 	if (IS_GEN9_LP(i915)) {
1105 		caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1106 		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1107 		caps->min_freq = (rp_state_cap >>  0) & 0xff;
1108 	} else {
1109 		caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1110 		caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1111 		caps->min_freq = (rp_state_cap >> 16) & 0xff;
1112 	}
1113 
1114 	if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1115 		/*
1116 		 * In this case rp_state_cap register reports frequencies in
1117 		 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1118 		 * units of 16.67 MHz
1119 		 */
1120 		caps->rp0_freq *= GEN9_FREQ_SCALER;
1121 		caps->rp1_freq *= GEN9_FREQ_SCALER;
1122 		caps->min_freq *= GEN9_FREQ_SCALER;
1123 	}
1124 }
1125 
1126 static void gen6_rps_init(struct intel_rps *rps)
1127 {
1128 	struct drm_i915_private *i915 = rps_to_i915(rps);
1129 	struct intel_rps_freq_caps caps;
1130 
1131 	gen6_rps_get_freq_caps(rps, &caps);
1132 	rps->rp0_freq = caps.rp0_freq;
1133 	rps->rp1_freq = caps.rp1_freq;
1134 	rps->min_freq = caps.min_freq;
1135 
1136 	/* hw_max = RP0 until we check for overclocking */
1137 	rps->max_freq = rps->rp0_freq;
1138 
1139 	rps->efficient_freq = rps->rp1_freq;
1140 	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1141 	    IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1142 		u32 ddcc_status = 0;
1143 		u32 mult = 1;
1144 
1145 		if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1146 			mult = GEN9_FREQ_SCALER;
1147 		if (snb_pcode_read(rps_to_gt(rps)->uncore,
1148 				   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1149 				   &ddcc_status, NULL) == 0)
1150 			rps->efficient_freq =
1151 				clamp_t(u32,
1152 					((ddcc_status >> 8) & 0xff) * mult,
1153 					rps->min_freq,
1154 					rps->max_freq);
1155 	}
1156 }
1157 
1158 static bool rps_reset(struct intel_rps *rps)
1159 {
1160 	struct drm_i915_private *i915 = rps_to_i915(rps);
1161 
1162 	/* force a reset */
1163 	rps->power.mode = -1;
1164 	rps->last_freq = -1;
1165 
1166 	if (rps_set(rps, rps->min_freq, true)) {
1167 		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1168 		return false;
1169 	}
1170 
1171 	rps->cur_freq = rps->min_freq;
1172 	return true;
1173 }
1174 
1175 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1176 static bool gen9_rps_enable(struct intel_rps *rps)
1177 {
1178 	struct intel_gt *gt = rps_to_gt(rps);
1179 	struct intel_uncore *uncore = gt->uncore;
1180 
1181 	/* Program defaults and thresholds for RPS */
1182 	if (GRAPHICS_VER(gt->i915) == 9)
1183 		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1184 				      GEN9_FREQUENCY(rps->rp1_freq));
1185 
1186 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1187 
1188 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1189 
1190 	return rps_reset(rps);
1191 }
1192 
1193 static bool gen8_rps_enable(struct intel_rps *rps)
1194 {
1195 	struct intel_uncore *uncore = rps_to_uncore(rps);
1196 
1197 	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1198 			      HSW_FREQUENCY(rps->rp1_freq));
1199 
1200 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1201 
1202 	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1203 
1204 	return rps_reset(rps);
1205 }
1206 
1207 static bool gen6_rps_enable(struct intel_rps *rps)
1208 {
1209 	struct intel_uncore *uncore = rps_to_uncore(rps);
1210 
1211 	/* Power down if completely idle for over 50ms */
1212 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1213 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1214 
1215 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1216 			  GEN6_PM_RP_DOWN_THRESHOLD |
1217 			  GEN6_PM_RP_DOWN_TIMEOUT);
1218 
1219 	return rps_reset(rps);
1220 }
1221 
1222 static int chv_rps_max_freq(struct intel_rps *rps)
1223 {
1224 	struct drm_i915_private *i915 = rps_to_i915(rps);
1225 	struct intel_gt *gt = rps_to_gt(rps);
1226 	u32 val;
1227 
1228 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1229 
1230 	switch (gt->info.sseu.eu_total) {
1231 	case 8:
1232 		/* (2 * 4) config */
1233 		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1234 		break;
1235 	case 12:
1236 		/* (2 * 6) config */
1237 		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1238 		break;
1239 	case 16:
1240 		/* (2 * 8) config */
1241 	default:
1242 		/* Setting (2 * 8) Min RP0 for any other combination */
1243 		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1244 		break;
1245 	}
1246 
1247 	return val & FB_GFX_FREQ_FUSE_MASK;
1248 }
1249 
1250 static int chv_rps_rpe_freq(struct intel_rps *rps)
1251 {
1252 	struct drm_i915_private *i915 = rps_to_i915(rps);
1253 	u32 val;
1254 
1255 	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1256 	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1257 
1258 	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1259 }
1260 
1261 static int chv_rps_guar_freq(struct intel_rps *rps)
1262 {
1263 	struct drm_i915_private *i915 = rps_to_i915(rps);
1264 	u32 val;
1265 
1266 	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1267 
1268 	return val & FB_GFX_FREQ_FUSE_MASK;
1269 }
1270 
1271 static u32 chv_rps_min_freq(struct intel_rps *rps)
1272 {
1273 	struct drm_i915_private *i915 = rps_to_i915(rps);
1274 	u32 val;
1275 
1276 	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1277 	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1278 
1279 	return val & FB_GFX_FREQ_FUSE_MASK;
1280 }
1281 
1282 static bool chv_rps_enable(struct intel_rps *rps)
1283 {
1284 	struct intel_uncore *uncore = rps_to_uncore(rps);
1285 	struct drm_i915_private *i915 = rps_to_i915(rps);
1286 	u32 val;
1287 
1288 	/* 1: Program defaults and thresholds for RPS*/
1289 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1290 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1291 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1292 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1293 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1294 
1295 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1296 
1297 	/* 2: Enable RPS */
1298 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1299 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1300 			      GEN6_RP_MEDIA_IS_GFX |
1301 			      GEN6_RP_ENABLE |
1302 			      GEN6_RP_UP_BUSY_AVG |
1303 			      GEN6_RP_DOWN_IDLE_AVG);
1304 
1305 	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1306 			  GEN6_PM_RP_DOWN_THRESHOLD |
1307 			  GEN6_PM_RP_DOWN_TIMEOUT);
1308 
1309 	/* Setting Fixed Bias */
1310 	vlv_punit_get(i915);
1311 
1312 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1313 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1314 
1315 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1316 
1317 	vlv_punit_put(i915);
1318 
1319 	/* RPS code assumes GPLL is used */
1320 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1321 		      "GPLL not enabled\n");
1322 
1323 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1324 		str_yes_no(val & GPLLENABLE));
1325 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1326 
1327 	return rps_reset(rps);
1328 }
1329 
1330 static int vlv_rps_guar_freq(struct intel_rps *rps)
1331 {
1332 	struct drm_i915_private *i915 = rps_to_i915(rps);
1333 	u32 val, rp1;
1334 
1335 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1336 
1337 	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1338 	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1339 
1340 	return rp1;
1341 }
1342 
1343 static int vlv_rps_max_freq(struct intel_rps *rps)
1344 {
1345 	struct drm_i915_private *i915 = rps_to_i915(rps);
1346 	u32 val, rp0;
1347 
1348 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1349 
1350 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1351 	/* Clamp to max */
1352 	rp0 = min_t(u32, rp0, 0xea);
1353 
1354 	return rp0;
1355 }
1356 
1357 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1358 {
1359 	struct drm_i915_private *i915 = rps_to_i915(rps);
1360 	u32 val, rpe;
1361 
1362 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1363 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1364 	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1365 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1366 
1367 	return rpe;
1368 }
1369 
1370 static int vlv_rps_min_freq(struct intel_rps *rps)
1371 {
1372 	struct drm_i915_private *i915 = rps_to_i915(rps);
1373 	u32 val;
1374 
1375 	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1376 	/*
1377 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1378 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1379 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1380 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1381 	 * to make sure it matches what Punit accepts.
1382 	 */
1383 	return max_t(u32, val, 0xc0);
1384 }
1385 
1386 static bool vlv_rps_enable(struct intel_rps *rps)
1387 {
1388 	struct intel_uncore *uncore = rps_to_uncore(rps);
1389 	struct drm_i915_private *i915 = rps_to_i915(rps);
1390 	u32 val;
1391 
1392 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1393 	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1394 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1395 	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1396 	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1397 
1398 	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1399 
1400 	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1401 			      GEN6_RP_MEDIA_TURBO |
1402 			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1403 			      GEN6_RP_MEDIA_IS_GFX |
1404 			      GEN6_RP_ENABLE |
1405 			      GEN6_RP_UP_BUSY_AVG |
1406 			      GEN6_RP_DOWN_IDLE_CONT);
1407 
1408 	/* WaGsvRC0ResidencyMethod:vlv */
1409 	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1410 
1411 	vlv_punit_get(i915);
1412 
1413 	/* Setting Fixed Bias */
1414 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1415 	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1416 
1417 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1418 
1419 	vlv_punit_put(i915);
1420 
1421 	/* RPS code assumes GPLL is used */
1422 	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1423 		      "GPLL not enabled\n");
1424 
1425 	drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1426 		str_yes_no(val & GPLLENABLE));
1427 	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1428 
1429 	return rps_reset(rps);
1430 }
1431 
1432 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1433 {
1434 	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1435 	struct intel_uncore *uncore = rps_to_uncore(rps);
1436 	unsigned int t, state1, state2;
1437 	u32 pxvid, ext_v;
1438 	u64 corr, corr2;
1439 
1440 	lockdep_assert_held(&mchdev_lock);
1441 
1442 	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1443 	pxvid = (pxvid >> 24) & 0x7f;
1444 	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1445 
1446 	state1 = ext_v;
1447 
1448 	/* Revel in the empirically derived constants */
1449 
1450 	/* Correction factor in 1/100000 units */
1451 	t = ips_mch_val(uncore);
1452 	if (t > 80)
1453 		corr = t * 2349 + 135940;
1454 	else if (t >= 50)
1455 		corr = t * 964 + 29317;
1456 	else /* < 50 */
1457 		corr = t * 301 + 1004;
1458 
1459 	corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1460 	corr2 = div_u64(corr, 100000) * ips->corr;
1461 
1462 	state2 = div_u64(corr2 * state1, 10000);
1463 	state2 /= 100; /* convert to mW */
1464 
1465 	__gen5_ips_update(ips);
1466 
1467 	return ips->gfx_power + state2;
1468 }
1469 
1470 static bool has_busy_stats(struct intel_rps *rps)
1471 {
1472 	struct intel_engine_cs *engine;
1473 	enum intel_engine_id id;
1474 
1475 	for_each_engine(engine, rps_to_gt(rps), id) {
1476 		if (!intel_engine_supports_stats(engine))
1477 			return false;
1478 	}
1479 
1480 	return true;
1481 }
1482 
1483 void intel_rps_enable(struct intel_rps *rps)
1484 {
1485 	struct drm_i915_private *i915 = rps_to_i915(rps);
1486 	struct intel_uncore *uncore = rps_to_uncore(rps);
1487 	bool enabled = false;
1488 
1489 	if (!HAS_RPS(i915))
1490 		return;
1491 
1492 	if (rps_uses_slpc(rps))
1493 		return;
1494 
1495 	intel_gt_check_clock_frequency(rps_to_gt(rps));
1496 
1497 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1498 	if (rps->max_freq <= rps->min_freq)
1499 		/* leave disabled, no room for dynamic reclocking */;
1500 	else if (IS_CHERRYVIEW(i915))
1501 		enabled = chv_rps_enable(rps);
1502 	else if (IS_VALLEYVIEW(i915))
1503 		enabled = vlv_rps_enable(rps);
1504 	else if (GRAPHICS_VER(i915) >= 9)
1505 		enabled = gen9_rps_enable(rps);
1506 	else if (GRAPHICS_VER(i915) >= 8)
1507 		enabled = gen8_rps_enable(rps);
1508 	else if (GRAPHICS_VER(i915) >= 6)
1509 		enabled = gen6_rps_enable(rps);
1510 	else if (IS_IRONLAKE_M(i915))
1511 		enabled = gen5_rps_enable(rps);
1512 	else
1513 		MISSING_CASE(GRAPHICS_VER(i915));
1514 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1515 	if (!enabled)
1516 		return;
1517 
1518 	GT_TRACE(rps_to_gt(rps),
1519 		 "min:%x, max:%x, freq:[%d, %d]\n",
1520 		 rps->min_freq, rps->max_freq,
1521 		 intel_gpu_freq(rps, rps->min_freq),
1522 		 intel_gpu_freq(rps, rps->max_freq));
1523 
1524 	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1525 	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1526 
1527 	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1528 	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1529 
1530 	if (has_busy_stats(rps))
1531 		intel_rps_set_timer(rps);
1532 	else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1533 		intel_rps_set_interrupts(rps);
1534 	else
1535 		/* Ironlake currently uses intel_ips.ko */ {}
1536 
1537 	intel_rps_set_enabled(rps);
1538 }
1539 
1540 static void gen6_rps_disable(struct intel_rps *rps)
1541 {
1542 	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1543 }
1544 
1545 void intel_rps_disable(struct intel_rps *rps)
1546 {
1547 	struct drm_i915_private *i915 = rps_to_i915(rps);
1548 
1549 	intel_rps_clear_enabled(rps);
1550 	intel_rps_clear_interrupts(rps);
1551 	intel_rps_clear_timer(rps);
1552 
1553 	if (GRAPHICS_VER(i915) >= 6)
1554 		gen6_rps_disable(rps);
1555 	else if (IS_IRONLAKE_M(i915))
1556 		gen5_rps_disable(rps);
1557 }
1558 
1559 static int byt_gpu_freq(struct intel_rps *rps, int val)
1560 {
1561 	/*
1562 	 * N = val - 0xb7
1563 	 * Slow = Fast = GPLL ref * N
1564 	 */
1565 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1566 }
1567 
1568 static int byt_freq_opcode(struct intel_rps *rps, int val)
1569 {
1570 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1571 }
1572 
1573 static int chv_gpu_freq(struct intel_rps *rps, int val)
1574 {
1575 	/*
1576 	 * N = val / 2
1577 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1578 	 */
1579 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1580 }
1581 
1582 static int chv_freq_opcode(struct intel_rps *rps, int val)
1583 {
1584 	/* CHV needs even values */
1585 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1586 }
1587 
1588 int intel_gpu_freq(struct intel_rps *rps, int val)
1589 {
1590 	struct drm_i915_private *i915 = rps_to_i915(rps);
1591 
1592 	if (GRAPHICS_VER(i915) >= 9)
1593 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1594 					 GEN9_FREQ_SCALER);
1595 	else if (IS_CHERRYVIEW(i915))
1596 		return chv_gpu_freq(rps, val);
1597 	else if (IS_VALLEYVIEW(i915))
1598 		return byt_gpu_freq(rps, val);
1599 	else if (GRAPHICS_VER(i915) >= 6)
1600 		return val * GT_FREQUENCY_MULTIPLIER;
1601 	else
1602 		return val;
1603 }
1604 
1605 int intel_freq_opcode(struct intel_rps *rps, int val)
1606 {
1607 	struct drm_i915_private *i915 = rps_to_i915(rps);
1608 
1609 	if (GRAPHICS_VER(i915) >= 9)
1610 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1611 					 GT_FREQUENCY_MULTIPLIER);
1612 	else if (IS_CHERRYVIEW(i915))
1613 		return chv_freq_opcode(rps, val);
1614 	else if (IS_VALLEYVIEW(i915))
1615 		return byt_freq_opcode(rps, val);
1616 	else if (GRAPHICS_VER(i915) >= 6)
1617 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1618 	else
1619 		return val;
1620 }
1621 
1622 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1623 {
1624 	struct drm_i915_private *i915 = rps_to_i915(rps);
1625 
1626 	rps->gpll_ref_freq =
1627 		vlv_get_cck_clock(i915, "GPLL ref",
1628 				  CCK_GPLL_CLOCK_CONTROL,
1629 				  i915->czclk_freq);
1630 
1631 	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1632 		rps->gpll_ref_freq);
1633 }
1634 
1635 static void vlv_rps_init(struct intel_rps *rps)
1636 {
1637 	struct drm_i915_private *i915 = rps_to_i915(rps);
1638 	u32 val;
1639 
1640 	vlv_iosf_sb_get(i915,
1641 			BIT(VLV_IOSF_SB_PUNIT) |
1642 			BIT(VLV_IOSF_SB_NC) |
1643 			BIT(VLV_IOSF_SB_CCK));
1644 
1645 	vlv_init_gpll_ref_freq(rps);
1646 
1647 	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1648 	switch ((val >> 6) & 3) {
1649 	case 0:
1650 	case 1:
1651 		i915->mem_freq = 800;
1652 		break;
1653 	case 2:
1654 		i915->mem_freq = 1066;
1655 		break;
1656 	case 3:
1657 		i915->mem_freq = 1333;
1658 		break;
1659 	}
1660 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1661 
1662 	rps->max_freq = vlv_rps_max_freq(rps);
1663 	rps->rp0_freq = rps->max_freq;
1664 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1665 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1666 
1667 	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1668 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1669 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1670 
1671 	rps->rp1_freq = vlv_rps_guar_freq(rps);
1672 	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1673 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1674 
1675 	rps->min_freq = vlv_rps_min_freq(rps);
1676 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1677 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1678 
1679 	vlv_iosf_sb_put(i915,
1680 			BIT(VLV_IOSF_SB_PUNIT) |
1681 			BIT(VLV_IOSF_SB_NC) |
1682 			BIT(VLV_IOSF_SB_CCK));
1683 }
1684 
1685 static void chv_rps_init(struct intel_rps *rps)
1686 {
1687 	struct drm_i915_private *i915 = rps_to_i915(rps);
1688 	u32 val;
1689 
1690 	vlv_iosf_sb_get(i915,
1691 			BIT(VLV_IOSF_SB_PUNIT) |
1692 			BIT(VLV_IOSF_SB_NC) |
1693 			BIT(VLV_IOSF_SB_CCK));
1694 
1695 	vlv_init_gpll_ref_freq(rps);
1696 
1697 	val = vlv_cck_read(i915, CCK_FUSE_REG);
1698 
1699 	switch ((val >> 2) & 0x7) {
1700 	case 3:
1701 		i915->mem_freq = 2000;
1702 		break;
1703 	default:
1704 		i915->mem_freq = 1600;
1705 		break;
1706 	}
1707 	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1708 
1709 	rps->max_freq = chv_rps_max_freq(rps);
1710 	rps->rp0_freq = rps->max_freq;
1711 	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1712 		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1713 
1714 	rps->efficient_freq = chv_rps_rpe_freq(rps);
1715 	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1716 		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1717 
1718 	rps->rp1_freq = chv_rps_guar_freq(rps);
1719 	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1720 		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1721 
1722 	rps->min_freq = chv_rps_min_freq(rps);
1723 	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1724 		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1725 
1726 	vlv_iosf_sb_put(i915,
1727 			BIT(VLV_IOSF_SB_PUNIT) |
1728 			BIT(VLV_IOSF_SB_NC) |
1729 			BIT(VLV_IOSF_SB_CCK));
1730 
1731 	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1732 				   rps->rp1_freq | rps->min_freq) & 1,
1733 		      "Odd GPU freq values\n");
1734 }
1735 
1736 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1737 {
1738 	ei->ktime = ktime_get_raw();
1739 	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1740 	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1741 }
1742 
1743 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1744 {
1745 	struct intel_uncore *uncore = rps_to_uncore(rps);
1746 	const struct intel_rps_ei *prev = &rps->ei;
1747 	struct intel_rps_ei now;
1748 	u32 events = 0;
1749 
1750 	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1751 		return 0;
1752 
1753 	vlv_c0_read(uncore, &now);
1754 
1755 	if (prev->ktime) {
1756 		u64 time, c0;
1757 		u32 render, media;
1758 
1759 		time = ktime_us_delta(now.ktime, prev->ktime);
1760 
1761 		time *= rps_to_i915(rps)->czclk_freq;
1762 
1763 		/* Workload can be split between render + media,
1764 		 * e.g. SwapBuffers being blitted in X after being rendered in
1765 		 * mesa. To account for this we need to combine both engines
1766 		 * into our activity counter.
1767 		 */
1768 		render = now.render_c0 - prev->render_c0;
1769 		media = now.media_c0 - prev->media_c0;
1770 		c0 = max(render, media);
1771 		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1772 
1773 		if (c0 > time * rps->power.up_threshold)
1774 			events = GEN6_PM_RP_UP_THRESHOLD;
1775 		else if (c0 < time * rps->power.down_threshold)
1776 			events = GEN6_PM_RP_DOWN_THRESHOLD;
1777 	}
1778 
1779 	rps->ei = now;
1780 	return events;
1781 }
1782 
1783 static void rps_work(struct work_struct *work)
1784 {
1785 	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1786 	struct intel_gt *gt = rps_to_gt(rps);
1787 	struct drm_i915_private *i915 = rps_to_i915(rps);
1788 	bool client_boost = false;
1789 	int new_freq, adj, min, max;
1790 	u32 pm_iir = 0;
1791 
1792 	spin_lock_irq(&gt->irq_lock);
1793 	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1794 	client_boost = atomic_read(&rps->num_waiters);
1795 	spin_unlock_irq(&gt->irq_lock);
1796 
1797 	/* Make sure we didn't queue anything we're not going to process. */
1798 	if (!pm_iir && !client_boost)
1799 		goto out;
1800 
1801 	mutex_lock(&rps->lock);
1802 	if (!intel_rps_is_active(rps)) {
1803 		mutex_unlock(&rps->lock);
1804 		return;
1805 	}
1806 
1807 	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1808 
1809 	adj = rps->last_adj;
1810 	new_freq = rps->cur_freq;
1811 	min = rps->min_freq_softlimit;
1812 	max = rps->max_freq_softlimit;
1813 	if (client_boost)
1814 		max = rps->max_freq;
1815 
1816 	GT_TRACE(gt,
1817 		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1818 		 pm_iir, str_yes_no(client_boost),
1819 		 adj, new_freq, min, max);
1820 
1821 	if (client_boost && new_freq < rps->boost_freq) {
1822 		new_freq = rps->boost_freq;
1823 		adj = 0;
1824 	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1825 		if (adj > 0)
1826 			adj *= 2;
1827 		else /* CHV needs even encode values */
1828 			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1829 
1830 		if (new_freq >= rps->max_freq_softlimit)
1831 			adj = 0;
1832 	} else if (client_boost) {
1833 		adj = 0;
1834 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1835 		if (rps->cur_freq > rps->efficient_freq)
1836 			new_freq = rps->efficient_freq;
1837 		else if (rps->cur_freq > rps->min_freq_softlimit)
1838 			new_freq = rps->min_freq_softlimit;
1839 		adj = 0;
1840 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1841 		if (adj < 0)
1842 			adj *= 2;
1843 		else /* CHV needs even encode values */
1844 			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1845 
1846 		if (new_freq <= rps->min_freq_softlimit)
1847 			adj = 0;
1848 	} else { /* unknown event */
1849 		adj = 0;
1850 	}
1851 
1852 	/*
1853 	 * sysfs frequency limits may have snuck in while
1854 	 * servicing the interrupt
1855 	 */
1856 	new_freq += adj;
1857 	new_freq = clamp_t(int, new_freq, min, max);
1858 
1859 	if (intel_rps_set(rps, new_freq)) {
1860 		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1861 		adj = 0;
1862 	}
1863 	rps->last_adj = adj;
1864 
1865 	mutex_unlock(&rps->lock);
1866 
1867 out:
1868 	spin_lock_irq(&gt->irq_lock);
1869 	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1870 	spin_unlock_irq(&gt->irq_lock);
1871 }
1872 
1873 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1874 {
1875 	struct intel_gt *gt = rps_to_gt(rps);
1876 	const u32 events = rps->pm_events & pm_iir;
1877 
1878 	lockdep_assert_held(&gt->irq_lock);
1879 
1880 	if (unlikely(!events))
1881 		return;
1882 
1883 	GT_TRACE(gt, "irq events:%x\n", events);
1884 
1885 	gen6_gt_pm_mask_irq(gt, events);
1886 
1887 	rps->pm_iir |= events;
1888 	schedule_work(&rps->work);
1889 }
1890 
1891 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1892 {
1893 	struct intel_gt *gt = rps_to_gt(rps);
1894 	u32 events;
1895 
1896 	events = pm_iir & rps->pm_events;
1897 	if (events) {
1898 		spin_lock(&gt->irq_lock);
1899 
1900 		GT_TRACE(gt, "irq events:%x\n", events);
1901 
1902 		gen6_gt_pm_mask_irq(gt, events);
1903 		rps->pm_iir |= events;
1904 
1905 		schedule_work(&rps->work);
1906 		spin_unlock(&gt->irq_lock);
1907 	}
1908 
1909 	if (GRAPHICS_VER(gt->i915) >= 8)
1910 		return;
1911 
1912 	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1913 		intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1914 
1915 	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1916 		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1917 }
1918 
1919 void gen5_rps_irq_handler(struct intel_rps *rps)
1920 {
1921 	struct intel_uncore *uncore = rps_to_uncore(rps);
1922 	u32 busy_up, busy_down, max_avg, min_avg;
1923 	u8 new_freq;
1924 
1925 	spin_lock(&mchdev_lock);
1926 
1927 	intel_uncore_write16(uncore,
1928 			     MEMINTRSTS,
1929 			     intel_uncore_read(uncore, MEMINTRSTS));
1930 
1931 	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1932 	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1933 	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1934 	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1935 	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1936 
1937 	/* Handle RCS change request from hw */
1938 	new_freq = rps->cur_freq;
1939 	if (busy_up > max_avg)
1940 		new_freq++;
1941 	else if (busy_down < min_avg)
1942 		new_freq--;
1943 	new_freq = clamp(new_freq,
1944 			 rps->min_freq_softlimit,
1945 			 rps->max_freq_softlimit);
1946 
1947 	if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1948 		rps->cur_freq = new_freq;
1949 
1950 	spin_unlock(&mchdev_lock);
1951 }
1952 
1953 void intel_rps_init_early(struct intel_rps *rps)
1954 {
1955 	mutex_init(&rps->lock);
1956 	mutex_init(&rps->power.mutex);
1957 
1958 	INIT_WORK(&rps->work, rps_work);
1959 	timer_setup(&rps->timer, rps_timer, 0);
1960 
1961 	atomic_set(&rps->num_waiters, 0);
1962 }
1963 
1964 void intel_rps_init(struct intel_rps *rps)
1965 {
1966 	struct drm_i915_private *i915 = rps_to_i915(rps);
1967 
1968 	if (rps_uses_slpc(rps))
1969 		return;
1970 
1971 	if (IS_CHERRYVIEW(i915))
1972 		chv_rps_init(rps);
1973 	else if (IS_VALLEYVIEW(i915))
1974 		vlv_rps_init(rps);
1975 	else if (GRAPHICS_VER(i915) >= 6)
1976 		gen6_rps_init(rps);
1977 	else if (IS_IRONLAKE_M(i915))
1978 		gen5_rps_init(rps);
1979 
1980 	/* Derive initial user preferences/limits from the hardware limits */
1981 	rps->max_freq_softlimit = rps->max_freq;
1982 	rps->min_freq_softlimit = rps->min_freq;
1983 
1984 	/* After setting max-softlimit, find the overclock max freq */
1985 	if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1986 		u32 params = 0;
1987 
1988 		snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
1989 		if (params & BIT(31)) { /* OC supported */
1990 			drm_dbg(&i915->drm,
1991 				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1992 				(rps->max_freq & 0xff) * 50,
1993 				(params & 0xff) * 50);
1994 			rps->max_freq = params & 0xff;
1995 		}
1996 	}
1997 
1998 	/* Finally allow us to boost to max by default */
1999 	rps->boost_freq = rps->max_freq;
2000 	rps->idle_freq = rps->min_freq;
2001 
2002 	/* Start in the middle, from here we will autotune based on workload */
2003 	rps->cur_freq = rps->efficient_freq;
2004 
2005 	rps->pm_intrmsk_mbz = 0;
2006 
2007 	/*
2008 	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2009 	 * if GEN6_PM_UP_EI_EXPIRED is masked.
2010 	 *
2011 	 * TODO: verify if this can be reproduced on VLV,CHV.
2012 	 */
2013 	if (GRAPHICS_VER(i915) <= 7)
2014 		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2015 
2016 	if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2017 		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2018 
2019 	/* GuC needs ARAT expired interrupt unmasked */
2020 	if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2021 		rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2022 }
2023 
2024 void intel_rps_sanitize(struct intel_rps *rps)
2025 {
2026 	if (rps_uses_slpc(rps))
2027 		return;
2028 
2029 	if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2030 		rps_disable_interrupts(rps);
2031 }
2032 
2033 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2034 {
2035 	struct drm_i915_private *i915 = rps_to_i915(rps);
2036 	u32 cagf;
2037 
2038 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2039 		cagf = (rpstat >> 8) & 0xff;
2040 	else if (GRAPHICS_VER(i915) >= 9)
2041 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
2042 	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2043 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2044 	else if (GRAPHICS_VER(i915) >= 6)
2045 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2046 	else
2047 		cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2048 					MEMSTAT_PSTATE_SHIFT);
2049 
2050 	return cagf;
2051 }
2052 
2053 static u32 read_cagf(struct intel_rps *rps)
2054 {
2055 	struct drm_i915_private *i915 = rps_to_i915(rps);
2056 	struct intel_uncore *uncore = rps_to_uncore(rps);
2057 	u32 freq;
2058 
2059 	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2060 		vlv_punit_get(i915);
2061 		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2062 		vlv_punit_put(i915);
2063 	} else if (GRAPHICS_VER(i915) >= 6) {
2064 		freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2065 	} else {
2066 		freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2067 	}
2068 
2069 	return intel_rps_get_cagf(rps, freq);
2070 }
2071 
2072 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2073 {
2074 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2075 	intel_wakeref_t wakeref;
2076 	u32 freq = 0;
2077 
2078 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2079 		freq = intel_gpu_freq(rps, read_cagf(rps));
2080 
2081 	return freq;
2082 }
2083 
2084 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2085 {
2086 	struct intel_uncore *uncore = rps_to_uncore(rps);
2087 	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2088 	intel_wakeref_t wakeref;
2089 	u32 freq = 0;
2090 
2091 	with_intel_runtime_pm_if_in_use(rpm, wakeref)
2092 		freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2093 
2094 	return freq;
2095 }
2096 
2097 static u32 intel_rps_get_req(u32 pureq)
2098 {
2099 	u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2100 
2101 	return req;
2102 }
2103 
2104 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2105 {
2106 	u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2107 
2108 	return intel_gpu_freq(rps, freq);
2109 }
2110 
2111 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2112 {
2113 	if (rps_uses_slpc(rps))
2114 		return intel_rps_read_punit_req_frequency(rps);
2115 	else
2116 		return intel_gpu_freq(rps, rps->cur_freq);
2117 }
2118 
2119 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2120 {
2121 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2122 
2123 	if (rps_uses_slpc(rps))
2124 		return slpc->max_freq_softlimit;
2125 	else
2126 		return intel_gpu_freq(rps, rps->max_freq_softlimit);
2127 }
2128 
2129 /**
2130  * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2131  * @rps: the intel_rps structure
2132  *
2133  * Returns the max frequency in a raw format. In newer platforms raw is in
2134  * units of 50 MHz.
2135  */
2136 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2137 {
2138 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2139 	u32 freq;
2140 
2141 	if (rps_uses_slpc(rps)) {
2142 		return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2143 					 GT_FREQUENCY_MULTIPLIER);
2144 	} else {
2145 		freq = rps->max_freq;
2146 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2147 			/* Convert GT frequency to 50 MHz units */
2148 			freq /= GEN9_FREQ_SCALER;
2149 		}
2150 		return freq;
2151 	}
2152 }
2153 
2154 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2155 {
2156 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2157 
2158 	if (rps_uses_slpc(rps))
2159 		return slpc->rp0_freq;
2160 	else
2161 		return intel_gpu_freq(rps, rps->rp0_freq);
2162 }
2163 
2164 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2165 {
2166 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2167 
2168 	if (rps_uses_slpc(rps))
2169 		return slpc->rp1_freq;
2170 	else
2171 		return intel_gpu_freq(rps, rps->rp1_freq);
2172 }
2173 
2174 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2175 {
2176 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2177 
2178 	if (rps_uses_slpc(rps))
2179 		return slpc->min_freq;
2180 	else
2181 		return intel_gpu_freq(rps, rps->min_freq);
2182 }
2183 
2184 static int set_max_freq(struct intel_rps *rps, u32 val)
2185 {
2186 	struct drm_i915_private *i915 = rps_to_i915(rps);
2187 	int ret = 0;
2188 
2189 	mutex_lock(&rps->lock);
2190 
2191 	val = intel_freq_opcode(rps, val);
2192 	if (val < rps->min_freq ||
2193 	    val > rps->max_freq ||
2194 	    val < rps->min_freq_softlimit) {
2195 		ret = -EINVAL;
2196 		goto unlock;
2197 	}
2198 
2199 	if (val > rps->rp0_freq)
2200 		drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2201 			intel_gpu_freq(rps, val));
2202 
2203 	rps->max_freq_softlimit = val;
2204 
2205 	val = clamp_t(int, rps->cur_freq,
2206 		      rps->min_freq_softlimit,
2207 		      rps->max_freq_softlimit);
2208 
2209 	/*
2210 	 * We still need *_set_rps to process the new max_delay and
2211 	 * update the interrupt limits and PMINTRMSK even though
2212 	 * frequency request may be unchanged.
2213 	 */
2214 	intel_rps_set(rps, val);
2215 
2216 unlock:
2217 	mutex_unlock(&rps->lock);
2218 
2219 	return ret;
2220 }
2221 
2222 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2223 {
2224 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2225 
2226 	if (rps_uses_slpc(rps))
2227 		return intel_guc_slpc_set_max_freq(slpc, val);
2228 	else
2229 		return set_max_freq(rps, val);
2230 }
2231 
2232 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2233 {
2234 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2235 
2236 	if (rps_uses_slpc(rps))
2237 		return slpc->min_freq_softlimit;
2238 	else
2239 		return intel_gpu_freq(rps, rps->min_freq_softlimit);
2240 }
2241 
2242 /**
2243  * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2244  * @rps: the intel_rps structure
2245  *
2246  * Returns the min frequency in a raw format. In newer platforms raw is in
2247  * units of 50 MHz.
2248  */
2249 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2250 {
2251 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2252 	u32 freq;
2253 
2254 	if (rps_uses_slpc(rps)) {
2255 		return DIV_ROUND_CLOSEST(slpc->min_freq,
2256 					 GT_FREQUENCY_MULTIPLIER);
2257 	} else {
2258 		freq = rps->min_freq;
2259 		if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2260 			/* Convert GT frequency to 50 MHz units */
2261 			freq /= GEN9_FREQ_SCALER;
2262 		}
2263 		return freq;
2264 	}
2265 }
2266 
2267 static int set_min_freq(struct intel_rps *rps, u32 val)
2268 {
2269 	int ret = 0;
2270 
2271 	mutex_lock(&rps->lock);
2272 
2273 	val = intel_freq_opcode(rps, val);
2274 	if (val < rps->min_freq ||
2275 	    val > rps->max_freq ||
2276 	    val > rps->max_freq_softlimit) {
2277 		ret = -EINVAL;
2278 		goto unlock;
2279 	}
2280 
2281 	rps->min_freq_softlimit = val;
2282 
2283 	val = clamp_t(int, rps->cur_freq,
2284 		      rps->min_freq_softlimit,
2285 		      rps->max_freq_softlimit);
2286 
2287 	/*
2288 	 * We still need *_set_rps to process the new min_delay and
2289 	 * update the interrupt limits and PMINTRMSK even though
2290 	 * frequency request may be unchanged.
2291 	 */
2292 	intel_rps_set(rps, val);
2293 
2294 unlock:
2295 	mutex_unlock(&rps->lock);
2296 
2297 	return ret;
2298 }
2299 
2300 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2301 {
2302 	struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2303 
2304 	if (rps_uses_slpc(rps))
2305 		return intel_guc_slpc_set_min_freq(slpc, val);
2306 	else
2307 		return set_min_freq(rps, val);
2308 }
2309 
2310 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2311 {
2312 	struct intel_uncore *uncore = rps_to_uncore(rps);
2313 	u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2314 
2315 	/* Allow punit to process software requests */
2316 	intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2317 }
2318 
2319 void intel_rps_raise_unslice(struct intel_rps *rps)
2320 {
2321 	struct intel_uncore *uncore = rps_to_uncore(rps);
2322 
2323 	mutex_lock(&rps->lock);
2324 
2325 	if (rps_uses_slpc(rps)) {
2326 		/* RP limits have not been initialized yet for SLPC path */
2327 		struct intel_rps_freq_caps caps;
2328 
2329 		gen6_rps_get_freq_caps(rps, &caps);
2330 
2331 		intel_rps_set_manual(rps, true);
2332 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2333 				   ((caps.rp0_freq <<
2334 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2335 				   GEN9_IGNORE_SLICE_RATIO));
2336 		intel_rps_set_manual(rps, false);
2337 	} else {
2338 		intel_rps_set(rps, rps->rp0_freq);
2339 	}
2340 
2341 	mutex_unlock(&rps->lock);
2342 }
2343 
2344 void intel_rps_lower_unslice(struct intel_rps *rps)
2345 {
2346 	struct intel_uncore *uncore = rps_to_uncore(rps);
2347 
2348 	mutex_lock(&rps->lock);
2349 
2350 	if (rps_uses_slpc(rps)) {
2351 		/* RP limits have not been initialized yet for SLPC path */
2352 		struct intel_rps_freq_caps caps;
2353 
2354 		gen6_rps_get_freq_caps(rps, &caps);
2355 
2356 		intel_rps_set_manual(rps, true);
2357 		intel_uncore_write(uncore, GEN6_RPNSWREQ,
2358 				   ((caps.min_freq <<
2359 				   GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2360 				   GEN9_IGNORE_SLICE_RATIO));
2361 		intel_rps_set_manual(rps, false);
2362 	} else {
2363 		intel_rps_set(rps, rps->min_freq);
2364 	}
2365 
2366 	mutex_unlock(&rps->lock);
2367 }
2368 
2369 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2370 {
2371 	struct intel_gt *gt = rps_to_gt(rps);
2372 	intel_wakeref_t wakeref;
2373 	u32 val;
2374 
2375 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2376 		val = intel_uncore_read(gt->uncore, reg32);
2377 
2378 	return val;
2379 }
2380 
2381 bool rps_read_mask_mmio(struct intel_rps *rps,
2382 			i915_reg_t reg32, u32 mask)
2383 {
2384 	return rps_read_mmio(rps, reg32) & mask;
2385 }
2386 
2387 /* External interface for intel_ips.ko */
2388 
2389 static struct drm_i915_private __rcu *ips_mchdev;
2390 
2391 /**
2392  * Tells the intel_ips driver that the i915 driver is now loaded, if
2393  * IPS got loaded first.
2394  *
2395  * This awkward dance is so that neither module has to depend on the
2396  * other in order for IPS to do the appropriate communication of
2397  * GPU turbo limits to i915.
2398  */
2399 static void
2400 ips_ping_for_i915_load(void)
2401 {
2402 	void (*link)(void);
2403 
2404 	link = symbol_get(ips_link_to_i915_driver);
2405 	if (link) {
2406 		link();
2407 		symbol_put(ips_link_to_i915_driver);
2408 	}
2409 }
2410 
2411 void intel_rps_driver_register(struct intel_rps *rps)
2412 {
2413 	struct intel_gt *gt = rps_to_gt(rps);
2414 
2415 	/*
2416 	 * We only register the i915 ips part with intel-ips once everything is
2417 	 * set up, to avoid intel-ips sneaking in and reading bogus values.
2418 	 */
2419 	if (GRAPHICS_VER(gt->i915) == 5) {
2420 		GEM_BUG_ON(ips_mchdev);
2421 		rcu_assign_pointer(ips_mchdev, gt->i915);
2422 		ips_ping_for_i915_load();
2423 	}
2424 }
2425 
2426 void intel_rps_driver_unregister(struct intel_rps *rps)
2427 {
2428 	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2429 		rcu_assign_pointer(ips_mchdev, NULL);
2430 }
2431 
2432 static struct drm_i915_private *mchdev_get(void)
2433 {
2434 	struct drm_i915_private *i915;
2435 
2436 	rcu_read_lock();
2437 	i915 = rcu_dereference(ips_mchdev);
2438 	if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2439 		i915 = NULL;
2440 	rcu_read_unlock();
2441 
2442 	return i915;
2443 }
2444 
2445 /**
2446  * i915_read_mch_val - return value for IPS use
2447  *
2448  * Calculate and return a value for the IPS driver to use when deciding whether
2449  * we have thermal and power headroom to increase CPU or GPU power budget.
2450  */
2451 unsigned long i915_read_mch_val(void)
2452 {
2453 	struct drm_i915_private *i915;
2454 	unsigned long chipset_val = 0;
2455 	unsigned long graphics_val = 0;
2456 	intel_wakeref_t wakeref;
2457 
2458 	i915 = mchdev_get();
2459 	if (!i915)
2460 		return 0;
2461 
2462 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2463 		struct intel_ips *ips = &to_gt(i915)->rps.ips;
2464 
2465 		spin_lock_irq(&mchdev_lock);
2466 		chipset_val = __ips_chipset_val(ips);
2467 		graphics_val = __ips_gfx_val(ips);
2468 		spin_unlock_irq(&mchdev_lock);
2469 	}
2470 
2471 	drm_dev_put(&i915->drm);
2472 	return chipset_val + graphics_val;
2473 }
2474 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2475 
2476 /**
2477  * i915_gpu_raise - raise GPU frequency limit
2478  *
2479  * Raise the limit; IPS indicates we have thermal headroom.
2480  */
2481 bool i915_gpu_raise(void)
2482 {
2483 	struct drm_i915_private *i915;
2484 	struct intel_rps *rps;
2485 
2486 	i915 = mchdev_get();
2487 	if (!i915)
2488 		return false;
2489 
2490 	rps = &to_gt(i915)->rps;
2491 
2492 	spin_lock_irq(&mchdev_lock);
2493 	if (rps->max_freq_softlimit < rps->max_freq)
2494 		rps->max_freq_softlimit++;
2495 	spin_unlock_irq(&mchdev_lock);
2496 
2497 	drm_dev_put(&i915->drm);
2498 	return true;
2499 }
2500 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2501 
2502 /**
2503  * i915_gpu_lower - lower GPU frequency limit
2504  *
2505  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2506  * frequency maximum.
2507  */
2508 bool i915_gpu_lower(void)
2509 {
2510 	struct drm_i915_private *i915;
2511 	struct intel_rps *rps;
2512 
2513 	i915 = mchdev_get();
2514 	if (!i915)
2515 		return false;
2516 
2517 	rps = &to_gt(i915)->rps;
2518 
2519 	spin_lock_irq(&mchdev_lock);
2520 	if (rps->max_freq_softlimit > rps->min_freq)
2521 		rps->max_freq_softlimit--;
2522 	spin_unlock_irq(&mchdev_lock);
2523 
2524 	drm_dev_put(&i915->drm);
2525 	return true;
2526 }
2527 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2528 
2529 /**
2530  * i915_gpu_busy - indicate GPU business to IPS
2531  *
2532  * Tell the IPS driver whether or not the GPU is busy.
2533  */
2534 bool i915_gpu_busy(void)
2535 {
2536 	struct drm_i915_private *i915;
2537 	bool ret;
2538 
2539 	i915 = mchdev_get();
2540 	if (!i915)
2541 		return false;
2542 
2543 	ret = to_gt(i915)->awake;
2544 
2545 	drm_dev_put(&i915->drm);
2546 	return ret;
2547 }
2548 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2549 
2550 /**
2551  * i915_gpu_turbo_disable - disable graphics turbo
2552  *
2553  * Disable graphics turbo by resetting the max frequency and setting the
2554  * current frequency to the default.
2555  */
2556 bool i915_gpu_turbo_disable(void)
2557 {
2558 	struct drm_i915_private *i915;
2559 	struct intel_rps *rps;
2560 	bool ret;
2561 
2562 	i915 = mchdev_get();
2563 	if (!i915)
2564 		return false;
2565 
2566 	rps = &to_gt(i915)->rps;
2567 
2568 	spin_lock_irq(&mchdev_lock);
2569 	rps->max_freq_softlimit = rps->min_freq;
2570 	ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2571 	spin_unlock_irq(&mchdev_lock);
2572 
2573 	drm_dev_put(&i915->drm);
2574 	return ret;
2575 }
2576 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2577 
2578 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2579 #include "selftest_rps.c"
2580 #include "selftest_slpc.c"
2581 #endif
2582