1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * Michel Thierry <michel.thierry@intel.com> 26 * Thomas Daniel <thomas.daniel@intel.com> 27 * Oscar Mateo <oscar.mateo@intel.com> 28 * 29 */ 30 31 /** 32 * DOC: Logical Rings, Logical Ring Contexts and Execlists 33 * 34 * Motivation: 35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". 36 * These expanded contexts enable a number of new abilities, especially 37 * "Execlists" (also implemented in this file). 38 * 39 * One of the main differences with the legacy HW contexts is that logical 40 * ring contexts incorporate many more things to the context's state, like 41 * PDPs or ringbuffer control registers: 42 * 43 * The reason why PDPs are included in the context is straightforward: as 44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs 45 * contained there mean you don't need to do a ppgtt->switch_mm yourself, 46 * instead, the GPU will do it for you on the context switch. 47 * 48 * But, what about the ringbuffer control registers (head, tail, etc..)? 49 * shouldn't we just need a set of those per engine command streamer? This is 50 * where the name "Logical Rings" starts to make sense: by virtualizing the 51 * rings, the engine cs shifts to a new "ring buffer" with every context 52 * switch. When you want to submit a workload to the GPU you: A) choose your 53 * context, B) find its appropriate virtualized ring, C) write commands to it 54 * and then, finally, D) tell the GPU to switch to that context. 55 * 56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch 57 * to a contexts is via a context execution list, ergo "Execlists". 58 * 59 * LRC implementation: 60 * Regarding the creation of contexts, we have: 61 * 62 * - One global default context. 63 * - One local default context for each opened fd. 64 * - One local extra context for each context create ioctl call. 65 * 66 * Now that ringbuffers belong per-context (and not per-engine, like before) 67 * and that contexts are uniquely tied to a given engine (and not reusable, 68 * like before) we need: 69 * 70 * - One ringbuffer per-engine inside each context. 71 * - One backing object per-engine inside each context. 72 * 73 * The global default context starts its life with these new objects fully 74 * allocated and populated. The local default context for each opened fd is 75 * more complex, because we don't know at creation time which engine is going 76 * to use them. To handle this, we have implemented a deferred creation of LR 77 * contexts: 78 * 79 * The local context starts its life as a hollow or blank holder, that only 80 * gets populated for a given engine once we receive an execbuffer. If later 81 * on we receive another execbuffer ioctl for the same context but a different 82 * engine, we allocate/populate a new ringbuffer and context backing object and 83 * so on. 84 * 85 * Finally, regarding local contexts created using the ioctl call: as they are 86 * only allowed with the render ring, we can allocate & populate them right 87 * away (no need to defer anything, at least for now). 88 * 89 * Execlists implementation: 90 * Execlists are the new method by which, on gen8+ hardware, workloads are 91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method). 92 * This method works as follows: 93 * 94 * When a request is committed, its commands (the BB start and any leading or 95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer 96 * for the appropriate context. The tail pointer in the hardware context is not 97 * updated at this time, but instead, kept by the driver in the ringbuffer 98 * structure. A structure representing this request is added to a request queue 99 * for the appropriate engine: this structure contains a copy of the context's 100 * tail after the request was written to the ring buffer and a pointer to the 101 * context itself. 102 * 103 * If the engine's request queue was empty before the request was added, the 104 * queue is processed immediately. Otherwise the queue will be processed during 105 * a context switch interrupt. In any case, elements on the queue will get sent 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a 107 * globally unique 20-bits submission ID. 108 * 109 * When execution of a request completes, the GPU updates the context status 110 * buffer with a context complete event and generates a context switch interrupt. 111 * During the interrupt handling, the driver examines the events in the buffer: 112 * for each context complete event, if the announced ID matches that on the head 113 * of the request queue, then that request is retired and removed from the queue. 114 * 115 * After processing, if any requests were retired and the queue is not empty 116 * then a new execution list can be submitted. The two requests at the front of 117 * the queue are next to be submitted but since a context may not occur twice in 118 * an execution list, if subsequent requests have the same ID as the first then 119 * the two requests must be combined. This is done simply by discarding requests 120 * at the head of the queue until either only one requests is left (in which case 121 * we use a NULL second context) or the first two requests have unique IDs. 122 * 123 * By always executing the first two requests in the queue the driver ensures 124 * that the GPU is kept as busy as possible. In the case where a single context 125 * completes but a second context is still executing, the request for this second 126 * context will be at the head of the queue when we remove the first one. This 127 * request will then be resubmitted along with a new request for a different context, 128 * which will cause the hardware to continue executing the second request and queue 129 * the new request (the GPU detects the condition of a context getting preempted 130 * with the same context and optimizes the context switch flow by not doing 131 * preemption, but just sampling the new tail pointer). 132 * 133 */ 134 #include <linux/interrupt.h> 135 136 #include "i915_drv.h" 137 #include "i915_gem_render_state.h" 138 #include "i915_vgpu.h" 139 #include "intel_engine_pm.h" 140 #include "intel_lrc_reg.h" 141 #include "intel_mocs.h" 142 #include "intel_reset.h" 143 #include "intel_workarounds.h" 144 145 #define RING_EXECLIST_QFULL (1 << 0x2) 146 #define RING_EXECLIST1_VALID (1 << 0x3) 147 #define RING_EXECLIST0_VALID (1 << 0x4) 148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) 149 #define RING_EXECLIST1_ACTIVE (1 << 0x11) 150 #define RING_EXECLIST0_ACTIVE (1 << 0x12) 151 152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) 153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) 154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) 155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) 156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4) 157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) 158 159 #define GEN8_CTX_STATUS_COMPLETED_MASK \ 160 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) 161 162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */ 163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ 164 #define WA_TAIL_DWORDS 2 165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS) 166 167 struct virtual_engine { 168 struct intel_engine_cs base; 169 struct intel_context context; 170 171 /* 172 * We allow only a single request through the virtual engine at a time 173 * (each request in the timeline waits for the completion fence of 174 * the previous before being submitted). By restricting ourselves to 175 * only submitting a single request, each request is placed on to a 176 * physical to maximise load spreading (by virtue of the late greedy 177 * scheduling -- each real engine takes the next available request 178 * upon idling). 179 */ 180 struct i915_request *request; 181 182 /* 183 * We keep a rbtree of available virtual engines inside each physical 184 * engine, sorted by priority. Here we preallocate the nodes we need 185 * for the virtual engine, indexed by physical_engine->id. 186 */ 187 struct ve_node { 188 struct rb_node rb; 189 int prio; 190 } nodes[I915_NUM_ENGINES]; 191 192 /* 193 * Keep track of bonded pairs -- restrictions upon on our selection 194 * of physical engines any particular request may be submitted to. 195 * If we receive a submit-fence from a master engine, we will only 196 * use one of sibling_mask physical engines. 197 */ 198 struct ve_bond { 199 const struct intel_engine_cs *master; 200 intel_engine_mask_t sibling_mask; 201 } *bonds; 202 unsigned int num_bonds; 203 204 /* And finally, which physical engines this virtual engine maps onto. */ 205 unsigned int num_siblings; 206 struct intel_engine_cs *siblings[0]; 207 }; 208 209 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) 210 { 211 GEM_BUG_ON(!intel_engine_is_virtual(engine)); 212 return container_of(engine, struct virtual_engine, base); 213 } 214 215 static int execlists_context_deferred_alloc(struct intel_context *ce, 216 struct intel_engine_cs *engine); 217 static void execlists_init_reg_state(u32 *reg_state, 218 struct intel_context *ce, 219 struct intel_engine_cs *engine, 220 struct intel_ring *ring); 221 222 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 223 { 224 return rb_entry(rb, struct i915_priolist, node); 225 } 226 227 static inline int rq_prio(const struct i915_request *rq) 228 { 229 return rq->sched.attr.priority; 230 } 231 232 static int effective_prio(const struct i915_request *rq) 233 { 234 int prio = rq_prio(rq); 235 236 /* 237 * On unwinding the active request, we give it a priority bump 238 * if it has completed waiting on any semaphore. If we know that 239 * the request has already started, we can prevent an unwanted 240 * preempt-to-idle cycle by taking that into account now. 241 */ 242 if (__i915_request_has_started(rq)) 243 prio |= I915_PRIORITY_NOSEMAPHORE; 244 245 /* Restrict mere WAIT boosts from triggering preemption */ 246 return prio | __NO_PREEMPTION; 247 } 248 249 static int queue_prio(const struct intel_engine_execlists *execlists) 250 { 251 struct i915_priolist *p; 252 struct rb_node *rb; 253 254 rb = rb_first_cached(&execlists->queue); 255 if (!rb) 256 return INT_MIN; 257 258 /* 259 * As the priolist[] are inverted, with the highest priority in [0], 260 * we have to flip the index value to become priority. 261 */ 262 p = to_priolist(rb); 263 return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used); 264 } 265 266 static inline bool need_preempt(const struct intel_engine_cs *engine, 267 const struct i915_request *rq, 268 struct rb_node *rb) 269 { 270 int last_prio; 271 272 if (!engine->preempt_context) 273 return false; 274 275 if (i915_request_completed(rq)) 276 return false; 277 278 /* 279 * Check if the current priority hint merits a preemption attempt. 280 * 281 * We record the highest value priority we saw during rescheduling 282 * prior to this dequeue, therefore we know that if it is strictly 283 * less than the current tail of ESLP[0], we do not need to force 284 * a preempt-to-idle cycle. 285 * 286 * However, the priority hint is a mere hint that we may need to 287 * preempt. If that hint is stale or we may be trying to preempt 288 * ourselves, ignore the request. 289 */ 290 last_prio = effective_prio(rq); 291 if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint, 292 last_prio)) 293 return false; 294 295 /* 296 * Check against the first request in ELSP[1], it will, thanks to the 297 * power of PI, be the highest priority of that context. 298 */ 299 if (!list_is_last(&rq->link, &engine->timeline.requests) && 300 rq_prio(list_next_entry(rq, link)) > last_prio) 301 return true; 302 303 if (rb) { 304 struct virtual_engine *ve = 305 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 306 bool preempt = false; 307 308 if (engine == ve->siblings[0]) { /* only preempt one sibling */ 309 struct i915_request *next; 310 311 rcu_read_lock(); 312 next = READ_ONCE(ve->request); 313 if (next) 314 preempt = rq_prio(next) > last_prio; 315 rcu_read_unlock(); 316 } 317 318 if (preempt) 319 return preempt; 320 } 321 322 /* 323 * If the inflight context did not trigger the preemption, then maybe 324 * it was the set of queued requests? Pick the highest priority in 325 * the queue (the first active priolist) and see if it deserves to be 326 * running instead of ELSP[0]. 327 * 328 * The highest priority request in the queue can not be either 329 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same 330 * context, it's priority would not exceed ELSP[0] aka last_prio. 331 */ 332 return queue_prio(&engine->execlists) > last_prio; 333 } 334 335 __maybe_unused static inline bool 336 assert_priority_queue(const struct i915_request *prev, 337 const struct i915_request *next) 338 { 339 const struct intel_engine_execlists *execlists = 340 &prev->engine->execlists; 341 342 /* 343 * Without preemption, the prev may refer to the still active element 344 * which we refuse to let go. 345 * 346 * Even with preemption, there are times when we think it is better not 347 * to preempt and leave an ostensibly lower priority request in flight. 348 */ 349 if (port_request(execlists->port) == prev) 350 return true; 351 352 return rq_prio(prev) >= rq_prio(next); 353 } 354 355 /* 356 * The context descriptor encodes various attributes of a context, 357 * including its GTT address and some flags. Because it's fairly 358 * expensive to calculate, we'll just do it once and cache the result, 359 * which remains valid until the context is unpinned. 360 * 361 * This is what a descriptor looks like, from LSB to MSB:: 362 * 363 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template) 364 * bits 12-31: LRCA, GTT address of (the HWSP of) this context 365 * bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC) 366 * bits 53-54: mbz, reserved for use by hardware 367 * bits 55-63: group ID, currently unused and set to 0 368 * 369 * Starting from Gen11, the upper dword of the descriptor has a new format: 370 * 371 * bits 32-36: reserved 372 * bits 37-47: SW context ID 373 * bits 48:53: engine instance 374 * bit 54: mbz, reserved for use by hardware 375 * bits 55-60: SW counter 376 * bits 61-63: engine class 377 * 378 * engine info, SW context ID and SW counter need to form a unique number 379 * (Context ID) per lrc. 380 */ 381 static u64 382 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine) 383 { 384 struct i915_gem_context *ctx = ce->gem_context; 385 u64 desc; 386 387 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH))); 388 BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH))); 389 390 desc = ctx->desc_template; /* bits 0-11 */ 391 GEM_BUG_ON(desc & GENMASK_ULL(63, 12)); 392 393 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE; 394 /* bits 12-31 */ 395 GEM_BUG_ON(desc & GENMASK_ULL(63, 32)); 396 397 /* 398 * The following 32bits are copied into the OA reports (dword 2). 399 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing 400 * anything below. 401 */ 402 if (INTEL_GEN(engine->i915) >= 11) { 403 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH)); 404 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT; 405 /* bits 37-47 */ 406 407 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT; 408 /* bits 48-53 */ 409 410 /* TODO: decide what to do with SW counter (bits 55-60) */ 411 412 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT; 413 /* bits 61-63 */ 414 } else { 415 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH)); 416 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */ 417 } 418 419 return desc; 420 } 421 422 static void unwind_wa_tail(struct i915_request *rq) 423 { 424 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES); 425 assert_ring_tail_valid(rq->ring, rq->tail); 426 } 427 428 static struct i915_request * 429 __unwind_incomplete_requests(struct intel_engine_cs *engine) 430 { 431 struct i915_request *rq, *rn, *active = NULL; 432 struct list_head *uninitialized_var(pl); 433 int prio = I915_PRIORITY_INVALID; 434 435 lockdep_assert_held(&engine->timeline.lock); 436 437 list_for_each_entry_safe_reverse(rq, rn, 438 &engine->timeline.requests, 439 link) { 440 struct intel_engine_cs *owner; 441 442 if (i915_request_completed(rq)) 443 break; 444 445 __i915_request_unsubmit(rq); 446 unwind_wa_tail(rq); 447 448 GEM_BUG_ON(rq->hw_context->active); 449 450 /* 451 * Push the request back into the queue for later resubmission. 452 * If this request is not native to this physical engine (i.e. 453 * it came from a virtual source), push it back onto the virtual 454 * engine so that it can be moved across onto another physical 455 * engine as load dictates. 456 */ 457 owner = rq->hw_context->engine; 458 if (likely(owner == engine)) { 459 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 460 if (rq_prio(rq) != prio) { 461 prio = rq_prio(rq); 462 pl = i915_sched_lookup_priolist(engine, prio); 463 } 464 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 465 466 list_add(&rq->sched.link, pl); 467 active = rq; 468 } else { 469 rq->engine = owner; 470 owner->submit_request(rq); 471 active = NULL; 472 } 473 } 474 475 return active; 476 } 477 478 struct i915_request * 479 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) 480 { 481 struct intel_engine_cs *engine = 482 container_of(execlists, typeof(*engine), execlists); 483 484 return __unwind_incomplete_requests(engine); 485 } 486 487 static inline void 488 execlists_context_status_change(struct i915_request *rq, unsigned long status) 489 { 490 /* 491 * Only used when GVT-g is enabled now. When GVT-g is disabled, 492 * The compiler should eliminate this function as dead-code. 493 */ 494 if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) 495 return; 496 497 atomic_notifier_call_chain(&rq->engine->context_status_notifier, 498 status, rq); 499 } 500 501 inline void 502 execlists_user_begin(struct intel_engine_execlists *execlists, 503 const struct execlist_port *port) 504 { 505 execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER); 506 } 507 508 inline void 509 execlists_user_end(struct intel_engine_execlists *execlists) 510 { 511 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER); 512 } 513 514 static inline void 515 execlists_context_schedule_in(struct i915_request *rq) 516 { 517 GEM_BUG_ON(rq->hw_context->active); 518 519 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); 520 intel_engine_context_in(rq->engine); 521 rq->hw_context->active = rq->engine; 522 } 523 524 static void kick_siblings(struct i915_request *rq) 525 { 526 struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine); 527 struct i915_request *next = READ_ONCE(ve->request); 528 529 if (next && next->execution_mask & ~rq->execution_mask) 530 tasklet_schedule(&ve->base.execlists.tasklet); 531 } 532 533 static inline void 534 execlists_context_schedule_out(struct i915_request *rq, unsigned long status) 535 { 536 rq->hw_context->active = NULL; 537 intel_engine_context_out(rq->engine); 538 execlists_context_status_change(rq, status); 539 trace_i915_request_out(rq); 540 541 /* 542 * If this is part of a virtual engine, its next request may have 543 * been blocked waiting for access to the active context. We have 544 * to kick all the siblings again in case we need to switch (e.g. 545 * the next request is not runnable on this engine). Hopefully, 546 * we will already have submitted the next request before the 547 * tasklet runs and do not need to rebuild each virtual tree 548 * and kick everyone again. 549 */ 550 if (rq->engine != rq->hw_context->engine) 551 kick_siblings(rq); 552 } 553 554 static u64 execlists_update_context(struct i915_request *rq) 555 { 556 struct intel_context *ce = rq->hw_context; 557 558 ce->lrc_reg_state[CTX_RING_TAIL + 1] = 559 intel_ring_set_tail(rq->ring, rq->tail); 560 561 /* 562 * Make sure the context image is complete before we submit it to HW. 563 * 564 * Ostensibly, writes (including the WCB) should be flushed prior to 565 * an uncached write such as our mmio register access, the empirical 566 * evidence (esp. on Braswell) suggests that the WC write into memory 567 * may not be visible to the HW prior to the completion of the UC 568 * register write and that we may begin execution from the context 569 * before its image is complete leading to invalid PD chasing. 570 * 571 * Furthermore, Braswell, at least, wants a full mb to be sure that 572 * the writes are coherent in memory (visible to the GPU) prior to 573 * execution, and not just visible to other CPUs (as is the result of 574 * wmb). 575 */ 576 mb(); 577 return ce->lrc_desc; 578 } 579 580 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) 581 { 582 if (execlists->ctrl_reg) { 583 writel(lower_32_bits(desc), execlists->submit_reg + port * 2); 584 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); 585 } else { 586 writel(upper_32_bits(desc), execlists->submit_reg); 587 writel(lower_32_bits(desc), execlists->submit_reg); 588 } 589 } 590 591 static void execlists_submit_ports(struct intel_engine_cs *engine) 592 { 593 struct intel_engine_execlists *execlists = &engine->execlists; 594 struct execlist_port *port = execlists->port; 595 unsigned int n; 596 597 /* 598 * We can skip acquiring intel_runtime_pm_get() here as it was taken 599 * on our behalf by the request (see i915_gem_mark_busy()) and it will 600 * not be relinquished until the device is idle (see 601 * i915_gem_idle_work_handler()). As a precaution, we make sure 602 * that all ELSP are drained i.e. we have processed the CSB, 603 * before allowing ourselves to idle and calling intel_runtime_pm_put(). 604 */ 605 GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref)); 606 607 /* 608 * ELSQ note: the submit queue is not cleared after being submitted 609 * to the HW so we need to make sure we always clean it up. This is 610 * currently ensured by the fact that we always write the same number 611 * of elsq entries, keep this in mind before changing the loop below. 612 */ 613 for (n = execlists_num_ports(execlists); n--; ) { 614 struct i915_request *rq; 615 unsigned int count; 616 u64 desc; 617 618 rq = port_unpack(&port[n], &count); 619 if (rq) { 620 GEM_BUG_ON(count > !n); 621 if (!count++) 622 execlists_context_schedule_in(rq); 623 port_set(&port[n], port_pack(rq, count)); 624 desc = execlists_update_context(rq); 625 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc)); 626 627 GEM_TRACE("%s in[%d]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n", 628 engine->name, n, 629 port[n].context_id, count, 630 rq->fence.context, rq->fence.seqno, 631 hwsp_seqno(rq), 632 rq_prio(rq)); 633 } else { 634 GEM_BUG_ON(!n); 635 desc = 0; 636 } 637 638 write_desc(execlists, desc, n); 639 } 640 641 /* we need to manually load the submit queue */ 642 if (execlists->ctrl_reg) 643 writel(EL_CTRL_LOAD, execlists->ctrl_reg); 644 645 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK); 646 } 647 648 static bool ctx_single_port_submission(const struct intel_context *ce) 649 { 650 return (IS_ENABLED(CONFIG_DRM_I915_GVT) && 651 i915_gem_context_force_single_submission(ce->gem_context)); 652 } 653 654 static bool can_merge_ctx(const struct intel_context *prev, 655 const struct intel_context *next) 656 { 657 if (prev != next) 658 return false; 659 660 if (ctx_single_port_submission(prev)) 661 return false; 662 663 return true; 664 } 665 666 static bool can_merge_rq(const struct i915_request *prev, 667 const struct i915_request *next) 668 { 669 GEM_BUG_ON(!assert_priority_queue(prev, next)); 670 671 if (!can_merge_ctx(prev->hw_context, next->hw_context)) 672 return false; 673 674 return true; 675 } 676 677 static void port_assign(struct execlist_port *port, struct i915_request *rq) 678 { 679 GEM_BUG_ON(rq == port_request(port)); 680 681 if (port_isset(port)) 682 i915_request_put(port_request(port)); 683 684 port_set(port, port_pack(i915_request_get(rq), port_count(port))); 685 } 686 687 static void inject_preempt_context(struct intel_engine_cs *engine) 688 { 689 struct intel_engine_execlists *execlists = &engine->execlists; 690 struct intel_context *ce = engine->preempt_context; 691 unsigned int n; 692 693 GEM_BUG_ON(execlists->preempt_complete_status != 694 upper_32_bits(ce->lrc_desc)); 695 696 /* 697 * Switch to our empty preempt context so 698 * the state of the GPU is known (idle). 699 */ 700 GEM_TRACE("%s\n", engine->name); 701 for (n = execlists_num_ports(execlists); --n; ) 702 write_desc(execlists, 0, n); 703 704 write_desc(execlists, ce->lrc_desc, n); 705 706 /* we need to manually load the submit queue */ 707 if (execlists->ctrl_reg) 708 writel(EL_CTRL_LOAD, execlists->ctrl_reg); 709 710 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK); 711 execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT); 712 713 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); 714 } 715 716 static void complete_preempt_context(struct intel_engine_execlists *execlists) 717 { 718 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT)); 719 720 if (inject_preempt_hang(execlists)) 721 return; 722 723 execlists_cancel_port_requests(execlists); 724 __unwind_incomplete_requests(container_of(execlists, 725 struct intel_engine_cs, 726 execlists)); 727 } 728 729 static void virtual_update_register_offsets(u32 *regs, 730 struct intel_engine_cs *engine) 731 { 732 u32 base = engine->mmio_base; 733 734 /* Must match execlists_init_reg_state()! */ 735 736 regs[CTX_CONTEXT_CONTROL] = 737 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base)); 738 regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base)); 739 regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base)); 740 regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base)); 741 regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base)); 742 743 regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base)); 744 regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base)); 745 regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base)); 746 regs[CTX_SECOND_BB_HEAD_U] = 747 i915_mmio_reg_offset(RING_SBBADDR_UDW(base)); 748 regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base)); 749 regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base)); 750 751 regs[CTX_CTX_TIMESTAMP] = 752 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base)); 753 regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3)); 754 regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3)); 755 regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2)); 756 regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2)); 757 regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1)); 758 regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1)); 759 regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0)); 760 regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0)); 761 762 if (engine->class == RENDER_CLASS) { 763 regs[CTX_RCS_INDIRECT_CTX] = 764 i915_mmio_reg_offset(RING_INDIRECT_CTX(base)); 765 regs[CTX_RCS_INDIRECT_CTX_OFFSET] = 766 i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base)); 767 regs[CTX_BB_PER_CTX_PTR] = 768 i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base)); 769 770 regs[CTX_R_PWR_CLK_STATE] = 771 i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE); 772 } 773 } 774 775 static bool virtual_matches(const struct virtual_engine *ve, 776 const struct i915_request *rq, 777 const struct intel_engine_cs *engine) 778 { 779 const struct intel_engine_cs *active; 780 781 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ 782 return false; 783 784 /* 785 * We track when the HW has completed saving the context image 786 * (i.e. when we have seen the final CS event switching out of 787 * the context) and must not overwrite the context image before 788 * then. This restricts us to only using the active engine 789 * while the previous virtualized request is inflight (so 790 * we reuse the register offsets). This is a very small 791 * hystersis on the greedy seelction algorithm. 792 */ 793 active = READ_ONCE(ve->context.active); 794 if (active && active != engine) 795 return false; 796 797 return true; 798 } 799 800 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve, 801 struct intel_engine_cs *engine) 802 { 803 struct intel_engine_cs *old = ve->siblings[0]; 804 805 /* All unattached (rq->engine == old) must already be completed */ 806 807 spin_lock(&old->breadcrumbs.irq_lock); 808 if (!list_empty(&ve->context.signal_link)) { 809 list_move_tail(&ve->context.signal_link, 810 &engine->breadcrumbs.signalers); 811 intel_engine_queue_breadcrumbs(engine); 812 } 813 spin_unlock(&old->breadcrumbs.irq_lock); 814 } 815 816 static void execlists_dequeue(struct intel_engine_cs *engine) 817 { 818 struct intel_engine_execlists * const execlists = &engine->execlists; 819 struct execlist_port *port = execlists->port; 820 const struct execlist_port * const last_port = 821 &execlists->port[execlists->port_mask]; 822 struct i915_request *last = port_request(port); 823 struct rb_node *rb; 824 bool submit = false; 825 826 /* 827 * Hardware submission is through 2 ports. Conceptually each port 828 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is 829 * static for a context, and unique to each, so we only execute 830 * requests belonging to a single context from each ring. RING_HEAD 831 * is maintained by the CS in the context image, it marks the place 832 * where it got up to last time, and through RING_TAIL we tell the CS 833 * where we want to execute up to this time. 834 * 835 * In this list the requests are in order of execution. Consecutive 836 * requests from the same context are adjacent in the ringbuffer. We 837 * can combine these requests into a single RING_TAIL update: 838 * 839 * RING_HEAD...req1...req2 840 * ^- RING_TAIL 841 * since to execute req2 the CS must first execute req1. 842 * 843 * Our goal then is to point each port to the end of a consecutive 844 * sequence of requests as being the most optimal (fewest wake ups 845 * and context switches) submission. 846 */ 847 848 for (rb = rb_first_cached(&execlists->virtual); rb; ) { 849 struct virtual_engine *ve = 850 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 851 struct i915_request *rq = READ_ONCE(ve->request); 852 853 if (!rq) { /* lazily cleanup after another engine handled rq */ 854 rb_erase_cached(rb, &execlists->virtual); 855 RB_CLEAR_NODE(rb); 856 rb = rb_first_cached(&execlists->virtual); 857 continue; 858 } 859 860 if (!virtual_matches(ve, rq, engine)) { 861 rb = rb_next(rb); 862 continue; 863 } 864 865 break; 866 } 867 868 if (last) { 869 /* 870 * Don't resubmit or switch until all outstanding 871 * preemptions (lite-restore) are seen. Then we 872 * know the next preemption status we see corresponds 873 * to this ELSP update. 874 */ 875 GEM_BUG_ON(!execlists_is_active(execlists, 876 EXECLISTS_ACTIVE_USER)); 877 GEM_BUG_ON(!port_count(&port[0])); 878 879 /* 880 * If we write to ELSP a second time before the HW has had 881 * a chance to respond to the previous write, we can confuse 882 * the HW and hit "undefined behaviour". After writing to ELSP, 883 * we must then wait until we see a context-switch event from 884 * the HW to indicate that it has had a chance to respond. 885 */ 886 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK)) 887 return; 888 889 if (need_preempt(engine, last, rb)) { 890 inject_preempt_context(engine); 891 return; 892 } 893 894 /* 895 * In theory, we could coalesce more requests onto 896 * the second port (the first port is active, with 897 * no preemptions pending). However, that means we 898 * then have to deal with the possible lite-restore 899 * of the second port (as we submit the ELSP, there 900 * may be a context-switch) but also we may complete 901 * the resubmission before the context-switch. Ergo, 902 * coalescing onto the second port will cause a 903 * preemption event, but we cannot predict whether 904 * that will affect port[0] or port[1]. 905 * 906 * If the second port is already active, we can wait 907 * until the next context-switch before contemplating 908 * new requests. The GPU will be busy and we should be 909 * able to resubmit the new ELSP before it idles, 910 * avoiding pipeline bubbles (momentary pauses where 911 * the driver is unable to keep up the supply of new 912 * work). However, we have to double check that the 913 * priorities of the ports haven't been switch. 914 */ 915 if (port_count(&port[1])) 916 return; 917 918 /* 919 * WaIdleLiteRestore:bdw,skl 920 * Apply the wa NOOPs to prevent 921 * ring:HEAD == rq:TAIL as we resubmit the 922 * request. See gen8_emit_fini_breadcrumb() for 923 * where we prepare the padding after the 924 * end of the request. 925 */ 926 last->tail = last->wa_tail; 927 } 928 929 while (rb) { /* XXX virtual is always taking precedence */ 930 struct virtual_engine *ve = 931 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 932 struct i915_request *rq; 933 934 spin_lock(&ve->base.timeline.lock); 935 936 rq = ve->request; 937 if (unlikely(!rq)) { /* lost the race to a sibling */ 938 spin_unlock(&ve->base.timeline.lock); 939 rb_erase_cached(rb, &execlists->virtual); 940 RB_CLEAR_NODE(rb); 941 rb = rb_first_cached(&execlists->virtual); 942 continue; 943 } 944 945 GEM_BUG_ON(rq != ve->request); 946 GEM_BUG_ON(rq->engine != &ve->base); 947 GEM_BUG_ON(rq->hw_context != &ve->context); 948 949 if (rq_prio(rq) >= queue_prio(execlists)) { 950 if (!virtual_matches(ve, rq, engine)) { 951 spin_unlock(&ve->base.timeline.lock); 952 rb = rb_next(rb); 953 continue; 954 } 955 956 if (last && !can_merge_rq(last, rq)) { 957 spin_unlock(&ve->base.timeline.lock); 958 return; /* leave this rq for another engine */ 959 } 960 961 GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n", 962 engine->name, 963 rq->fence.context, 964 rq->fence.seqno, 965 i915_request_completed(rq) ? "!" : 966 i915_request_started(rq) ? "*" : 967 "", 968 yesno(engine != ve->siblings[0])); 969 970 ve->request = NULL; 971 ve->base.execlists.queue_priority_hint = INT_MIN; 972 rb_erase_cached(rb, &execlists->virtual); 973 RB_CLEAR_NODE(rb); 974 975 GEM_BUG_ON(!(rq->execution_mask & engine->mask)); 976 rq->engine = engine; 977 978 if (engine != ve->siblings[0]) { 979 u32 *regs = ve->context.lrc_reg_state; 980 unsigned int n; 981 982 GEM_BUG_ON(READ_ONCE(ve->context.active)); 983 virtual_update_register_offsets(regs, engine); 984 985 if (!list_empty(&ve->context.signals)) 986 virtual_xfer_breadcrumbs(ve, engine); 987 988 /* 989 * Move the bound engine to the top of the list 990 * for future execution. We then kick this 991 * tasklet first before checking others, so that 992 * we preferentially reuse this set of bound 993 * registers. 994 */ 995 for (n = 1; n < ve->num_siblings; n++) { 996 if (ve->siblings[n] == engine) { 997 swap(ve->siblings[n], 998 ve->siblings[0]); 999 break; 1000 } 1001 } 1002 1003 GEM_BUG_ON(ve->siblings[0] != engine); 1004 } 1005 1006 __i915_request_submit(rq); 1007 trace_i915_request_in(rq, port_index(port, execlists)); 1008 submit = true; 1009 last = rq; 1010 } 1011 1012 spin_unlock(&ve->base.timeline.lock); 1013 break; 1014 } 1015 1016 while ((rb = rb_first_cached(&execlists->queue))) { 1017 struct i915_priolist *p = to_priolist(rb); 1018 struct i915_request *rq, *rn; 1019 int i; 1020 1021 priolist_for_each_request_consume(rq, rn, p, i) { 1022 /* 1023 * Can we combine this request with the current port? 1024 * It has to be the same context/ringbuffer and not 1025 * have any exceptions (e.g. GVT saying never to 1026 * combine contexts). 1027 * 1028 * If we can combine the requests, we can execute both 1029 * by updating the RING_TAIL to point to the end of the 1030 * second request, and so we never need to tell the 1031 * hardware about the first. 1032 */ 1033 if (last && !can_merge_rq(last, rq)) { 1034 /* 1035 * If we are on the second port and cannot 1036 * combine this request with the last, then we 1037 * are done. 1038 */ 1039 if (port == last_port) 1040 goto done; 1041 1042 /* 1043 * We must not populate both ELSP[] with the 1044 * same LRCA, i.e. we must submit 2 different 1045 * contexts if we submit 2 ELSP. 1046 */ 1047 if (last->hw_context == rq->hw_context) 1048 goto done; 1049 1050 /* 1051 * If GVT overrides us we only ever submit 1052 * port[0], leaving port[1] empty. Note that we 1053 * also have to be careful that we don't queue 1054 * the same context (even though a different 1055 * request) to the second port. 1056 */ 1057 if (ctx_single_port_submission(last->hw_context) || 1058 ctx_single_port_submission(rq->hw_context)) 1059 goto done; 1060 1061 1062 if (submit) 1063 port_assign(port, last); 1064 port++; 1065 1066 GEM_BUG_ON(port_isset(port)); 1067 } 1068 1069 list_del_init(&rq->sched.link); 1070 1071 __i915_request_submit(rq); 1072 trace_i915_request_in(rq, port_index(port, execlists)); 1073 1074 last = rq; 1075 submit = true; 1076 } 1077 1078 rb_erase_cached(&p->node, &execlists->queue); 1079 i915_priolist_free(p); 1080 } 1081 1082 done: 1083 /* 1084 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. 1085 * 1086 * We choose the priority hint such that if we add a request of greater 1087 * priority than this, we kick the submission tasklet to decide on 1088 * the right order of submitting the requests to hardware. We must 1089 * also be prepared to reorder requests as they are in-flight on the 1090 * HW. We derive the priority hint then as the first "hole" in 1091 * the HW submission ports and if there are no available slots, 1092 * the priority of the lowest executing request, i.e. last. 1093 * 1094 * When we do receive a higher priority request ready to run from the 1095 * user, see queue_request(), the priority hint is bumped to that 1096 * request triggering preemption on the next dequeue (or subsequent 1097 * interrupt for secondary ports). 1098 */ 1099 execlists->queue_priority_hint = queue_prio(execlists); 1100 1101 if (submit) { 1102 port_assign(port, last); 1103 execlists_submit_ports(engine); 1104 } 1105 1106 /* We must always keep the beast fed if we have work piled up */ 1107 GEM_BUG_ON(rb_first_cached(&execlists->queue) && 1108 !port_isset(execlists->port)); 1109 1110 /* Re-evaluate the executing context setup after each preemptive kick */ 1111 if (last) 1112 execlists_user_begin(execlists, execlists->port); 1113 1114 /* If the engine is now idle, so should be the flag; and vice versa. */ 1115 GEM_BUG_ON(execlists_is_active(&engine->execlists, 1116 EXECLISTS_ACTIVE_USER) == 1117 !port_isset(engine->execlists.port)); 1118 } 1119 1120 void 1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists) 1122 { 1123 struct execlist_port *port = execlists->port; 1124 unsigned int num_ports = execlists_num_ports(execlists); 1125 1126 while (num_ports-- && port_isset(port)) { 1127 struct i915_request *rq = port_request(port); 1128 1129 GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n", 1130 rq->engine->name, 1131 (unsigned int)(port - execlists->port), 1132 rq->fence.context, rq->fence.seqno, 1133 hwsp_seqno(rq)); 1134 1135 GEM_BUG_ON(!execlists->active); 1136 execlists_context_schedule_out(rq, 1137 i915_request_completed(rq) ? 1138 INTEL_CONTEXT_SCHEDULE_OUT : 1139 INTEL_CONTEXT_SCHEDULE_PREEMPTED); 1140 1141 i915_request_put(rq); 1142 1143 memset(port, 0, sizeof(*port)); 1144 port++; 1145 } 1146 1147 execlists_clear_all_active(execlists); 1148 } 1149 1150 static inline void 1151 invalidate_csb_entries(const u32 *first, const u32 *last) 1152 { 1153 clflush((void *)first); 1154 clflush((void *)last); 1155 } 1156 1157 static inline bool 1158 reset_in_progress(const struct intel_engine_execlists *execlists) 1159 { 1160 return unlikely(!__tasklet_is_enabled(&execlists->tasklet)); 1161 } 1162 1163 static void process_csb(struct intel_engine_cs *engine) 1164 { 1165 struct intel_engine_execlists * const execlists = &engine->execlists; 1166 struct execlist_port *port = execlists->port; 1167 const u32 * const buf = execlists->csb_status; 1168 const u8 num_entries = execlists->csb_size; 1169 u8 head, tail; 1170 1171 lockdep_assert_held(&engine->timeline.lock); 1172 1173 /* 1174 * Note that csb_write, csb_status may be either in HWSP or mmio. 1175 * When reading from the csb_write mmio register, we have to be 1176 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is 1177 * the low 4bits. As it happens we know the next 4bits are always 1178 * zero and so we can simply masked off the low u8 of the register 1179 * and treat it identically to reading from the HWSP (without having 1180 * to use explicit shifting and masking, and probably bifurcating 1181 * the code to handle the legacy mmio read). 1182 */ 1183 head = execlists->csb_head; 1184 tail = READ_ONCE(*execlists->csb_write); 1185 GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail); 1186 if (unlikely(head == tail)) 1187 return; 1188 1189 /* 1190 * Hopefully paired with a wmb() in HW! 1191 * 1192 * We must complete the read of the write pointer before any reads 1193 * from the CSB, so that we do not see stale values. Without an rmb 1194 * (lfence) the HW may speculatively perform the CSB[] reads *before* 1195 * we perform the READ_ONCE(*csb_write). 1196 */ 1197 rmb(); 1198 1199 do { 1200 struct i915_request *rq; 1201 unsigned int status; 1202 unsigned int count; 1203 1204 if (++head == num_entries) 1205 head = 0; 1206 1207 /* 1208 * We are flying near dragons again. 1209 * 1210 * We hold a reference to the request in execlist_port[] 1211 * but no more than that. We are operating in softirq 1212 * context and so cannot hold any mutex or sleep. That 1213 * prevents us stopping the requests we are processing 1214 * in port[] from being retired simultaneously (the 1215 * breadcrumb will be complete before we see the 1216 * context-switch). As we only hold the reference to the 1217 * request, any pointer chasing underneath the request 1218 * is subject to a potential use-after-free. Thus we 1219 * store all of the bookkeeping within port[] as 1220 * required, and avoid using unguarded pointers beneath 1221 * request itself. The same applies to the atomic 1222 * status notifier. 1223 */ 1224 1225 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n", 1226 engine->name, head, 1227 buf[2 * head + 0], buf[2 * head + 1], 1228 execlists->active); 1229 1230 status = buf[2 * head]; 1231 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE | 1232 GEN8_CTX_STATUS_PREEMPTED)) 1233 execlists_set_active(execlists, 1234 EXECLISTS_ACTIVE_HWACK); 1235 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE) 1236 execlists_clear_active(execlists, 1237 EXECLISTS_ACTIVE_HWACK); 1238 1239 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK)) 1240 continue; 1241 1242 /* We should never get a COMPLETED | IDLE_ACTIVE! */ 1243 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE); 1244 1245 if (status & GEN8_CTX_STATUS_COMPLETE && 1246 buf[2*head + 1] == execlists->preempt_complete_status) { 1247 GEM_TRACE("%s preempt-idle\n", engine->name); 1248 complete_preempt_context(execlists); 1249 continue; 1250 } 1251 1252 if (status & GEN8_CTX_STATUS_PREEMPTED && 1253 execlists_is_active(execlists, 1254 EXECLISTS_ACTIVE_PREEMPT)) 1255 continue; 1256 1257 GEM_BUG_ON(!execlists_is_active(execlists, 1258 EXECLISTS_ACTIVE_USER)); 1259 1260 rq = port_unpack(port, &count); 1261 GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n", 1262 engine->name, 1263 port->context_id, count, 1264 rq ? rq->fence.context : 0, 1265 rq ? rq->fence.seqno : 0, 1266 rq ? hwsp_seqno(rq) : 0, 1267 rq ? rq_prio(rq) : 0); 1268 1269 /* Check the context/desc id for this event matches */ 1270 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id); 1271 1272 GEM_BUG_ON(count == 0); 1273 if (--count == 0) { 1274 /* 1275 * On the final event corresponding to the 1276 * submission of this context, we expect either 1277 * an element-switch event or a completion 1278 * event (and on completion, the active-idle 1279 * marker). No more preemptions, lite-restore 1280 * or otherwise. 1281 */ 1282 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED); 1283 GEM_BUG_ON(port_isset(&port[1]) && 1284 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH)); 1285 GEM_BUG_ON(!port_isset(&port[1]) && 1286 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE)); 1287 1288 /* 1289 * We rely on the hardware being strongly 1290 * ordered, that the breadcrumb write is 1291 * coherent (visible from the CPU) before the 1292 * user interrupt and CSB is processed. 1293 */ 1294 GEM_BUG_ON(!i915_request_completed(rq)); 1295 1296 execlists_context_schedule_out(rq, 1297 INTEL_CONTEXT_SCHEDULE_OUT); 1298 i915_request_put(rq); 1299 1300 GEM_TRACE("%s completed ctx=%d\n", 1301 engine->name, port->context_id); 1302 1303 port = execlists_port_complete(execlists, port); 1304 if (port_isset(port)) 1305 execlists_user_begin(execlists, port); 1306 else 1307 execlists_user_end(execlists); 1308 } else { 1309 port_set(port, port_pack(rq, count)); 1310 } 1311 } while (head != tail); 1312 1313 execlists->csb_head = head; 1314 1315 /* 1316 * Gen11 has proven to fail wrt global observation point between 1317 * entry and tail update, failing on the ordering and thus 1318 * we see an old entry in the context status buffer. 1319 * 1320 * Forcibly evict out entries for the next gpu csb update, 1321 * to increase the odds that we get a fresh entries with non 1322 * working hardware. The cost for doing so comes out mostly with 1323 * the wash as hardware, working or not, will need to do the 1324 * invalidation before. 1325 */ 1326 invalidate_csb_entries(&buf[0], &buf[num_entries - 1]); 1327 } 1328 1329 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine) 1330 { 1331 lockdep_assert_held(&engine->timeline.lock); 1332 1333 process_csb(engine); 1334 if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT)) 1335 execlists_dequeue(engine); 1336 } 1337 1338 /* 1339 * Check the unread Context Status Buffers and manage the submission of new 1340 * contexts to the ELSP accordingly. 1341 */ 1342 static void execlists_submission_tasklet(unsigned long data) 1343 { 1344 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; 1345 unsigned long flags; 1346 1347 GEM_TRACE("%s awake?=%d, active=%x\n", 1348 engine->name, 1349 !!intel_wakeref_active(&engine->wakeref), 1350 engine->execlists.active); 1351 1352 spin_lock_irqsave(&engine->timeline.lock, flags); 1353 __execlists_submission_tasklet(engine); 1354 spin_unlock_irqrestore(&engine->timeline.lock, flags); 1355 } 1356 1357 static void queue_request(struct intel_engine_cs *engine, 1358 struct i915_sched_node *node, 1359 int prio) 1360 { 1361 list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio)); 1362 } 1363 1364 static void __submit_queue_imm(struct intel_engine_cs *engine) 1365 { 1366 struct intel_engine_execlists * const execlists = &engine->execlists; 1367 1368 if (reset_in_progress(execlists)) 1369 return; /* defer until we restart the engine following reset */ 1370 1371 if (execlists->tasklet.func == execlists_submission_tasklet) 1372 __execlists_submission_tasklet(engine); 1373 else 1374 tasklet_hi_schedule(&execlists->tasklet); 1375 } 1376 1377 static void submit_queue(struct intel_engine_cs *engine, int prio) 1378 { 1379 if (prio > engine->execlists.queue_priority_hint) { 1380 engine->execlists.queue_priority_hint = prio; 1381 __submit_queue_imm(engine); 1382 } 1383 } 1384 1385 static void execlists_submit_request(struct i915_request *request) 1386 { 1387 struct intel_engine_cs *engine = request->engine; 1388 unsigned long flags; 1389 1390 /* Will be called from irq-context when using foreign fences. */ 1391 spin_lock_irqsave(&engine->timeline.lock, flags); 1392 1393 queue_request(engine, &request->sched, rq_prio(request)); 1394 1395 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)); 1396 GEM_BUG_ON(list_empty(&request->sched.link)); 1397 1398 submit_queue(engine, rq_prio(request)); 1399 1400 spin_unlock_irqrestore(&engine->timeline.lock, flags); 1401 } 1402 1403 static void __execlists_context_fini(struct intel_context *ce) 1404 { 1405 intel_ring_put(ce->ring); 1406 1407 GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj)); 1408 i915_gem_object_put(ce->state->obj); 1409 } 1410 1411 static void execlists_context_destroy(struct kref *kref) 1412 { 1413 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 1414 1415 GEM_BUG_ON(intel_context_is_pinned(ce)); 1416 1417 if (ce->state) 1418 __execlists_context_fini(ce); 1419 1420 intel_context_free(ce); 1421 } 1422 1423 static int __context_pin(struct i915_vma *vma) 1424 { 1425 unsigned int flags; 1426 int err; 1427 1428 flags = PIN_GLOBAL | PIN_HIGH; 1429 flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 1430 1431 err = i915_vma_pin(vma, 0, 0, flags); 1432 if (err) 1433 return err; 1434 1435 vma->obj->pin_global++; 1436 vma->obj->mm.dirty = true; 1437 1438 return 0; 1439 } 1440 1441 static void __context_unpin(struct i915_vma *vma) 1442 { 1443 vma->obj->pin_global--; 1444 __i915_vma_unpin(vma); 1445 } 1446 1447 static void execlists_context_unpin(struct intel_context *ce) 1448 { 1449 struct intel_engine_cs *engine; 1450 1451 /* 1452 * The tasklet may still be using a pointer to our state, via an 1453 * old request. However, since we know we only unpin the context 1454 * on retirement of the following request, we know that the last 1455 * request referencing us will have had a completion CS interrupt. 1456 * If we see that it is still active, it means that the tasklet hasn't 1457 * had the chance to run yet; let it run before we teardown the 1458 * reference it may use. 1459 */ 1460 engine = READ_ONCE(ce->active); 1461 if (unlikely(engine)) { 1462 unsigned long flags; 1463 1464 spin_lock_irqsave(&engine->timeline.lock, flags); 1465 process_csb(engine); 1466 spin_unlock_irqrestore(&engine->timeline.lock, flags); 1467 1468 GEM_BUG_ON(READ_ONCE(ce->active)); 1469 } 1470 1471 i915_gem_context_unpin_hw_id(ce->gem_context); 1472 1473 intel_ring_unpin(ce->ring); 1474 1475 i915_gem_object_unpin_map(ce->state->obj); 1476 __context_unpin(ce->state); 1477 } 1478 1479 static void 1480 __execlists_update_reg_state(struct intel_context *ce, 1481 struct intel_engine_cs *engine) 1482 { 1483 struct intel_ring *ring = ce->ring; 1484 u32 *regs = ce->lrc_reg_state; 1485 1486 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head)); 1487 GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail)); 1488 1489 regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma); 1490 regs[CTX_RING_HEAD + 1] = ring->head; 1491 regs[CTX_RING_TAIL + 1] = ring->tail; 1492 1493 /* RPCS */ 1494 if (engine->class == RENDER_CLASS) 1495 regs[CTX_R_PWR_CLK_STATE + 1] = 1496 intel_sseu_make_rpcs(engine->i915, &ce->sseu); 1497 } 1498 1499 static int 1500 __execlists_context_pin(struct intel_context *ce, 1501 struct intel_engine_cs *engine) 1502 { 1503 void *vaddr; 1504 int ret; 1505 1506 GEM_BUG_ON(!ce->gem_context->ppgtt); 1507 1508 ret = execlists_context_deferred_alloc(ce, engine); 1509 if (ret) 1510 goto err; 1511 GEM_BUG_ON(!ce->state); 1512 1513 ret = __context_pin(ce->state); 1514 if (ret) 1515 goto err; 1516 1517 vaddr = i915_gem_object_pin_map(ce->state->obj, 1518 i915_coherent_map_type(engine->i915) | 1519 I915_MAP_OVERRIDE); 1520 if (IS_ERR(vaddr)) { 1521 ret = PTR_ERR(vaddr); 1522 goto unpin_vma; 1523 } 1524 1525 ret = intel_ring_pin(ce->ring); 1526 if (ret) 1527 goto unpin_map; 1528 1529 ret = i915_gem_context_pin_hw_id(ce->gem_context); 1530 if (ret) 1531 goto unpin_ring; 1532 1533 ce->lrc_desc = lrc_descriptor(ce, engine); 1534 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE; 1535 __execlists_update_reg_state(ce, engine); 1536 1537 return 0; 1538 1539 unpin_ring: 1540 intel_ring_unpin(ce->ring); 1541 unpin_map: 1542 i915_gem_object_unpin_map(ce->state->obj); 1543 unpin_vma: 1544 __context_unpin(ce->state); 1545 err: 1546 return ret; 1547 } 1548 1549 static int execlists_context_pin(struct intel_context *ce) 1550 { 1551 return __execlists_context_pin(ce, ce->engine); 1552 } 1553 1554 static void execlists_context_reset(struct intel_context *ce) 1555 { 1556 /* 1557 * Because we emit WA_TAIL_DWORDS there may be a disparity 1558 * between our bookkeeping in ce->ring->head and ce->ring->tail and 1559 * that stored in context. As we only write new commands from 1560 * ce->ring->tail onwards, everything before that is junk. If the GPU 1561 * starts reading from its RING_HEAD from the context, it may try to 1562 * execute that junk and die. 1563 * 1564 * The contexts that are stilled pinned on resume belong to the 1565 * kernel, and are local to each engine. All other contexts will 1566 * have their head/tail sanitized upon pinning before use, so they 1567 * will never see garbage, 1568 * 1569 * So to avoid that we reset the context images upon resume. For 1570 * simplicity, we just zero everything out. 1571 */ 1572 intel_ring_reset(ce->ring, 0); 1573 __execlists_update_reg_state(ce, ce->engine); 1574 } 1575 1576 static const struct intel_context_ops execlists_context_ops = { 1577 .pin = execlists_context_pin, 1578 .unpin = execlists_context_unpin, 1579 1580 .enter = intel_context_enter_engine, 1581 .exit = intel_context_exit_engine, 1582 1583 .reset = execlists_context_reset, 1584 .destroy = execlists_context_destroy, 1585 }; 1586 1587 static int gen8_emit_init_breadcrumb(struct i915_request *rq) 1588 { 1589 u32 *cs; 1590 1591 GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb); 1592 1593 cs = intel_ring_begin(rq, 6); 1594 if (IS_ERR(cs)) 1595 return PTR_ERR(cs); 1596 1597 /* 1598 * Check if we have been preempted before we even get started. 1599 * 1600 * After this point i915_request_started() reports true, even if 1601 * we get preempted and so are no longer running. 1602 */ 1603 *cs++ = MI_ARB_CHECK; 1604 *cs++ = MI_NOOP; 1605 1606 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1607 *cs++ = rq->timeline->hwsp_offset; 1608 *cs++ = 0; 1609 *cs++ = rq->fence.seqno - 1; 1610 1611 intel_ring_advance(rq, cs); 1612 1613 /* Record the updated position of the request's payload */ 1614 rq->infix = intel_ring_offset(rq, cs); 1615 1616 return 0; 1617 } 1618 1619 static int emit_pdps(struct i915_request *rq) 1620 { 1621 const struct intel_engine_cs * const engine = rq->engine; 1622 struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt; 1623 int err, i; 1624 u32 *cs; 1625 1626 GEM_BUG_ON(intel_vgpu_active(rq->i915)); 1627 1628 /* 1629 * Beware ye of the dragons, this sequence is magic! 1630 * 1631 * Small changes to this sequence can cause anything from 1632 * GPU hangs to forcewake errors and machine lockups! 1633 */ 1634 1635 /* Flush any residual operations from the context load */ 1636 err = engine->emit_flush(rq, EMIT_FLUSH); 1637 if (err) 1638 return err; 1639 1640 /* Magic required to prevent forcewake errors! */ 1641 err = engine->emit_flush(rq, EMIT_INVALIDATE); 1642 if (err) 1643 return err; 1644 1645 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); 1646 if (IS_ERR(cs)) 1647 return PTR_ERR(cs); 1648 1649 /* Ensure the LRI have landed before we invalidate & continue */ 1650 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; 1651 for (i = GEN8_3LVL_PDPES; i--; ) { 1652 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 1653 u32 base = engine->mmio_base; 1654 1655 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); 1656 *cs++ = upper_32_bits(pd_daddr); 1657 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); 1658 *cs++ = lower_32_bits(pd_daddr); 1659 } 1660 *cs++ = MI_NOOP; 1661 1662 intel_ring_advance(rq, cs); 1663 1664 /* Be doubly sure the LRI have landed before proceeding */ 1665 err = engine->emit_flush(rq, EMIT_FLUSH); 1666 if (err) 1667 return err; 1668 1669 /* Re-invalidate the TLB for luck */ 1670 return engine->emit_flush(rq, EMIT_INVALIDATE); 1671 } 1672 1673 static int execlists_request_alloc(struct i915_request *request) 1674 { 1675 int ret; 1676 1677 GEM_BUG_ON(!intel_context_is_pinned(request->hw_context)); 1678 1679 /* 1680 * Flush enough space to reduce the likelihood of waiting after 1681 * we start building the request - in which case we will just 1682 * have to repeat work. 1683 */ 1684 request->reserved_space += EXECLISTS_REQUEST_SIZE; 1685 1686 /* 1687 * Note that after this point, we have committed to using 1688 * this request as it is being used to both track the 1689 * state of engine initialisation and liveness of the 1690 * golden renderstate above. Think twice before you try 1691 * to cancel/unwind this request now. 1692 */ 1693 1694 /* Unconditionally invalidate GPU caches and TLBs. */ 1695 if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm)) 1696 ret = request->engine->emit_flush(request, EMIT_INVALIDATE); 1697 else 1698 ret = emit_pdps(request); 1699 if (ret) 1700 return ret; 1701 1702 request->reserved_space -= EXECLISTS_REQUEST_SIZE; 1703 return 0; 1704 } 1705 1706 /* 1707 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after 1708 * PIPE_CONTROL instruction. This is required for the flush to happen correctly 1709 * but there is a slight complication as this is applied in WA batch where the 1710 * values are only initialized once so we cannot take register value at the 1711 * beginning and reuse it further; hence we save its value to memory, upload a 1712 * constant value with bit21 set and then we restore it back with the saved value. 1713 * To simplify the WA, a constant value is formed by using the default value 1714 * of this register. This shouldn't be a problem because we are only modifying 1715 * it for a short period and this batch in non-premptible. We can ofcourse 1716 * use additional instructions that read the actual value of the register 1717 * at that time and set our bit of interest but it makes the WA complicated. 1718 * 1719 * This WA is also required for Gen9 so extracting as a function avoids 1720 * code duplication. 1721 */ 1722 static u32 * 1723 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch) 1724 { 1725 /* NB no one else is allowed to scribble over scratch + 256! */ 1726 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1727 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1728 *batch++ = i915_scratch_offset(engine->i915) + 256; 1729 *batch++ = 0; 1730 1731 *batch++ = MI_LOAD_REGISTER_IMM(1); 1732 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1733 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES; 1734 1735 batch = gen8_emit_pipe_control(batch, 1736 PIPE_CONTROL_CS_STALL | 1737 PIPE_CONTROL_DC_FLUSH_ENABLE, 1738 0); 1739 1740 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT; 1741 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4); 1742 *batch++ = i915_scratch_offset(engine->i915) + 256; 1743 *batch++ = 0; 1744 1745 return batch; 1746 } 1747 1748 /* 1749 * Typically we only have one indirect_ctx and per_ctx batch buffer which are 1750 * initialized at the beginning and shared across all contexts but this field 1751 * helps us to have multiple batches at different offsets and select them based 1752 * on a criteria. At the moment this batch always start at the beginning of the page 1753 * and at this point we don't have multiple wa_ctx batch buffers. 1754 * 1755 * The number of WA applied are not known at the beginning; we use this field 1756 * to return the no of DWORDS written. 1757 * 1758 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END 1759 * so it adds NOOPs as padding to make it cacheline aligned. 1760 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together 1761 * makes a complete batch buffer. 1762 */ 1763 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1764 { 1765 /* WaDisableCtxRestoreArbitration:bdw,chv */ 1766 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1767 1768 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ 1769 if (IS_BROADWELL(engine->i915)) 1770 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1771 1772 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */ 1773 /* Actual scratch location is at 128 bytes offset */ 1774 batch = gen8_emit_pipe_control(batch, 1775 PIPE_CONTROL_FLUSH_L3 | 1776 PIPE_CONTROL_GLOBAL_GTT_IVB | 1777 PIPE_CONTROL_CS_STALL | 1778 PIPE_CONTROL_QW_WRITE, 1779 i915_scratch_offset(engine->i915) + 1780 2 * CACHELINE_BYTES); 1781 1782 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1783 1784 /* Pad to end of cacheline */ 1785 while ((unsigned long)batch % CACHELINE_BYTES) 1786 *batch++ = MI_NOOP; 1787 1788 /* 1789 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because 1790 * execution depends on the length specified in terms of cache lines 1791 * in the register CTX_RCS_INDIRECT_CTX 1792 */ 1793 1794 return batch; 1795 } 1796 1797 struct lri { 1798 i915_reg_t reg; 1799 u32 value; 1800 }; 1801 1802 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count) 1803 { 1804 GEM_BUG_ON(!count || count > 63); 1805 1806 *batch++ = MI_LOAD_REGISTER_IMM(count); 1807 do { 1808 *batch++ = i915_mmio_reg_offset(lri->reg); 1809 *batch++ = lri->value; 1810 } while (lri++, --count); 1811 *batch++ = MI_NOOP; 1812 1813 return batch; 1814 } 1815 1816 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1817 { 1818 static const struct lri lri[] = { 1819 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */ 1820 { 1821 COMMON_SLICE_CHICKEN2, 1822 __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE, 1823 0), 1824 }, 1825 1826 /* BSpec: 11391 */ 1827 { 1828 FF_SLICE_CHICKEN, 1829 __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX, 1830 FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX), 1831 }, 1832 1833 /* BSpec: 11299 */ 1834 { 1835 _3D_CHICKEN3, 1836 __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX, 1837 _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX), 1838 } 1839 }; 1840 1841 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 1842 1843 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */ 1844 batch = gen8_emit_flush_coherentl3_wa(engine, batch); 1845 1846 batch = emit_lri(batch, lri, ARRAY_SIZE(lri)); 1847 1848 /* WaMediaPoolStateCmdInWABB:bxt,glk */ 1849 if (HAS_POOLED_EU(engine->i915)) { 1850 /* 1851 * EU pool configuration is setup along with golden context 1852 * during context initialization. This value depends on 1853 * device type (2x6 or 3x6) and needs to be updated based 1854 * on which subslice is disabled especially for 2x6 1855 * devices, however it is safe to load default 1856 * configuration of 3x6 device instead of masking off 1857 * corresponding bits because HW ignores bits of a disabled 1858 * subslice and drops down to appropriate config. Please 1859 * see render_state_setup() in i915_gem_render_state.c for 1860 * possible configurations, to avoid duplication they are 1861 * not shown here again. 1862 */ 1863 *batch++ = GEN9_MEDIA_POOL_STATE; 1864 *batch++ = GEN9_MEDIA_POOL_ENABLE; 1865 *batch++ = 0x00777000; 1866 *batch++ = 0; 1867 *batch++ = 0; 1868 *batch++ = 0; 1869 } 1870 1871 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 1872 1873 /* Pad to end of cacheline */ 1874 while ((unsigned long)batch % CACHELINE_BYTES) 1875 *batch++ = MI_NOOP; 1876 1877 return batch; 1878 } 1879 1880 static u32 * 1881 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch) 1882 { 1883 int i; 1884 1885 /* 1886 * WaPipeControlBefore3DStateSamplePattern: cnl 1887 * 1888 * Ensure the engine is idle prior to programming a 1889 * 3DSTATE_SAMPLE_PATTERN during a context restore. 1890 */ 1891 batch = gen8_emit_pipe_control(batch, 1892 PIPE_CONTROL_CS_STALL, 1893 0); 1894 /* 1895 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for 1896 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in 1897 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is 1898 * confusing. Since gen8_emit_pipe_control() already advances the 1899 * batch by 6 dwords, we advance the other 10 here, completing a 1900 * cacheline. It's not clear if the workaround requires this padding 1901 * before other commands, or if it's just the regular padding we would 1902 * already have for the workaround bb, so leave it here for now. 1903 */ 1904 for (i = 0; i < 10; i++) 1905 *batch++ = MI_NOOP; 1906 1907 /* Pad to end of cacheline */ 1908 while ((unsigned long)batch % CACHELINE_BYTES) 1909 *batch++ = MI_NOOP; 1910 1911 return batch; 1912 } 1913 1914 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE) 1915 1916 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine) 1917 { 1918 struct drm_i915_gem_object *obj; 1919 struct i915_vma *vma; 1920 int err; 1921 1922 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE); 1923 if (IS_ERR(obj)) 1924 return PTR_ERR(obj); 1925 1926 vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL); 1927 if (IS_ERR(vma)) { 1928 err = PTR_ERR(vma); 1929 goto err; 1930 } 1931 1932 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1933 if (err) 1934 goto err; 1935 1936 engine->wa_ctx.vma = vma; 1937 return 0; 1938 1939 err: 1940 i915_gem_object_put(obj); 1941 return err; 1942 } 1943 1944 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine) 1945 { 1946 i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0); 1947 } 1948 1949 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch); 1950 1951 static int intel_init_workaround_bb(struct intel_engine_cs *engine) 1952 { 1953 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 1954 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx, 1955 &wa_ctx->per_ctx }; 1956 wa_bb_func_t wa_bb_fn[2]; 1957 struct page *page; 1958 void *batch, *batch_ptr; 1959 unsigned int i; 1960 int ret; 1961 1962 if (engine->class != RENDER_CLASS) 1963 return 0; 1964 1965 switch (INTEL_GEN(engine->i915)) { 1966 case 11: 1967 return 0; 1968 case 10: 1969 wa_bb_fn[0] = gen10_init_indirectctx_bb; 1970 wa_bb_fn[1] = NULL; 1971 break; 1972 case 9: 1973 wa_bb_fn[0] = gen9_init_indirectctx_bb; 1974 wa_bb_fn[1] = NULL; 1975 break; 1976 case 8: 1977 wa_bb_fn[0] = gen8_init_indirectctx_bb; 1978 wa_bb_fn[1] = NULL; 1979 break; 1980 default: 1981 MISSING_CASE(INTEL_GEN(engine->i915)); 1982 return 0; 1983 } 1984 1985 ret = lrc_setup_wa_ctx(engine); 1986 if (ret) { 1987 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); 1988 return ret; 1989 } 1990 1991 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0); 1992 batch = batch_ptr = kmap_atomic(page); 1993 1994 /* 1995 * Emit the two workaround batch buffers, recording the offset from the 1996 * start of the workaround batch buffer object for each and their 1997 * respective sizes. 1998 */ 1999 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) { 2000 wa_bb[i]->offset = batch_ptr - batch; 2001 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, 2002 CACHELINE_BYTES))) { 2003 ret = -EINVAL; 2004 break; 2005 } 2006 if (wa_bb_fn[i]) 2007 batch_ptr = wa_bb_fn[i](engine, batch_ptr); 2008 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset); 2009 } 2010 2011 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE); 2012 2013 kunmap_atomic(batch); 2014 if (ret) 2015 lrc_destroy_wa_ctx(engine); 2016 2017 return ret; 2018 } 2019 2020 static void enable_execlists(struct intel_engine_cs *engine) 2021 { 2022 struct drm_i915_private *dev_priv = engine->i915; 2023 2024 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 2025 2026 if (INTEL_GEN(dev_priv) >= 11) 2027 I915_WRITE(RING_MODE_GEN7(engine), 2028 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 2029 else 2030 I915_WRITE(RING_MODE_GEN7(engine), 2031 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)); 2032 2033 I915_WRITE(RING_MI_MODE(engine->mmio_base), 2034 _MASKED_BIT_DISABLE(STOP_RING)); 2035 2036 I915_WRITE(RING_HWS_PGA(engine->mmio_base), 2037 i915_ggtt_offset(engine->status_page.vma)); 2038 POSTING_READ(RING_HWS_PGA(engine->mmio_base)); 2039 } 2040 2041 static bool unexpected_starting_state(struct intel_engine_cs *engine) 2042 { 2043 struct drm_i915_private *dev_priv = engine->i915; 2044 bool unexpected = false; 2045 2046 if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) { 2047 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n"); 2048 unexpected = true; 2049 } 2050 2051 return unexpected; 2052 } 2053 2054 static int execlists_resume(struct intel_engine_cs *engine) 2055 { 2056 intel_engine_apply_workarounds(engine); 2057 intel_engine_apply_whitelist(engine); 2058 2059 intel_mocs_init_engine(engine); 2060 2061 intel_engine_reset_breadcrumbs(engine); 2062 2063 if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) { 2064 struct drm_printer p = drm_debug_printer(__func__); 2065 2066 intel_engine_dump(engine, &p, NULL); 2067 } 2068 2069 enable_execlists(engine); 2070 2071 return 0; 2072 } 2073 2074 static void execlists_reset_prepare(struct intel_engine_cs *engine) 2075 { 2076 struct intel_engine_execlists * const execlists = &engine->execlists; 2077 unsigned long flags; 2078 2079 GEM_TRACE("%s: depth<-%d\n", engine->name, 2080 atomic_read(&execlists->tasklet.count)); 2081 2082 /* 2083 * Prevent request submission to the hardware until we have 2084 * completed the reset in i915_gem_reset_finish(). If a request 2085 * is completed by one engine, it may then queue a request 2086 * to a second via its execlists->tasklet *just* as we are 2087 * calling engine->resume() and also writing the ELSP. 2088 * Turning off the execlists->tasklet until the reset is over 2089 * prevents the race. 2090 */ 2091 __tasklet_disable_sync_once(&execlists->tasklet); 2092 GEM_BUG_ON(!reset_in_progress(execlists)); 2093 2094 intel_engine_stop_cs(engine); 2095 2096 /* And flush any current direct submission. */ 2097 spin_lock_irqsave(&engine->timeline.lock, flags); 2098 spin_unlock_irqrestore(&engine->timeline.lock, flags); 2099 } 2100 2101 static bool lrc_regs_ok(const struct i915_request *rq) 2102 { 2103 const struct intel_ring *ring = rq->ring; 2104 const u32 *regs = rq->hw_context->lrc_reg_state; 2105 2106 /* Quick spot check for the common signs of context corruption */ 2107 2108 if (regs[CTX_RING_BUFFER_CONTROL + 1] != 2109 (RING_CTL_SIZE(ring->size) | RING_VALID)) 2110 return false; 2111 2112 if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma)) 2113 return false; 2114 2115 return true; 2116 } 2117 2118 static void reset_csb_pointers(struct intel_engine_execlists *execlists) 2119 { 2120 const unsigned int reset_value = execlists->csb_size - 1; 2121 2122 /* 2123 * After a reset, the HW starts writing into CSB entry [0]. We 2124 * therefore have to set our HEAD pointer back one entry so that 2125 * the *first* entry we check is entry 0. To complicate this further, 2126 * as we don't wait for the first interrupt after reset, we have to 2127 * fake the HW write to point back to the last entry so that our 2128 * inline comparison of our cached head position against the last HW 2129 * write works even before the first interrupt. 2130 */ 2131 execlists->csb_head = reset_value; 2132 WRITE_ONCE(*execlists->csb_write, reset_value); 2133 wmb(); /* Make sure this is visible to HW (paranoia?) */ 2134 2135 invalidate_csb_entries(&execlists->csb_status[0], 2136 &execlists->csb_status[reset_value]); 2137 } 2138 2139 static struct i915_request *active_request(struct i915_request *rq) 2140 { 2141 const struct list_head * const list = &rq->engine->timeline.requests; 2142 const struct intel_context * const context = rq->hw_context; 2143 struct i915_request *active = NULL; 2144 2145 list_for_each_entry_from_reverse(rq, list, link) { 2146 if (i915_request_completed(rq)) 2147 break; 2148 2149 if (rq->hw_context != context) 2150 break; 2151 2152 active = rq; 2153 } 2154 2155 return active; 2156 } 2157 2158 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled) 2159 { 2160 struct intel_engine_execlists * const execlists = &engine->execlists; 2161 struct intel_context *ce; 2162 struct i915_request *rq; 2163 u32 *regs; 2164 2165 process_csb(engine); /* drain preemption events */ 2166 2167 /* Following the reset, we need to reload the CSB read/write pointers */ 2168 reset_csb_pointers(&engine->execlists); 2169 2170 /* 2171 * Save the currently executing context, even if we completed 2172 * its request, it was still running at the time of the 2173 * reset and will have been clobbered. 2174 */ 2175 if (!port_isset(execlists->port)) 2176 goto out_clear; 2177 2178 rq = port_request(execlists->port); 2179 ce = rq->hw_context; 2180 2181 /* 2182 * Catch up with any missed context-switch interrupts. 2183 * 2184 * Ideally we would just read the remaining CSB entries now that we 2185 * know the gpu is idle. However, the CSB registers are sometimes^W 2186 * often trashed across a GPU reset! Instead we have to rely on 2187 * guessing the missed context-switch events by looking at what 2188 * requests were completed. 2189 */ 2190 execlists_cancel_port_requests(execlists); 2191 2192 rq = active_request(rq); 2193 if (!rq) 2194 goto out_replay; 2195 2196 /* 2197 * If this request hasn't started yet, e.g. it is waiting on a 2198 * semaphore, we need to avoid skipping the request or else we 2199 * break the signaling chain. However, if the context is corrupt 2200 * the request will not restart and we will be stuck with a wedged 2201 * device. It is quite often the case that if we issue a reset 2202 * while the GPU is loading the context image, that the context 2203 * image becomes corrupt. 2204 * 2205 * Otherwise, if we have not started yet, the request should replay 2206 * perfectly and we do not need to flag the result as being erroneous. 2207 */ 2208 if (!i915_request_started(rq) && lrc_regs_ok(rq)) 2209 goto out_replay; 2210 2211 /* 2212 * If the request was innocent, we leave the request in the ELSP 2213 * and will try to replay it on restarting. The context image may 2214 * have been corrupted by the reset, in which case we may have 2215 * to service a new GPU hang, but more likely we can continue on 2216 * without impact. 2217 * 2218 * If the request was guilty, we presume the context is corrupt 2219 * and have to at least restore the RING register in the context 2220 * image back to the expected values to skip over the guilty request. 2221 */ 2222 i915_reset_request(rq, stalled); 2223 if (!stalled && lrc_regs_ok(rq)) 2224 goto out_replay; 2225 2226 /* 2227 * We want a simple context + ring to execute the breadcrumb update. 2228 * We cannot rely on the context being intact across the GPU hang, 2229 * so clear it and rebuild just what we need for the breadcrumb. 2230 * All pending requests for this context will be zapped, and any 2231 * future request will be after userspace has had the opportunity 2232 * to recreate its own state. 2233 */ 2234 regs = ce->lrc_reg_state; 2235 if (engine->pinned_default_state) { 2236 memcpy(regs, /* skip restoring the vanilla PPHWSP */ 2237 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, 2238 engine->context_size - PAGE_SIZE); 2239 } 2240 execlists_init_reg_state(regs, ce, engine, ce->ring); 2241 2242 out_replay: 2243 /* Rerun the request; its payload has been neutered (if guilty). */ 2244 ce->ring->head = 2245 rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail; 2246 intel_ring_update_space(ce->ring); 2247 __execlists_update_reg_state(ce, engine); 2248 2249 /* Push back any incomplete requests for replay after the reset. */ 2250 __unwind_incomplete_requests(engine); 2251 2252 out_clear: 2253 execlists_clear_all_active(execlists); 2254 } 2255 2256 static void execlists_reset(struct intel_engine_cs *engine, bool stalled) 2257 { 2258 unsigned long flags; 2259 2260 GEM_TRACE("%s\n", engine->name); 2261 2262 spin_lock_irqsave(&engine->timeline.lock, flags); 2263 2264 __execlists_reset(engine, stalled); 2265 2266 spin_unlock_irqrestore(&engine->timeline.lock, flags); 2267 } 2268 2269 static void nop_submission_tasklet(unsigned long data) 2270 { 2271 /* The driver is wedged; don't process any more events. */ 2272 } 2273 2274 static void execlists_cancel_requests(struct intel_engine_cs *engine) 2275 { 2276 struct intel_engine_execlists * const execlists = &engine->execlists; 2277 struct i915_request *rq, *rn; 2278 struct rb_node *rb; 2279 unsigned long flags; 2280 2281 GEM_TRACE("%s\n", engine->name); 2282 2283 /* 2284 * Before we call engine->cancel_requests(), we should have exclusive 2285 * access to the submission state. This is arranged for us by the 2286 * caller disabling the interrupt generation, the tasklet and other 2287 * threads that may then access the same state, giving us a free hand 2288 * to reset state. However, we still need to let lockdep be aware that 2289 * we know this state may be accessed in hardirq context, so we 2290 * disable the irq around this manipulation and we want to keep 2291 * the spinlock focused on its duties and not accidentally conflate 2292 * coverage to the submission's irq state. (Similarly, although we 2293 * shouldn't need to disable irq around the manipulation of the 2294 * submission's irq state, we also wish to remind ourselves that 2295 * it is irq state.) 2296 */ 2297 spin_lock_irqsave(&engine->timeline.lock, flags); 2298 2299 __execlists_reset(engine, true); 2300 2301 /* Mark all executing requests as skipped. */ 2302 list_for_each_entry(rq, &engine->timeline.requests, link) { 2303 if (!i915_request_signaled(rq)) 2304 dma_fence_set_error(&rq->fence, -EIO); 2305 2306 i915_request_mark_complete(rq); 2307 } 2308 2309 /* Flush the queued requests to the timeline list (for retiring). */ 2310 while ((rb = rb_first_cached(&execlists->queue))) { 2311 struct i915_priolist *p = to_priolist(rb); 2312 int i; 2313 2314 priolist_for_each_request_consume(rq, rn, p, i) { 2315 list_del_init(&rq->sched.link); 2316 __i915_request_submit(rq); 2317 dma_fence_set_error(&rq->fence, -EIO); 2318 i915_request_mark_complete(rq); 2319 } 2320 2321 rb_erase_cached(&p->node, &execlists->queue); 2322 i915_priolist_free(p); 2323 } 2324 2325 /* Cancel all attached virtual engines */ 2326 while ((rb = rb_first_cached(&execlists->virtual))) { 2327 struct virtual_engine *ve = 2328 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 2329 2330 rb_erase_cached(rb, &execlists->virtual); 2331 RB_CLEAR_NODE(rb); 2332 2333 spin_lock(&ve->base.timeline.lock); 2334 if (ve->request) { 2335 ve->request->engine = engine; 2336 __i915_request_submit(ve->request); 2337 dma_fence_set_error(&ve->request->fence, -EIO); 2338 i915_request_mark_complete(ve->request); 2339 ve->base.execlists.queue_priority_hint = INT_MIN; 2340 ve->request = NULL; 2341 } 2342 spin_unlock(&ve->base.timeline.lock); 2343 } 2344 2345 /* Remaining _unready_ requests will be nop'ed when submitted */ 2346 2347 execlists->queue_priority_hint = INT_MIN; 2348 execlists->queue = RB_ROOT_CACHED; 2349 GEM_BUG_ON(port_isset(execlists->port)); 2350 2351 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet)); 2352 execlists->tasklet.func = nop_submission_tasklet; 2353 2354 spin_unlock_irqrestore(&engine->timeline.lock, flags); 2355 } 2356 2357 static void execlists_reset_finish(struct intel_engine_cs *engine) 2358 { 2359 struct intel_engine_execlists * const execlists = &engine->execlists; 2360 2361 /* 2362 * After a GPU reset, we may have requests to replay. Do so now while 2363 * we still have the forcewake to be sure that the GPU is not allowed 2364 * to sleep before we restart and reload a context. 2365 */ 2366 GEM_BUG_ON(!reset_in_progress(execlists)); 2367 if (!RB_EMPTY_ROOT(&execlists->queue.rb_root)) 2368 execlists->tasklet.func(execlists->tasklet.data); 2369 2370 if (__tasklet_enable(&execlists->tasklet)) 2371 /* And kick in case we missed a new request submission. */ 2372 tasklet_hi_schedule(&execlists->tasklet); 2373 GEM_TRACE("%s: depth->%d\n", engine->name, 2374 atomic_read(&execlists->tasklet.count)); 2375 } 2376 2377 static int gen8_emit_bb_start(struct i915_request *rq, 2378 u64 offset, u32 len, 2379 const unsigned int flags) 2380 { 2381 u32 *cs; 2382 2383 cs = intel_ring_begin(rq, 4); 2384 if (IS_ERR(cs)) 2385 return PTR_ERR(cs); 2386 2387 /* 2388 * WaDisableCtxRestoreArbitration:bdw,chv 2389 * 2390 * We don't need to perform MI_ARB_ENABLE as often as we do (in 2391 * particular all the gen that do not need the w/a at all!), if we 2392 * took care to make sure that on every switch into this context 2393 * (both ordinary and for preemption) that arbitrartion was enabled 2394 * we would be fine. However, for gen8 there is another w/a that 2395 * requires us to not preempt inside GPGPU execution, so we keep 2396 * arbitration disabled for gen8 batches. Arbitration will be 2397 * re-enabled before we close the request 2398 * (engine->emit_fini_breadcrumb). 2399 */ 2400 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 2401 2402 /* FIXME(BDW+): Address space and security selectors. */ 2403 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 2404 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 2405 *cs++ = lower_32_bits(offset); 2406 *cs++ = upper_32_bits(offset); 2407 2408 intel_ring_advance(rq, cs); 2409 2410 return 0; 2411 } 2412 2413 static int gen9_emit_bb_start(struct i915_request *rq, 2414 u64 offset, u32 len, 2415 const unsigned int flags) 2416 { 2417 u32 *cs; 2418 2419 cs = intel_ring_begin(rq, 6); 2420 if (IS_ERR(cs)) 2421 return PTR_ERR(cs); 2422 2423 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2424 2425 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 2426 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 2427 *cs++ = lower_32_bits(offset); 2428 *cs++ = upper_32_bits(offset); 2429 2430 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 2431 *cs++ = MI_NOOP; 2432 2433 intel_ring_advance(rq, cs); 2434 2435 return 0; 2436 } 2437 2438 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) 2439 { 2440 ENGINE_WRITE(engine, RING_IMR, 2441 ~(engine->irq_enable_mask | engine->irq_keep_mask)); 2442 ENGINE_POSTING_READ(engine, RING_IMR); 2443 } 2444 2445 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) 2446 { 2447 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); 2448 } 2449 2450 static int gen8_emit_flush(struct i915_request *request, u32 mode) 2451 { 2452 u32 cmd, *cs; 2453 2454 cs = intel_ring_begin(request, 4); 2455 if (IS_ERR(cs)) 2456 return PTR_ERR(cs); 2457 2458 cmd = MI_FLUSH_DW + 1; 2459 2460 /* We always require a command barrier so that subsequent 2461 * commands, such as breadcrumb interrupts, are strictly ordered 2462 * wrt the contents of the write cache being flushed to memory 2463 * (and thus being coherent from the CPU). 2464 */ 2465 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; 2466 2467 if (mode & EMIT_INVALIDATE) { 2468 cmd |= MI_INVALIDATE_TLB; 2469 if (request->engine->class == VIDEO_DECODE_CLASS) 2470 cmd |= MI_INVALIDATE_BSD; 2471 } 2472 2473 *cs++ = cmd; 2474 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT; 2475 *cs++ = 0; /* upper addr */ 2476 *cs++ = 0; /* value */ 2477 intel_ring_advance(request, cs); 2478 2479 return 0; 2480 } 2481 2482 static int gen8_emit_flush_render(struct i915_request *request, 2483 u32 mode) 2484 { 2485 struct intel_engine_cs *engine = request->engine; 2486 u32 scratch_addr = 2487 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES; 2488 bool vf_flush_wa = false, dc_flush_wa = false; 2489 u32 *cs, flags = 0; 2490 int len; 2491 2492 flags |= PIPE_CONTROL_CS_STALL; 2493 2494 if (mode & EMIT_FLUSH) { 2495 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; 2496 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; 2497 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; 2498 flags |= PIPE_CONTROL_FLUSH_ENABLE; 2499 } 2500 2501 if (mode & EMIT_INVALIDATE) { 2502 flags |= PIPE_CONTROL_TLB_INVALIDATE; 2503 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; 2504 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; 2505 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; 2506 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; 2507 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; 2508 flags |= PIPE_CONTROL_QW_WRITE; 2509 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; 2510 2511 /* 2512 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL 2513 * pipe control. 2514 */ 2515 if (IS_GEN(request->i915, 9)) 2516 vf_flush_wa = true; 2517 2518 /* WaForGAMHang:kbl */ 2519 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0)) 2520 dc_flush_wa = true; 2521 } 2522 2523 len = 6; 2524 2525 if (vf_flush_wa) 2526 len += 6; 2527 2528 if (dc_flush_wa) 2529 len += 12; 2530 2531 cs = intel_ring_begin(request, len); 2532 if (IS_ERR(cs)) 2533 return PTR_ERR(cs); 2534 2535 if (vf_flush_wa) 2536 cs = gen8_emit_pipe_control(cs, 0, 0); 2537 2538 if (dc_flush_wa) 2539 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE, 2540 0); 2541 2542 cs = gen8_emit_pipe_control(cs, flags, scratch_addr); 2543 2544 if (dc_flush_wa) 2545 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0); 2546 2547 intel_ring_advance(request, cs); 2548 2549 return 0; 2550 } 2551 2552 /* 2553 * Reserve space for 2 NOOPs at the end of each request to be 2554 * used as a workaround for not being allowed to do lite 2555 * restore with HEAD==TAIL (WaIdleLiteRestore). 2556 */ 2557 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs) 2558 { 2559 /* Ensure there's always at least one preemption point per-request. */ 2560 *cs++ = MI_ARB_CHECK; 2561 *cs++ = MI_NOOP; 2562 request->wa_tail = intel_ring_offset(request, cs); 2563 2564 return cs; 2565 } 2566 2567 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs) 2568 { 2569 cs = gen8_emit_ggtt_write(cs, 2570 request->fence.seqno, 2571 request->timeline->hwsp_offset, 2572 0); 2573 2574 *cs++ = MI_USER_INTERRUPT; 2575 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2576 2577 request->tail = intel_ring_offset(request, cs); 2578 assert_ring_tail_valid(request->ring, request->tail); 2579 2580 return gen8_emit_wa_tail(request, cs); 2581 } 2582 2583 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs) 2584 { 2585 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */ 2586 cs = gen8_emit_ggtt_write_rcs(cs, 2587 request->fence.seqno, 2588 request->timeline->hwsp_offset, 2589 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH | 2590 PIPE_CONTROL_DEPTH_CACHE_FLUSH | 2591 PIPE_CONTROL_DC_FLUSH_ENABLE); 2592 cs = gen8_emit_pipe_control(cs, 2593 PIPE_CONTROL_FLUSH_ENABLE | 2594 PIPE_CONTROL_CS_STALL, 2595 0); 2596 2597 *cs++ = MI_USER_INTERRUPT; 2598 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 2599 2600 request->tail = intel_ring_offset(request, cs); 2601 assert_ring_tail_valid(request->ring, request->tail); 2602 2603 return gen8_emit_wa_tail(request, cs); 2604 } 2605 2606 static int gen8_init_rcs_context(struct i915_request *rq) 2607 { 2608 int ret; 2609 2610 ret = intel_engine_emit_ctx_wa(rq); 2611 if (ret) 2612 return ret; 2613 2614 ret = intel_rcs_context_init_mocs(rq); 2615 /* 2616 * Failing to program the MOCS is non-fatal.The system will not 2617 * run at peak performance. So generate an error and carry on. 2618 */ 2619 if (ret) 2620 DRM_ERROR("MOCS failed to program: expect performance issues.\n"); 2621 2622 return i915_gem_render_state_emit(rq); 2623 } 2624 2625 static void execlists_park(struct intel_engine_cs *engine) 2626 { 2627 intel_engine_park(engine); 2628 } 2629 2630 void intel_execlists_set_default_submission(struct intel_engine_cs *engine) 2631 { 2632 engine->submit_request = execlists_submit_request; 2633 engine->cancel_requests = execlists_cancel_requests; 2634 engine->schedule = i915_schedule; 2635 engine->execlists.tasklet.func = execlists_submission_tasklet; 2636 2637 engine->reset.prepare = execlists_reset_prepare; 2638 engine->reset.reset = execlists_reset; 2639 engine->reset.finish = execlists_reset_finish; 2640 2641 engine->park = execlists_park; 2642 engine->unpark = NULL; 2643 2644 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 2645 if (!intel_vgpu_active(engine->i915)) 2646 engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 2647 if (engine->preempt_context && 2648 HAS_LOGICAL_RING_PREEMPTION(engine->i915)) 2649 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 2650 } 2651 2652 static void execlists_destroy(struct intel_engine_cs *engine) 2653 { 2654 intel_engine_cleanup_common(engine); 2655 lrc_destroy_wa_ctx(engine); 2656 kfree(engine); 2657 } 2658 2659 static void 2660 logical_ring_default_vfuncs(struct intel_engine_cs *engine) 2661 { 2662 /* Default vfuncs which can be overriden by each engine. */ 2663 2664 engine->destroy = execlists_destroy; 2665 engine->resume = execlists_resume; 2666 2667 engine->reset.prepare = execlists_reset_prepare; 2668 engine->reset.reset = execlists_reset; 2669 engine->reset.finish = execlists_reset_finish; 2670 2671 engine->cops = &execlists_context_ops; 2672 engine->request_alloc = execlists_request_alloc; 2673 2674 engine->emit_flush = gen8_emit_flush; 2675 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 2676 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb; 2677 2678 engine->set_default_submission = intel_execlists_set_default_submission; 2679 2680 if (INTEL_GEN(engine->i915) < 11) { 2681 engine->irq_enable = gen8_logical_ring_enable_irq; 2682 engine->irq_disable = gen8_logical_ring_disable_irq; 2683 } else { 2684 /* 2685 * TODO: On Gen11 interrupt masks need to be clear 2686 * to allow C6 entry. Keep interrupts enabled at 2687 * and take the hit of generating extra interrupts 2688 * until a more refined solution exists. 2689 */ 2690 } 2691 if (IS_GEN(engine->i915, 8)) 2692 engine->emit_bb_start = gen8_emit_bb_start; 2693 else 2694 engine->emit_bb_start = gen9_emit_bb_start; 2695 } 2696 2697 static inline void 2698 logical_ring_default_irqs(struct intel_engine_cs *engine) 2699 { 2700 unsigned int shift = 0; 2701 2702 if (INTEL_GEN(engine->i915) < 11) { 2703 const u8 irq_shifts[] = { 2704 [RCS0] = GEN8_RCS_IRQ_SHIFT, 2705 [BCS0] = GEN8_BCS_IRQ_SHIFT, 2706 [VCS0] = GEN8_VCS0_IRQ_SHIFT, 2707 [VCS1] = GEN8_VCS1_IRQ_SHIFT, 2708 [VECS0] = GEN8_VECS_IRQ_SHIFT, 2709 }; 2710 2711 shift = irq_shifts[engine->id]; 2712 } 2713 2714 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; 2715 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; 2716 } 2717 2718 int intel_execlists_submission_setup(struct intel_engine_cs *engine) 2719 { 2720 /* Intentionally left blank. */ 2721 engine->buffer = NULL; 2722 2723 tasklet_init(&engine->execlists.tasklet, 2724 execlists_submission_tasklet, (unsigned long)engine); 2725 2726 logical_ring_default_vfuncs(engine); 2727 logical_ring_default_irqs(engine); 2728 2729 if (engine->class == RENDER_CLASS) { 2730 engine->init_context = gen8_init_rcs_context; 2731 engine->emit_flush = gen8_emit_flush_render; 2732 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 2733 } 2734 2735 return 0; 2736 } 2737 2738 int intel_execlists_submission_init(struct intel_engine_cs *engine) 2739 { 2740 struct drm_i915_private *i915 = engine->i915; 2741 struct intel_engine_execlists * const execlists = &engine->execlists; 2742 u32 base = engine->mmio_base; 2743 int ret; 2744 2745 ret = intel_engine_init_common(engine); 2746 if (ret) 2747 return ret; 2748 2749 intel_engine_init_workarounds(engine); 2750 intel_engine_init_whitelist(engine); 2751 2752 if (intel_init_workaround_bb(engine)) 2753 /* 2754 * We continue even if we fail to initialize WA batch 2755 * because we only expect rare glitches but nothing 2756 * critical to prevent us from using GPU 2757 */ 2758 DRM_ERROR("WA batch buffer initialization failed\n"); 2759 2760 if (HAS_LOGICAL_RING_ELSQ(i915)) { 2761 execlists->submit_reg = i915->uncore.regs + 2762 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); 2763 execlists->ctrl_reg = i915->uncore.regs + 2764 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); 2765 } else { 2766 execlists->submit_reg = i915->uncore.regs + 2767 i915_mmio_reg_offset(RING_ELSP(base)); 2768 } 2769 2770 execlists->preempt_complete_status = ~0u; 2771 if (engine->preempt_context) 2772 execlists->preempt_complete_status = 2773 upper_32_bits(engine->preempt_context->lrc_desc); 2774 2775 execlists->csb_status = 2776 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 2777 2778 execlists->csb_write = 2779 &engine->status_page.addr[intel_hws_csb_write_index(i915)]; 2780 2781 if (INTEL_GEN(engine->i915) < 11) 2782 execlists->csb_size = GEN8_CSB_ENTRIES; 2783 else 2784 execlists->csb_size = GEN11_CSB_ENTRIES; 2785 2786 reset_csb_pointers(execlists); 2787 2788 return 0; 2789 } 2790 2791 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine) 2792 { 2793 u32 indirect_ctx_offset; 2794 2795 switch (INTEL_GEN(engine->i915)) { 2796 default: 2797 MISSING_CASE(INTEL_GEN(engine->i915)); 2798 /* fall through */ 2799 case 11: 2800 indirect_ctx_offset = 2801 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2802 break; 2803 case 10: 2804 indirect_ctx_offset = 2805 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2806 break; 2807 case 9: 2808 indirect_ctx_offset = 2809 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2810 break; 2811 case 8: 2812 indirect_ctx_offset = 2813 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT; 2814 break; 2815 } 2816 2817 return indirect_ctx_offset; 2818 } 2819 2820 static void execlists_init_reg_state(u32 *regs, 2821 struct intel_context *ce, 2822 struct intel_engine_cs *engine, 2823 struct intel_ring *ring) 2824 { 2825 struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt; 2826 bool rcs = engine->class == RENDER_CLASS; 2827 u32 base = engine->mmio_base; 2828 2829 /* 2830 * A context is actually a big batch buffer with several 2831 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The 2832 * values we are setting here are only for the first context restore: 2833 * on a subsequent save, the GPU will recreate this batchbuffer with new 2834 * values (including all the missing MI_LOAD_REGISTER_IMM commands that 2835 * we are not initializing here). 2836 * 2837 * Must keep consistent with virtual_update_register_offsets(). 2838 */ 2839 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) | 2840 MI_LRI_FORCE_POSTED; 2841 2842 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base), 2843 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) | 2844 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH)); 2845 if (INTEL_GEN(engine->i915) < 11) { 2846 regs[CTX_CONTEXT_CONTROL + 1] |= 2847 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT | 2848 CTX_CTRL_RS_CTX_ENABLE); 2849 } 2850 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0); 2851 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0); 2852 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0); 2853 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base), 2854 RING_CTL_SIZE(ring->size) | RING_VALID); 2855 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0); 2856 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0); 2857 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT); 2858 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0); 2859 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0); 2860 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0); 2861 if (rcs) { 2862 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx; 2863 2864 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0); 2865 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET, 2866 RING_INDIRECT_CTX_OFFSET(base), 0); 2867 if (wa_ctx->indirect_ctx.size) { 2868 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 2869 2870 regs[CTX_RCS_INDIRECT_CTX + 1] = 2871 (ggtt_offset + wa_ctx->indirect_ctx.offset) | 2872 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES); 2873 2874 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] = 2875 intel_lr_indirect_ctx_offset(engine) << 6; 2876 } 2877 2878 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0); 2879 if (wa_ctx->per_ctx.size) { 2880 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma); 2881 2882 regs[CTX_BB_PER_CTX_PTR + 1] = 2883 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01; 2884 } 2885 } 2886 2887 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED; 2888 2889 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0); 2890 /* PDP values well be assigned later if needed */ 2891 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0); 2892 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0); 2893 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0); 2894 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0); 2895 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0); 2896 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0); 2897 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0); 2898 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0); 2899 2900 if (i915_vm_is_4lvl(&ppgtt->vm)) { 2901 /* 64b PPGTT (48bit canonical) 2902 * PDP0_DESCRIPTOR contains the base address to PML4 and 2903 * other PDP Descriptors are ignored. 2904 */ 2905 ASSIGN_CTX_PML4(ppgtt, regs); 2906 } else { 2907 ASSIGN_CTX_PDP(ppgtt, regs, 3); 2908 ASSIGN_CTX_PDP(ppgtt, regs, 2); 2909 ASSIGN_CTX_PDP(ppgtt, regs, 1); 2910 ASSIGN_CTX_PDP(ppgtt, regs, 0); 2911 } 2912 2913 if (rcs) { 2914 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1); 2915 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0); 2916 2917 i915_oa_init_reg_state(engine, ce, regs); 2918 } 2919 2920 regs[CTX_END] = MI_BATCH_BUFFER_END; 2921 if (INTEL_GEN(engine->i915) >= 10) 2922 regs[CTX_END] |= BIT(0); 2923 } 2924 2925 static int 2926 populate_lr_context(struct intel_context *ce, 2927 struct drm_i915_gem_object *ctx_obj, 2928 struct intel_engine_cs *engine, 2929 struct intel_ring *ring) 2930 { 2931 void *vaddr; 2932 u32 *regs; 2933 int ret; 2934 2935 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB); 2936 if (IS_ERR(vaddr)) { 2937 ret = PTR_ERR(vaddr); 2938 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret); 2939 return ret; 2940 } 2941 2942 if (engine->default_state) { 2943 /* 2944 * We only want to copy over the template context state; 2945 * skipping over the headers reserved for GuC communication, 2946 * leaving those as zero. 2947 */ 2948 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE; 2949 void *defaults; 2950 2951 defaults = i915_gem_object_pin_map(engine->default_state, 2952 I915_MAP_WB); 2953 if (IS_ERR(defaults)) { 2954 ret = PTR_ERR(defaults); 2955 goto err_unpin_ctx; 2956 } 2957 2958 memcpy(vaddr + start, defaults + start, engine->context_size); 2959 i915_gem_object_unpin_map(engine->default_state); 2960 } 2961 2962 /* The second page of the context object contains some fields which must 2963 * be set up prior to the first execution. */ 2964 regs = vaddr + LRC_STATE_PN * PAGE_SIZE; 2965 execlists_init_reg_state(regs, ce, engine, ring); 2966 if (!engine->default_state) 2967 regs[CTX_CONTEXT_CONTROL + 1] |= 2968 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); 2969 if (ce->gem_context == engine->i915->preempt_context && 2970 INTEL_GEN(engine->i915) < 11) 2971 regs[CTX_CONTEXT_CONTROL + 1] |= 2972 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | 2973 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT); 2974 2975 ret = 0; 2976 err_unpin_ctx: 2977 __i915_gem_object_flush_map(ctx_obj, 2978 LRC_HEADER_PAGES * PAGE_SIZE, 2979 engine->context_size); 2980 i915_gem_object_unpin_map(ctx_obj); 2981 return ret; 2982 } 2983 2984 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx) 2985 { 2986 if (ctx->timeline) 2987 return i915_timeline_get(ctx->timeline); 2988 else 2989 return i915_timeline_create(ctx->i915, NULL); 2990 } 2991 2992 static int execlists_context_deferred_alloc(struct intel_context *ce, 2993 struct intel_engine_cs *engine) 2994 { 2995 struct drm_i915_gem_object *ctx_obj; 2996 struct i915_vma *vma; 2997 u32 context_size; 2998 struct intel_ring *ring; 2999 struct i915_timeline *timeline; 3000 int ret; 3001 3002 if (ce->state) 3003 return 0; 3004 3005 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE); 3006 3007 /* 3008 * Before the actual start of the context image, we insert a few pages 3009 * for our own use and for sharing with the GuC. 3010 */ 3011 context_size += LRC_HEADER_PAGES * PAGE_SIZE; 3012 3013 ctx_obj = i915_gem_object_create(engine->i915, context_size); 3014 if (IS_ERR(ctx_obj)) 3015 return PTR_ERR(ctx_obj); 3016 3017 vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL); 3018 if (IS_ERR(vma)) { 3019 ret = PTR_ERR(vma); 3020 goto error_deref_obj; 3021 } 3022 3023 timeline = get_timeline(ce->gem_context); 3024 if (IS_ERR(timeline)) { 3025 ret = PTR_ERR(timeline); 3026 goto error_deref_obj; 3027 } 3028 3029 ring = intel_engine_create_ring(engine, 3030 timeline, 3031 ce->gem_context->ring_size); 3032 i915_timeline_put(timeline); 3033 if (IS_ERR(ring)) { 3034 ret = PTR_ERR(ring); 3035 goto error_deref_obj; 3036 } 3037 3038 ret = populate_lr_context(ce, ctx_obj, engine, ring); 3039 if (ret) { 3040 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); 3041 goto error_ring_free; 3042 } 3043 3044 ce->ring = ring; 3045 ce->state = vma; 3046 3047 return 0; 3048 3049 error_ring_free: 3050 intel_ring_put(ring); 3051 error_deref_obj: 3052 i915_gem_object_put(ctx_obj); 3053 return ret; 3054 } 3055 3056 static void virtual_context_destroy(struct kref *kref) 3057 { 3058 struct virtual_engine *ve = 3059 container_of(kref, typeof(*ve), context.ref); 3060 unsigned int n; 3061 3062 GEM_BUG_ON(ve->request); 3063 GEM_BUG_ON(ve->context.active); 3064 3065 for (n = 0; n < ve->num_siblings; n++) { 3066 struct intel_engine_cs *sibling = ve->siblings[n]; 3067 struct rb_node *node = &ve->nodes[sibling->id].rb; 3068 3069 if (RB_EMPTY_NODE(node)) 3070 continue; 3071 3072 spin_lock_irq(&sibling->timeline.lock); 3073 3074 /* Detachment is lazily performed in the execlists tasklet */ 3075 if (!RB_EMPTY_NODE(node)) 3076 rb_erase_cached(node, &sibling->execlists.virtual); 3077 3078 spin_unlock_irq(&sibling->timeline.lock); 3079 } 3080 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet)); 3081 3082 if (ve->context.state) 3083 __execlists_context_fini(&ve->context); 3084 3085 kfree(ve->bonds); 3086 3087 i915_timeline_fini(&ve->base.timeline); 3088 kfree(ve); 3089 } 3090 3091 static void virtual_engine_initial_hint(struct virtual_engine *ve) 3092 { 3093 int swp; 3094 3095 /* 3096 * Pick a random sibling on starting to help spread the load around. 3097 * 3098 * New contexts are typically created with exactly the same order 3099 * of siblings, and often started in batches. Due to the way we iterate 3100 * the array of sibling when submitting requests, sibling[0] is 3101 * prioritised for dequeuing. If we make sure that sibling[0] is fairly 3102 * randomised across the system, we also help spread the load by the 3103 * first engine we inspect being different each time. 3104 * 3105 * NB This does not force us to execute on this engine, it will just 3106 * typically be the first we inspect for submission. 3107 */ 3108 swp = prandom_u32_max(ve->num_siblings); 3109 if (!swp) 3110 return; 3111 3112 swap(ve->siblings[swp], ve->siblings[0]); 3113 virtual_update_register_offsets(ve->context.lrc_reg_state, 3114 ve->siblings[0]); 3115 } 3116 3117 static int virtual_context_pin(struct intel_context *ce) 3118 { 3119 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3120 int err; 3121 3122 /* Note: we must use a real engine class for setting up reg state */ 3123 err = __execlists_context_pin(ce, ve->siblings[0]); 3124 if (err) 3125 return err; 3126 3127 virtual_engine_initial_hint(ve); 3128 return 0; 3129 } 3130 3131 static void virtual_context_enter(struct intel_context *ce) 3132 { 3133 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3134 unsigned int n; 3135 3136 for (n = 0; n < ve->num_siblings; n++) 3137 intel_engine_pm_get(ve->siblings[n]); 3138 } 3139 3140 static void virtual_context_exit(struct intel_context *ce) 3141 { 3142 struct virtual_engine *ve = container_of(ce, typeof(*ve), context); 3143 unsigned int n; 3144 3145 ce->saturated = 0; 3146 for (n = 0; n < ve->num_siblings; n++) 3147 intel_engine_pm_put(ve->siblings[n]); 3148 } 3149 3150 static const struct intel_context_ops virtual_context_ops = { 3151 .pin = virtual_context_pin, 3152 .unpin = execlists_context_unpin, 3153 3154 .enter = virtual_context_enter, 3155 .exit = virtual_context_exit, 3156 3157 .destroy = virtual_context_destroy, 3158 }; 3159 3160 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) 3161 { 3162 struct i915_request *rq; 3163 intel_engine_mask_t mask; 3164 3165 rq = READ_ONCE(ve->request); 3166 if (!rq) 3167 return 0; 3168 3169 /* The rq is ready for submission; rq->execution_mask is now stable. */ 3170 mask = rq->execution_mask; 3171 if (unlikely(!mask)) { 3172 /* Invalid selection, submit to a random engine in error */ 3173 i915_request_skip(rq, -ENODEV); 3174 mask = ve->siblings[0]->mask; 3175 } 3176 3177 GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n", 3178 ve->base.name, 3179 rq->fence.context, rq->fence.seqno, 3180 mask, ve->base.execlists.queue_priority_hint); 3181 3182 return mask; 3183 } 3184 3185 static void virtual_submission_tasklet(unsigned long data) 3186 { 3187 struct virtual_engine * const ve = (struct virtual_engine *)data; 3188 const int prio = ve->base.execlists.queue_priority_hint; 3189 intel_engine_mask_t mask; 3190 unsigned int n; 3191 3192 rcu_read_lock(); 3193 mask = virtual_submission_mask(ve); 3194 rcu_read_unlock(); 3195 if (unlikely(!mask)) 3196 return; 3197 3198 local_irq_disable(); 3199 for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) { 3200 struct intel_engine_cs *sibling = ve->siblings[n]; 3201 struct ve_node * const node = &ve->nodes[sibling->id]; 3202 struct rb_node **parent, *rb; 3203 bool first; 3204 3205 if (unlikely(!(mask & sibling->mask))) { 3206 if (!RB_EMPTY_NODE(&node->rb)) { 3207 spin_lock(&sibling->timeline.lock); 3208 rb_erase_cached(&node->rb, 3209 &sibling->execlists.virtual); 3210 RB_CLEAR_NODE(&node->rb); 3211 spin_unlock(&sibling->timeline.lock); 3212 } 3213 continue; 3214 } 3215 3216 spin_lock(&sibling->timeline.lock); 3217 3218 if (!RB_EMPTY_NODE(&node->rb)) { 3219 /* 3220 * Cheat and avoid rebalancing the tree if we can 3221 * reuse this node in situ. 3222 */ 3223 first = rb_first_cached(&sibling->execlists.virtual) == 3224 &node->rb; 3225 if (prio == node->prio || (prio > node->prio && first)) 3226 goto submit_engine; 3227 3228 rb_erase_cached(&node->rb, &sibling->execlists.virtual); 3229 } 3230 3231 rb = NULL; 3232 first = true; 3233 parent = &sibling->execlists.virtual.rb_root.rb_node; 3234 while (*parent) { 3235 struct ve_node *other; 3236 3237 rb = *parent; 3238 other = rb_entry(rb, typeof(*other), rb); 3239 if (prio > other->prio) { 3240 parent = &rb->rb_left; 3241 } else { 3242 parent = &rb->rb_right; 3243 first = false; 3244 } 3245 } 3246 3247 rb_link_node(&node->rb, rb, parent); 3248 rb_insert_color_cached(&node->rb, 3249 &sibling->execlists.virtual, 3250 first); 3251 3252 submit_engine: 3253 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); 3254 node->prio = prio; 3255 if (first && prio > sibling->execlists.queue_priority_hint) { 3256 sibling->execlists.queue_priority_hint = prio; 3257 tasklet_hi_schedule(&sibling->execlists.tasklet); 3258 } 3259 3260 spin_unlock(&sibling->timeline.lock); 3261 } 3262 local_irq_enable(); 3263 } 3264 3265 static void virtual_submit_request(struct i915_request *rq) 3266 { 3267 struct virtual_engine *ve = to_virtual_engine(rq->engine); 3268 3269 GEM_TRACE("%s: rq=%llx:%lld\n", 3270 ve->base.name, 3271 rq->fence.context, 3272 rq->fence.seqno); 3273 3274 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); 3275 3276 GEM_BUG_ON(ve->request); 3277 ve->base.execlists.queue_priority_hint = rq_prio(rq); 3278 WRITE_ONCE(ve->request, rq); 3279 3280 tasklet_schedule(&ve->base.execlists.tasklet); 3281 } 3282 3283 static struct ve_bond * 3284 virtual_find_bond(struct virtual_engine *ve, 3285 const struct intel_engine_cs *master) 3286 { 3287 int i; 3288 3289 for (i = 0; i < ve->num_bonds; i++) { 3290 if (ve->bonds[i].master == master) 3291 return &ve->bonds[i]; 3292 } 3293 3294 return NULL; 3295 } 3296 3297 static void 3298 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal) 3299 { 3300 struct virtual_engine *ve = to_virtual_engine(rq->engine); 3301 struct ve_bond *bond; 3302 3303 bond = virtual_find_bond(ve, to_request(signal)->engine); 3304 if (bond) { 3305 intel_engine_mask_t old, new, cmp; 3306 3307 cmp = READ_ONCE(rq->execution_mask); 3308 do { 3309 old = cmp; 3310 new = cmp & bond->sibling_mask; 3311 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old); 3312 } 3313 } 3314 3315 struct intel_context * 3316 intel_execlists_create_virtual(struct i915_gem_context *ctx, 3317 struct intel_engine_cs **siblings, 3318 unsigned int count) 3319 { 3320 struct virtual_engine *ve; 3321 unsigned int n; 3322 int err; 3323 3324 if (count == 0) 3325 return ERR_PTR(-EINVAL); 3326 3327 if (count == 1) 3328 return intel_context_create(ctx, siblings[0]); 3329 3330 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); 3331 if (!ve) 3332 return ERR_PTR(-ENOMEM); 3333 3334 ve->base.i915 = ctx->i915; 3335 ve->base.id = -1; 3336 ve->base.class = OTHER_CLASS; 3337 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 3338 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 3339 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 3340 3341 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 3342 3343 err = i915_timeline_init(ctx->i915, &ve->base.timeline, NULL); 3344 if (err) 3345 goto err_put; 3346 i915_timeline_set_subclass(&ve->base.timeline, TIMELINE_VIRTUAL); 3347 3348 intel_engine_init_execlists(&ve->base); 3349 3350 ve->base.cops = &virtual_context_ops; 3351 ve->base.request_alloc = execlists_request_alloc; 3352 3353 ve->base.schedule = i915_schedule; 3354 ve->base.submit_request = virtual_submit_request; 3355 ve->base.bond_execute = virtual_bond_execute; 3356 3357 ve->base.execlists.queue_priority_hint = INT_MIN; 3358 tasklet_init(&ve->base.execlists.tasklet, 3359 virtual_submission_tasklet, 3360 (unsigned long)ve); 3361 3362 intel_context_init(&ve->context, ctx, &ve->base); 3363 3364 for (n = 0; n < count; n++) { 3365 struct intel_engine_cs *sibling = siblings[n]; 3366 3367 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 3368 if (sibling->mask & ve->base.mask) { 3369 DRM_DEBUG("duplicate %s entry in load balancer\n", 3370 sibling->name); 3371 err = -EINVAL; 3372 goto err_put; 3373 } 3374 3375 /* 3376 * The virtual engine implementation is tightly coupled to 3377 * the execlists backend -- we push out request directly 3378 * into a tree inside each physical engine. We could support 3379 * layering if we handle cloning of the requests and 3380 * submitting a copy into each backend. 3381 */ 3382 if (sibling->execlists.tasklet.func != 3383 execlists_submission_tasklet) { 3384 err = -ENODEV; 3385 goto err_put; 3386 } 3387 3388 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); 3389 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); 3390 3391 ve->siblings[ve->num_siblings++] = sibling; 3392 ve->base.mask |= sibling->mask; 3393 3394 /* 3395 * All physical engines must be compatible for their emission 3396 * functions (as we build the instructions during request 3397 * construction and do not alter them before submission 3398 * on the physical engine). We use the engine class as a guide 3399 * here, although that could be refined. 3400 */ 3401 if (ve->base.class != OTHER_CLASS) { 3402 if (ve->base.class != sibling->class) { 3403 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 3404 sibling->class, ve->base.class); 3405 err = -EINVAL; 3406 goto err_put; 3407 } 3408 continue; 3409 } 3410 3411 ve->base.class = sibling->class; 3412 ve->base.uabi_class = sibling->uabi_class; 3413 snprintf(ve->base.name, sizeof(ve->base.name), 3414 "v%dx%d", ve->base.class, count); 3415 ve->base.context_size = sibling->context_size; 3416 3417 ve->base.emit_bb_start = sibling->emit_bb_start; 3418 ve->base.emit_flush = sibling->emit_flush; 3419 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; 3420 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; 3421 ve->base.emit_fini_breadcrumb_dw = 3422 sibling->emit_fini_breadcrumb_dw; 3423 } 3424 3425 return &ve->context; 3426 3427 err_put: 3428 intel_context_put(&ve->context); 3429 return ERR_PTR(err); 3430 } 3431 3432 struct intel_context * 3433 intel_execlists_clone_virtual(struct i915_gem_context *ctx, 3434 struct intel_engine_cs *src) 3435 { 3436 struct virtual_engine *se = to_virtual_engine(src); 3437 struct intel_context *dst; 3438 3439 dst = intel_execlists_create_virtual(ctx, 3440 se->siblings, 3441 se->num_siblings); 3442 if (IS_ERR(dst)) 3443 return dst; 3444 3445 if (se->num_bonds) { 3446 struct virtual_engine *de = to_virtual_engine(dst->engine); 3447 3448 de->bonds = kmemdup(se->bonds, 3449 sizeof(*se->bonds) * se->num_bonds, 3450 GFP_KERNEL); 3451 if (!de->bonds) { 3452 intel_context_put(dst); 3453 return ERR_PTR(-ENOMEM); 3454 } 3455 3456 de->num_bonds = se->num_bonds; 3457 } 3458 3459 return dst; 3460 } 3461 3462 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine, 3463 const struct intel_engine_cs *master, 3464 const struct intel_engine_cs *sibling) 3465 { 3466 struct virtual_engine *ve = to_virtual_engine(engine); 3467 struct ve_bond *bond; 3468 int n; 3469 3470 /* Sanity check the sibling is part of the virtual engine */ 3471 for (n = 0; n < ve->num_siblings; n++) 3472 if (sibling == ve->siblings[n]) 3473 break; 3474 if (n == ve->num_siblings) 3475 return -EINVAL; 3476 3477 bond = virtual_find_bond(ve, master); 3478 if (bond) { 3479 bond->sibling_mask |= sibling->mask; 3480 return 0; 3481 } 3482 3483 bond = krealloc(ve->bonds, 3484 sizeof(*bond) * (ve->num_bonds + 1), 3485 GFP_KERNEL); 3486 if (!bond) 3487 return -ENOMEM; 3488 3489 bond[ve->num_bonds].master = master; 3490 bond[ve->num_bonds].sibling_mask = sibling->mask; 3491 3492 ve->bonds = bond; 3493 ve->num_bonds++; 3494 3495 return 0; 3496 } 3497 3498 void intel_execlists_show_requests(struct intel_engine_cs *engine, 3499 struct drm_printer *m, 3500 void (*show_request)(struct drm_printer *m, 3501 struct i915_request *rq, 3502 const char *prefix), 3503 unsigned int max) 3504 { 3505 const struct intel_engine_execlists *execlists = &engine->execlists; 3506 struct i915_request *rq, *last; 3507 unsigned long flags; 3508 unsigned int count; 3509 struct rb_node *rb; 3510 3511 spin_lock_irqsave(&engine->timeline.lock, flags); 3512 3513 last = NULL; 3514 count = 0; 3515 list_for_each_entry(rq, &engine->timeline.requests, link) { 3516 if (count++ < max - 1) 3517 show_request(m, rq, "\t\tE "); 3518 else 3519 last = rq; 3520 } 3521 if (last) { 3522 if (count > max) { 3523 drm_printf(m, 3524 "\t\t...skipping %d executing requests...\n", 3525 count - max); 3526 } 3527 show_request(m, last, "\t\tE "); 3528 } 3529 3530 last = NULL; 3531 count = 0; 3532 if (execlists->queue_priority_hint != INT_MIN) 3533 drm_printf(m, "\t\tQueue priority hint: %d\n", 3534 execlists->queue_priority_hint); 3535 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { 3536 struct i915_priolist *p = rb_entry(rb, typeof(*p), node); 3537 int i; 3538 3539 priolist_for_each_request(rq, p, i) { 3540 if (count++ < max - 1) 3541 show_request(m, rq, "\t\tQ "); 3542 else 3543 last = rq; 3544 } 3545 } 3546 if (last) { 3547 if (count > max) { 3548 drm_printf(m, 3549 "\t\t...skipping %d queued requests...\n", 3550 count - max); 3551 } 3552 show_request(m, last, "\t\tQ "); 3553 } 3554 3555 last = NULL; 3556 count = 0; 3557 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { 3558 struct virtual_engine *ve = 3559 rb_entry(rb, typeof(*ve), nodes[engine->id].rb); 3560 struct i915_request *rq = READ_ONCE(ve->request); 3561 3562 if (rq) { 3563 if (count++ < max - 1) 3564 show_request(m, rq, "\t\tV "); 3565 else 3566 last = rq; 3567 } 3568 } 3569 if (last) { 3570 if (count > max) { 3571 drm_printf(m, 3572 "\t\t...skipping %d virtual requests...\n", 3573 count - max); 3574 } 3575 show_request(m, last, "\t\tV "); 3576 } 3577 3578 spin_unlock_irqrestore(&engine->timeline.lock, flags); 3579 } 3580 3581 void intel_lr_context_reset(struct intel_engine_cs *engine, 3582 struct intel_context *ce, 3583 u32 head, 3584 bool scrub) 3585 { 3586 /* 3587 * We want a simple context + ring to execute the breadcrumb update. 3588 * We cannot rely on the context being intact across the GPU hang, 3589 * so clear it and rebuild just what we need for the breadcrumb. 3590 * All pending requests for this context will be zapped, and any 3591 * future request will be after userspace has had the opportunity 3592 * to recreate its own state. 3593 */ 3594 if (scrub) { 3595 u32 *regs = ce->lrc_reg_state; 3596 3597 if (engine->pinned_default_state) { 3598 memcpy(regs, /* skip restoring the vanilla PPHWSP */ 3599 engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE, 3600 engine->context_size - PAGE_SIZE); 3601 } 3602 execlists_init_reg_state(regs, ce, engine, ce->ring); 3603 } 3604 3605 /* Rerun the request; its payload has been neutered (if guilty). */ 3606 ce->ring->head = head; 3607 intel_ring_update_space(ce->ring); 3608 3609 __execlists_update_reg_state(ce, engine); 3610 } 3611 3612 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3613 #include "selftest_lrc.c" 3614 #endif 3615