xref: /linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision f7d7ccf92f2b9398781f791b4af1a74a9f65b5c3)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22 
23 /*
24  * The per-platform tables are u8-encoded in @data. Decode @data and set the
25  * addresses' offset and commands in @regs. The following encoding is used
26  * for each byte. There are 2 steps: decoding commands and decoding addresses.
27  *
28  * Commands:
29  * [7]: create NOPs - number of NOPs are set in lower bits
30  * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
31  *      MI_LRI_FORCE_POSTED
32  * [5:0]: Number of NOPs or registers to set values to in case of
33  *        MI_LOAD_REGISTER_IMM
34  *
35  * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
36  * number of registers. They are set by using the REG/REG16 macros: the former
37  * is used for offsets smaller than 0x200 while the latter is for values bigger
38  * than that. Those macros already set all the bits documented below correctly:
39  *
40  * [7]: When a register offset needs more than 6 bits, use additional bytes, to
41  *      follow, for the lower bits
42  * [6:0]: Register offset, without considering the engine base.
43  *
44  * This function only tweaks the commands and register offsets. Values are not
45  * filled out.
46  */
47 static void set_offsets(u32 *regs,
48 			const u8 *data,
49 			const struct intel_engine_cs *engine,
50 			bool close)
51 #define NOP(x) (BIT(7) | (x))
52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
53 #define POSTED BIT(0)
54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
55 #define REG16(x) \
56 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
57 	(((x) >> 2) & 0x7f)
58 #define END 0
59 {
60 	const u32 base = engine->mmio_base;
61 
62 	while (*data) {
63 		u8 count, flags;
64 
65 		if (*data & BIT(7)) { /* skip */
66 			count = *data++ & ~BIT(7);
67 			regs += count;
68 			continue;
69 		}
70 
71 		count = *data & 0x3f;
72 		flags = *data >> 6;
73 		data++;
74 
75 		*regs = MI_LOAD_REGISTER_IMM(count);
76 		if (flags & POSTED)
77 			*regs |= MI_LRI_FORCE_POSTED;
78 		if (GRAPHICS_VER(engine->i915) >= 11)
79 			*regs |= MI_LRI_LRM_CS_MMIO;
80 		regs++;
81 
82 		GEM_BUG_ON(!count);
83 		do {
84 			u32 offset = 0;
85 			u8 v;
86 
87 			do {
88 				v = *data++;
89 				offset <<= 7;
90 				offset |= v & ~BIT(7);
91 			} while (v & BIT(7));
92 
93 			regs[0] = base + (offset << 2);
94 			regs += 2;
95 		} while (--count);
96 	}
97 
98 	if (close) {
99 		/* Close the batch; used mainly by live_lrc_layout() */
100 		*regs = MI_BATCH_BUFFER_END;
101 		if (GRAPHICS_VER(engine->i915) >= 11)
102 			*regs |= BIT(0);
103 	}
104 }
105 
106 static const u8 gen8_xcs_offsets[] = {
107 	NOP(1),
108 	LRI(11, 0),
109 	REG16(0x244),
110 	REG(0x034),
111 	REG(0x030),
112 	REG(0x038),
113 	REG(0x03c),
114 	REG(0x168),
115 	REG(0x140),
116 	REG(0x110),
117 	REG(0x11c),
118 	REG(0x114),
119 	REG(0x118),
120 
121 	NOP(9),
122 	LRI(9, 0),
123 	REG16(0x3a8),
124 	REG16(0x28c),
125 	REG16(0x288),
126 	REG16(0x284),
127 	REG16(0x280),
128 	REG16(0x27c),
129 	REG16(0x278),
130 	REG16(0x274),
131 	REG16(0x270),
132 
133 	NOP(13),
134 	LRI(2, 0),
135 	REG16(0x200),
136 	REG(0x028),
137 
138 	END
139 };
140 
141 static const u8 gen9_xcs_offsets[] = {
142 	NOP(1),
143 	LRI(14, POSTED),
144 	REG16(0x244),
145 	REG(0x034),
146 	REG(0x030),
147 	REG(0x038),
148 	REG(0x03c),
149 	REG(0x168),
150 	REG(0x140),
151 	REG(0x110),
152 	REG(0x11c),
153 	REG(0x114),
154 	REG(0x118),
155 	REG(0x1c0),
156 	REG(0x1c4),
157 	REG(0x1c8),
158 
159 	NOP(3),
160 	LRI(9, POSTED),
161 	REG16(0x3a8),
162 	REG16(0x28c),
163 	REG16(0x288),
164 	REG16(0x284),
165 	REG16(0x280),
166 	REG16(0x27c),
167 	REG16(0x278),
168 	REG16(0x274),
169 	REG16(0x270),
170 
171 	NOP(13),
172 	LRI(1, POSTED),
173 	REG16(0x200),
174 
175 	NOP(13),
176 	LRI(44, POSTED),
177 	REG(0x028),
178 	REG(0x09c),
179 	REG(0x0c0),
180 	REG(0x178),
181 	REG(0x17c),
182 	REG16(0x358),
183 	REG(0x170),
184 	REG(0x150),
185 	REG(0x154),
186 	REG(0x158),
187 	REG16(0x41c),
188 	REG16(0x600),
189 	REG16(0x604),
190 	REG16(0x608),
191 	REG16(0x60c),
192 	REG16(0x610),
193 	REG16(0x614),
194 	REG16(0x618),
195 	REG16(0x61c),
196 	REG16(0x620),
197 	REG16(0x624),
198 	REG16(0x628),
199 	REG16(0x62c),
200 	REG16(0x630),
201 	REG16(0x634),
202 	REG16(0x638),
203 	REG16(0x63c),
204 	REG16(0x640),
205 	REG16(0x644),
206 	REG16(0x648),
207 	REG16(0x64c),
208 	REG16(0x650),
209 	REG16(0x654),
210 	REG16(0x658),
211 	REG16(0x65c),
212 	REG16(0x660),
213 	REG16(0x664),
214 	REG16(0x668),
215 	REG16(0x66c),
216 	REG16(0x670),
217 	REG16(0x674),
218 	REG16(0x678),
219 	REG16(0x67c),
220 	REG(0x068),
221 
222 	END
223 };
224 
225 static const u8 gen12_xcs_offsets[] = {
226 	NOP(1),
227 	LRI(13, POSTED),
228 	REG16(0x244),
229 	REG(0x034),
230 	REG(0x030),
231 	REG(0x038),
232 	REG(0x03c),
233 	REG(0x168),
234 	REG(0x140),
235 	REG(0x110),
236 	REG(0x1c0),
237 	REG(0x1c4),
238 	REG(0x1c8),
239 	REG(0x180),
240 	REG16(0x2b4),
241 
242 	NOP(5),
243 	LRI(9, POSTED),
244 	REG16(0x3a8),
245 	REG16(0x28c),
246 	REG16(0x288),
247 	REG16(0x284),
248 	REG16(0x280),
249 	REG16(0x27c),
250 	REG16(0x278),
251 	REG16(0x274),
252 	REG16(0x270),
253 
254 	END
255 };
256 
257 static const u8 dg2_xcs_offsets[] = {
258 	NOP(1),
259 	LRI(15, POSTED),
260 	REG16(0x244),
261 	REG(0x034),
262 	REG(0x030),
263 	REG(0x038),
264 	REG(0x03c),
265 	REG(0x168),
266 	REG(0x140),
267 	REG(0x110),
268 	REG(0x1c0),
269 	REG(0x1c4),
270 	REG(0x1c8),
271 	REG(0x180),
272 	REG16(0x2b4),
273 	REG(0x120),
274 	REG(0x124),
275 
276 	NOP(1),
277 	LRI(9, POSTED),
278 	REG16(0x3a8),
279 	REG16(0x28c),
280 	REG16(0x288),
281 	REG16(0x284),
282 	REG16(0x280),
283 	REG16(0x27c),
284 	REG16(0x278),
285 	REG16(0x274),
286 	REG16(0x270),
287 
288 	END
289 };
290 
291 static const u8 gen8_rcs_offsets[] = {
292 	NOP(1),
293 	LRI(14, POSTED),
294 	REG16(0x244),
295 	REG(0x034),
296 	REG(0x030),
297 	REG(0x038),
298 	REG(0x03c),
299 	REG(0x168),
300 	REG(0x140),
301 	REG(0x110),
302 	REG(0x11c),
303 	REG(0x114),
304 	REG(0x118),
305 	REG(0x1c0),
306 	REG(0x1c4),
307 	REG(0x1c8),
308 
309 	NOP(3),
310 	LRI(9, POSTED),
311 	REG16(0x3a8),
312 	REG16(0x28c),
313 	REG16(0x288),
314 	REG16(0x284),
315 	REG16(0x280),
316 	REG16(0x27c),
317 	REG16(0x278),
318 	REG16(0x274),
319 	REG16(0x270),
320 
321 	NOP(13),
322 	LRI(1, 0),
323 	REG(0x0c8),
324 
325 	END
326 };
327 
328 static const u8 gen9_rcs_offsets[] = {
329 	NOP(1),
330 	LRI(14, POSTED),
331 	REG16(0x244),
332 	REG(0x34),
333 	REG(0x30),
334 	REG(0x38),
335 	REG(0x3c),
336 	REG(0x168),
337 	REG(0x140),
338 	REG(0x110),
339 	REG(0x11c),
340 	REG(0x114),
341 	REG(0x118),
342 	REG(0x1c0),
343 	REG(0x1c4),
344 	REG(0x1c8),
345 
346 	NOP(3),
347 	LRI(9, POSTED),
348 	REG16(0x3a8),
349 	REG16(0x28c),
350 	REG16(0x288),
351 	REG16(0x284),
352 	REG16(0x280),
353 	REG16(0x27c),
354 	REG16(0x278),
355 	REG16(0x274),
356 	REG16(0x270),
357 
358 	NOP(13),
359 	LRI(1, 0),
360 	REG(0xc8),
361 
362 	NOP(13),
363 	LRI(44, POSTED),
364 	REG(0x28),
365 	REG(0x9c),
366 	REG(0xc0),
367 	REG(0x178),
368 	REG(0x17c),
369 	REG16(0x358),
370 	REG(0x170),
371 	REG(0x150),
372 	REG(0x154),
373 	REG(0x158),
374 	REG16(0x41c),
375 	REG16(0x600),
376 	REG16(0x604),
377 	REG16(0x608),
378 	REG16(0x60c),
379 	REG16(0x610),
380 	REG16(0x614),
381 	REG16(0x618),
382 	REG16(0x61c),
383 	REG16(0x620),
384 	REG16(0x624),
385 	REG16(0x628),
386 	REG16(0x62c),
387 	REG16(0x630),
388 	REG16(0x634),
389 	REG16(0x638),
390 	REG16(0x63c),
391 	REG16(0x640),
392 	REG16(0x644),
393 	REG16(0x648),
394 	REG16(0x64c),
395 	REG16(0x650),
396 	REG16(0x654),
397 	REG16(0x658),
398 	REG16(0x65c),
399 	REG16(0x660),
400 	REG16(0x664),
401 	REG16(0x668),
402 	REG16(0x66c),
403 	REG16(0x670),
404 	REG16(0x674),
405 	REG16(0x678),
406 	REG16(0x67c),
407 	REG(0x68),
408 
409 	END
410 };
411 
412 static const u8 gen11_rcs_offsets[] = {
413 	NOP(1),
414 	LRI(15, POSTED),
415 	REG16(0x244),
416 	REG(0x034),
417 	REG(0x030),
418 	REG(0x038),
419 	REG(0x03c),
420 	REG(0x168),
421 	REG(0x140),
422 	REG(0x110),
423 	REG(0x11c),
424 	REG(0x114),
425 	REG(0x118),
426 	REG(0x1c0),
427 	REG(0x1c4),
428 	REG(0x1c8),
429 	REG(0x180),
430 
431 	NOP(1),
432 	LRI(9, POSTED),
433 	REG16(0x3a8),
434 	REG16(0x28c),
435 	REG16(0x288),
436 	REG16(0x284),
437 	REG16(0x280),
438 	REG16(0x27c),
439 	REG16(0x278),
440 	REG16(0x274),
441 	REG16(0x270),
442 
443 	LRI(1, POSTED),
444 	REG(0x1b0),
445 
446 	NOP(10),
447 	LRI(1, 0),
448 	REG(0x0c8),
449 
450 	END
451 };
452 
453 static const u8 gen12_rcs_offsets[] = {
454 	NOP(1),
455 	LRI(13, POSTED),
456 	REG16(0x244),
457 	REG(0x034),
458 	REG(0x030),
459 	REG(0x038),
460 	REG(0x03c),
461 	REG(0x168),
462 	REG(0x140),
463 	REG(0x110),
464 	REG(0x1c0),
465 	REG(0x1c4),
466 	REG(0x1c8),
467 	REG(0x180),
468 	REG16(0x2b4),
469 
470 	NOP(5),
471 	LRI(9, POSTED),
472 	REG16(0x3a8),
473 	REG16(0x28c),
474 	REG16(0x288),
475 	REG16(0x284),
476 	REG16(0x280),
477 	REG16(0x27c),
478 	REG16(0x278),
479 	REG16(0x274),
480 	REG16(0x270),
481 
482 	LRI(3, POSTED),
483 	REG(0x1b0),
484 	REG16(0x5a8),
485 	REG16(0x5ac),
486 
487 	NOP(6),
488 	LRI(1, 0),
489 	REG(0x0c8),
490 	NOP(3 + 9 + 1),
491 
492 	LRI(51, POSTED),
493 	REG16(0x588),
494 	REG16(0x588),
495 	REG16(0x588),
496 	REG16(0x588),
497 	REG16(0x588),
498 	REG16(0x588),
499 	REG(0x028),
500 	REG(0x09c),
501 	REG(0x0c0),
502 	REG(0x178),
503 	REG(0x17c),
504 	REG16(0x358),
505 	REG(0x170),
506 	REG(0x150),
507 	REG(0x154),
508 	REG(0x158),
509 	REG16(0x41c),
510 	REG16(0x600),
511 	REG16(0x604),
512 	REG16(0x608),
513 	REG16(0x60c),
514 	REG16(0x610),
515 	REG16(0x614),
516 	REG16(0x618),
517 	REG16(0x61c),
518 	REG16(0x620),
519 	REG16(0x624),
520 	REG16(0x628),
521 	REG16(0x62c),
522 	REG16(0x630),
523 	REG16(0x634),
524 	REG16(0x638),
525 	REG16(0x63c),
526 	REG16(0x640),
527 	REG16(0x644),
528 	REG16(0x648),
529 	REG16(0x64c),
530 	REG16(0x650),
531 	REG16(0x654),
532 	REG16(0x658),
533 	REG16(0x65c),
534 	REG16(0x660),
535 	REG16(0x664),
536 	REG16(0x668),
537 	REG16(0x66c),
538 	REG16(0x670),
539 	REG16(0x674),
540 	REG16(0x678),
541 	REG16(0x67c),
542 	REG(0x068),
543 	REG(0x084),
544 	NOP(1),
545 
546 	END
547 };
548 
549 static const u8 dg2_rcs_offsets[] = {
550 	NOP(1),
551 	LRI(15, POSTED),
552 	REG16(0x244),
553 	REG(0x034),
554 	REG(0x030),
555 	REG(0x038),
556 	REG(0x03c),
557 	REG(0x168),
558 	REG(0x140),
559 	REG(0x110),
560 	REG(0x1c0),
561 	REG(0x1c4),
562 	REG(0x1c8),
563 	REG(0x180),
564 	REG16(0x2b4),
565 	REG(0x120),
566 	REG(0x124),
567 
568 	NOP(1),
569 	LRI(9, POSTED),
570 	REG16(0x3a8),
571 	REG16(0x28c),
572 	REG16(0x288),
573 	REG16(0x284),
574 	REG16(0x280),
575 	REG16(0x27c),
576 	REG16(0x278),
577 	REG16(0x274),
578 	REG16(0x270),
579 
580 	LRI(3, POSTED),
581 	REG(0x1b0),
582 	REG16(0x5a8),
583 	REG16(0x5ac),
584 
585 	NOP(6),
586 	LRI(1, 0),
587 	REG(0x0c8),
588 
589 	END
590 };
591 
592 static const u8 mtl_rcs_offsets[] = {
593 	NOP(1),
594 	LRI(15, POSTED),
595 	REG16(0x244),
596 	REG(0x034),
597 	REG(0x030),
598 	REG(0x038),
599 	REG(0x03c),
600 	REG(0x168),
601 	REG(0x140),
602 	REG(0x110),
603 	REG(0x1c0),
604 	REG(0x1c4),
605 	REG(0x1c8),
606 	REG(0x180),
607 	REG16(0x2b4),
608 	REG(0x120),
609 	REG(0x124),
610 
611 	NOP(1),
612 	LRI(9, POSTED),
613 	REG16(0x3a8),
614 	REG16(0x28c),
615 	REG16(0x288),
616 	REG16(0x284),
617 	REG16(0x280),
618 	REG16(0x27c),
619 	REG16(0x278),
620 	REG16(0x274),
621 	REG16(0x270),
622 
623 	NOP(2),
624 	LRI(2, POSTED),
625 	REG16(0x5a8),
626 	REG16(0x5ac),
627 
628 	NOP(6),
629 	LRI(1, 0),
630 	REG(0x0c8),
631 
632 	END
633 };
634 
635 #undef END
636 #undef REG16
637 #undef REG
638 #undef LRI
639 #undef NOP
640 
641 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
642 {
643 	/*
644 	 * The gen12+ lists only have the registers we program in the basic
645 	 * default state. We rely on the context image using relative
646 	 * addressing to automatic fixup the register state between the
647 	 * physical engines for virtual engine.
648 	 */
649 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
650 		   !intel_engine_has_relative_mmio(engine));
651 
652 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
653 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70))
654 			return mtl_rcs_offsets;
655 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
656 			return dg2_rcs_offsets;
657 		else if (GRAPHICS_VER(engine->i915) >= 12)
658 			return gen12_rcs_offsets;
659 		else if (GRAPHICS_VER(engine->i915) >= 11)
660 			return gen11_rcs_offsets;
661 		else if (GRAPHICS_VER(engine->i915) >= 9)
662 			return gen9_rcs_offsets;
663 		else
664 			return gen8_rcs_offsets;
665 	} else {
666 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
667 			return dg2_xcs_offsets;
668 		else if (GRAPHICS_VER(engine->i915) >= 12)
669 			return gen12_xcs_offsets;
670 		else if (GRAPHICS_VER(engine->i915) >= 9)
671 			return gen9_xcs_offsets;
672 		else
673 			return gen8_xcs_offsets;
674 	}
675 }
676 
677 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
678 {
679 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
680 		return 0x70;
681 	else if (GRAPHICS_VER(engine->i915) >= 12)
682 		return 0x60;
683 	else if (GRAPHICS_VER(engine->i915) >= 9)
684 		return 0x54;
685 	else if (engine->class == RENDER_CLASS)
686 		return 0x58;
687 	else
688 		return -1;
689 }
690 
691 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine)
692 {
693 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
694 		return 0x80;
695 	else if (GRAPHICS_VER(engine->i915) >= 12)
696 		return 0x70;
697 	else if (GRAPHICS_VER(engine->i915) >= 9)
698 		return 0x64;
699 	else if (GRAPHICS_VER(engine->i915) >= 8 &&
700 		 engine->class == RENDER_CLASS)
701 		return 0xc4;
702 	else
703 		return -1;
704 }
705 
706 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
707 {
708 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
709 		return 0x84;
710 	else if (GRAPHICS_VER(engine->i915) >= 12)
711 		return 0x74;
712 	else if (GRAPHICS_VER(engine->i915) >= 9)
713 		return 0x68;
714 	else if (engine->class == RENDER_CLASS)
715 		return 0xd8;
716 	else
717 		return -1;
718 }
719 
720 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
721 {
722 	if (GRAPHICS_VER(engine->i915) >= 12)
723 		return 0x12;
724 	else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
725 		return 0x18;
726 	else
727 		return -1;
728 }
729 
730 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
731 {
732 	int x;
733 
734 	x = lrc_ring_wa_bb_per_ctx(engine);
735 	if (x < 0)
736 		return x;
737 
738 	return x + 2;
739 }
740 
741 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
742 {
743 	int x;
744 
745 	x = lrc_ring_indirect_ptr(engine);
746 	if (x < 0)
747 		return x;
748 
749 	return x + 2;
750 }
751 
752 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
753 {
754 
755 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
756 		/*
757 		 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
758 		 * simply to match the RCS context image layout.
759 		 */
760 		return 0xc6;
761 	else if (engine->class != RENDER_CLASS)
762 		return -1;
763 	else if (GRAPHICS_VER(engine->i915) >= 12)
764 		return 0xb6;
765 	else if (GRAPHICS_VER(engine->i915) >= 11)
766 		return 0xaa;
767 	else
768 		return -1;
769 }
770 
771 static u32
772 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
773 {
774 	if (GRAPHICS_VER(engine->i915) >= 12)
775 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
776 	else if (GRAPHICS_VER(engine->i915) >= 11)
777 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
778 	else if (GRAPHICS_VER(engine->i915) >= 9)
779 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
780 	else if (GRAPHICS_VER(engine->i915) >= 8)
781 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
782 
783 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8);
784 
785 	return 0;
786 }
787 
788 static void
789 lrc_setup_bb_per_ctx(u32 *regs,
790 		     const struct intel_engine_cs *engine,
791 		     u32 ctx_bb_ggtt_addr)
792 {
793 	GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
794 	regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
795 		ctx_bb_ggtt_addr |
796 		PER_CTX_BB_FORCE |
797 		PER_CTX_BB_VALID;
798 }
799 
800 static void
801 lrc_setup_indirect_ctx(u32 *regs,
802 		       const struct intel_engine_cs *engine,
803 		       u32 ctx_bb_ggtt_addr,
804 		       u32 size)
805 {
806 	GEM_BUG_ON(!size);
807 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
808 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
809 	regs[lrc_ring_indirect_ptr(engine) + 1] =
810 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
811 
812 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
813 	regs[lrc_ring_indirect_offset(engine) + 1] =
814 		lrc_ring_indirect_offset_default(engine) << 6;
815 }
816 
817 static bool ctx_needs_runalone(const struct intel_context *ce)
818 {
819 	struct i915_gem_context *gem_ctx;
820 	bool ctx_is_protected = false;
821 
822 	/*
823 	 * On MTL and newer platforms, protected contexts require setting
824 	 * the LRC run-alone bit or else the encryption will not happen.
825 	 */
826 	if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 70) &&
827 	    (ce->engine->class == COMPUTE_CLASS || ce->engine->class == RENDER_CLASS)) {
828 		rcu_read_lock();
829 		gem_ctx = rcu_dereference(ce->gem_context);
830 		if (gem_ctx)
831 			ctx_is_protected = gem_ctx->uses_protected_content;
832 		rcu_read_unlock();
833 	}
834 
835 	return ctx_is_protected;
836 }
837 
838 static void init_common_regs(u32 * const regs,
839 			     const struct intel_context *ce,
840 			     const struct intel_engine_cs *engine,
841 			     bool inhibit)
842 {
843 	u32 ctl;
844 	int loc;
845 
846 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
847 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
848 	if (inhibit)
849 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
850 	if (GRAPHICS_VER(engine->i915) < 11)
851 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
852 					   CTX_CTRL_RS_CTX_ENABLE);
853 	if (ctx_needs_runalone(ce))
854 		ctl |= _MASKED_BIT_ENABLE(GEN12_CTX_CTRL_RUNALONE_MODE);
855 	regs[CTX_CONTEXT_CONTROL] = ctl;
856 
857 	regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
858 
859 	loc = lrc_ring_bb_offset(engine);
860 	if (loc != -1)
861 		regs[loc + 1] = 0;
862 }
863 
864 static void init_wa_bb_regs(u32 * const regs,
865 			    const struct intel_engine_cs *engine)
866 {
867 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
868 
869 	if (wa_ctx->per_ctx.size) {
870 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
871 
872 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
873 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
874 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
875 	}
876 
877 	if (wa_ctx->indirect_ctx.size) {
878 		lrc_setup_indirect_ctx(regs, engine,
879 				       i915_ggtt_offset(wa_ctx->vma) +
880 				       wa_ctx->indirect_ctx.offset,
881 				       wa_ctx->indirect_ctx.size);
882 	}
883 }
884 
885 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
886 {
887 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
888 		/* 64b PPGTT (48bit canonical)
889 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
890 		 * other PDP Descriptors are ignored.
891 		 */
892 		ASSIGN_CTX_PML4(ppgtt, regs);
893 	} else {
894 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
895 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
896 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
897 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
898 	}
899 }
900 
901 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
902 {
903 	if (i915_is_ggtt(vm))
904 		return i915_vm_to_ggtt(vm)->alias;
905 	else
906 		return i915_vm_to_ppgtt(vm);
907 }
908 
909 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
910 {
911 	int x;
912 
913 	x = lrc_ring_mi_mode(engine);
914 	if (x != -1) {
915 		regs[x + 1] &= ~STOP_RING;
916 		regs[x + 1] |= STOP_RING << 16;
917 	}
918 }
919 
920 static void __lrc_init_regs(u32 *regs,
921 			    const struct intel_context *ce,
922 			    const struct intel_engine_cs *engine,
923 			    bool inhibit)
924 {
925 	/*
926 	 * A context is actually a big batch buffer with several
927 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
928 	 * values we are setting here are only for the first context restore:
929 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
930 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
931 	 * we are not initializing here).
932 	 *
933 	 * Must keep consistent with virtual_update_register_offsets().
934 	 */
935 
936 	if (inhibit)
937 		memset(regs, 0, PAGE_SIZE);
938 
939 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
940 
941 	init_common_regs(regs, ce, engine, inhibit);
942 	init_ppgtt_regs(regs, vm_alias(ce->vm));
943 
944 	init_wa_bb_regs(regs, engine);
945 
946 	__reset_stop_ring(regs, engine);
947 }
948 
949 void lrc_init_regs(const struct intel_context *ce,
950 		   const struct intel_engine_cs *engine,
951 		   bool inhibit)
952 {
953 	__lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
954 }
955 
956 void lrc_reset_regs(const struct intel_context *ce,
957 		    const struct intel_engine_cs *engine)
958 {
959 	__reset_stop_ring(ce->lrc_reg_state, engine);
960 }
961 
962 static void
963 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
964 {
965 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
966 		return;
967 
968 	vaddr += engine->context_size;
969 
970 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
971 }
972 
973 static void
974 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
975 {
976 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
977 		return;
978 
979 	vaddr += engine->context_size;
980 
981 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
982 		drm_err_once(&engine->i915->drm,
983 			     "%s context redzone overwritten!\n",
984 			     engine->name);
985 }
986 
987 static u32 context_wa_bb_offset(const struct intel_context *ce)
988 {
989 	return PAGE_SIZE * ce->wa_bb_page;
990 }
991 
992 /*
993  * per_ctx below determines which WABB section is used.
994  * When true, the function returns the location of the
995  * PER_CTX_BB.  When false, the function returns the
996  * location of the INDIRECT_CTX.
997  */
998 static u32 *context_wabb(const struct intel_context *ce, bool per_ctx)
999 {
1000 	void *ptr;
1001 
1002 	GEM_BUG_ON(!ce->wa_bb_page);
1003 
1004 	ptr = ce->lrc_reg_state;
1005 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1006 	ptr += context_wa_bb_offset(ce);
1007 	ptr += per_ctx ? PAGE_SIZE : 0;
1008 
1009 	return ptr;
1010 }
1011 
1012 void lrc_init_state(struct intel_context *ce,
1013 		    struct intel_engine_cs *engine,
1014 		    void *state)
1015 {
1016 	bool inhibit = true;
1017 
1018 	set_redzone(state, engine);
1019 
1020 	if (ce->default_state) {
1021 		shmem_read(ce->default_state, 0, state, engine->context_size);
1022 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1023 		inhibit = false;
1024 	}
1025 
1026 	/* Clear the ppHWSP (inc. per-context counters) */
1027 	memset(state, 0, PAGE_SIZE);
1028 
1029 	/* Clear the indirect wa and storage */
1030 	if (ce->wa_bb_page)
1031 		memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE);
1032 
1033 	/*
1034 	 * The second page of the context object contains some registers which
1035 	 * must be set up prior to the first execution.
1036 	 */
1037 	__lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
1038 }
1039 
1040 u32 lrc_indirect_bb(const struct intel_context *ce)
1041 {
1042 	return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce);
1043 }
1044 
1045 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs)
1046 {
1047 	/* If predication is active, this will be noop'ed */
1048 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1049 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1050 	*cs++ = 0;
1051 	*cs++ = 0; /* No predication */
1052 
1053 	/* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */
1054 	*cs++ = MI_BATCH_BUFFER_END | BIT(15);
1055 	*cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE;
1056 
1057 	/* Instructions are no longer predicated (disabled), we can proceed */
1058 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1059 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1060 	*cs++ = 0;
1061 	*cs++ = 1; /* enable predication before the next BB */
1062 
1063 	*cs++ = MI_BATCH_BUFFER_END;
1064 	GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA);
1065 
1066 	return cs;
1067 }
1068 
1069 static struct i915_vma *
1070 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
1071 {
1072 	struct drm_i915_gem_object *obj;
1073 	struct i915_vma *vma;
1074 	u32 context_size;
1075 
1076 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1077 
1078 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1079 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
1080 
1081 	if (GRAPHICS_VER(engine->i915) >= 12) {
1082 		ce->wa_bb_page = context_size / PAGE_SIZE;
1083 		/* INDIRECT_CTX and PER_CTX_BB need separate pages. */
1084 		context_size += PAGE_SIZE * 2;
1085 	}
1086 
1087 	if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
1088 		ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
1089 		context_size += PARENT_SCRATCH_SIZE;
1090 	}
1091 
1092 	obj = i915_gem_object_create_lmem(engine->i915, context_size,
1093 					  I915_BO_ALLOC_PM_VOLATILE);
1094 	if (IS_ERR(obj)) {
1095 		obj = i915_gem_object_create_shmem(engine->i915, context_size);
1096 		if (IS_ERR(obj))
1097 			return ERR_CAST(obj);
1098 
1099 		/*
1100 		 * Wa_22016122933: For Media version 13.0, all Media GT shared
1101 		 * memory needs to be mapped as WC on CPU side and UC (PAT
1102 		 * index 2) on GPU side.
1103 		 */
1104 		if (intel_gt_needs_wa_22016122933(engine->gt))
1105 			i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
1106 	}
1107 
1108 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1109 	if (IS_ERR(vma)) {
1110 		i915_gem_object_put(obj);
1111 		return vma;
1112 	}
1113 
1114 	return vma;
1115 }
1116 
1117 static struct intel_timeline *
1118 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
1119 {
1120 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
1121 
1122 	return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
1123 }
1124 
1125 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
1126 {
1127 	struct intel_ring *ring;
1128 	struct i915_vma *vma;
1129 	int err;
1130 
1131 	GEM_BUG_ON(ce->state);
1132 
1133 	if (!intel_context_has_own_state(ce))
1134 		ce->default_state = engine->default_state;
1135 
1136 	vma = __lrc_alloc_state(ce, engine);
1137 	if (IS_ERR(vma))
1138 		return PTR_ERR(vma);
1139 
1140 	ring = intel_engine_create_ring(engine, ce->ring_size);
1141 	if (IS_ERR(ring)) {
1142 		err = PTR_ERR(ring);
1143 		goto err_vma;
1144 	}
1145 
1146 	if (!page_mask_bits(ce->timeline)) {
1147 		struct intel_timeline *tl;
1148 
1149 		/*
1150 		 * Use the static global HWSP for the kernel context, and
1151 		 * a dynamically allocated cacheline for everyone else.
1152 		 */
1153 		if (unlikely(ce->timeline))
1154 			tl = pinned_timeline(ce, engine);
1155 		else
1156 			tl = intel_timeline_create(engine->gt);
1157 		if (IS_ERR(tl)) {
1158 			err = PTR_ERR(tl);
1159 			goto err_ring;
1160 		}
1161 
1162 		ce->timeline = tl;
1163 	}
1164 
1165 	ce->ring = ring;
1166 	ce->state = vma;
1167 
1168 	return 0;
1169 
1170 err_ring:
1171 	intel_ring_put(ring);
1172 err_vma:
1173 	i915_vma_put(vma);
1174 	return err;
1175 }
1176 
1177 void lrc_reset(struct intel_context *ce)
1178 {
1179 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1180 
1181 	intel_ring_reset(ce->ring, ce->ring->emit);
1182 
1183 	/* Scrub away the garbage */
1184 	lrc_init_regs(ce, ce->engine, true);
1185 	ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1186 }
1187 
1188 int
1189 lrc_pre_pin(struct intel_context *ce,
1190 	    struct intel_engine_cs *engine,
1191 	    struct i915_gem_ww_ctx *ww,
1192 	    void **vaddr)
1193 {
1194 	GEM_BUG_ON(!ce->state);
1195 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1196 
1197 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
1198 					 intel_gt_coherent_map_type(ce->engine->gt,
1199 								    ce->state->obj,
1200 								    false) |
1201 					 I915_MAP_OVERRIDE);
1202 
1203 	return PTR_ERR_OR_ZERO(*vaddr);
1204 }
1205 
1206 int
1207 lrc_pin(struct intel_context *ce,
1208 	struct intel_engine_cs *engine,
1209 	void *vaddr)
1210 {
1211 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1212 
1213 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1214 		lrc_init_state(ce, engine, vaddr);
1215 
1216 	ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1217 	return 0;
1218 }
1219 
1220 void lrc_unpin(struct intel_context *ce)
1221 {
1222 	if (unlikely(ce->parallel.last_rq)) {
1223 		i915_request_put(ce->parallel.last_rq);
1224 		ce->parallel.last_rq = NULL;
1225 	}
1226 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1227 		      ce->engine);
1228 }
1229 
1230 void lrc_post_unpin(struct intel_context *ce)
1231 {
1232 	i915_gem_object_unpin_map(ce->state->obj);
1233 }
1234 
1235 void lrc_fini(struct intel_context *ce)
1236 {
1237 	if (!ce->state)
1238 		return;
1239 
1240 	intel_ring_put(fetch_and_zero(&ce->ring));
1241 	i915_vma_put(fetch_and_zero(&ce->state));
1242 }
1243 
1244 void lrc_destroy(struct kref *kref)
1245 {
1246 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1247 
1248 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1249 	GEM_BUG_ON(intel_context_is_pinned(ce));
1250 
1251 	lrc_fini(ce);
1252 
1253 	intel_context_fini(ce);
1254 	intel_context_free(ce);
1255 }
1256 
1257 static u32 *
1258 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1259 {
1260 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1261 		MI_SRM_LRM_GLOBAL_GTT |
1262 		MI_LRI_LRM_CS_MMIO;
1263 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1264 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1265 		CTX_TIMESTAMP * sizeof(u32);
1266 	*cs++ = 0;
1267 
1268 	*cs++ = MI_LOAD_REGISTER_REG |
1269 		MI_LRR_SOURCE_CS_MMIO |
1270 		MI_LRI_LRM_CS_MMIO;
1271 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1272 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1273 
1274 	*cs++ = MI_LOAD_REGISTER_REG |
1275 		MI_LRR_SOURCE_CS_MMIO |
1276 		MI_LRI_LRM_CS_MMIO;
1277 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1278 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1279 
1280 	return cs;
1281 }
1282 
1283 static u32 *
1284 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1285 {
1286 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1287 
1288 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1289 		MI_SRM_LRM_GLOBAL_GTT |
1290 		MI_LRI_LRM_CS_MMIO;
1291 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1292 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1293 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1294 	*cs++ = 0;
1295 
1296 	return cs;
1297 }
1298 
1299 static u32 *
1300 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1301 {
1302 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1303 
1304 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1305 		MI_SRM_LRM_GLOBAL_GTT |
1306 		MI_LRI_LRM_CS_MMIO;
1307 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1308 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1309 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1310 	*cs++ = 0;
1311 
1312 	*cs++ = MI_LOAD_REGISTER_REG |
1313 		MI_LRR_SOURCE_CS_MMIO |
1314 		MI_LRI_LRM_CS_MMIO;
1315 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1316 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1317 
1318 	return cs;
1319 }
1320 
1321 /*
1322  * The bspec's tuning guide asks us to program a vertical watermark value of
1323  * 0x3FF.  However this register is not saved/restored properly by the
1324  * hardware, so we're required to apply the desired value via INDIRECT_CTX
1325  * batch buffer to ensure the value takes effect properly.  All other bits
1326  * in this register should remain at 0 (the hardware default).
1327  */
1328 static u32 *
1329 dg2_emit_draw_watermark_setting(u32 *cs)
1330 {
1331 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1332 	*cs++ = i915_mmio_reg_offset(DRAW_WATERMARK);
1333 	*cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF);
1334 
1335 	return cs;
1336 }
1337 
1338 static u32 *
1339 gen12_invalidate_state_cache(u32 *cs)
1340 {
1341 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1342 	*cs++ = i915_mmio_reg_offset(GEN12_CS_DEBUG_MODE2);
1343 	*cs++ = _MASKED_BIT_ENABLE(INSTRUCTION_STATE_CACHE_INVALIDATE);
1344 	return cs;
1345 }
1346 
1347 static u32 *
1348 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1349 {
1350 	cs = gen12_emit_timestamp_wa(ce, cs);
1351 	cs = gen12_emit_cmd_buf_wa(ce, cs);
1352 	cs = gen12_emit_restore_scratch(ce, cs);
1353 
1354 	/* Wa_16013000631:dg2 */
1355 	if (IS_DG2_G11(ce->engine->i915))
1356 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1357 
1358 	cs = gen12_emit_aux_table_inv(ce->engine, cs);
1359 
1360 	/* Wa_18022495364 */
1361 	if (IS_GFX_GT_IP_RANGE(ce->engine->gt, IP_VER(12, 0), IP_VER(12, 10)))
1362 		cs = gen12_invalidate_state_cache(cs);
1363 
1364 	/* Wa_16014892111 */
1365 	if (IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1366 	    IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
1367 	    IS_DG2(ce->engine->i915))
1368 		cs = dg2_emit_draw_watermark_setting(cs);
1369 
1370 	return cs;
1371 }
1372 
1373 static u32 *
1374 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1375 {
1376 	cs = gen12_emit_timestamp_wa(ce, cs);
1377 	cs = gen12_emit_restore_scratch(ce, cs);
1378 
1379 	/* Wa_16013000631:dg2 */
1380 	if (IS_DG2_G11(ce->engine->i915))
1381 		if (ce->engine->class == COMPUTE_CLASS)
1382 			cs = gen8_emit_pipe_control(cs,
1383 						    PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1384 						    0);
1385 
1386 	return gen12_emit_aux_table_inv(ce->engine, cs);
1387 }
1388 
1389 static u32 *xehp_emit_fastcolor_blt_wabb(const struct intel_context *ce, u32 *cs)
1390 {
1391 	struct intel_gt *gt = ce->engine->gt;
1392 	int mocs = gt->mocs.uc_index << 1;
1393 
1394 	/**
1395 	 * Wa_16018031267 / Wa_16018063123 requires that SW forces the
1396 	 * main copy engine arbitration into round robin mode.  We
1397 	 * additionally need to submit the following WABB blt command
1398 	 * to produce 4 subblits with each subblit generating 0 byte
1399 	 * write requests as WABB:
1400 	 *
1401 	 * XY_FASTCOLOR_BLT
1402 	 *  BG0    -> 5100000E
1403 	 *  BG1    -> 0000003F (Dest pitch)
1404 	 *  BG2    -> 00000000 (X1, Y1) = (0, 0)
1405 	 *  BG3    -> 00040001 (X2, Y2) = (1, 4)
1406 	 *  BG4    -> scratch
1407 	 *  BG5    -> scratch
1408 	 *  BG6-12 -> 00000000
1409 	 *  BG13   -> 20004004 (Surf. Width= 2,Surf. Height = 5 )
1410 	 *  BG14   -> 00000010 (Qpitch = 4)
1411 	 *  BG15   -> 00000000
1412 	 */
1413 	*cs++ = XY_FAST_COLOR_BLT_CMD | (16 - 2);
1414 	*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | 0x3f;
1415 	*cs++ = 0;
1416 	*cs++ = 4 << 16 | 1;
1417 	*cs++ = lower_32_bits(i915_vma_offset(ce->vm->rsvd.vma));
1418 	*cs++ = upper_32_bits(i915_vma_offset(ce->vm->rsvd.vma));
1419 	*cs++ = 0;
1420 	*cs++ = 0;
1421 	*cs++ = 0;
1422 	*cs++ = 0;
1423 	*cs++ = 0;
1424 	*cs++ = 0;
1425 	*cs++ = 0;
1426 	*cs++ = 0x20004004;
1427 	*cs++ = 0x10;
1428 	*cs++ = 0;
1429 
1430 	return cs;
1431 }
1432 
1433 static u32 *
1434 xehp_emit_per_ctx_bb(const struct intel_context *ce, u32 *cs)
1435 {
1436 	/* Wa_16018031267, Wa_16018063123 */
1437 	if (NEEDS_FASTCOLOR_BLT_WABB(ce->engine))
1438 		cs = xehp_emit_fastcolor_blt_wabb(ce, cs);
1439 
1440 	return cs;
1441 }
1442 
1443 static void
1444 setup_per_ctx_bb(const struct intel_context *ce,
1445 		 const struct intel_engine_cs *engine,
1446 		 u32 *(*emit)(const struct intel_context *, u32 *))
1447 {
1448 	/* Place PER_CTX_BB on next page after INDIRECT_CTX */
1449 	u32 * const start = context_wabb(ce, true);
1450 	u32 *cs;
1451 
1452 	cs = emit(ce, start);
1453 
1454 	/* PER_CTX_BB must manually terminate */
1455 	*cs++ = MI_BATCH_BUFFER_END;
1456 
1457 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1458 	lrc_setup_bb_per_ctx(ce->lrc_reg_state, engine,
1459 			     lrc_indirect_bb(ce) + PAGE_SIZE);
1460 }
1461 
1462 static void
1463 setup_indirect_ctx_bb(const struct intel_context *ce,
1464 		      const struct intel_engine_cs *engine,
1465 		      u32 *(*emit)(const struct intel_context *, u32 *))
1466 {
1467 	u32 * const start = context_wabb(ce, false);
1468 	u32 *cs;
1469 
1470 	cs = emit(ce, start);
1471 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1472 	while ((unsigned long)cs % CACHELINE_BYTES)
1473 		*cs++ = MI_NOOP;
1474 
1475 	GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start));
1476 	setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start));
1477 
1478 	lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1479 			       lrc_indirect_bb(ce),
1480 			       (cs - start) * sizeof(*cs));
1481 }
1482 
1483 /*
1484  * The context descriptor encodes various attributes of a context,
1485  * including its GTT address and some flags. Because it's fairly
1486  * expensive to calculate, we'll just do it once and cache the result,
1487  * which remains valid until the context is unpinned.
1488  *
1489  * This is what a descriptor looks like, from LSB to MSB::
1490  *
1491  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
1492  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
1493  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
1494  *      bits 53-54:    mbz, reserved for use by hardware
1495  *      bits 55-63:    group ID, currently unused and set to 0
1496  *
1497  * Starting from Gen11, the upper dword of the descriptor has a new format:
1498  *
1499  *      bits 32-36:    reserved
1500  *      bits 37-47:    SW context ID
1501  *      bits 48:53:    engine instance
1502  *      bit 54:        mbz, reserved for use by hardware
1503  *      bits 55-60:    SW counter
1504  *      bits 61-63:    engine class
1505  *
1506  * On Xe_HP, the upper dword of the descriptor has a new format:
1507  *
1508  *      bits 32-37:    virtual function number
1509  *      bit 38:        mbz, reserved for use by hardware
1510  *      bits 39-54:    SW context ID
1511  *      bits 55-57:    reserved
1512  *      bits 58-63:    SW counter
1513  *
1514  * engine info, SW context ID and SW counter need to form a unique number
1515  * (Context ID) per lrc.
1516  */
1517 static u32 lrc_descriptor(const struct intel_context *ce)
1518 {
1519 	u32 desc;
1520 
1521 	desc = INTEL_LEGACY_32B_CONTEXT;
1522 	if (i915_vm_is_4lvl(ce->vm))
1523 		desc = INTEL_LEGACY_64B_CONTEXT;
1524 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1525 
1526 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1527 	if (GRAPHICS_VER(ce->vm->i915) == 8)
1528 		desc |= GEN8_CTX_L3LLC_COHERENT;
1529 
1530 	return i915_ggtt_offset(ce->state) | desc;
1531 }
1532 
1533 u32 lrc_update_regs(const struct intel_context *ce,
1534 		    const struct intel_engine_cs *engine,
1535 		    u32 head)
1536 {
1537 	struct intel_ring *ring = ce->ring;
1538 	u32 *regs = ce->lrc_reg_state;
1539 
1540 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1541 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1542 
1543 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1544 	regs[CTX_RING_HEAD] = head;
1545 	regs[CTX_RING_TAIL] = ring->tail;
1546 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1547 
1548 	/* RPCS */
1549 	if (engine->class == RENDER_CLASS) {
1550 		regs[CTX_R_PWR_CLK_STATE] =
1551 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1552 
1553 		i915_oa_init_reg_state(ce, engine);
1554 	}
1555 
1556 	if (ce->wa_bb_page) {
1557 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1558 
1559 		fn = gen12_emit_indirect_ctx_xcs;
1560 		if (ce->engine->class == RENDER_CLASS)
1561 			fn = gen12_emit_indirect_ctx_rcs;
1562 
1563 		/* Mutually exclusive wrt to global indirect bb */
1564 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1565 		setup_indirect_ctx_bb(ce, engine, fn);
1566 		setup_per_ctx_bb(ce, engine, xehp_emit_per_ctx_bb);
1567 	}
1568 
1569 	return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1570 }
1571 
1572 void lrc_update_offsets(struct intel_context *ce,
1573 			struct intel_engine_cs *engine)
1574 {
1575 	set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1576 }
1577 
1578 void lrc_check_regs(const struct intel_context *ce,
1579 		    const struct intel_engine_cs *engine,
1580 		    const char *when)
1581 {
1582 	const struct intel_ring *ring = ce->ring;
1583 	u32 *regs = ce->lrc_reg_state;
1584 	bool valid = true;
1585 	int x;
1586 
1587 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1588 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1589 		       engine->name,
1590 		       regs[CTX_RING_START],
1591 		       i915_ggtt_offset(ring->vma));
1592 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1593 		valid = false;
1594 	}
1595 
1596 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1597 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1598 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1599 		       engine->name,
1600 		       regs[CTX_RING_CTL],
1601 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1602 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1603 		valid = false;
1604 	}
1605 
1606 	x = lrc_ring_mi_mode(engine);
1607 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1608 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1609 		       engine->name, regs[x + 1]);
1610 		regs[x + 1] &= ~STOP_RING;
1611 		regs[x + 1] |= STOP_RING << 16;
1612 		valid = false;
1613 	}
1614 
1615 	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1616 }
1617 
1618 /*
1619  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1620  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1621  * but there is a slight complication as this is applied in WA batch where the
1622  * values are only initialized once so we cannot take register value at the
1623  * beginning and reuse it further; hence we save its value to memory, upload a
1624  * constant value with bit21 set and then we restore it back with the saved value.
1625  * To simplify the WA, a constant value is formed by using the default value
1626  * of this register. This shouldn't be a problem because we are only modifying
1627  * it for a short period and this batch in non-premptible. We can ofcourse
1628  * use additional instructions that read the actual value of the register
1629  * at that time and set our bit of interest but it makes the WA complicated.
1630  *
1631  * This WA is also required for Gen9 so extracting as a function avoids
1632  * code duplication.
1633  */
1634 static u32 *
1635 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1636 {
1637 	/* NB no one else is allowed to scribble over scratch + 256! */
1638 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1639 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1640 	*batch++ = intel_gt_scratch_offset(engine->gt,
1641 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1642 	*batch++ = 0;
1643 
1644 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1645 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1646 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1647 
1648 	batch = gen8_emit_pipe_control(batch,
1649 				       PIPE_CONTROL_CS_STALL |
1650 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1651 				       0);
1652 
1653 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1654 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1655 	*batch++ = intel_gt_scratch_offset(engine->gt,
1656 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1657 	*batch++ = 0;
1658 
1659 	return batch;
1660 }
1661 
1662 /*
1663  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1664  * initialized at the beginning and shared across all contexts but this field
1665  * helps us to have multiple batches at different offsets and select them based
1666  * on a criteria. At the moment this batch always start at the beginning of the page
1667  * and at this point we don't have multiple wa_ctx batch buffers.
1668  *
1669  * The number of WA applied are not known at the beginning; we use this field
1670  * to return the no of DWORDS written.
1671  *
1672  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1673  * so it adds NOOPs as padding to make it cacheline aligned.
1674  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1675  * makes a complete batch buffer.
1676  */
1677 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1678 {
1679 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1680 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1681 
1682 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1683 	if (IS_BROADWELL(engine->i915))
1684 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1685 
1686 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1687 	/* Actual scratch location is at 128 bytes offset */
1688 	batch = gen8_emit_pipe_control(batch,
1689 				       PIPE_CONTROL_FLUSH_L3 |
1690 				       PIPE_CONTROL_STORE_DATA_INDEX |
1691 				       PIPE_CONTROL_CS_STALL |
1692 				       PIPE_CONTROL_QW_WRITE,
1693 				       LRC_PPHWSP_SCRATCH_ADDR);
1694 
1695 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1696 
1697 	/* Pad to end of cacheline */
1698 	while ((unsigned long)batch % CACHELINE_BYTES)
1699 		*batch++ = MI_NOOP;
1700 
1701 	/*
1702 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1703 	 * execution depends on the length specified in terms of cache lines
1704 	 * in the register CTX_RCS_INDIRECT_CTX
1705 	 */
1706 
1707 	return batch;
1708 }
1709 
1710 struct lri {
1711 	i915_reg_t reg;
1712 	u32 value;
1713 };
1714 
1715 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1716 {
1717 	GEM_BUG_ON(!count || count > 63);
1718 
1719 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1720 	do {
1721 		*batch++ = i915_mmio_reg_offset(lri->reg);
1722 		*batch++ = lri->value;
1723 	} while (lri++, --count);
1724 	*batch++ = MI_NOOP;
1725 
1726 	return batch;
1727 }
1728 
1729 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1730 {
1731 	static const struct lri lri[] = {
1732 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1733 		{
1734 			COMMON_SLICE_CHICKEN2,
1735 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1736 				       0),
1737 		},
1738 
1739 		/* BSpec: 11391 */
1740 		{
1741 			FF_SLICE_CHICKEN,
1742 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1743 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1744 		},
1745 
1746 		/* BSpec: 11299 */
1747 		{
1748 			_3D_CHICKEN3,
1749 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1750 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1751 		}
1752 	};
1753 
1754 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1755 
1756 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1757 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1758 
1759 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1760 	batch = gen8_emit_pipe_control(batch,
1761 				       PIPE_CONTROL_FLUSH_L3 |
1762 				       PIPE_CONTROL_STORE_DATA_INDEX |
1763 				       PIPE_CONTROL_CS_STALL |
1764 				       PIPE_CONTROL_QW_WRITE,
1765 				       LRC_PPHWSP_SCRATCH_ADDR);
1766 
1767 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1768 
1769 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1770 	if (HAS_POOLED_EU(engine->i915)) {
1771 		/*
1772 		 * EU pool configuration is setup along with golden context
1773 		 * during context initialization. This value depends on
1774 		 * device type (2x6 or 3x6) and needs to be updated based
1775 		 * on which subslice is disabled especially for 2x6
1776 		 * devices, however it is safe to load default
1777 		 * configuration of 3x6 device instead of masking off
1778 		 * corresponding bits because HW ignores bits of a disabled
1779 		 * subslice and drops down to appropriate config. Please
1780 		 * see render_state_setup() in i915_gem_render_state.c for
1781 		 * possible configurations, to avoid duplication they are
1782 		 * not shown here again.
1783 		 */
1784 		*batch++ = GEN9_MEDIA_POOL_STATE;
1785 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1786 		*batch++ = 0x00777000;
1787 		*batch++ = 0;
1788 		*batch++ = 0;
1789 		*batch++ = 0;
1790 	}
1791 
1792 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1793 
1794 	/* Pad to end of cacheline */
1795 	while ((unsigned long)batch % CACHELINE_BYTES)
1796 		*batch++ = MI_NOOP;
1797 
1798 	return batch;
1799 }
1800 
1801 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1802 
1803 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1804 {
1805 	struct drm_i915_gem_object *obj;
1806 	struct i915_vma *vma;
1807 	int err;
1808 
1809 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1810 	if (IS_ERR(obj))
1811 		return PTR_ERR(obj);
1812 
1813 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1814 	if (IS_ERR(vma)) {
1815 		err = PTR_ERR(vma);
1816 		goto err;
1817 	}
1818 
1819 	engine->wa_ctx.vma = vma;
1820 	return 0;
1821 
1822 err:
1823 	i915_gem_object_put(obj);
1824 	return err;
1825 }
1826 
1827 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1828 {
1829 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1830 }
1831 
1832 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1833 
1834 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1835 {
1836 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1837 	struct i915_wa_ctx_bb *wa_bb[] = {
1838 		&wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1839 	};
1840 	wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1841 	struct i915_gem_ww_ctx ww;
1842 	void *batch, *batch_ptr;
1843 	unsigned int i;
1844 	int err;
1845 
1846 	if (GRAPHICS_VER(engine->i915) >= 11 ||
1847 	    !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1848 		return;
1849 
1850 	if (GRAPHICS_VER(engine->i915) == 9) {
1851 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1852 		wa_bb_fn[1] = NULL;
1853 	} else if (GRAPHICS_VER(engine->i915) == 8) {
1854 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1855 		wa_bb_fn[1] = NULL;
1856 	}
1857 
1858 	err = lrc_create_wa_ctx(engine);
1859 	if (err) {
1860 		/*
1861 		 * We continue even if we fail to initialize WA batch
1862 		 * because we only expect rare glitches but nothing
1863 		 * critical to prevent us from using GPU
1864 		 */
1865 		drm_err(&engine->i915->drm,
1866 			"Ignoring context switch w/a allocation error:%d\n",
1867 			err);
1868 		return;
1869 	}
1870 
1871 	if (!engine->wa_ctx.vma)
1872 		return;
1873 
1874 	i915_gem_ww_ctx_init(&ww, true);
1875 retry:
1876 	err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1877 	if (!err)
1878 		err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1879 	if (err)
1880 		goto err;
1881 
1882 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1883 	if (IS_ERR(batch)) {
1884 		err = PTR_ERR(batch);
1885 		goto err_unpin;
1886 	}
1887 
1888 	/*
1889 	 * Emit the two workaround batch buffers, recording the offset from the
1890 	 * start of the workaround batch buffer object for each and their
1891 	 * respective sizes.
1892 	 */
1893 	batch_ptr = batch;
1894 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1895 		wa_bb[i]->offset = batch_ptr - batch;
1896 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1897 						  CACHELINE_BYTES))) {
1898 			err = -EINVAL;
1899 			break;
1900 		}
1901 		if (wa_bb_fn[i])
1902 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1903 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1904 	}
1905 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1906 
1907 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1908 	__i915_gem_object_release_map(wa_ctx->vma->obj);
1909 
1910 	/* Verify that we can handle failure to setup the wa_ctx */
1911 	if (!err)
1912 		err = i915_inject_probe_error(engine->i915, -ENODEV);
1913 
1914 err_unpin:
1915 	if (err)
1916 		i915_vma_unpin(wa_ctx->vma);
1917 err:
1918 	if (err == -EDEADLK) {
1919 		err = i915_gem_ww_ctx_backoff(&ww);
1920 		if (!err)
1921 			goto retry;
1922 	}
1923 	i915_gem_ww_ctx_fini(&ww);
1924 
1925 	if (err) {
1926 		i915_vma_put(engine->wa_ctx.vma);
1927 
1928 		/* Clear all flags to prevent further use */
1929 		memset(wa_ctx, 0, sizeof(*wa_ctx));
1930 	}
1931 }
1932 
1933 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1934 {
1935 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1936 	stats->runtime.num_underflow++;
1937 	stats->runtime.max_underflow =
1938 		max_t(u32, stats->runtime.max_underflow, -dt);
1939 #endif
1940 }
1941 
1942 static u32 lrc_get_runtime(const struct intel_context *ce)
1943 {
1944 	/*
1945 	 * We can use either ppHWSP[16] which is recorded before the context
1946 	 * switch (and so excludes the cost of context switches) or use the
1947 	 * value from the context image itself, which is saved/restored earlier
1948 	 * and so includes the cost of the save.
1949 	 */
1950 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1951 }
1952 
1953 void lrc_update_runtime(struct intel_context *ce)
1954 {
1955 	struct intel_context_stats *stats = &ce->stats;
1956 	u32 old;
1957 	s32 dt;
1958 
1959 	old = stats->runtime.last;
1960 	stats->runtime.last = lrc_get_runtime(ce);
1961 	dt = stats->runtime.last - old;
1962 	if (!dt)
1963 		return;
1964 
1965 	if (unlikely(dt < 0)) {
1966 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1967 			 old, stats->runtime.last, dt);
1968 		st_runtime_underflow(stats, dt);
1969 		return;
1970 	}
1971 
1972 	ewma_runtime_add(&stats->runtime.avg, dt);
1973 	stats->runtime.total += dt;
1974 }
1975 
1976 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1977 #include "selftest_lrc.c"
1978 #endif
1979