xref: /linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22 
23 /*
24  * The per-platform tables are u8-encoded in @data. Decode @data and set the
25  * addresses' offset and commands in @regs. The following encoding is used
26  * for each byte. There are 2 steps: decoding commands and decoding addresses.
27  *
28  * Commands:
29  * [7]: create NOPs - number of NOPs are set in lower bits
30  * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
31  *      MI_LRI_FORCE_POSTED
32  * [5:0]: Number of NOPs or registers to set values to in case of
33  *        MI_LOAD_REGISTER_IMM
34  *
35  * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
36  * number of registers. They are set by using the REG/REG16 macros: the former
37  * is used for offsets smaller than 0x200 while the latter is for values bigger
38  * than that. Those macros already set all the bits documented below correctly:
39  *
40  * [7]: When a register offset needs more than 6 bits, use additional bytes, to
41  *      follow, for the lower bits
42  * [6:0]: Register offset, without considering the engine base.
43  *
44  * This function only tweaks the commands and register offsets. Values are not
45  * filled out.
46  */
47 static void set_offsets(u32 *regs,
48 			const u8 *data,
49 			const struct intel_engine_cs *engine,
50 			bool close)
51 #define NOP(x) (BIT(7) | (x))
52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
53 #define POSTED BIT(0)
54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
55 #define REG16(x) \
56 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
57 	(((x) >> 2) & 0x7f)
58 #define END 0
59 {
60 	const u32 base = engine->mmio_base;
61 
62 	while (*data) {
63 		u8 count, flags;
64 
65 		if (*data & BIT(7)) { /* skip */
66 			count = *data++ & ~BIT(7);
67 			regs += count;
68 			continue;
69 		}
70 
71 		count = *data & 0x3f;
72 		flags = *data >> 6;
73 		data++;
74 
75 		*regs = MI_LOAD_REGISTER_IMM(count);
76 		if (flags & POSTED)
77 			*regs |= MI_LRI_FORCE_POSTED;
78 		if (GRAPHICS_VER(engine->i915) >= 11)
79 			*regs |= MI_LRI_LRM_CS_MMIO;
80 		regs++;
81 
82 		GEM_BUG_ON(!count);
83 		do {
84 			u32 offset = 0;
85 			u8 v;
86 
87 			do {
88 				v = *data++;
89 				offset <<= 7;
90 				offset |= v & ~BIT(7);
91 			} while (v & BIT(7));
92 
93 			regs[0] = base + (offset << 2);
94 			regs += 2;
95 		} while (--count);
96 	}
97 
98 	if (close) {
99 		/* Close the batch; used mainly by live_lrc_layout() */
100 		*regs = MI_BATCH_BUFFER_END;
101 		if (GRAPHICS_VER(engine->i915) >= 11)
102 			*regs |= BIT(0);
103 	}
104 }
105 
106 static const u8 gen8_xcs_offsets[] = {
107 	NOP(1),
108 	LRI(11, 0),
109 	REG16(0x244),
110 	REG(0x034),
111 	REG(0x030),
112 	REG(0x038),
113 	REG(0x03c),
114 	REG(0x168),
115 	REG(0x140),
116 	REG(0x110),
117 	REG(0x11c),
118 	REG(0x114),
119 	REG(0x118),
120 
121 	NOP(9),
122 	LRI(9, 0),
123 	REG16(0x3a8),
124 	REG16(0x28c),
125 	REG16(0x288),
126 	REG16(0x284),
127 	REG16(0x280),
128 	REG16(0x27c),
129 	REG16(0x278),
130 	REG16(0x274),
131 	REG16(0x270),
132 
133 	NOP(13),
134 	LRI(2, 0),
135 	REG16(0x200),
136 	REG(0x028),
137 
138 	END
139 };
140 
141 static const u8 gen9_xcs_offsets[] = {
142 	NOP(1),
143 	LRI(14, POSTED),
144 	REG16(0x244),
145 	REG(0x034),
146 	REG(0x030),
147 	REG(0x038),
148 	REG(0x03c),
149 	REG(0x168),
150 	REG(0x140),
151 	REG(0x110),
152 	REG(0x11c),
153 	REG(0x114),
154 	REG(0x118),
155 	REG(0x1c0),
156 	REG(0x1c4),
157 	REG(0x1c8),
158 
159 	NOP(3),
160 	LRI(9, POSTED),
161 	REG16(0x3a8),
162 	REG16(0x28c),
163 	REG16(0x288),
164 	REG16(0x284),
165 	REG16(0x280),
166 	REG16(0x27c),
167 	REG16(0x278),
168 	REG16(0x274),
169 	REG16(0x270),
170 
171 	NOP(13),
172 	LRI(1, POSTED),
173 	REG16(0x200),
174 
175 	NOP(13),
176 	LRI(44, POSTED),
177 	REG(0x028),
178 	REG(0x09c),
179 	REG(0x0c0),
180 	REG(0x178),
181 	REG(0x17c),
182 	REG16(0x358),
183 	REG(0x170),
184 	REG(0x150),
185 	REG(0x154),
186 	REG(0x158),
187 	REG16(0x41c),
188 	REG16(0x600),
189 	REG16(0x604),
190 	REG16(0x608),
191 	REG16(0x60c),
192 	REG16(0x610),
193 	REG16(0x614),
194 	REG16(0x618),
195 	REG16(0x61c),
196 	REG16(0x620),
197 	REG16(0x624),
198 	REG16(0x628),
199 	REG16(0x62c),
200 	REG16(0x630),
201 	REG16(0x634),
202 	REG16(0x638),
203 	REG16(0x63c),
204 	REG16(0x640),
205 	REG16(0x644),
206 	REG16(0x648),
207 	REG16(0x64c),
208 	REG16(0x650),
209 	REG16(0x654),
210 	REG16(0x658),
211 	REG16(0x65c),
212 	REG16(0x660),
213 	REG16(0x664),
214 	REG16(0x668),
215 	REG16(0x66c),
216 	REG16(0x670),
217 	REG16(0x674),
218 	REG16(0x678),
219 	REG16(0x67c),
220 	REG(0x068),
221 
222 	END
223 };
224 
225 static const u8 gen12_xcs_offsets[] = {
226 	NOP(1),
227 	LRI(13, POSTED),
228 	REG16(0x244),
229 	REG(0x034),
230 	REG(0x030),
231 	REG(0x038),
232 	REG(0x03c),
233 	REG(0x168),
234 	REG(0x140),
235 	REG(0x110),
236 	REG(0x1c0),
237 	REG(0x1c4),
238 	REG(0x1c8),
239 	REG(0x180),
240 	REG16(0x2b4),
241 
242 	NOP(5),
243 	LRI(9, POSTED),
244 	REG16(0x3a8),
245 	REG16(0x28c),
246 	REG16(0x288),
247 	REG16(0x284),
248 	REG16(0x280),
249 	REG16(0x27c),
250 	REG16(0x278),
251 	REG16(0x274),
252 	REG16(0x270),
253 
254 	END
255 };
256 
257 static const u8 dg2_xcs_offsets[] = {
258 	NOP(1),
259 	LRI(15, POSTED),
260 	REG16(0x244),
261 	REG(0x034),
262 	REG(0x030),
263 	REG(0x038),
264 	REG(0x03c),
265 	REG(0x168),
266 	REG(0x140),
267 	REG(0x110),
268 	REG(0x1c0),
269 	REG(0x1c4),
270 	REG(0x1c8),
271 	REG(0x180),
272 	REG16(0x2b4),
273 	REG(0x120),
274 	REG(0x124),
275 
276 	NOP(1),
277 	LRI(9, POSTED),
278 	REG16(0x3a8),
279 	REG16(0x28c),
280 	REG16(0x288),
281 	REG16(0x284),
282 	REG16(0x280),
283 	REG16(0x27c),
284 	REG16(0x278),
285 	REG16(0x274),
286 	REG16(0x270),
287 
288 	END
289 };
290 
291 static const u8 gen8_rcs_offsets[] = {
292 	NOP(1),
293 	LRI(14, POSTED),
294 	REG16(0x244),
295 	REG(0x034),
296 	REG(0x030),
297 	REG(0x038),
298 	REG(0x03c),
299 	REG(0x168),
300 	REG(0x140),
301 	REG(0x110),
302 	REG(0x11c),
303 	REG(0x114),
304 	REG(0x118),
305 	REG(0x1c0),
306 	REG(0x1c4),
307 	REG(0x1c8),
308 
309 	NOP(3),
310 	LRI(9, POSTED),
311 	REG16(0x3a8),
312 	REG16(0x28c),
313 	REG16(0x288),
314 	REG16(0x284),
315 	REG16(0x280),
316 	REG16(0x27c),
317 	REG16(0x278),
318 	REG16(0x274),
319 	REG16(0x270),
320 
321 	NOP(13),
322 	LRI(1, 0),
323 	REG(0x0c8),
324 
325 	END
326 };
327 
328 static const u8 gen9_rcs_offsets[] = {
329 	NOP(1),
330 	LRI(14, POSTED),
331 	REG16(0x244),
332 	REG(0x34),
333 	REG(0x30),
334 	REG(0x38),
335 	REG(0x3c),
336 	REG(0x168),
337 	REG(0x140),
338 	REG(0x110),
339 	REG(0x11c),
340 	REG(0x114),
341 	REG(0x118),
342 	REG(0x1c0),
343 	REG(0x1c4),
344 	REG(0x1c8),
345 
346 	NOP(3),
347 	LRI(9, POSTED),
348 	REG16(0x3a8),
349 	REG16(0x28c),
350 	REG16(0x288),
351 	REG16(0x284),
352 	REG16(0x280),
353 	REG16(0x27c),
354 	REG16(0x278),
355 	REG16(0x274),
356 	REG16(0x270),
357 
358 	NOP(13),
359 	LRI(1, 0),
360 	REG(0xc8),
361 
362 	NOP(13),
363 	LRI(44, POSTED),
364 	REG(0x28),
365 	REG(0x9c),
366 	REG(0xc0),
367 	REG(0x178),
368 	REG(0x17c),
369 	REG16(0x358),
370 	REG(0x170),
371 	REG(0x150),
372 	REG(0x154),
373 	REG(0x158),
374 	REG16(0x41c),
375 	REG16(0x600),
376 	REG16(0x604),
377 	REG16(0x608),
378 	REG16(0x60c),
379 	REG16(0x610),
380 	REG16(0x614),
381 	REG16(0x618),
382 	REG16(0x61c),
383 	REG16(0x620),
384 	REG16(0x624),
385 	REG16(0x628),
386 	REG16(0x62c),
387 	REG16(0x630),
388 	REG16(0x634),
389 	REG16(0x638),
390 	REG16(0x63c),
391 	REG16(0x640),
392 	REG16(0x644),
393 	REG16(0x648),
394 	REG16(0x64c),
395 	REG16(0x650),
396 	REG16(0x654),
397 	REG16(0x658),
398 	REG16(0x65c),
399 	REG16(0x660),
400 	REG16(0x664),
401 	REG16(0x668),
402 	REG16(0x66c),
403 	REG16(0x670),
404 	REG16(0x674),
405 	REG16(0x678),
406 	REG16(0x67c),
407 	REG(0x68),
408 
409 	END
410 };
411 
412 static const u8 gen11_rcs_offsets[] = {
413 	NOP(1),
414 	LRI(15, POSTED),
415 	REG16(0x244),
416 	REG(0x034),
417 	REG(0x030),
418 	REG(0x038),
419 	REG(0x03c),
420 	REG(0x168),
421 	REG(0x140),
422 	REG(0x110),
423 	REG(0x11c),
424 	REG(0x114),
425 	REG(0x118),
426 	REG(0x1c0),
427 	REG(0x1c4),
428 	REG(0x1c8),
429 	REG(0x180),
430 
431 	NOP(1),
432 	LRI(9, POSTED),
433 	REG16(0x3a8),
434 	REG16(0x28c),
435 	REG16(0x288),
436 	REG16(0x284),
437 	REG16(0x280),
438 	REG16(0x27c),
439 	REG16(0x278),
440 	REG16(0x274),
441 	REG16(0x270),
442 
443 	LRI(1, POSTED),
444 	REG(0x1b0),
445 
446 	NOP(10),
447 	LRI(1, 0),
448 	REG(0x0c8),
449 
450 	END
451 };
452 
453 static const u8 gen12_rcs_offsets[] = {
454 	NOP(1),
455 	LRI(13, POSTED),
456 	REG16(0x244),
457 	REG(0x034),
458 	REG(0x030),
459 	REG(0x038),
460 	REG(0x03c),
461 	REG(0x168),
462 	REG(0x140),
463 	REG(0x110),
464 	REG(0x1c0),
465 	REG(0x1c4),
466 	REG(0x1c8),
467 	REG(0x180),
468 	REG16(0x2b4),
469 
470 	NOP(5),
471 	LRI(9, POSTED),
472 	REG16(0x3a8),
473 	REG16(0x28c),
474 	REG16(0x288),
475 	REG16(0x284),
476 	REG16(0x280),
477 	REG16(0x27c),
478 	REG16(0x278),
479 	REG16(0x274),
480 	REG16(0x270),
481 
482 	LRI(3, POSTED),
483 	REG(0x1b0),
484 	REG16(0x5a8),
485 	REG16(0x5ac),
486 
487 	NOP(6),
488 	LRI(1, 0),
489 	REG(0x0c8),
490 	NOP(3 + 9 + 1),
491 
492 	LRI(51, POSTED),
493 	REG16(0x588),
494 	REG16(0x588),
495 	REG16(0x588),
496 	REG16(0x588),
497 	REG16(0x588),
498 	REG16(0x588),
499 	REG(0x028),
500 	REG(0x09c),
501 	REG(0x0c0),
502 	REG(0x178),
503 	REG(0x17c),
504 	REG16(0x358),
505 	REG(0x170),
506 	REG(0x150),
507 	REG(0x154),
508 	REG(0x158),
509 	REG16(0x41c),
510 	REG16(0x600),
511 	REG16(0x604),
512 	REG16(0x608),
513 	REG16(0x60c),
514 	REG16(0x610),
515 	REG16(0x614),
516 	REG16(0x618),
517 	REG16(0x61c),
518 	REG16(0x620),
519 	REG16(0x624),
520 	REG16(0x628),
521 	REG16(0x62c),
522 	REG16(0x630),
523 	REG16(0x634),
524 	REG16(0x638),
525 	REG16(0x63c),
526 	REG16(0x640),
527 	REG16(0x644),
528 	REG16(0x648),
529 	REG16(0x64c),
530 	REG16(0x650),
531 	REG16(0x654),
532 	REG16(0x658),
533 	REG16(0x65c),
534 	REG16(0x660),
535 	REG16(0x664),
536 	REG16(0x668),
537 	REG16(0x66c),
538 	REG16(0x670),
539 	REG16(0x674),
540 	REG16(0x678),
541 	REG16(0x67c),
542 	REG(0x068),
543 	REG(0x084),
544 	NOP(1),
545 
546 	END
547 };
548 
549 static const u8 xehp_rcs_offsets[] = {
550 	NOP(1),
551 	LRI(13, POSTED),
552 	REG16(0x244),
553 	REG(0x034),
554 	REG(0x030),
555 	REG(0x038),
556 	REG(0x03c),
557 	REG(0x168),
558 	REG(0x140),
559 	REG(0x110),
560 	REG(0x1c0),
561 	REG(0x1c4),
562 	REG(0x1c8),
563 	REG(0x180),
564 	REG16(0x2b4),
565 
566 	NOP(5),
567 	LRI(9, POSTED),
568 	REG16(0x3a8),
569 	REG16(0x28c),
570 	REG16(0x288),
571 	REG16(0x284),
572 	REG16(0x280),
573 	REG16(0x27c),
574 	REG16(0x278),
575 	REG16(0x274),
576 	REG16(0x270),
577 
578 	LRI(3, POSTED),
579 	REG(0x1b0),
580 	REG16(0x5a8),
581 	REG16(0x5ac),
582 
583 	NOP(6),
584 	LRI(1, 0),
585 	REG(0x0c8),
586 
587 	END
588 };
589 
590 static const u8 dg2_rcs_offsets[] = {
591 	NOP(1),
592 	LRI(15, POSTED),
593 	REG16(0x244),
594 	REG(0x034),
595 	REG(0x030),
596 	REG(0x038),
597 	REG(0x03c),
598 	REG(0x168),
599 	REG(0x140),
600 	REG(0x110),
601 	REG(0x1c0),
602 	REG(0x1c4),
603 	REG(0x1c8),
604 	REG(0x180),
605 	REG16(0x2b4),
606 	REG(0x120),
607 	REG(0x124),
608 
609 	NOP(1),
610 	LRI(9, POSTED),
611 	REG16(0x3a8),
612 	REG16(0x28c),
613 	REG16(0x288),
614 	REG16(0x284),
615 	REG16(0x280),
616 	REG16(0x27c),
617 	REG16(0x278),
618 	REG16(0x274),
619 	REG16(0x270),
620 
621 	LRI(3, POSTED),
622 	REG(0x1b0),
623 	REG16(0x5a8),
624 	REG16(0x5ac),
625 
626 	NOP(6),
627 	LRI(1, 0),
628 	REG(0x0c8),
629 
630 	END
631 };
632 
633 static const u8 mtl_rcs_offsets[] = {
634 	NOP(1),
635 	LRI(15, POSTED),
636 	REG16(0x244),
637 	REG(0x034),
638 	REG(0x030),
639 	REG(0x038),
640 	REG(0x03c),
641 	REG(0x168),
642 	REG(0x140),
643 	REG(0x110),
644 	REG(0x1c0),
645 	REG(0x1c4),
646 	REG(0x1c8),
647 	REG(0x180),
648 	REG16(0x2b4),
649 	REG(0x120),
650 	REG(0x124),
651 
652 	NOP(1),
653 	LRI(9, POSTED),
654 	REG16(0x3a8),
655 	REG16(0x28c),
656 	REG16(0x288),
657 	REG16(0x284),
658 	REG16(0x280),
659 	REG16(0x27c),
660 	REG16(0x278),
661 	REG16(0x274),
662 	REG16(0x270),
663 
664 	NOP(2),
665 	LRI(2, POSTED),
666 	REG16(0x5a8),
667 	REG16(0x5ac),
668 
669 	NOP(6),
670 	LRI(1, 0),
671 	REG(0x0c8),
672 
673 	END
674 };
675 
676 #undef END
677 #undef REG16
678 #undef REG
679 #undef LRI
680 #undef NOP
681 
682 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
683 {
684 	/*
685 	 * The gen12+ lists only have the registers we program in the basic
686 	 * default state. We rely on the context image using relative
687 	 * addressing to automatic fixup the register state between the
688 	 * physical engines for virtual engine.
689 	 */
690 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
691 		   !intel_engine_has_relative_mmio(engine));
692 
693 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
694 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70))
695 			return mtl_rcs_offsets;
696 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
697 			return dg2_rcs_offsets;
698 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
699 			return xehp_rcs_offsets;
700 		else if (GRAPHICS_VER(engine->i915) >= 12)
701 			return gen12_rcs_offsets;
702 		else if (GRAPHICS_VER(engine->i915) >= 11)
703 			return gen11_rcs_offsets;
704 		else if (GRAPHICS_VER(engine->i915) >= 9)
705 			return gen9_rcs_offsets;
706 		else
707 			return gen8_rcs_offsets;
708 	} else {
709 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
710 			return dg2_xcs_offsets;
711 		else if (GRAPHICS_VER(engine->i915) >= 12)
712 			return gen12_xcs_offsets;
713 		else if (GRAPHICS_VER(engine->i915) >= 9)
714 			return gen9_xcs_offsets;
715 		else
716 			return gen8_xcs_offsets;
717 	}
718 }
719 
720 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
721 {
722 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
723 		return 0x70;
724 	else if (GRAPHICS_VER(engine->i915) >= 12)
725 		return 0x60;
726 	else if (GRAPHICS_VER(engine->i915) >= 9)
727 		return 0x54;
728 	else if (engine->class == RENDER_CLASS)
729 		return 0x58;
730 	else
731 		return -1;
732 }
733 
734 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine)
735 {
736 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
737 		return 0x80;
738 	else if (GRAPHICS_VER(engine->i915) >= 12)
739 		return 0x70;
740 	else if (GRAPHICS_VER(engine->i915) >= 9)
741 		return 0x64;
742 	else if (GRAPHICS_VER(engine->i915) >= 8 &&
743 		 engine->class == RENDER_CLASS)
744 		return 0xc4;
745 	else
746 		return -1;
747 }
748 
749 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
750 {
751 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
752 		return 0x84;
753 	else if (GRAPHICS_VER(engine->i915) >= 12)
754 		return 0x74;
755 	else if (GRAPHICS_VER(engine->i915) >= 9)
756 		return 0x68;
757 	else if (engine->class == RENDER_CLASS)
758 		return 0xd8;
759 	else
760 		return -1;
761 }
762 
763 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
764 {
765 	if (GRAPHICS_VER(engine->i915) >= 12)
766 		return 0x12;
767 	else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
768 		return 0x18;
769 	else
770 		return -1;
771 }
772 
773 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
774 {
775 	int x;
776 
777 	x = lrc_ring_wa_bb_per_ctx(engine);
778 	if (x < 0)
779 		return x;
780 
781 	return x + 2;
782 }
783 
784 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
785 {
786 	int x;
787 
788 	x = lrc_ring_indirect_ptr(engine);
789 	if (x < 0)
790 		return x;
791 
792 	return x + 2;
793 }
794 
795 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
796 {
797 
798 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
799 		/*
800 		 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
801 		 * simply to match the RCS context image layout.
802 		 */
803 		return 0xc6;
804 	else if (engine->class != RENDER_CLASS)
805 		return -1;
806 	else if (GRAPHICS_VER(engine->i915) >= 12)
807 		return 0xb6;
808 	else if (GRAPHICS_VER(engine->i915) >= 11)
809 		return 0xaa;
810 	else
811 		return -1;
812 }
813 
814 static u32
815 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
816 {
817 	if (GRAPHICS_VER(engine->i915) >= 12)
818 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
819 	else if (GRAPHICS_VER(engine->i915) >= 11)
820 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
821 	else if (GRAPHICS_VER(engine->i915) >= 9)
822 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
823 	else if (GRAPHICS_VER(engine->i915) >= 8)
824 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
825 
826 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8);
827 
828 	return 0;
829 }
830 
831 static void
832 lrc_setup_indirect_ctx(u32 *regs,
833 		       const struct intel_engine_cs *engine,
834 		       u32 ctx_bb_ggtt_addr,
835 		       u32 size)
836 {
837 	GEM_BUG_ON(!size);
838 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
839 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
840 	regs[lrc_ring_indirect_ptr(engine) + 1] =
841 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
842 
843 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
844 	regs[lrc_ring_indirect_offset(engine) + 1] =
845 		lrc_ring_indirect_offset_default(engine) << 6;
846 }
847 
848 static bool ctx_needs_runalone(const struct intel_context *ce)
849 {
850 	struct i915_gem_context *gem_ctx;
851 	bool ctx_is_protected = false;
852 
853 	/*
854 	 * On MTL and newer platforms, protected contexts require setting
855 	 * the LRC run-alone bit or else the encryption will not happen.
856 	 */
857 	if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 70) &&
858 	    (ce->engine->class == COMPUTE_CLASS || ce->engine->class == RENDER_CLASS)) {
859 		rcu_read_lock();
860 		gem_ctx = rcu_dereference(ce->gem_context);
861 		if (gem_ctx)
862 			ctx_is_protected = gem_ctx->uses_protected_content;
863 		rcu_read_unlock();
864 	}
865 
866 	return ctx_is_protected;
867 }
868 
869 static void init_common_regs(u32 * const regs,
870 			     const struct intel_context *ce,
871 			     const struct intel_engine_cs *engine,
872 			     bool inhibit)
873 {
874 	u32 ctl;
875 	int loc;
876 
877 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
878 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
879 	if (inhibit)
880 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
881 	if (GRAPHICS_VER(engine->i915) < 11)
882 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
883 					   CTX_CTRL_RS_CTX_ENABLE);
884 	if (ctx_needs_runalone(ce))
885 		ctl |= _MASKED_BIT_ENABLE(GEN12_CTX_CTRL_RUNALONE_MODE);
886 	regs[CTX_CONTEXT_CONTROL] = ctl;
887 
888 	regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
889 
890 	loc = lrc_ring_bb_offset(engine);
891 	if (loc != -1)
892 		regs[loc + 1] = 0;
893 }
894 
895 static void init_wa_bb_regs(u32 * const regs,
896 			    const struct intel_engine_cs *engine)
897 {
898 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
899 
900 	if (wa_ctx->per_ctx.size) {
901 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
902 
903 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
904 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
905 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
906 	}
907 
908 	if (wa_ctx->indirect_ctx.size) {
909 		lrc_setup_indirect_ctx(regs, engine,
910 				       i915_ggtt_offset(wa_ctx->vma) +
911 				       wa_ctx->indirect_ctx.offset,
912 				       wa_ctx->indirect_ctx.size);
913 	}
914 }
915 
916 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
917 {
918 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
919 		/* 64b PPGTT (48bit canonical)
920 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
921 		 * other PDP Descriptors are ignored.
922 		 */
923 		ASSIGN_CTX_PML4(ppgtt, regs);
924 	} else {
925 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
926 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
927 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
928 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
929 	}
930 }
931 
932 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
933 {
934 	if (i915_is_ggtt(vm))
935 		return i915_vm_to_ggtt(vm)->alias;
936 	else
937 		return i915_vm_to_ppgtt(vm);
938 }
939 
940 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
941 {
942 	int x;
943 
944 	x = lrc_ring_mi_mode(engine);
945 	if (x != -1) {
946 		regs[x + 1] &= ~STOP_RING;
947 		regs[x + 1] |= STOP_RING << 16;
948 	}
949 }
950 
951 static void __lrc_init_regs(u32 *regs,
952 			    const struct intel_context *ce,
953 			    const struct intel_engine_cs *engine,
954 			    bool inhibit)
955 {
956 	/*
957 	 * A context is actually a big batch buffer with several
958 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
959 	 * values we are setting here are only for the first context restore:
960 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
961 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
962 	 * we are not initializing here).
963 	 *
964 	 * Must keep consistent with virtual_update_register_offsets().
965 	 */
966 
967 	if (inhibit)
968 		memset(regs, 0, PAGE_SIZE);
969 
970 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
971 
972 	init_common_regs(regs, ce, engine, inhibit);
973 	init_ppgtt_regs(regs, vm_alias(ce->vm));
974 
975 	init_wa_bb_regs(regs, engine);
976 
977 	__reset_stop_ring(regs, engine);
978 }
979 
980 void lrc_init_regs(const struct intel_context *ce,
981 		   const struct intel_engine_cs *engine,
982 		   bool inhibit)
983 {
984 	__lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
985 }
986 
987 void lrc_reset_regs(const struct intel_context *ce,
988 		    const struct intel_engine_cs *engine)
989 {
990 	__reset_stop_ring(ce->lrc_reg_state, engine);
991 }
992 
993 static void
994 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
995 {
996 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
997 		return;
998 
999 	vaddr += engine->context_size;
1000 
1001 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
1002 }
1003 
1004 static void
1005 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
1006 {
1007 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1008 		return;
1009 
1010 	vaddr += engine->context_size;
1011 
1012 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
1013 		drm_err_once(&engine->i915->drm,
1014 			     "%s context redzone overwritten!\n",
1015 			     engine->name);
1016 }
1017 
1018 static u32 context_wa_bb_offset(const struct intel_context *ce)
1019 {
1020 	return PAGE_SIZE * ce->wa_bb_page;
1021 }
1022 
1023 static u32 *context_indirect_bb(const struct intel_context *ce)
1024 {
1025 	void *ptr;
1026 
1027 	GEM_BUG_ON(!ce->wa_bb_page);
1028 
1029 	ptr = ce->lrc_reg_state;
1030 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1031 	ptr += context_wa_bb_offset(ce);
1032 
1033 	return ptr;
1034 }
1035 
1036 void lrc_init_state(struct intel_context *ce,
1037 		    struct intel_engine_cs *engine,
1038 		    void *state)
1039 {
1040 	bool inhibit = true;
1041 
1042 	set_redzone(state, engine);
1043 
1044 	if (engine->default_state) {
1045 		shmem_read(engine->default_state, 0,
1046 			   state, engine->context_size);
1047 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1048 		inhibit = false;
1049 	}
1050 
1051 	/* Clear the ppHWSP (inc. per-context counters) */
1052 	memset(state, 0, PAGE_SIZE);
1053 
1054 	/* Clear the indirect wa and storage */
1055 	if (ce->wa_bb_page)
1056 		memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE);
1057 
1058 	/*
1059 	 * The second page of the context object contains some registers which
1060 	 * must be set up prior to the first execution.
1061 	 */
1062 	__lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
1063 }
1064 
1065 u32 lrc_indirect_bb(const struct intel_context *ce)
1066 {
1067 	return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce);
1068 }
1069 
1070 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs)
1071 {
1072 	/* If predication is active, this will be noop'ed */
1073 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1074 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1075 	*cs++ = 0;
1076 	*cs++ = 0; /* No predication */
1077 
1078 	/* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */
1079 	*cs++ = MI_BATCH_BUFFER_END | BIT(15);
1080 	*cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE;
1081 
1082 	/* Instructions are no longer predicated (disabled), we can proceed */
1083 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1084 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1085 	*cs++ = 0;
1086 	*cs++ = 1; /* enable predication before the next BB */
1087 
1088 	*cs++ = MI_BATCH_BUFFER_END;
1089 	GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA);
1090 
1091 	return cs;
1092 }
1093 
1094 static struct i915_vma *
1095 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
1096 {
1097 	struct drm_i915_gem_object *obj;
1098 	struct i915_vma *vma;
1099 	u32 context_size;
1100 
1101 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1102 
1103 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1104 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
1105 
1106 	if (GRAPHICS_VER(engine->i915) >= 12) {
1107 		ce->wa_bb_page = context_size / PAGE_SIZE;
1108 		context_size += PAGE_SIZE;
1109 	}
1110 
1111 	if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
1112 		ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
1113 		context_size += PARENT_SCRATCH_SIZE;
1114 	}
1115 
1116 	obj = i915_gem_object_create_lmem(engine->i915, context_size,
1117 					  I915_BO_ALLOC_PM_VOLATILE);
1118 	if (IS_ERR(obj)) {
1119 		obj = i915_gem_object_create_shmem(engine->i915, context_size);
1120 		if (IS_ERR(obj))
1121 			return ERR_CAST(obj);
1122 
1123 		/*
1124 		 * Wa_22016122933: For Media version 13.0, all Media GT shared
1125 		 * memory needs to be mapped as WC on CPU side and UC (PAT
1126 		 * index 2) on GPU side.
1127 		 */
1128 		if (intel_gt_needs_wa_22016122933(engine->gt))
1129 			i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
1130 	}
1131 
1132 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1133 	if (IS_ERR(vma)) {
1134 		i915_gem_object_put(obj);
1135 		return vma;
1136 	}
1137 
1138 	return vma;
1139 }
1140 
1141 static struct intel_timeline *
1142 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
1143 {
1144 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
1145 
1146 	return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
1147 }
1148 
1149 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
1150 {
1151 	struct intel_ring *ring;
1152 	struct i915_vma *vma;
1153 	int err;
1154 
1155 	GEM_BUG_ON(ce->state);
1156 
1157 	vma = __lrc_alloc_state(ce, engine);
1158 	if (IS_ERR(vma))
1159 		return PTR_ERR(vma);
1160 
1161 	ring = intel_engine_create_ring(engine, ce->ring_size);
1162 	if (IS_ERR(ring)) {
1163 		err = PTR_ERR(ring);
1164 		goto err_vma;
1165 	}
1166 
1167 	if (!page_mask_bits(ce->timeline)) {
1168 		struct intel_timeline *tl;
1169 
1170 		/*
1171 		 * Use the static global HWSP for the kernel context, and
1172 		 * a dynamically allocated cacheline for everyone else.
1173 		 */
1174 		if (unlikely(ce->timeline))
1175 			tl = pinned_timeline(ce, engine);
1176 		else
1177 			tl = intel_timeline_create(engine->gt);
1178 		if (IS_ERR(tl)) {
1179 			err = PTR_ERR(tl);
1180 			goto err_ring;
1181 		}
1182 
1183 		ce->timeline = tl;
1184 	}
1185 
1186 	ce->ring = ring;
1187 	ce->state = vma;
1188 
1189 	return 0;
1190 
1191 err_ring:
1192 	intel_ring_put(ring);
1193 err_vma:
1194 	i915_vma_put(vma);
1195 	return err;
1196 }
1197 
1198 void lrc_reset(struct intel_context *ce)
1199 {
1200 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1201 
1202 	intel_ring_reset(ce->ring, ce->ring->emit);
1203 
1204 	/* Scrub away the garbage */
1205 	lrc_init_regs(ce, ce->engine, true);
1206 	ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1207 }
1208 
1209 int
1210 lrc_pre_pin(struct intel_context *ce,
1211 	    struct intel_engine_cs *engine,
1212 	    struct i915_gem_ww_ctx *ww,
1213 	    void **vaddr)
1214 {
1215 	GEM_BUG_ON(!ce->state);
1216 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1217 
1218 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
1219 					 intel_gt_coherent_map_type(ce->engine->gt,
1220 								    ce->state->obj,
1221 								    false) |
1222 					 I915_MAP_OVERRIDE);
1223 
1224 	return PTR_ERR_OR_ZERO(*vaddr);
1225 }
1226 
1227 int
1228 lrc_pin(struct intel_context *ce,
1229 	struct intel_engine_cs *engine,
1230 	void *vaddr)
1231 {
1232 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1233 
1234 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1235 		lrc_init_state(ce, engine, vaddr);
1236 
1237 	ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1238 	return 0;
1239 }
1240 
1241 void lrc_unpin(struct intel_context *ce)
1242 {
1243 	if (unlikely(ce->parallel.last_rq)) {
1244 		i915_request_put(ce->parallel.last_rq);
1245 		ce->parallel.last_rq = NULL;
1246 	}
1247 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1248 		      ce->engine);
1249 }
1250 
1251 void lrc_post_unpin(struct intel_context *ce)
1252 {
1253 	i915_gem_object_unpin_map(ce->state->obj);
1254 }
1255 
1256 void lrc_fini(struct intel_context *ce)
1257 {
1258 	if (!ce->state)
1259 		return;
1260 
1261 	intel_ring_put(fetch_and_zero(&ce->ring));
1262 	i915_vma_put(fetch_and_zero(&ce->state));
1263 }
1264 
1265 void lrc_destroy(struct kref *kref)
1266 {
1267 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1268 
1269 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1270 	GEM_BUG_ON(intel_context_is_pinned(ce));
1271 
1272 	lrc_fini(ce);
1273 
1274 	intel_context_fini(ce);
1275 	intel_context_free(ce);
1276 }
1277 
1278 static u32 *
1279 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1280 {
1281 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1282 		MI_SRM_LRM_GLOBAL_GTT |
1283 		MI_LRI_LRM_CS_MMIO;
1284 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1285 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1286 		CTX_TIMESTAMP * sizeof(u32);
1287 	*cs++ = 0;
1288 
1289 	*cs++ = MI_LOAD_REGISTER_REG |
1290 		MI_LRR_SOURCE_CS_MMIO |
1291 		MI_LRI_LRM_CS_MMIO;
1292 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1293 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1294 
1295 	*cs++ = MI_LOAD_REGISTER_REG |
1296 		MI_LRR_SOURCE_CS_MMIO |
1297 		MI_LRI_LRM_CS_MMIO;
1298 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1299 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1300 
1301 	return cs;
1302 }
1303 
1304 static u32 *
1305 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1306 {
1307 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1308 
1309 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1310 		MI_SRM_LRM_GLOBAL_GTT |
1311 		MI_LRI_LRM_CS_MMIO;
1312 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1313 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1314 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1315 	*cs++ = 0;
1316 
1317 	return cs;
1318 }
1319 
1320 static u32 *
1321 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1322 {
1323 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1324 
1325 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1326 		MI_SRM_LRM_GLOBAL_GTT |
1327 		MI_LRI_LRM_CS_MMIO;
1328 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1329 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1330 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1331 	*cs++ = 0;
1332 
1333 	*cs++ = MI_LOAD_REGISTER_REG |
1334 		MI_LRR_SOURCE_CS_MMIO |
1335 		MI_LRI_LRM_CS_MMIO;
1336 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1337 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1338 
1339 	return cs;
1340 }
1341 
1342 /*
1343  * The bspec's tuning guide asks us to program a vertical watermark value of
1344  * 0x3FF.  However this register is not saved/restored properly by the
1345  * hardware, so we're required to apply the desired value via INDIRECT_CTX
1346  * batch buffer to ensure the value takes effect properly.  All other bits
1347  * in this register should remain at 0 (the hardware default).
1348  */
1349 static u32 *
1350 dg2_emit_draw_watermark_setting(u32 *cs)
1351 {
1352 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1353 	*cs++ = i915_mmio_reg_offset(DRAW_WATERMARK);
1354 	*cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF);
1355 
1356 	return cs;
1357 }
1358 
1359 static u32 *
1360 gen12_invalidate_state_cache(u32 *cs)
1361 {
1362 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1363 	*cs++ = i915_mmio_reg_offset(GEN12_CS_DEBUG_MODE2);
1364 	*cs++ = _MASKED_BIT_ENABLE(INSTRUCTION_STATE_CACHE_INVALIDATE);
1365 	return cs;
1366 }
1367 
1368 static u32 *
1369 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1370 {
1371 	cs = gen12_emit_timestamp_wa(ce, cs);
1372 	cs = gen12_emit_cmd_buf_wa(ce, cs);
1373 	cs = gen12_emit_restore_scratch(ce, cs);
1374 
1375 	/* Wa_16013000631:dg2 */
1376 	if (IS_DG2_G11(ce->engine->i915))
1377 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1378 
1379 	cs = gen12_emit_aux_table_inv(ce->engine, cs);
1380 
1381 	/* Wa_18022495364 */
1382 	if (IS_GFX_GT_IP_RANGE(ce->engine->gt, IP_VER(12, 0), IP_VER(12, 10)))
1383 		cs = gen12_invalidate_state_cache(cs);
1384 
1385 	/* Wa_16014892111 */
1386 	if (IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1387 	    IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
1388 	    IS_DG2(ce->engine->i915))
1389 		cs = dg2_emit_draw_watermark_setting(cs);
1390 
1391 	return cs;
1392 }
1393 
1394 static u32 *
1395 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1396 {
1397 	cs = gen12_emit_timestamp_wa(ce, cs);
1398 	cs = gen12_emit_restore_scratch(ce, cs);
1399 
1400 	/* Wa_16013000631:dg2 */
1401 	if (IS_DG2_G11(ce->engine->i915))
1402 		if (ce->engine->class == COMPUTE_CLASS)
1403 			cs = gen8_emit_pipe_control(cs,
1404 						    PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1405 						    0);
1406 
1407 	return gen12_emit_aux_table_inv(ce->engine, cs);
1408 }
1409 
1410 static void
1411 setup_indirect_ctx_bb(const struct intel_context *ce,
1412 		      const struct intel_engine_cs *engine,
1413 		      u32 *(*emit)(const struct intel_context *, u32 *))
1414 {
1415 	u32 * const start = context_indirect_bb(ce);
1416 	u32 *cs;
1417 
1418 	cs = emit(ce, start);
1419 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1420 	while ((unsigned long)cs % CACHELINE_BYTES)
1421 		*cs++ = MI_NOOP;
1422 
1423 	GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start));
1424 	setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start));
1425 
1426 	lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1427 			       lrc_indirect_bb(ce),
1428 			       (cs - start) * sizeof(*cs));
1429 }
1430 
1431 /*
1432  * The context descriptor encodes various attributes of a context,
1433  * including its GTT address and some flags. Because it's fairly
1434  * expensive to calculate, we'll just do it once and cache the result,
1435  * which remains valid until the context is unpinned.
1436  *
1437  * This is what a descriptor looks like, from LSB to MSB::
1438  *
1439  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
1440  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
1441  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
1442  *      bits 53-54:    mbz, reserved for use by hardware
1443  *      bits 55-63:    group ID, currently unused and set to 0
1444  *
1445  * Starting from Gen11, the upper dword of the descriptor has a new format:
1446  *
1447  *      bits 32-36:    reserved
1448  *      bits 37-47:    SW context ID
1449  *      bits 48:53:    engine instance
1450  *      bit 54:        mbz, reserved for use by hardware
1451  *      bits 55-60:    SW counter
1452  *      bits 61-63:    engine class
1453  *
1454  * On Xe_HP, the upper dword of the descriptor has a new format:
1455  *
1456  *      bits 32-37:    virtual function number
1457  *      bit 38:        mbz, reserved for use by hardware
1458  *      bits 39-54:    SW context ID
1459  *      bits 55-57:    reserved
1460  *      bits 58-63:    SW counter
1461  *
1462  * engine info, SW context ID and SW counter need to form a unique number
1463  * (Context ID) per lrc.
1464  */
1465 static u32 lrc_descriptor(const struct intel_context *ce)
1466 {
1467 	u32 desc;
1468 
1469 	desc = INTEL_LEGACY_32B_CONTEXT;
1470 	if (i915_vm_is_4lvl(ce->vm))
1471 		desc = INTEL_LEGACY_64B_CONTEXT;
1472 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1473 
1474 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1475 	if (GRAPHICS_VER(ce->vm->i915) == 8)
1476 		desc |= GEN8_CTX_L3LLC_COHERENT;
1477 
1478 	return i915_ggtt_offset(ce->state) | desc;
1479 }
1480 
1481 u32 lrc_update_regs(const struct intel_context *ce,
1482 		    const struct intel_engine_cs *engine,
1483 		    u32 head)
1484 {
1485 	struct intel_ring *ring = ce->ring;
1486 	u32 *regs = ce->lrc_reg_state;
1487 
1488 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1489 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1490 
1491 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1492 	regs[CTX_RING_HEAD] = head;
1493 	regs[CTX_RING_TAIL] = ring->tail;
1494 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1495 
1496 	/* RPCS */
1497 	if (engine->class == RENDER_CLASS) {
1498 		regs[CTX_R_PWR_CLK_STATE] =
1499 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1500 
1501 		i915_oa_init_reg_state(ce, engine);
1502 	}
1503 
1504 	if (ce->wa_bb_page) {
1505 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1506 
1507 		fn = gen12_emit_indirect_ctx_xcs;
1508 		if (ce->engine->class == RENDER_CLASS)
1509 			fn = gen12_emit_indirect_ctx_rcs;
1510 
1511 		/* Mutually exclusive wrt to global indirect bb */
1512 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1513 		setup_indirect_ctx_bb(ce, engine, fn);
1514 	}
1515 
1516 	return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1517 }
1518 
1519 void lrc_update_offsets(struct intel_context *ce,
1520 			struct intel_engine_cs *engine)
1521 {
1522 	set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1523 }
1524 
1525 void lrc_check_regs(const struct intel_context *ce,
1526 		    const struct intel_engine_cs *engine,
1527 		    const char *when)
1528 {
1529 	const struct intel_ring *ring = ce->ring;
1530 	u32 *regs = ce->lrc_reg_state;
1531 	bool valid = true;
1532 	int x;
1533 
1534 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1535 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1536 		       engine->name,
1537 		       regs[CTX_RING_START],
1538 		       i915_ggtt_offset(ring->vma));
1539 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1540 		valid = false;
1541 	}
1542 
1543 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1544 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1545 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1546 		       engine->name,
1547 		       regs[CTX_RING_CTL],
1548 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1549 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1550 		valid = false;
1551 	}
1552 
1553 	x = lrc_ring_mi_mode(engine);
1554 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1555 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1556 		       engine->name, regs[x + 1]);
1557 		regs[x + 1] &= ~STOP_RING;
1558 		regs[x + 1] |= STOP_RING << 16;
1559 		valid = false;
1560 	}
1561 
1562 	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1563 }
1564 
1565 /*
1566  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1567  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1568  * but there is a slight complication as this is applied in WA batch where the
1569  * values are only initialized once so we cannot take register value at the
1570  * beginning and reuse it further; hence we save its value to memory, upload a
1571  * constant value with bit21 set and then we restore it back with the saved value.
1572  * To simplify the WA, a constant value is formed by using the default value
1573  * of this register. This shouldn't be a problem because we are only modifying
1574  * it for a short period and this batch in non-premptible. We can ofcourse
1575  * use additional instructions that read the actual value of the register
1576  * at that time and set our bit of interest but it makes the WA complicated.
1577  *
1578  * This WA is also required for Gen9 so extracting as a function avoids
1579  * code duplication.
1580  */
1581 static u32 *
1582 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1583 {
1584 	/* NB no one else is allowed to scribble over scratch + 256! */
1585 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1586 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1587 	*batch++ = intel_gt_scratch_offset(engine->gt,
1588 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1589 	*batch++ = 0;
1590 
1591 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1592 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1593 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1594 
1595 	batch = gen8_emit_pipe_control(batch,
1596 				       PIPE_CONTROL_CS_STALL |
1597 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1598 				       0);
1599 
1600 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1601 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1602 	*batch++ = intel_gt_scratch_offset(engine->gt,
1603 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1604 	*batch++ = 0;
1605 
1606 	return batch;
1607 }
1608 
1609 /*
1610  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1611  * initialized at the beginning and shared across all contexts but this field
1612  * helps us to have multiple batches at different offsets and select them based
1613  * on a criteria. At the moment this batch always start at the beginning of the page
1614  * and at this point we don't have multiple wa_ctx batch buffers.
1615  *
1616  * The number of WA applied are not known at the beginning; we use this field
1617  * to return the no of DWORDS written.
1618  *
1619  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1620  * so it adds NOOPs as padding to make it cacheline aligned.
1621  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1622  * makes a complete batch buffer.
1623  */
1624 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1625 {
1626 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1627 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1628 
1629 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1630 	if (IS_BROADWELL(engine->i915))
1631 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1632 
1633 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1634 	/* Actual scratch location is at 128 bytes offset */
1635 	batch = gen8_emit_pipe_control(batch,
1636 				       PIPE_CONTROL_FLUSH_L3 |
1637 				       PIPE_CONTROL_STORE_DATA_INDEX |
1638 				       PIPE_CONTROL_CS_STALL |
1639 				       PIPE_CONTROL_QW_WRITE,
1640 				       LRC_PPHWSP_SCRATCH_ADDR);
1641 
1642 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1643 
1644 	/* Pad to end of cacheline */
1645 	while ((unsigned long)batch % CACHELINE_BYTES)
1646 		*batch++ = MI_NOOP;
1647 
1648 	/*
1649 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1650 	 * execution depends on the length specified in terms of cache lines
1651 	 * in the register CTX_RCS_INDIRECT_CTX
1652 	 */
1653 
1654 	return batch;
1655 }
1656 
1657 struct lri {
1658 	i915_reg_t reg;
1659 	u32 value;
1660 };
1661 
1662 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1663 {
1664 	GEM_BUG_ON(!count || count > 63);
1665 
1666 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1667 	do {
1668 		*batch++ = i915_mmio_reg_offset(lri->reg);
1669 		*batch++ = lri->value;
1670 	} while (lri++, --count);
1671 	*batch++ = MI_NOOP;
1672 
1673 	return batch;
1674 }
1675 
1676 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1677 {
1678 	static const struct lri lri[] = {
1679 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1680 		{
1681 			COMMON_SLICE_CHICKEN2,
1682 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1683 				       0),
1684 		},
1685 
1686 		/* BSpec: 11391 */
1687 		{
1688 			FF_SLICE_CHICKEN,
1689 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1690 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1691 		},
1692 
1693 		/* BSpec: 11299 */
1694 		{
1695 			_3D_CHICKEN3,
1696 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1697 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1698 		}
1699 	};
1700 
1701 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1702 
1703 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1704 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1705 
1706 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1707 	batch = gen8_emit_pipe_control(batch,
1708 				       PIPE_CONTROL_FLUSH_L3 |
1709 				       PIPE_CONTROL_STORE_DATA_INDEX |
1710 				       PIPE_CONTROL_CS_STALL |
1711 				       PIPE_CONTROL_QW_WRITE,
1712 				       LRC_PPHWSP_SCRATCH_ADDR);
1713 
1714 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1715 
1716 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1717 	if (HAS_POOLED_EU(engine->i915)) {
1718 		/*
1719 		 * EU pool configuration is setup along with golden context
1720 		 * during context initialization. This value depends on
1721 		 * device type (2x6 or 3x6) and needs to be updated based
1722 		 * on which subslice is disabled especially for 2x6
1723 		 * devices, however it is safe to load default
1724 		 * configuration of 3x6 device instead of masking off
1725 		 * corresponding bits because HW ignores bits of a disabled
1726 		 * subslice and drops down to appropriate config. Please
1727 		 * see render_state_setup() in i915_gem_render_state.c for
1728 		 * possible configurations, to avoid duplication they are
1729 		 * not shown here again.
1730 		 */
1731 		*batch++ = GEN9_MEDIA_POOL_STATE;
1732 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1733 		*batch++ = 0x00777000;
1734 		*batch++ = 0;
1735 		*batch++ = 0;
1736 		*batch++ = 0;
1737 	}
1738 
1739 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1740 
1741 	/* Pad to end of cacheline */
1742 	while ((unsigned long)batch % CACHELINE_BYTES)
1743 		*batch++ = MI_NOOP;
1744 
1745 	return batch;
1746 }
1747 
1748 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1749 
1750 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1751 {
1752 	struct drm_i915_gem_object *obj;
1753 	struct i915_vma *vma;
1754 	int err;
1755 
1756 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1757 	if (IS_ERR(obj))
1758 		return PTR_ERR(obj);
1759 
1760 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1761 	if (IS_ERR(vma)) {
1762 		err = PTR_ERR(vma);
1763 		goto err;
1764 	}
1765 
1766 	engine->wa_ctx.vma = vma;
1767 	return 0;
1768 
1769 err:
1770 	i915_gem_object_put(obj);
1771 	return err;
1772 }
1773 
1774 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1775 {
1776 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1777 }
1778 
1779 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1780 
1781 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1782 {
1783 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1784 	struct i915_wa_ctx_bb *wa_bb[] = {
1785 		&wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1786 	};
1787 	wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1788 	struct i915_gem_ww_ctx ww;
1789 	void *batch, *batch_ptr;
1790 	unsigned int i;
1791 	int err;
1792 
1793 	if (GRAPHICS_VER(engine->i915) >= 11 ||
1794 	    !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1795 		return;
1796 
1797 	if (GRAPHICS_VER(engine->i915) == 9) {
1798 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1799 		wa_bb_fn[1] = NULL;
1800 	} else if (GRAPHICS_VER(engine->i915) == 8) {
1801 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1802 		wa_bb_fn[1] = NULL;
1803 	}
1804 
1805 	err = lrc_create_wa_ctx(engine);
1806 	if (err) {
1807 		/*
1808 		 * We continue even if we fail to initialize WA batch
1809 		 * because we only expect rare glitches but nothing
1810 		 * critical to prevent us from using GPU
1811 		 */
1812 		drm_err(&engine->i915->drm,
1813 			"Ignoring context switch w/a allocation error:%d\n",
1814 			err);
1815 		return;
1816 	}
1817 
1818 	if (!engine->wa_ctx.vma)
1819 		return;
1820 
1821 	i915_gem_ww_ctx_init(&ww, true);
1822 retry:
1823 	err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1824 	if (!err)
1825 		err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1826 	if (err)
1827 		goto err;
1828 
1829 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1830 	if (IS_ERR(batch)) {
1831 		err = PTR_ERR(batch);
1832 		goto err_unpin;
1833 	}
1834 
1835 	/*
1836 	 * Emit the two workaround batch buffers, recording the offset from the
1837 	 * start of the workaround batch buffer object for each and their
1838 	 * respective sizes.
1839 	 */
1840 	batch_ptr = batch;
1841 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1842 		wa_bb[i]->offset = batch_ptr - batch;
1843 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1844 						  CACHELINE_BYTES))) {
1845 			err = -EINVAL;
1846 			break;
1847 		}
1848 		if (wa_bb_fn[i])
1849 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1850 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1851 	}
1852 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1853 
1854 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1855 	__i915_gem_object_release_map(wa_ctx->vma->obj);
1856 
1857 	/* Verify that we can handle failure to setup the wa_ctx */
1858 	if (!err)
1859 		err = i915_inject_probe_error(engine->i915, -ENODEV);
1860 
1861 err_unpin:
1862 	if (err)
1863 		i915_vma_unpin(wa_ctx->vma);
1864 err:
1865 	if (err == -EDEADLK) {
1866 		err = i915_gem_ww_ctx_backoff(&ww);
1867 		if (!err)
1868 			goto retry;
1869 	}
1870 	i915_gem_ww_ctx_fini(&ww);
1871 
1872 	if (err) {
1873 		i915_vma_put(engine->wa_ctx.vma);
1874 
1875 		/* Clear all flags to prevent further use */
1876 		memset(wa_ctx, 0, sizeof(*wa_ctx));
1877 	}
1878 }
1879 
1880 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1881 {
1882 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1883 	stats->runtime.num_underflow++;
1884 	stats->runtime.max_underflow =
1885 		max_t(u32, stats->runtime.max_underflow, -dt);
1886 #endif
1887 }
1888 
1889 static u32 lrc_get_runtime(const struct intel_context *ce)
1890 {
1891 	/*
1892 	 * We can use either ppHWSP[16] which is recorded before the context
1893 	 * switch (and so excludes the cost of context switches) or use the
1894 	 * value from the context image itself, which is saved/restored earlier
1895 	 * and so includes the cost of the save.
1896 	 */
1897 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1898 }
1899 
1900 void lrc_update_runtime(struct intel_context *ce)
1901 {
1902 	struct intel_context_stats *stats = &ce->stats;
1903 	u32 old;
1904 	s32 dt;
1905 
1906 	old = stats->runtime.last;
1907 	stats->runtime.last = lrc_get_runtime(ce);
1908 	dt = stats->runtime.last - old;
1909 	if (!dt)
1910 		return;
1911 
1912 	if (unlikely(dt < 0)) {
1913 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1914 			 old, stats->runtime.last, dt);
1915 		st_runtime_underflow(stats, dt);
1916 		return;
1917 	}
1918 
1919 	ewma_runtime_add(&stats->runtime.avg, dt);
1920 	stats->runtime.total += dt;
1921 }
1922 
1923 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1924 #include "selftest_lrc.c"
1925 #endif
1926