1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2018 Intel Corporation 4 */ 5 6 #include <linux/sched/mm.h> 7 #include <linux/stop_machine.h> 8 #include <linux/string_helpers.h> 9 10 #include "display/intel_display_reset.h" 11 #include "display/intel_overlay.h" 12 13 #include "gem/i915_gem_context.h" 14 15 #include "gt/intel_gt_regs.h" 16 17 #include "gt/uc/intel_gsc_fw.h" 18 19 #include "i915_drv.h" 20 #include "i915_file_private.h" 21 #include "i915_gpu_error.h" 22 #include "i915_irq.h" 23 #include "i915_reg.h" 24 #include "intel_breadcrumbs.h" 25 #include "intel_engine_pm.h" 26 #include "intel_engine_regs.h" 27 #include "intel_gt.h" 28 #include "intel_gt_pm.h" 29 #include "intel_gt_print.h" 30 #include "intel_gt_requests.h" 31 #include "intel_mchbar_regs.h" 32 #include "intel_pci_config.h" 33 #include "intel_reset.h" 34 35 #include "uc/intel_guc.h" 36 37 #define RESET_MAX_RETRIES 3 38 39 static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) 40 { 41 struct drm_i915_file_private *file_priv = ctx->file_priv; 42 unsigned long prev_hang; 43 unsigned int score; 44 45 if (IS_ERR_OR_NULL(file_priv)) 46 return; 47 48 score = 0; 49 if (banned) 50 score = I915_CLIENT_SCORE_CONTEXT_BAN; 51 52 prev_hang = xchg(&file_priv->hang_timestamp, jiffies); 53 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) 54 score += I915_CLIENT_SCORE_HANG_FAST; 55 56 if (score) { 57 atomic_add(score, &file_priv->ban_score); 58 59 drm_dbg(&ctx->i915->drm, 60 "client %s: gained %u ban score, now %u\n", 61 ctx->name, score, 62 atomic_read(&file_priv->ban_score)); 63 } 64 } 65 66 static bool mark_guilty(struct i915_request *rq) 67 { 68 struct i915_gem_context *ctx; 69 unsigned long prev_hang; 70 bool banned; 71 int i; 72 73 if (intel_context_is_closed(rq->context)) 74 return true; 75 76 rcu_read_lock(); 77 ctx = rcu_dereference(rq->context->gem_context); 78 if (ctx && !kref_get_unless_zero(&ctx->ref)) 79 ctx = NULL; 80 rcu_read_unlock(); 81 if (!ctx) 82 return intel_context_is_banned(rq->context); 83 84 atomic_inc(&ctx->guilty_count); 85 86 /* Cool contexts are too cool to be banned! (Used for reset testing.) */ 87 if (!i915_gem_context_is_bannable(ctx)) { 88 banned = false; 89 goto out; 90 } 91 92 drm_notice(&ctx->i915->drm, 93 "%s context reset due to GPU hang\n", 94 ctx->name); 95 96 /* Record the timestamp for the last N hangs */ 97 prev_hang = ctx->hang_timestamp[0]; 98 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) 99 ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; 100 ctx->hang_timestamp[i] = jiffies; 101 102 /* If we have hung N+1 times in rapid succession, we ban the context! */ 103 banned = !i915_gem_context_is_recoverable(ctx); 104 if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) 105 banned = true; 106 if (banned) 107 drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", 108 ctx->name, atomic_read(&ctx->guilty_count)); 109 110 client_mark_guilty(ctx, banned); 111 112 out: 113 i915_gem_context_put(ctx); 114 return banned; 115 } 116 117 static void mark_innocent(struct i915_request *rq) 118 { 119 struct i915_gem_context *ctx; 120 121 rcu_read_lock(); 122 ctx = rcu_dereference(rq->context->gem_context); 123 if (ctx) 124 atomic_inc(&ctx->active_count); 125 rcu_read_unlock(); 126 } 127 128 void __i915_request_reset(struct i915_request *rq, bool guilty) 129 { 130 bool banned = false; 131 132 RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); 133 GEM_BUG_ON(__i915_request_is_complete(rq)); 134 135 rcu_read_lock(); /* protect the GEM context */ 136 if (guilty) { 137 i915_request_set_error_once(rq, -EIO); 138 __i915_request_skip(rq); 139 banned = mark_guilty(rq); 140 } else { 141 i915_request_set_error_once(rq, -EAGAIN); 142 mark_innocent(rq); 143 } 144 rcu_read_unlock(); 145 146 if (banned) 147 intel_context_ban(rq->context, rq); 148 } 149 150 static bool i915_in_reset(struct pci_dev *pdev) 151 { 152 u8 gdrst; 153 154 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 155 return gdrst & GRDOM_RESET_STATUS; 156 } 157 158 static int i915_do_reset(struct intel_gt *gt, 159 intel_engine_mask_t engine_mask, 160 unsigned int retry) 161 { 162 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 163 int err; 164 165 /* Assert reset for at least 50 usec, and wait for acknowledgement. */ 166 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 167 udelay(50); 168 err = _wait_for_atomic(i915_in_reset(pdev), 50000, 0); 169 170 /* Clear the reset request. */ 171 pci_write_config_byte(pdev, I915_GDRST, 0); 172 udelay(50); 173 if (!err) 174 err = _wait_for_atomic(!i915_in_reset(pdev), 50000, 0); 175 176 return err; 177 } 178 179 static bool g4x_reset_complete(struct pci_dev *pdev) 180 { 181 u8 gdrst; 182 183 pci_read_config_byte(pdev, I915_GDRST, &gdrst); 184 return (gdrst & GRDOM_RESET_ENABLE) == 0; 185 } 186 187 static int g33_do_reset(struct intel_gt *gt, 188 intel_engine_mask_t engine_mask, 189 unsigned int retry) 190 { 191 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 192 193 pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); 194 return _wait_for_atomic(g4x_reset_complete(pdev), 50000, 0); 195 } 196 197 static int g4x_do_reset(struct intel_gt *gt, 198 intel_engine_mask_t engine_mask, 199 unsigned int retry) 200 { 201 struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); 202 struct intel_uncore *uncore = gt->uncore; 203 int ret; 204 205 /* WaVcpClkGateDisableForMediaReset:ctg,elk */ 206 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); 207 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 208 209 pci_write_config_byte(pdev, I915_GDRST, 210 GRDOM_MEDIA | GRDOM_RESET_ENABLE); 211 ret = _wait_for_atomic(g4x_reset_complete(pdev), 50000, 0); 212 if (ret) { 213 GT_TRACE(gt, "Wait for media reset failed\n"); 214 goto out; 215 } 216 217 pci_write_config_byte(pdev, I915_GDRST, 218 GRDOM_RENDER | GRDOM_RESET_ENABLE); 219 ret = _wait_for_atomic(g4x_reset_complete(pdev), 50000, 0); 220 if (ret) { 221 GT_TRACE(gt, "Wait for render reset failed\n"); 222 goto out; 223 } 224 225 out: 226 pci_write_config_byte(pdev, I915_GDRST, 0); 227 228 intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); 229 intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); 230 231 return ret; 232 } 233 234 static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, 235 unsigned int retry) 236 { 237 struct intel_uncore *uncore = gt->uncore; 238 int ret; 239 240 intel_uncore_write_fw(uncore, ILK_GDSR, 241 ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); 242 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 243 ILK_GRDOM_RESET_ENABLE, 0, 244 5000, 0, 245 NULL); 246 if (ret) { 247 GT_TRACE(gt, "Wait for render reset failed\n"); 248 goto out; 249 } 250 251 intel_uncore_write_fw(uncore, ILK_GDSR, 252 ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); 253 ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, 254 ILK_GRDOM_RESET_ENABLE, 0, 255 5000, 0, 256 NULL); 257 if (ret) { 258 GT_TRACE(gt, "Wait for media reset failed\n"); 259 goto out; 260 } 261 262 out: 263 intel_uncore_write_fw(uncore, ILK_GDSR, 0); 264 intel_uncore_posting_read_fw(uncore, ILK_GDSR); 265 return ret; 266 } 267 268 /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ 269 static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) 270 { 271 struct intel_uncore *uncore = gt->uncore; 272 int loops; 273 int err; 274 275 /* 276 * On some platforms, e.g. Jasperlake, we see that the engine register 277 * state is not cleared until shortly after GDRST reports completion, 278 * causing a failure as we try to immediately resume while the internal 279 * state is still in flux. If we immediately repeat the reset, the 280 * second reset appears to serialise with the first, and since it is a 281 * no-op, the registers should retain their reset value. However, there 282 * is still a concern that upon leaving the second reset, the internal 283 * engine state is still in flux and not ready for resuming. 284 * 285 * Starting on MTL, there are some prep steps that we need to do when 286 * resetting some engines that need to be applied every time we write to 287 * GEN6_GDRST. As those are time consuming (tens of ms), we don't want 288 * to perform that twice, so, since the Jasperlake issue hasn't been 289 * observed on MTL, we avoid repeating the reset on newer platforms. 290 */ 291 loops = GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70) ? 2 : 1; 292 293 /* 294 * GEN6_GDRST is not in the gt power well, no need to check 295 * for fifo space for the write or forcewake the chip for 296 * the read 297 */ 298 do { 299 intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); 300 301 /* Wait for the device to ack the reset requests. */ 302 err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, 303 hw_domain_mask, 0, 304 2000, 0, 305 NULL); 306 } while (err == 0 && --loops); 307 if (err) 308 GT_TRACE(gt, 309 "Wait for 0x%08x engines reset failed\n", 310 hw_domain_mask); 311 312 /* 313 * As we have observed that the engine state is still volatile 314 * after GDRST is acked, impose a small delay to let everything settle. 315 */ 316 udelay(50); 317 318 return err; 319 } 320 321 static int __gen6_reset_engines(struct intel_gt *gt, 322 intel_engine_mask_t engine_mask, 323 unsigned int retry) 324 { 325 struct intel_engine_cs *engine; 326 u32 hw_mask; 327 328 if (engine_mask == ALL_ENGINES) { 329 hw_mask = GEN6_GRDOM_FULL; 330 } else { 331 intel_engine_mask_t tmp; 332 333 hw_mask = 0; 334 for_each_engine_masked(engine, gt, engine_mask, tmp) { 335 hw_mask |= engine->reset_domain; 336 } 337 } 338 339 return gen6_hw_domain_reset(gt, hw_mask); 340 } 341 342 static int gen6_reset_engines(struct intel_gt *gt, 343 intel_engine_mask_t engine_mask, 344 unsigned int retry) 345 { 346 unsigned long flags; 347 int ret; 348 349 spin_lock_irqsave(>->uncore->lock, flags); 350 ret = __gen6_reset_engines(gt, engine_mask, retry); 351 spin_unlock_irqrestore(>->uncore->lock, flags); 352 353 return ret; 354 } 355 356 static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) 357 { 358 int vecs_id; 359 360 GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); 361 362 vecs_id = _VECS((engine->instance) / 2); 363 364 return engine->gt->engine[vecs_id]; 365 } 366 367 struct sfc_lock_data { 368 i915_reg_t lock_reg; 369 i915_reg_t ack_reg; 370 i915_reg_t usage_reg; 371 u32 lock_bit; 372 u32 ack_bit; 373 u32 usage_bit; 374 u32 reset_bit; 375 }; 376 377 static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, 378 struct sfc_lock_data *sfc_lock) 379 { 380 switch (engine->class) { 381 default: 382 MISSING_CASE(engine->class); 383 fallthrough; 384 case VIDEO_DECODE_CLASS: 385 sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); 386 sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; 387 388 sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 389 sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; 390 391 sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); 392 sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; 393 sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); 394 395 break; 396 case VIDEO_ENHANCEMENT_CLASS: 397 sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); 398 sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; 399 400 sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); 401 sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; 402 403 sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); 404 sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; 405 sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); 406 407 break; 408 } 409 } 410 411 static int gen11_lock_sfc(struct intel_engine_cs *engine, 412 u32 *reset_mask, 413 u32 *unlock_mask) 414 { 415 struct intel_uncore *uncore = engine->uncore; 416 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 417 struct sfc_lock_data sfc_lock; 418 bool lock_obtained, lock_to_other = false; 419 int ret; 420 421 switch (engine->class) { 422 case VIDEO_DECODE_CLASS: 423 if ((BIT(engine->instance) & vdbox_sfc_access) == 0) 424 return 0; 425 426 fallthrough; 427 case VIDEO_ENHANCEMENT_CLASS: 428 get_sfc_forced_lock_data(engine, &sfc_lock); 429 430 break; 431 default: 432 return 0; 433 } 434 435 if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { 436 struct intel_engine_cs *paired_vecs; 437 438 if (engine->class != VIDEO_DECODE_CLASS || 439 GRAPHICS_VER(engine->i915) != 12) 440 return 0; 441 442 /* 443 * Wa_14010733141 444 * 445 * If the VCS-MFX isn't using the SFC, we also need to check 446 * whether VCS-HCP is using it. If so, we need to issue a *VE* 447 * forced lock on the VE engine that shares the same SFC. 448 */ 449 if (!(intel_uncore_read_fw(uncore, 450 GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & 451 GEN12_HCP_SFC_USAGE_BIT)) 452 return 0; 453 454 paired_vecs = find_sfc_paired_vecs_engine(engine); 455 get_sfc_forced_lock_data(paired_vecs, &sfc_lock); 456 lock_to_other = true; 457 *unlock_mask |= paired_vecs->mask; 458 } else { 459 *unlock_mask |= engine->mask; 460 } 461 462 /* 463 * If the engine is using an SFC, tell the engine that a software reset 464 * is going to happen. The engine will then try to force lock the SFC. 465 * If SFC ends up being locked to the engine we want to reset, we have 466 * to reset it as well (we will unlock it once the reset sequence is 467 * completed). 468 */ 469 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); 470 471 ret = __intel_wait_for_register_fw(uncore, 472 sfc_lock.ack_reg, 473 sfc_lock.ack_bit, 474 sfc_lock.ack_bit, 475 1000, 0, NULL); 476 477 /* 478 * Was the SFC released while we were trying to lock it? 479 * 480 * We should reset both the engine and the SFC if: 481 * - We were locking the SFC to this engine and the lock succeeded 482 * OR 483 * - We were locking the SFC to a different engine (Wa_14010733141) 484 * but the SFC was released before the lock was obtained. 485 * 486 * Otherwise we need only reset the engine by itself and we can 487 * leave the SFC alone. 488 */ 489 lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & 490 sfc_lock.usage_bit) != 0; 491 if (lock_obtained == lock_to_other) 492 return 0; 493 494 if (ret) { 495 ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); 496 return ret; 497 } 498 499 *reset_mask |= sfc_lock.reset_bit; 500 return 0; 501 } 502 503 static void gen11_unlock_sfc(struct intel_engine_cs *engine) 504 { 505 struct intel_uncore *uncore = engine->uncore; 506 u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; 507 struct sfc_lock_data sfc_lock = {}; 508 509 if (engine->class != VIDEO_DECODE_CLASS && 510 engine->class != VIDEO_ENHANCEMENT_CLASS) 511 return; 512 513 if (engine->class == VIDEO_DECODE_CLASS && 514 (BIT(engine->instance) & vdbox_sfc_access) == 0) 515 return; 516 517 get_sfc_forced_lock_data(engine, &sfc_lock); 518 519 intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); 520 } 521 522 static int __gen11_reset_engines(struct intel_gt *gt, 523 intel_engine_mask_t engine_mask, 524 unsigned int retry) 525 { 526 struct intel_engine_cs *engine; 527 intel_engine_mask_t tmp; 528 u32 reset_mask, unlock_mask = 0; 529 int ret; 530 531 if (engine_mask == ALL_ENGINES) { 532 reset_mask = GEN11_GRDOM_FULL; 533 } else { 534 reset_mask = 0; 535 for_each_engine_masked(engine, gt, engine_mask, tmp) { 536 reset_mask |= engine->reset_domain; 537 ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); 538 if (ret) 539 goto sfc_unlock; 540 } 541 } 542 543 ret = gen6_hw_domain_reset(gt, reset_mask); 544 545 sfc_unlock: 546 /* 547 * We unlock the SFC based on the lock status and not the result of 548 * gen11_lock_sfc to make sure that we clean properly if something 549 * wrong happened during the lock (e.g. lock acquired after timeout 550 * expiration). 551 * 552 * Due to Wa_14010733141, we may have locked an SFC to an engine that 553 * wasn't being reset. So instead of calling gen11_unlock_sfc() 554 * on engine_mask, we instead call it on the mask of engines that our 555 * gen11_lock_sfc() calls told us actually had locks attempted. 556 */ 557 for_each_engine_masked(engine, gt, unlock_mask, tmp) 558 gen11_unlock_sfc(engine); 559 560 return ret; 561 } 562 563 static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) 564 { 565 struct intel_uncore *uncore = engine->uncore; 566 const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); 567 u32 request, mask, ack; 568 int ret; 569 570 if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) 571 return -ETIMEDOUT; 572 573 ack = intel_uncore_read_fw(uncore, reg); 574 if (ack & RESET_CTL_CAT_ERROR) { 575 /* 576 * For catastrophic errors, ready-for-reset sequence 577 * needs to be bypassed: HAS#396813 578 */ 579 request = RESET_CTL_CAT_ERROR; 580 mask = RESET_CTL_CAT_ERROR; 581 582 /* Catastrophic errors need to be cleared by HW */ 583 ack = 0; 584 } else if (!(ack & RESET_CTL_READY_TO_RESET)) { 585 request = RESET_CTL_REQUEST_RESET; 586 mask = RESET_CTL_READY_TO_RESET; 587 ack = RESET_CTL_READY_TO_RESET; 588 } else { 589 return 0; 590 } 591 592 intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); 593 ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, 594 700, 0, NULL); 595 if (ret) 596 gt_err(engine->gt, 597 "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", 598 engine->name, request, 599 intel_uncore_read_fw(uncore, reg)); 600 601 return ret; 602 } 603 604 static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) 605 { 606 intel_uncore_write_fw(engine->uncore, 607 RING_RESET_CTL(engine->mmio_base), 608 _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); 609 } 610 611 static int gen8_reset_engines(struct intel_gt *gt, 612 intel_engine_mask_t engine_mask, 613 unsigned int retry) 614 { 615 struct intel_engine_cs *engine; 616 const bool reset_non_ready = retry >= 1; 617 intel_engine_mask_t tmp; 618 unsigned long flags; 619 int ret; 620 621 spin_lock_irqsave(>->uncore->lock, flags); 622 623 for_each_engine_masked(engine, gt, engine_mask, tmp) { 624 ret = gen8_engine_reset_prepare(engine); 625 if (ret && !reset_non_ready) 626 goto skip_reset; 627 628 /* 629 * If this is not the first failed attempt to prepare, 630 * we decide to proceed anyway. 631 * 632 * By doing so we risk context corruption and with 633 * some gens (kbl), possible system hang if reset 634 * happens during active bb execution. 635 * 636 * We rather take context corruption instead of 637 * failed reset with a wedged driver/gpu. And 638 * active bb execution case should be covered by 639 * stop_engines() we have before the reset. 640 */ 641 } 642 643 /* 644 * Wa_22011100796:dg2, whenever Full soft reset is required, 645 * reset all individual engines firstly, and then do a full soft reset. 646 * 647 * This is best effort, so ignore any error from the initial reset. 648 */ 649 if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) 650 __gen11_reset_engines(gt, gt->info.engine_mask, 0); 651 652 if (GRAPHICS_VER(gt->i915) >= 11) 653 ret = __gen11_reset_engines(gt, engine_mask, retry); 654 else 655 ret = __gen6_reset_engines(gt, engine_mask, retry); 656 657 skip_reset: 658 for_each_engine_masked(engine, gt, engine_mask, tmp) 659 gen8_engine_reset_cancel(engine); 660 661 spin_unlock_irqrestore(>->uncore->lock, flags); 662 663 return ret; 664 } 665 666 static int mock_reset(struct intel_gt *gt, 667 intel_engine_mask_t mask, 668 unsigned int retry) 669 { 670 return 0; 671 } 672 673 typedef int (*reset_func)(struct intel_gt *, 674 intel_engine_mask_t engine_mask, 675 unsigned int retry); 676 677 static reset_func intel_get_gpu_reset(const struct intel_gt *gt) 678 { 679 struct drm_i915_private *i915 = gt->i915; 680 681 if (is_mock_gt(gt)) 682 return mock_reset; 683 else if (GRAPHICS_VER(i915) >= 8) 684 return gen8_reset_engines; 685 else if (GRAPHICS_VER(i915) >= 6) 686 return gen6_reset_engines; 687 else if (GRAPHICS_VER(i915) >= 5) 688 return ilk_do_reset; 689 else if (IS_G4X(i915)) 690 return g4x_do_reset; 691 else if (IS_G33(i915) || IS_PINEVIEW(i915)) 692 return g33_do_reset; 693 else if (GRAPHICS_VER(i915) >= 3) 694 return i915_do_reset; 695 else 696 return NULL; 697 } 698 699 static int __reset_guc(struct intel_gt *gt) 700 { 701 u32 guc_domain = 702 GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; 703 704 return gen6_hw_domain_reset(gt, guc_domain); 705 } 706 707 static bool needs_wa_14015076503(struct intel_gt *gt, intel_engine_mask_t engine_mask) 708 { 709 if (MEDIA_VER_FULL(gt->i915) != IP_VER(13, 0) || !HAS_ENGINE(gt, GSC0)) 710 return false; 711 712 if (!__HAS_ENGINE(engine_mask, GSC0)) 713 return false; 714 715 return intel_gsc_uc_fw_init_done(>->uc.gsc); 716 } 717 718 static intel_engine_mask_t 719 wa_14015076503_start(struct intel_gt *gt, intel_engine_mask_t engine_mask, bool first) 720 { 721 if (!needs_wa_14015076503(gt, engine_mask)) 722 return engine_mask; 723 724 /* 725 * wa_14015076503: if the GSC FW is loaded, we need to alert it that 726 * we're going to do a GSC engine reset and then wait for 200ms for the 727 * FW to get ready for it. However, if this is the first ALL_ENGINES 728 * reset attempt and the GSC is not busy, we can try to instead reset 729 * the GuC and all the other engines individually to avoid the 200ms 730 * wait. 731 * Skipping the GSC engine is safe because, differently from other 732 * engines, the GSCCS only role is to forward the commands to the GSC 733 * FW, so it doesn't have any HW outside of the CS itself and therefore 734 * it has no state that we don't explicitly re-init on resume or on 735 * context switch LRC or power context). The HW for the GSC uC is 736 * managed by the GSC FW so we don't need to care about that. 737 */ 738 if (engine_mask == ALL_ENGINES && first && intel_engine_is_idle(gt->engine[GSC0])) { 739 __reset_guc(gt); 740 engine_mask = gt->info.engine_mask & ~BIT(GSC0); 741 } else { 742 intel_uncore_rmw(gt->uncore, 743 HECI_H_GS1(MTL_GSC_HECI2_BASE), 744 0, HECI_H_GS1_ER_PREP); 745 746 /* make sure the reset bit is clear when writing the CSR reg */ 747 intel_uncore_rmw(gt->uncore, 748 HECI_H_CSR(MTL_GSC_HECI2_BASE), 749 HECI_H_CSR_RST, HECI_H_CSR_IG); 750 msleep(200); 751 } 752 753 return engine_mask; 754 } 755 756 static void 757 wa_14015076503_end(struct intel_gt *gt, intel_engine_mask_t engine_mask) 758 { 759 if (!needs_wa_14015076503(gt, engine_mask)) 760 return; 761 762 intel_uncore_rmw(gt->uncore, 763 HECI_H_GS1(MTL_GSC_HECI2_BASE), 764 HECI_H_GS1_ER_PREP, 0); 765 } 766 767 static int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) 768 { 769 const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; 770 reset_func reset; 771 int ret = -ETIMEDOUT; 772 int retry; 773 774 reset = intel_get_gpu_reset(gt); 775 if (!reset) 776 return -ENODEV; 777 778 /* 779 * If the power well sleeps during the reset, the reset 780 * request may be dropped and never completes (causing -EIO). 781 */ 782 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 783 for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { 784 intel_engine_mask_t reset_mask; 785 786 reset_mask = wa_14015076503_start(gt, engine_mask, !retry); 787 788 GT_TRACE(gt, "engine_mask=%x\n", reset_mask); 789 ret = reset(gt, reset_mask, retry); 790 791 wa_14015076503_end(gt, reset_mask); 792 } 793 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 794 795 return ret; 796 } 797 798 bool intel_has_gpu_reset(const struct intel_gt *gt) 799 { 800 if (!gt->i915->params.reset) 801 return NULL; 802 803 return intel_get_gpu_reset(gt); 804 } 805 806 bool intel_has_reset_engine(const struct intel_gt *gt) 807 { 808 if (gt->i915->params.reset < 2) 809 return false; 810 811 return INTEL_INFO(gt->i915)->has_reset_engine; 812 } 813 814 int intel_reset_guc(struct intel_gt *gt) 815 { 816 int ret; 817 818 GEM_BUG_ON(!HAS_GT_UC(gt->i915)); 819 820 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 821 ret = __reset_guc(gt); 822 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 823 824 return ret; 825 } 826 827 /* 828 * Ensure irq handler finishes, and not run again. 829 * Also return the active request so that we only search for it once. 830 */ 831 static void reset_prepare_engine(struct intel_engine_cs *engine) 832 { 833 /* 834 * During the reset sequence, we must prevent the engine from 835 * entering RC6. As the context state is undefined until we restart 836 * the engine, if it does enter RC6 during the reset, the state 837 * written to the powercontext is undefined and so we may lose 838 * GPU state upon resume, i.e. fail to restart after a reset. 839 */ 840 intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); 841 if (engine->reset.prepare) 842 engine->reset.prepare(engine); 843 } 844 845 static void revoke_mmaps(struct intel_gt *gt) 846 { 847 int i; 848 849 for (i = 0; i < gt->ggtt->num_fences; i++) { 850 struct drm_vma_offset_node *node; 851 struct i915_vma *vma; 852 u64 vma_offset; 853 854 vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); 855 if (!vma) 856 continue; 857 858 if (!i915_vma_has_userfault(vma)) 859 continue; 860 861 GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); 862 863 if (!vma->mmo) 864 continue; 865 866 node = &vma->mmo->vma_node; 867 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 868 869 unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, 870 drm_vma_node_offset_addr(node) + vma_offset, 871 vma->size, 872 1); 873 } 874 } 875 876 static intel_engine_mask_t reset_prepare(struct intel_gt *gt) 877 { 878 struct intel_engine_cs *engine; 879 intel_engine_mask_t awake = 0; 880 enum intel_engine_id id; 881 882 /** 883 * For GuC mode with submission enabled, ensure submission 884 * is disabled before stopping ring. 885 * 886 * For GuC mode with submission disabled, ensure that GuC is not 887 * sanitized, do that after engine reset. reset_prepare() 888 * is followed by engine reset which in this mode requires GuC to 889 * process any CSB FIFO entries generated by the resets. 890 */ 891 if (intel_uc_uses_guc_submission(>->uc)) 892 intel_uc_reset_prepare(>->uc); 893 894 for_each_engine(engine, gt, id) { 895 if (intel_engine_pm_get_if_awake(engine)) 896 awake |= engine->mask; 897 reset_prepare_engine(engine); 898 } 899 900 return awake; 901 } 902 903 static void gt_revoke(struct intel_gt *gt) 904 { 905 revoke_mmaps(gt); 906 } 907 908 static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 909 { 910 struct intel_engine_cs *engine; 911 enum intel_engine_id id; 912 int err; 913 914 /* 915 * Everything depends on having the GTT running, so we need to start 916 * there. 917 */ 918 err = i915_ggtt_enable_hw(gt->i915); 919 if (err) 920 return err; 921 922 local_bh_disable(); 923 for_each_engine(engine, gt, id) 924 __intel_engine_reset(engine, stalled_mask & engine->mask); 925 local_bh_enable(); 926 927 intel_uc_reset(>->uc, ALL_ENGINES); 928 929 intel_ggtt_restore_fences(gt->ggtt); 930 931 return err; 932 } 933 934 static void reset_finish_engine(struct intel_engine_cs *engine) 935 { 936 if (engine->reset.finish) 937 engine->reset.finish(engine); 938 intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); 939 940 intel_engine_signal_breadcrumbs(engine); 941 } 942 943 static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) 944 { 945 struct intel_engine_cs *engine; 946 enum intel_engine_id id; 947 948 for_each_engine(engine, gt, id) { 949 reset_finish_engine(engine); 950 if (awake & engine->mask) 951 intel_engine_pm_put(engine); 952 } 953 954 intel_uc_reset_finish(>->uc); 955 } 956 957 static void nop_submit_request(struct i915_request *request) 958 { 959 RQ_TRACE(request, "-EIO\n"); 960 961 request = i915_request_mark_eio(request); 962 if (request) { 963 i915_request_submit(request); 964 intel_engine_signal_breadcrumbs(request->engine); 965 966 i915_request_put(request); 967 } 968 } 969 970 static void __intel_gt_set_wedged(struct intel_gt *gt) 971 { 972 struct intel_engine_cs *engine; 973 intel_engine_mask_t awake; 974 enum intel_engine_id id; 975 976 if (test_bit(I915_WEDGED, >->reset.flags)) 977 return; 978 979 GT_TRACE(gt, "start\n"); 980 981 /* 982 * First, stop submission to hw, but do not yet complete requests by 983 * rolling the global seqno forward (since this would complete requests 984 * for which we haven't set the fence error to EIO yet). 985 */ 986 awake = reset_prepare(gt); 987 988 /* Even if the GPU reset fails, it should still stop the engines */ 989 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 990 intel_gt_reset_all_engines(gt); 991 992 for_each_engine(engine, gt, id) 993 engine->submit_request = nop_submit_request; 994 995 /* 996 * Make sure no request can slip through without getting completed by 997 * either this call here to intel_engine_write_global_seqno, or the one 998 * in nop_submit_request. 999 */ 1000 synchronize_rcu_expedited(); 1001 set_bit(I915_WEDGED, >->reset.flags); 1002 1003 /* Mark all executing requests as skipped */ 1004 local_bh_disable(); 1005 for_each_engine(engine, gt, id) 1006 if (engine->reset.cancel) 1007 engine->reset.cancel(engine); 1008 intel_uc_cancel_requests(>->uc); 1009 local_bh_enable(); 1010 1011 reset_finish(gt, awake); 1012 1013 GT_TRACE(gt, "end\n"); 1014 } 1015 1016 static void set_wedged_work(struct work_struct *w) 1017 { 1018 struct intel_gt *gt = container_of(w, struct intel_gt, wedge); 1019 intel_wakeref_t wf; 1020 1021 with_intel_runtime_pm(gt->uncore->rpm, wf) 1022 __intel_gt_set_wedged(gt); 1023 } 1024 1025 void intel_gt_set_wedged(struct intel_gt *gt) 1026 { 1027 intel_wakeref_t wakeref; 1028 1029 if (test_bit(I915_WEDGED, >->reset.flags)) 1030 return; 1031 1032 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1033 mutex_lock(>->reset.mutex); 1034 1035 if (GEM_SHOW_DEBUG()) { 1036 struct drm_printer p = drm_dbg_printer(>->i915->drm, 1037 DRM_UT_DRIVER, NULL); 1038 struct intel_engine_cs *engine; 1039 enum intel_engine_id id; 1040 1041 drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); 1042 for_each_engine(engine, gt, id) { 1043 if (intel_engine_is_idle(engine)) 1044 continue; 1045 1046 intel_engine_dump(engine, &p, "%s\n", engine->name); 1047 } 1048 } 1049 1050 __intel_gt_set_wedged(gt); 1051 1052 mutex_unlock(>->reset.mutex); 1053 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1054 } 1055 1056 static bool __intel_gt_unset_wedged(struct intel_gt *gt) 1057 { 1058 struct intel_gt_timelines *timelines = >->timelines; 1059 struct intel_timeline *tl; 1060 bool ok; 1061 1062 if (!test_bit(I915_WEDGED, >->reset.flags)) 1063 return true; 1064 1065 /* Never fully initialised, recovery impossible */ 1066 if (intel_gt_has_unrecoverable_error(gt)) 1067 return false; 1068 1069 GT_TRACE(gt, "start\n"); 1070 1071 /* 1072 * Before unwedging, make sure that all pending operations 1073 * are flushed and errored out - we may have requests waiting upon 1074 * third party fences. We marked all inflight requests as EIO, and 1075 * every execbuf since returned EIO, for consistency we want all 1076 * the currently pending requests to also be marked as EIO, which 1077 * is done inside our nop_submit_request - and so we must wait. 1078 * 1079 * No more can be submitted until we reset the wedged bit. 1080 */ 1081 spin_lock(&timelines->lock); 1082 list_for_each_entry(tl, &timelines->active_list, link) { 1083 struct dma_fence *fence; 1084 1085 fence = i915_active_fence_get(&tl->last_request); 1086 if (!fence) 1087 continue; 1088 1089 spin_unlock(&timelines->lock); 1090 1091 /* 1092 * All internal dependencies (i915_requests) will have 1093 * been flushed by the set-wedge, but we may be stuck waiting 1094 * for external fences. These should all be capped to 10s 1095 * (I915_FENCE_TIMEOUT) so this wait should not be unbounded 1096 * in the worst case. 1097 */ 1098 dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); 1099 dma_fence_put(fence); 1100 1101 /* Restart iteration after droping lock */ 1102 spin_lock(&timelines->lock); 1103 tl = list_entry(&timelines->active_list, typeof(*tl), link); 1104 } 1105 spin_unlock(&timelines->lock); 1106 1107 /* We must reset pending GPU events before restoring our submission */ 1108 ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ 1109 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1110 ok = intel_gt_reset_all_engines(gt) == 0; 1111 if (!ok) { 1112 /* 1113 * Warn CI about the unrecoverable wedged condition. 1114 * Time for a reboot. 1115 */ 1116 add_taint_for_CI(gt->i915, TAINT_WARN); 1117 return false; 1118 } 1119 1120 /* 1121 * Undo nop_submit_request. We prevent all new i915 requests from 1122 * being queued (by disallowing execbuf whilst wedged) so having 1123 * waited for all active requests above, we know the system is idle 1124 * and do not have to worry about a thread being inside 1125 * engine->submit_request() as we swap over. So unlike installing 1126 * the nop_submit_request on reset, we can do this from normal 1127 * context and do not require stop_machine(). 1128 */ 1129 intel_engines_reset_default_submission(gt); 1130 1131 GT_TRACE(gt, "end\n"); 1132 1133 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ 1134 clear_bit(I915_WEDGED, >->reset.flags); 1135 1136 return true; 1137 } 1138 1139 bool intel_gt_unset_wedged(struct intel_gt *gt) 1140 { 1141 bool result; 1142 1143 mutex_lock(>->reset.mutex); 1144 result = __intel_gt_unset_wedged(gt); 1145 mutex_unlock(>->reset.mutex); 1146 1147 return result; 1148 } 1149 1150 static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) 1151 { 1152 int err, i; 1153 1154 err = intel_gt_reset_all_engines(gt); 1155 for (i = 0; err && i < RESET_MAX_RETRIES; i++) { 1156 msleep(10 * (i + 1)); 1157 err = intel_gt_reset_all_engines(gt); 1158 } 1159 if (err) 1160 return err; 1161 1162 return gt_reset(gt, stalled_mask); 1163 } 1164 1165 static int resume(struct intel_gt *gt) 1166 { 1167 struct intel_engine_cs *engine; 1168 enum intel_engine_id id; 1169 int ret; 1170 1171 for_each_engine(engine, gt, id) { 1172 ret = intel_engine_resume(engine); 1173 if (ret) 1174 return ret; 1175 } 1176 1177 return 0; 1178 } 1179 1180 /** 1181 * intel_gt_reset - reset chip after a hang 1182 * @gt: #intel_gt to reset 1183 * @stalled_mask: mask of the stalled engines with the guilty requests 1184 * @reason: user error message for why we are resetting 1185 * 1186 * Reset the chip. Useful if a hang is detected. Marks the device as wedged 1187 * on failure. 1188 * 1189 * Procedure is fairly simple: 1190 * - reset the chip using the reset reg 1191 * - re-init context state 1192 * - re-init hardware status page 1193 * - re-init ring buffer 1194 * - re-init interrupt state 1195 * - re-init display 1196 */ 1197 void intel_gt_reset(struct intel_gt *gt, 1198 intel_engine_mask_t stalled_mask, 1199 const char *reason) 1200 { 1201 intel_engine_mask_t awake; 1202 int ret; 1203 1204 GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); 1205 1206 might_sleep(); 1207 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1208 1209 /* 1210 * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence 1211 * critical section like gpu reset. 1212 */ 1213 gt_revoke(gt); 1214 1215 mutex_lock(>->reset.mutex); 1216 1217 /* Clear any previous failed attempts at recovery. Time to try again. */ 1218 if (!__intel_gt_unset_wedged(gt)) 1219 goto unlock; 1220 1221 if (reason) 1222 gt_notice(gt, "Resetting chip for %s\n", reason); 1223 atomic_inc(>->i915->gpu_error.reset_count); 1224 1225 awake = reset_prepare(gt); 1226 1227 if (!intel_has_gpu_reset(gt)) { 1228 if (gt->i915->params.reset) 1229 gt_err(gt, "GPU reset not supported\n"); 1230 else 1231 gt_dbg(gt, "GPU reset disabled\n"); 1232 goto error; 1233 } 1234 1235 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1236 intel_runtime_pm_disable_interrupts(gt->i915); 1237 1238 if (do_reset(gt, stalled_mask)) { 1239 gt_err(gt, "Failed to reset chip\n"); 1240 goto taint; 1241 } 1242 1243 if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 1244 intel_runtime_pm_enable_interrupts(gt->i915); 1245 1246 intel_overlay_reset(gt->i915); 1247 1248 /* sanitize uC after engine reset */ 1249 if (!intel_uc_uses_guc_submission(>->uc)) 1250 intel_uc_reset_prepare(>->uc); 1251 /* 1252 * Next we need to restore the context, but we don't use those 1253 * yet either... 1254 * 1255 * Ring buffer needs to be re-initialized in the KMS case, or if X 1256 * was running at the time of the reset (i.e. we weren't VT 1257 * switched away). 1258 */ 1259 ret = intel_gt_init_hw(gt); 1260 if (ret) { 1261 gt_err(gt, "Failed to initialise HW following reset (%d)\n", ret); 1262 goto taint; 1263 } 1264 1265 ret = resume(gt); 1266 if (ret) 1267 goto taint; 1268 1269 finish: 1270 reset_finish(gt, awake); 1271 unlock: 1272 mutex_unlock(>->reset.mutex); 1273 return; 1274 1275 taint: 1276 /* 1277 * History tells us that if we cannot reset the GPU now, we 1278 * never will. This then impacts everything that is run 1279 * subsequently. On failing the reset, we mark the driver 1280 * as wedged, preventing further execution on the GPU. 1281 * We also want to go one step further and add a taint to the 1282 * kernel so that any subsequent faults can be traced back to 1283 * this failure. This is important for CI, where if the 1284 * GPU/driver fails we would like to reboot and restart testing 1285 * rather than continue on into oblivion. For everyone else, 1286 * the system should still plod along, but they have been warned! 1287 */ 1288 add_taint_for_CI(gt->i915, TAINT_WARN); 1289 error: 1290 __intel_gt_set_wedged(gt); 1291 goto finish; 1292 } 1293 1294 /** 1295 * intel_gt_reset_all_engines() - Reset all engines in the given gt. 1296 * @gt: the GT to reset all engines for. 1297 * 1298 * This function resets all engines within the given gt. 1299 * 1300 * Returns: 1301 * Zero on success, negative error code on failure. 1302 */ 1303 int intel_gt_reset_all_engines(struct intel_gt *gt) 1304 { 1305 return __intel_gt_reset(gt, ALL_ENGINES); 1306 } 1307 1308 /** 1309 * intel_gt_reset_engine() - Reset a specific engine within a gt. 1310 * @engine: engine to be reset. 1311 * 1312 * This function resets the specified engine within a gt. 1313 * 1314 * Returns: 1315 * Zero on success, negative error code on failure. 1316 */ 1317 int intel_gt_reset_engine(struct intel_engine_cs *engine) 1318 { 1319 return __intel_gt_reset(engine->gt, engine->mask); 1320 } 1321 1322 int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) 1323 { 1324 struct intel_gt *gt = engine->gt; 1325 int ret; 1326 1327 ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); 1328 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); 1329 1330 if (intel_engine_uses_guc(engine)) 1331 return -ENODEV; 1332 1333 if (!intel_engine_pm_get_if_awake(engine)) 1334 return 0; 1335 1336 reset_prepare_engine(engine); 1337 1338 if (msg) 1339 drm_notice(&engine->i915->drm, 1340 "Resetting %s for %s\n", engine->name, msg); 1341 i915_increase_reset_engine_count(&engine->i915->gpu_error, engine); 1342 1343 ret = intel_gt_reset_engine(engine); 1344 if (ret) { 1345 /* If we fail here, we expect to fallback to a global reset */ 1346 ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); 1347 goto out; 1348 } 1349 1350 /* 1351 * The request that caused the hang is stuck on elsp, we know the 1352 * active request and can drop it, adjust head to skip the offending 1353 * request to resume executing remaining requests in the queue. 1354 */ 1355 __intel_engine_reset(engine, true); 1356 1357 /* 1358 * The engine and its registers (and workarounds in case of render) 1359 * have been reset to their default values. Follow the init_ring 1360 * process to program RING_MODE, HWSP and re-enable submission. 1361 */ 1362 ret = intel_engine_resume(engine); 1363 1364 out: 1365 intel_engine_cancel_stop_cs(engine); 1366 reset_finish_engine(engine); 1367 intel_engine_pm_put_async(engine); 1368 return ret; 1369 } 1370 1371 /** 1372 * intel_engine_reset - reset GPU engine to recover from a hang 1373 * @engine: engine to reset 1374 * @msg: reason for GPU reset; or NULL for no drm_notice() 1375 * 1376 * Reset a specific GPU engine. Useful if a hang is detected. 1377 * Returns zero on successful reset or otherwise an error code. 1378 * 1379 * Procedure is: 1380 * - identifies the request that caused the hang and it is dropped 1381 * - reset engine (which will force the engine to idle) 1382 * - re-init/configure engine 1383 */ 1384 int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) 1385 { 1386 int err; 1387 1388 local_bh_disable(); 1389 err = __intel_engine_reset_bh(engine, msg); 1390 local_bh_enable(); 1391 1392 return err; 1393 } 1394 1395 static void intel_gt_reset_global(struct intel_gt *gt, 1396 u32 engine_mask, 1397 const char *reason) 1398 { 1399 struct kobject *kobj = >->i915->drm.primary->kdev->kobj; 1400 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; 1401 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; 1402 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; 1403 struct intel_wedge_me w; 1404 1405 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); 1406 1407 GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); 1408 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); 1409 1410 /* Use a watchdog to ensure that our reset completes */ 1411 intel_wedge_on_timeout(&w, gt, 60 * HZ) { 1412 intel_display_reset_prepare(gt->i915); 1413 1414 intel_gt_reset(gt, engine_mask, reason); 1415 1416 intel_display_reset_finish(gt->i915); 1417 } 1418 1419 if (!test_bit(I915_WEDGED, >->reset.flags)) 1420 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); 1421 } 1422 1423 /** 1424 * intel_gt_handle_error - handle a gpu error 1425 * @gt: the intel_gt 1426 * @engine_mask: mask representing engines that are hung 1427 * @flags: control flags 1428 * @fmt: Error message format string 1429 * 1430 * Do some basic checking of register state at error time and 1431 * dump it to the syslog. Also call i915_capture_error_state() to make 1432 * sure we get a record and make it available in debugfs. Fire a uevent 1433 * so userspace knows something bad happened (should trigger collection 1434 * of a ring dump etc.). 1435 */ 1436 void intel_gt_handle_error(struct intel_gt *gt, 1437 intel_engine_mask_t engine_mask, 1438 unsigned long flags, 1439 const char *fmt, ...) 1440 { 1441 struct intel_engine_cs *engine; 1442 intel_wakeref_t wakeref; 1443 intel_engine_mask_t tmp; 1444 char error_msg[80]; 1445 char *msg = NULL; 1446 1447 if (fmt) { 1448 va_list args; 1449 1450 va_start(args, fmt); 1451 vscnprintf(error_msg, sizeof(error_msg), fmt, args); 1452 va_end(args); 1453 1454 msg = error_msg; 1455 } 1456 1457 /* 1458 * In most cases it's guaranteed that we get here with an RPM 1459 * reference held, for example because there is a pending GPU 1460 * request that won't finish until the reset is done. This 1461 * isn't the case at least when we get here by doing a 1462 * simulated reset via debugfs, so get an RPM reference. 1463 */ 1464 wakeref = intel_runtime_pm_get(gt->uncore->rpm); 1465 1466 engine_mask &= gt->info.engine_mask; 1467 1468 if (flags & I915_ERROR_CAPTURE) { 1469 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); 1470 intel_gt_clear_error_registers(gt, engine_mask); 1471 } 1472 1473 /* 1474 * Try engine reset when available. We fall back to full reset if 1475 * single reset fails. 1476 */ 1477 if (!intel_uc_uses_guc_submission(>->uc) && 1478 intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { 1479 local_bh_disable(); 1480 for_each_engine_masked(engine, gt, engine_mask, tmp) { 1481 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); 1482 if (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1483 >->reset.flags)) 1484 continue; 1485 1486 if (__intel_engine_reset_bh(engine, msg) == 0) 1487 engine_mask &= ~engine->mask; 1488 1489 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 1490 >->reset.flags); 1491 } 1492 local_bh_enable(); 1493 } 1494 1495 if (!engine_mask) 1496 goto out; 1497 1498 /* Full reset needs the mutex, stop any other user trying to do so. */ 1499 if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1500 wait_event(gt->reset.queue, 1501 !test_bit(I915_RESET_BACKOFF, >->reset.flags)); 1502 goto out; /* piggy-back on the other reset */ 1503 } 1504 1505 /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ 1506 synchronize_rcu_expedited(); 1507 1508 /* 1509 * Prevent any other reset-engine attempt. We don't do this for GuC 1510 * submission the GuC owns the per-engine reset, not the i915. 1511 */ 1512 if (!intel_uc_uses_guc_submission(>->uc)) { 1513 for_each_engine(engine, gt, tmp) { 1514 while (test_and_set_bit(I915_RESET_ENGINE + engine->id, 1515 >->reset.flags)) 1516 wait_on_bit(>->reset.flags, 1517 I915_RESET_ENGINE + engine->id, 1518 TASK_UNINTERRUPTIBLE); 1519 } 1520 } 1521 1522 /* Flush everyone using a resource about to be clobbered */ 1523 synchronize_srcu_expedited(>->reset.backoff_srcu); 1524 1525 intel_gt_reset_global(gt, engine_mask, msg); 1526 1527 if (!intel_uc_uses_guc_submission(>->uc)) { 1528 for_each_engine(engine, gt, tmp) 1529 clear_bit_unlock(I915_RESET_ENGINE + engine->id, 1530 >->reset.flags); 1531 } 1532 clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); 1533 smp_mb__after_atomic(); 1534 wake_up_all(>->reset.queue); 1535 1536 out: 1537 intel_runtime_pm_put(gt->uncore->rpm, wakeref); 1538 } 1539 1540 static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) 1541 { 1542 might_lock(>->reset.backoff_srcu); 1543 if (retry) 1544 might_sleep(); 1545 1546 rcu_read_lock(); 1547 while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { 1548 rcu_read_unlock(); 1549 1550 if (!retry) 1551 return -EBUSY; 1552 1553 if (wait_event_interruptible(gt->reset.queue, 1554 !test_bit(I915_RESET_BACKOFF, 1555 >->reset.flags))) 1556 return -EINTR; 1557 1558 rcu_read_lock(); 1559 } 1560 *srcu = srcu_read_lock(>->reset.backoff_srcu); 1561 rcu_read_unlock(); 1562 1563 return 0; 1564 } 1565 1566 int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) 1567 { 1568 return _intel_gt_reset_lock(gt, srcu, false); 1569 } 1570 1571 int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) 1572 { 1573 return _intel_gt_reset_lock(gt, srcu, true); 1574 } 1575 1576 void intel_gt_reset_unlock(struct intel_gt *gt, int tag) 1577 __releases(>->reset.backoff_srcu) 1578 { 1579 srcu_read_unlock(>->reset.backoff_srcu, tag); 1580 } 1581 1582 int intel_gt_terminally_wedged(struct intel_gt *gt) 1583 { 1584 might_sleep(); 1585 1586 if (!intel_gt_is_wedged(gt)) 1587 return 0; 1588 1589 if (intel_gt_has_unrecoverable_error(gt)) 1590 return -EIO; 1591 1592 /* Reset still in progress? Maybe we will recover? */ 1593 if (wait_event_interruptible(gt->reset.queue, 1594 !test_bit(I915_RESET_BACKOFF, 1595 >->reset.flags))) 1596 return -EINTR; 1597 1598 return intel_gt_is_wedged(gt) ? -EIO : 0; 1599 } 1600 1601 void intel_gt_set_wedged_on_init(struct intel_gt *gt) 1602 { 1603 BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > 1604 I915_WEDGED_ON_INIT); 1605 intel_gt_set_wedged(gt); 1606 i915_disable_error_state(gt->i915, -ENODEV); 1607 set_bit(I915_WEDGED_ON_INIT, >->reset.flags); 1608 1609 /* Wedged on init is non-recoverable */ 1610 add_taint_for_CI(gt->i915, TAINT_WARN); 1611 } 1612 1613 void intel_gt_set_wedged_on_fini(struct intel_gt *gt) 1614 { 1615 intel_gt_set_wedged(gt); 1616 i915_disable_error_state(gt->i915, -ENODEV); 1617 set_bit(I915_WEDGED_ON_FINI, >->reset.flags); 1618 intel_gt_retire_requests(gt); /* cleanup any wedged requests */ 1619 } 1620 1621 void intel_gt_init_reset(struct intel_gt *gt) 1622 { 1623 init_waitqueue_head(>->reset.queue); 1624 mutex_init(>->reset.mutex); 1625 init_srcu_struct(>->reset.backoff_srcu); 1626 INIT_WORK(>->wedge, set_wedged_work); 1627 1628 /* 1629 * While undesirable to wait inside the shrinker, complain anyway. 1630 * 1631 * If we have to wait during shrinking, we guarantee forward progress 1632 * by forcing the reset. Therefore during the reset we must not 1633 * re-enter the shrinker. By declaring that we take the reset mutex 1634 * within the shrinker, we forbid ourselves from performing any 1635 * fs-reclaim or taking related locks during reset. 1636 */ 1637 i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); 1638 1639 /* no GPU until we are ready! */ 1640 __set_bit(I915_WEDGED, >->reset.flags); 1641 } 1642 1643 void intel_gt_fini_reset(struct intel_gt *gt) 1644 { 1645 cleanup_srcu_struct(>->reset.backoff_srcu); 1646 } 1647 1648 static void intel_wedge_me(struct work_struct *work) 1649 { 1650 struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); 1651 1652 gt_err(w->gt, "%s timed out, cancelling all in-flight rendering.\n", w->name); 1653 set_wedged_work(&w->gt->wedge); 1654 } 1655 1656 void __intel_init_wedge(struct intel_wedge_me *w, 1657 struct intel_gt *gt, 1658 long timeout, 1659 const char *name) 1660 { 1661 w->gt = gt; 1662 w->name = name; 1663 1664 INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); 1665 queue_delayed_work(gt->i915->unordered_wq, &w->work, timeout); 1666 } 1667 1668 void __intel_fini_wedge(struct intel_wedge_me *w) 1669 { 1670 cancel_delayed_work_sync(&w->work); 1671 destroy_delayed_work_on_stack(&w->work); 1672 w->gt = NULL; 1673 } 1674 1675 /* 1676 * Wa_22011802037 requires that we (or the GuC) ensure that no command 1677 * streamers are executing MI_FORCE_WAKE while an engine reset is initiated. 1678 */ 1679 bool intel_engine_reset_needs_wa_22011802037(struct intel_gt *gt) 1680 { 1681 if (GRAPHICS_VER(gt->i915) < 11) 1682 return false; 1683 1684 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0)) 1685 return true; 1686 1687 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) 1688 return false; 1689 1690 return true; 1691 } 1692 1693 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1694 #include "selftest_reset.c" 1695 #include "selftest_hangcheck.c" 1696 #endif 1697