xref: /linux/drivers/gpu/drm/i915/gt/intel_lrc.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 
8 #include "gen8_engine_cs.h"
9 #include "i915_drv.h"
10 #include "i915_perf.h"
11 #include "i915_reg.h"
12 #include "intel_context.h"
13 #include "intel_engine.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gpu_commands.h"
16 #include "intel_gt.h"
17 #include "intel_gt_regs.h"
18 #include "intel_lrc.h"
19 #include "intel_lrc_reg.h"
20 #include "intel_ring.h"
21 #include "shmem_utils.h"
22 
23 /*
24  * The per-platform tables are u8-encoded in @data. Decode @data and set the
25  * addresses' offset and commands in @regs. The following encoding is used
26  * for each byte. There are 2 steps: decoding commands and decoding addresses.
27  *
28  * Commands:
29  * [7]: create NOPs - number of NOPs are set in lower bits
30  * [6]: When creating MI_LOAD_REGISTER_IMM command, allow to set
31  *      MI_LRI_FORCE_POSTED
32  * [5:0]: Number of NOPs or registers to set values to in case of
33  *        MI_LOAD_REGISTER_IMM
34  *
35  * Addresses: these are decoded after a MI_LOAD_REGISTER_IMM command by "count"
36  * number of registers. They are set by using the REG/REG16 macros: the former
37  * is used for offsets smaller than 0x200 while the latter is for values bigger
38  * than that. Those macros already set all the bits documented below correctly:
39  *
40  * [7]: When a register offset needs more than 6 bits, use additional bytes, to
41  *      follow, for the lower bits
42  * [6:0]: Register offset, without considering the engine base.
43  *
44  * This function only tweaks the commands and register offsets. Values are not
45  * filled out.
46  */
47 static void set_offsets(u32 *regs,
48 			const u8 *data,
49 			const struct intel_engine_cs *engine,
50 			bool close)
51 #define NOP(x) (BIT(7) | (x))
52 #define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
53 #define POSTED BIT(0)
54 #define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
55 #define REG16(x) \
56 	(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
57 	(((x) >> 2) & 0x7f)
58 #define END 0
59 {
60 	const u32 base = engine->mmio_base;
61 
62 	while (*data) {
63 		u8 count, flags;
64 
65 		if (*data & BIT(7)) { /* skip */
66 			count = *data++ & ~BIT(7);
67 			regs += count;
68 			continue;
69 		}
70 
71 		count = *data & 0x3f;
72 		flags = *data >> 6;
73 		data++;
74 
75 		*regs = MI_LOAD_REGISTER_IMM(count);
76 		if (flags & POSTED)
77 			*regs |= MI_LRI_FORCE_POSTED;
78 		if (GRAPHICS_VER(engine->i915) >= 11)
79 			*regs |= MI_LRI_LRM_CS_MMIO;
80 		regs++;
81 
82 		GEM_BUG_ON(!count);
83 		do {
84 			u32 offset = 0;
85 			u8 v;
86 
87 			do {
88 				v = *data++;
89 				offset <<= 7;
90 				offset |= v & ~BIT(7);
91 			} while (v & BIT(7));
92 
93 			regs[0] = base + (offset << 2);
94 			regs += 2;
95 		} while (--count);
96 	}
97 
98 	if (close) {
99 		/* Close the batch; used mainly by live_lrc_layout() */
100 		*regs = MI_BATCH_BUFFER_END;
101 		if (GRAPHICS_VER(engine->i915) >= 11)
102 			*regs |= BIT(0);
103 	}
104 }
105 
106 static const u8 gen8_xcs_offsets[] = {
107 	NOP(1),
108 	LRI(11, 0),
109 	REG16(0x244),
110 	REG(0x034),
111 	REG(0x030),
112 	REG(0x038),
113 	REG(0x03c),
114 	REG(0x168),
115 	REG(0x140),
116 	REG(0x110),
117 	REG(0x11c),
118 	REG(0x114),
119 	REG(0x118),
120 
121 	NOP(9),
122 	LRI(9, 0),
123 	REG16(0x3a8),
124 	REG16(0x28c),
125 	REG16(0x288),
126 	REG16(0x284),
127 	REG16(0x280),
128 	REG16(0x27c),
129 	REG16(0x278),
130 	REG16(0x274),
131 	REG16(0x270),
132 
133 	NOP(13),
134 	LRI(2, 0),
135 	REG16(0x200),
136 	REG(0x028),
137 
138 	END
139 };
140 
141 static const u8 gen9_xcs_offsets[] = {
142 	NOP(1),
143 	LRI(14, POSTED),
144 	REG16(0x244),
145 	REG(0x034),
146 	REG(0x030),
147 	REG(0x038),
148 	REG(0x03c),
149 	REG(0x168),
150 	REG(0x140),
151 	REG(0x110),
152 	REG(0x11c),
153 	REG(0x114),
154 	REG(0x118),
155 	REG(0x1c0),
156 	REG(0x1c4),
157 	REG(0x1c8),
158 
159 	NOP(3),
160 	LRI(9, POSTED),
161 	REG16(0x3a8),
162 	REG16(0x28c),
163 	REG16(0x288),
164 	REG16(0x284),
165 	REG16(0x280),
166 	REG16(0x27c),
167 	REG16(0x278),
168 	REG16(0x274),
169 	REG16(0x270),
170 
171 	NOP(13),
172 	LRI(1, POSTED),
173 	REG16(0x200),
174 
175 	NOP(13),
176 	LRI(44, POSTED),
177 	REG(0x028),
178 	REG(0x09c),
179 	REG(0x0c0),
180 	REG(0x178),
181 	REG(0x17c),
182 	REG16(0x358),
183 	REG(0x170),
184 	REG(0x150),
185 	REG(0x154),
186 	REG(0x158),
187 	REG16(0x41c),
188 	REG16(0x600),
189 	REG16(0x604),
190 	REG16(0x608),
191 	REG16(0x60c),
192 	REG16(0x610),
193 	REG16(0x614),
194 	REG16(0x618),
195 	REG16(0x61c),
196 	REG16(0x620),
197 	REG16(0x624),
198 	REG16(0x628),
199 	REG16(0x62c),
200 	REG16(0x630),
201 	REG16(0x634),
202 	REG16(0x638),
203 	REG16(0x63c),
204 	REG16(0x640),
205 	REG16(0x644),
206 	REG16(0x648),
207 	REG16(0x64c),
208 	REG16(0x650),
209 	REG16(0x654),
210 	REG16(0x658),
211 	REG16(0x65c),
212 	REG16(0x660),
213 	REG16(0x664),
214 	REG16(0x668),
215 	REG16(0x66c),
216 	REG16(0x670),
217 	REG16(0x674),
218 	REG16(0x678),
219 	REG16(0x67c),
220 	REG(0x068),
221 
222 	END
223 };
224 
225 static const u8 gen12_xcs_offsets[] = {
226 	NOP(1),
227 	LRI(13, POSTED),
228 	REG16(0x244),
229 	REG(0x034),
230 	REG(0x030),
231 	REG(0x038),
232 	REG(0x03c),
233 	REG(0x168),
234 	REG(0x140),
235 	REG(0x110),
236 	REG(0x1c0),
237 	REG(0x1c4),
238 	REG(0x1c8),
239 	REG(0x180),
240 	REG16(0x2b4),
241 
242 	NOP(5),
243 	LRI(9, POSTED),
244 	REG16(0x3a8),
245 	REG16(0x28c),
246 	REG16(0x288),
247 	REG16(0x284),
248 	REG16(0x280),
249 	REG16(0x27c),
250 	REG16(0x278),
251 	REG16(0x274),
252 	REG16(0x270),
253 
254 	END
255 };
256 
257 static const u8 dg2_xcs_offsets[] = {
258 	NOP(1),
259 	LRI(15, POSTED),
260 	REG16(0x244),
261 	REG(0x034),
262 	REG(0x030),
263 	REG(0x038),
264 	REG(0x03c),
265 	REG(0x168),
266 	REG(0x140),
267 	REG(0x110),
268 	REG(0x1c0),
269 	REG(0x1c4),
270 	REG(0x1c8),
271 	REG(0x180),
272 	REG16(0x2b4),
273 	REG(0x120),
274 	REG(0x124),
275 
276 	NOP(1),
277 	LRI(9, POSTED),
278 	REG16(0x3a8),
279 	REG16(0x28c),
280 	REG16(0x288),
281 	REG16(0x284),
282 	REG16(0x280),
283 	REG16(0x27c),
284 	REG16(0x278),
285 	REG16(0x274),
286 	REG16(0x270),
287 
288 	END
289 };
290 
291 static const u8 gen8_rcs_offsets[] = {
292 	NOP(1),
293 	LRI(14, POSTED),
294 	REG16(0x244),
295 	REG(0x034),
296 	REG(0x030),
297 	REG(0x038),
298 	REG(0x03c),
299 	REG(0x168),
300 	REG(0x140),
301 	REG(0x110),
302 	REG(0x11c),
303 	REG(0x114),
304 	REG(0x118),
305 	REG(0x1c0),
306 	REG(0x1c4),
307 	REG(0x1c8),
308 
309 	NOP(3),
310 	LRI(9, POSTED),
311 	REG16(0x3a8),
312 	REG16(0x28c),
313 	REG16(0x288),
314 	REG16(0x284),
315 	REG16(0x280),
316 	REG16(0x27c),
317 	REG16(0x278),
318 	REG16(0x274),
319 	REG16(0x270),
320 
321 	NOP(13),
322 	LRI(1, 0),
323 	REG(0x0c8),
324 
325 	END
326 };
327 
328 static const u8 gen9_rcs_offsets[] = {
329 	NOP(1),
330 	LRI(14, POSTED),
331 	REG16(0x244),
332 	REG(0x34),
333 	REG(0x30),
334 	REG(0x38),
335 	REG(0x3c),
336 	REG(0x168),
337 	REG(0x140),
338 	REG(0x110),
339 	REG(0x11c),
340 	REG(0x114),
341 	REG(0x118),
342 	REG(0x1c0),
343 	REG(0x1c4),
344 	REG(0x1c8),
345 
346 	NOP(3),
347 	LRI(9, POSTED),
348 	REG16(0x3a8),
349 	REG16(0x28c),
350 	REG16(0x288),
351 	REG16(0x284),
352 	REG16(0x280),
353 	REG16(0x27c),
354 	REG16(0x278),
355 	REG16(0x274),
356 	REG16(0x270),
357 
358 	NOP(13),
359 	LRI(1, 0),
360 	REG(0xc8),
361 
362 	NOP(13),
363 	LRI(44, POSTED),
364 	REG(0x28),
365 	REG(0x9c),
366 	REG(0xc0),
367 	REG(0x178),
368 	REG(0x17c),
369 	REG16(0x358),
370 	REG(0x170),
371 	REG(0x150),
372 	REG(0x154),
373 	REG(0x158),
374 	REG16(0x41c),
375 	REG16(0x600),
376 	REG16(0x604),
377 	REG16(0x608),
378 	REG16(0x60c),
379 	REG16(0x610),
380 	REG16(0x614),
381 	REG16(0x618),
382 	REG16(0x61c),
383 	REG16(0x620),
384 	REG16(0x624),
385 	REG16(0x628),
386 	REG16(0x62c),
387 	REG16(0x630),
388 	REG16(0x634),
389 	REG16(0x638),
390 	REG16(0x63c),
391 	REG16(0x640),
392 	REG16(0x644),
393 	REG16(0x648),
394 	REG16(0x64c),
395 	REG16(0x650),
396 	REG16(0x654),
397 	REG16(0x658),
398 	REG16(0x65c),
399 	REG16(0x660),
400 	REG16(0x664),
401 	REG16(0x668),
402 	REG16(0x66c),
403 	REG16(0x670),
404 	REG16(0x674),
405 	REG16(0x678),
406 	REG16(0x67c),
407 	REG(0x68),
408 
409 	END
410 };
411 
412 static const u8 gen11_rcs_offsets[] = {
413 	NOP(1),
414 	LRI(15, POSTED),
415 	REG16(0x244),
416 	REG(0x034),
417 	REG(0x030),
418 	REG(0x038),
419 	REG(0x03c),
420 	REG(0x168),
421 	REG(0x140),
422 	REG(0x110),
423 	REG(0x11c),
424 	REG(0x114),
425 	REG(0x118),
426 	REG(0x1c0),
427 	REG(0x1c4),
428 	REG(0x1c8),
429 	REG(0x180),
430 
431 	NOP(1),
432 	LRI(9, POSTED),
433 	REG16(0x3a8),
434 	REG16(0x28c),
435 	REG16(0x288),
436 	REG16(0x284),
437 	REG16(0x280),
438 	REG16(0x27c),
439 	REG16(0x278),
440 	REG16(0x274),
441 	REG16(0x270),
442 
443 	LRI(1, POSTED),
444 	REG(0x1b0),
445 
446 	NOP(10),
447 	LRI(1, 0),
448 	REG(0x0c8),
449 
450 	END
451 };
452 
453 static const u8 gen12_rcs_offsets[] = {
454 	NOP(1),
455 	LRI(13, POSTED),
456 	REG16(0x244),
457 	REG(0x034),
458 	REG(0x030),
459 	REG(0x038),
460 	REG(0x03c),
461 	REG(0x168),
462 	REG(0x140),
463 	REG(0x110),
464 	REG(0x1c0),
465 	REG(0x1c4),
466 	REG(0x1c8),
467 	REG(0x180),
468 	REG16(0x2b4),
469 
470 	NOP(5),
471 	LRI(9, POSTED),
472 	REG16(0x3a8),
473 	REG16(0x28c),
474 	REG16(0x288),
475 	REG16(0x284),
476 	REG16(0x280),
477 	REG16(0x27c),
478 	REG16(0x278),
479 	REG16(0x274),
480 	REG16(0x270),
481 
482 	LRI(3, POSTED),
483 	REG(0x1b0),
484 	REG16(0x5a8),
485 	REG16(0x5ac),
486 
487 	NOP(6),
488 	LRI(1, 0),
489 	REG(0x0c8),
490 	NOP(3 + 9 + 1),
491 
492 	LRI(51, POSTED),
493 	REG16(0x588),
494 	REG16(0x588),
495 	REG16(0x588),
496 	REG16(0x588),
497 	REG16(0x588),
498 	REG16(0x588),
499 	REG(0x028),
500 	REG(0x09c),
501 	REG(0x0c0),
502 	REG(0x178),
503 	REG(0x17c),
504 	REG16(0x358),
505 	REG(0x170),
506 	REG(0x150),
507 	REG(0x154),
508 	REG(0x158),
509 	REG16(0x41c),
510 	REG16(0x600),
511 	REG16(0x604),
512 	REG16(0x608),
513 	REG16(0x60c),
514 	REG16(0x610),
515 	REG16(0x614),
516 	REG16(0x618),
517 	REG16(0x61c),
518 	REG16(0x620),
519 	REG16(0x624),
520 	REG16(0x628),
521 	REG16(0x62c),
522 	REG16(0x630),
523 	REG16(0x634),
524 	REG16(0x638),
525 	REG16(0x63c),
526 	REG16(0x640),
527 	REG16(0x644),
528 	REG16(0x648),
529 	REG16(0x64c),
530 	REG16(0x650),
531 	REG16(0x654),
532 	REG16(0x658),
533 	REG16(0x65c),
534 	REG16(0x660),
535 	REG16(0x664),
536 	REG16(0x668),
537 	REG16(0x66c),
538 	REG16(0x670),
539 	REG16(0x674),
540 	REG16(0x678),
541 	REG16(0x67c),
542 	REG(0x068),
543 	REG(0x084),
544 	NOP(1),
545 
546 	END
547 };
548 
549 static const u8 dg2_rcs_offsets[] = {
550 	NOP(1),
551 	LRI(15, POSTED),
552 	REG16(0x244),
553 	REG(0x034),
554 	REG(0x030),
555 	REG(0x038),
556 	REG(0x03c),
557 	REG(0x168),
558 	REG(0x140),
559 	REG(0x110),
560 	REG(0x1c0),
561 	REG(0x1c4),
562 	REG(0x1c8),
563 	REG(0x180),
564 	REG16(0x2b4),
565 	REG(0x120),
566 	REG(0x124),
567 
568 	NOP(1),
569 	LRI(9, POSTED),
570 	REG16(0x3a8),
571 	REG16(0x28c),
572 	REG16(0x288),
573 	REG16(0x284),
574 	REG16(0x280),
575 	REG16(0x27c),
576 	REG16(0x278),
577 	REG16(0x274),
578 	REG16(0x270),
579 
580 	LRI(3, POSTED),
581 	REG(0x1b0),
582 	REG16(0x5a8),
583 	REG16(0x5ac),
584 
585 	NOP(6),
586 	LRI(1, 0),
587 	REG(0x0c8),
588 
589 	END
590 };
591 
592 static const u8 mtl_rcs_offsets[] = {
593 	NOP(1),
594 	LRI(15, POSTED),
595 	REG16(0x244),
596 	REG(0x034),
597 	REG(0x030),
598 	REG(0x038),
599 	REG(0x03c),
600 	REG(0x168),
601 	REG(0x140),
602 	REG(0x110),
603 	REG(0x1c0),
604 	REG(0x1c4),
605 	REG(0x1c8),
606 	REG(0x180),
607 	REG16(0x2b4),
608 	REG(0x120),
609 	REG(0x124),
610 
611 	NOP(1),
612 	LRI(9, POSTED),
613 	REG16(0x3a8),
614 	REG16(0x28c),
615 	REG16(0x288),
616 	REG16(0x284),
617 	REG16(0x280),
618 	REG16(0x27c),
619 	REG16(0x278),
620 	REG16(0x274),
621 	REG16(0x270),
622 
623 	NOP(2),
624 	LRI(2, POSTED),
625 	REG16(0x5a8),
626 	REG16(0x5ac),
627 
628 	NOP(6),
629 	LRI(1, 0),
630 	REG(0x0c8),
631 
632 	END
633 };
634 
635 #undef END
636 #undef REG16
637 #undef REG
638 #undef LRI
639 #undef NOP
640 
641 static const u8 *reg_offsets(const struct intel_engine_cs *engine)
642 {
643 	/*
644 	 * The gen12+ lists only have the registers we program in the basic
645 	 * default state. We rely on the context image using relative
646 	 * addressing to automatic fixup the register state between the
647 	 * physical engines for virtual engine.
648 	 */
649 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) >= 12 &&
650 		   !intel_engine_has_relative_mmio(engine));
651 
652 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) {
653 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70))
654 			return mtl_rcs_offsets;
655 		else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
656 			return dg2_rcs_offsets;
657 		else if (GRAPHICS_VER(engine->i915) >= 12)
658 			return gen12_rcs_offsets;
659 		else if (GRAPHICS_VER(engine->i915) >= 11)
660 			return gen11_rcs_offsets;
661 		else if (GRAPHICS_VER(engine->i915) >= 9)
662 			return gen9_rcs_offsets;
663 		else
664 			return gen8_rcs_offsets;
665 	} else {
666 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
667 			return dg2_xcs_offsets;
668 		else if (GRAPHICS_VER(engine->i915) >= 12)
669 			return gen12_xcs_offsets;
670 		else if (GRAPHICS_VER(engine->i915) >= 9)
671 			return gen9_xcs_offsets;
672 		else
673 			return gen8_xcs_offsets;
674 	}
675 }
676 
677 static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
678 {
679 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
680 		return 0x70;
681 	else if (GRAPHICS_VER(engine->i915) >= 12)
682 		return 0x60;
683 	else if (GRAPHICS_VER(engine->i915) >= 9)
684 		return 0x54;
685 	else if (engine->class == RENDER_CLASS)
686 		return 0x58;
687 	else
688 		return -1;
689 }
690 
691 static int lrc_ring_bb_offset(const struct intel_engine_cs *engine)
692 {
693 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
694 		return 0x80;
695 	else if (GRAPHICS_VER(engine->i915) >= 12)
696 		return 0x70;
697 	else if (GRAPHICS_VER(engine->i915) >= 9)
698 		return 0x64;
699 	else if (GRAPHICS_VER(engine->i915) >= 8 &&
700 		 engine->class == RENDER_CLASS)
701 		return 0xc4;
702 	else
703 		return -1;
704 }
705 
706 static int lrc_ring_gpr0(const struct intel_engine_cs *engine)
707 {
708 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
709 		return 0x84;
710 	else if (GRAPHICS_VER(engine->i915) >= 12)
711 		return 0x74;
712 	else if (GRAPHICS_VER(engine->i915) >= 9)
713 		return 0x68;
714 	else if (engine->class == RENDER_CLASS)
715 		return 0xd8;
716 	else
717 		return -1;
718 }
719 
720 static int lrc_ring_wa_bb_per_ctx(const struct intel_engine_cs *engine)
721 {
722 	if (GRAPHICS_VER(engine->i915) >= 12)
723 		return 0x12;
724 	else if (GRAPHICS_VER(engine->i915) >= 9 || engine->class == RENDER_CLASS)
725 		return 0x18;
726 	else
727 		return -1;
728 }
729 
730 static int lrc_ring_indirect_ptr(const struct intel_engine_cs *engine)
731 {
732 	int x;
733 
734 	x = lrc_ring_wa_bb_per_ctx(engine);
735 	if (x < 0)
736 		return x;
737 
738 	return x + 2;
739 }
740 
741 static int lrc_ring_indirect_offset(const struct intel_engine_cs *engine)
742 {
743 	int x;
744 
745 	x = lrc_ring_indirect_ptr(engine);
746 	if (x < 0)
747 		return x;
748 
749 	return x + 2;
750 }
751 
752 static int lrc_ring_cmd_buf_cctl(const struct intel_engine_cs *engine)
753 {
754 
755 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
756 		/*
757 		 * Note that the CSFE context has a dummy slot for CMD_BUF_CCTL
758 		 * simply to match the RCS context image layout.
759 		 */
760 		return 0xc6;
761 	else if (engine->class != RENDER_CLASS)
762 		return -1;
763 	else if (GRAPHICS_VER(engine->i915) >= 12)
764 		return 0xb6;
765 	else if (GRAPHICS_VER(engine->i915) >= 11)
766 		return 0xaa;
767 	else
768 		return -1;
769 }
770 
771 static u32
772 lrc_ring_indirect_offset_default(const struct intel_engine_cs *engine)
773 {
774 	if (GRAPHICS_VER(engine->i915) >= 12)
775 		return GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
776 	else if (GRAPHICS_VER(engine->i915) >= 11)
777 		return GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
778 	else if (GRAPHICS_VER(engine->i915) >= 9)
779 		return GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
780 	else if (GRAPHICS_VER(engine->i915) >= 8)
781 		return GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
782 
783 	GEM_BUG_ON(GRAPHICS_VER(engine->i915) < 8);
784 
785 	return 0;
786 }
787 
788 static void
789 lrc_setup_bb_per_ctx(u32 *regs,
790 		     const struct intel_engine_cs *engine,
791 		     u32 ctx_bb_ggtt_addr)
792 {
793 	GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
794 	regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
795 		ctx_bb_ggtt_addr |
796 		PER_CTX_BB_FORCE |
797 		PER_CTX_BB_VALID;
798 }
799 
800 static void
801 lrc_setup_indirect_ctx(u32 *regs,
802 		       const struct intel_engine_cs *engine,
803 		       u32 ctx_bb_ggtt_addr,
804 		       u32 size)
805 {
806 	GEM_BUG_ON(!size);
807 	GEM_BUG_ON(!IS_ALIGNED(size, CACHELINE_BYTES));
808 	GEM_BUG_ON(lrc_ring_indirect_ptr(engine) == -1);
809 	regs[lrc_ring_indirect_ptr(engine) + 1] =
810 		ctx_bb_ggtt_addr | (size / CACHELINE_BYTES);
811 
812 	GEM_BUG_ON(lrc_ring_indirect_offset(engine) == -1);
813 	regs[lrc_ring_indirect_offset(engine) + 1] =
814 		lrc_ring_indirect_offset_default(engine) << 6;
815 }
816 
817 static bool ctx_needs_runalone(const struct intel_context *ce)
818 {
819 	struct i915_gem_context *gem_ctx;
820 	bool ctx_is_protected = false;
821 
822 	/*
823 	 * On MTL and newer platforms, protected contexts require setting
824 	 * the LRC run-alone bit or else the encryption will not happen.
825 	 */
826 	if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 70) &&
827 	    (ce->engine->class == COMPUTE_CLASS || ce->engine->class == RENDER_CLASS)) {
828 		rcu_read_lock();
829 		gem_ctx = rcu_dereference(ce->gem_context);
830 		if (gem_ctx)
831 			ctx_is_protected = gem_ctx->uses_protected_content;
832 		rcu_read_unlock();
833 	}
834 
835 	return ctx_is_protected;
836 }
837 
838 static void init_common_regs(u32 * const regs,
839 			     const struct intel_context *ce,
840 			     const struct intel_engine_cs *engine,
841 			     bool inhibit)
842 {
843 	u32 ctl;
844 	int loc;
845 
846 	ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
847 	ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
848 	if (inhibit)
849 		ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
850 	if (GRAPHICS_VER(engine->i915) < 11)
851 		ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
852 					   CTX_CTRL_RS_CTX_ENABLE);
853 	if (ctx_needs_runalone(ce))
854 		ctl |= _MASKED_BIT_ENABLE(GEN12_CTX_CTRL_RUNALONE_MODE);
855 	regs[CTX_CONTEXT_CONTROL] = ctl;
856 
857 	regs[CTX_TIMESTAMP] = ce->stats.runtime.last;
858 
859 	loc = lrc_ring_bb_offset(engine);
860 	if (loc != -1)
861 		regs[loc + 1] = 0;
862 }
863 
864 static void init_wa_bb_regs(u32 * const regs,
865 			    const struct intel_engine_cs *engine)
866 {
867 	const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
868 
869 	if (wa_ctx->per_ctx.size) {
870 		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
871 
872 		GEM_BUG_ON(lrc_ring_wa_bb_per_ctx(engine) == -1);
873 		regs[lrc_ring_wa_bb_per_ctx(engine) + 1] =
874 			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
875 	}
876 
877 	if (wa_ctx->indirect_ctx.size) {
878 		lrc_setup_indirect_ctx(regs, engine,
879 				       i915_ggtt_offset(wa_ctx->vma) +
880 				       wa_ctx->indirect_ctx.offset,
881 				       wa_ctx->indirect_ctx.size);
882 	}
883 }
884 
885 static void init_ppgtt_regs(u32 *regs, const struct i915_ppgtt *ppgtt)
886 {
887 	if (i915_vm_is_4lvl(&ppgtt->vm)) {
888 		/* 64b PPGTT (48bit canonical)
889 		 * PDP0_DESCRIPTOR contains the base address to PML4 and
890 		 * other PDP Descriptors are ignored.
891 		 */
892 		ASSIGN_CTX_PML4(ppgtt, regs);
893 	} else {
894 		ASSIGN_CTX_PDP(ppgtt, regs, 3);
895 		ASSIGN_CTX_PDP(ppgtt, regs, 2);
896 		ASSIGN_CTX_PDP(ppgtt, regs, 1);
897 		ASSIGN_CTX_PDP(ppgtt, regs, 0);
898 	}
899 }
900 
901 static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
902 {
903 	if (i915_is_ggtt(vm))
904 		return i915_vm_to_ggtt(vm)->alias;
905 	else
906 		return i915_vm_to_ppgtt(vm);
907 }
908 
909 static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
910 {
911 	int x;
912 
913 	x = lrc_ring_mi_mode(engine);
914 	if (x != -1) {
915 		regs[x + 1] &= ~STOP_RING;
916 		regs[x + 1] |= STOP_RING << 16;
917 	}
918 }
919 
920 static void __lrc_init_regs(u32 *regs,
921 			    const struct intel_context *ce,
922 			    const struct intel_engine_cs *engine,
923 			    bool inhibit)
924 {
925 	/*
926 	 * A context is actually a big batch buffer with several
927 	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
928 	 * values we are setting here are only for the first context restore:
929 	 * on a subsequent save, the GPU will recreate this batchbuffer with new
930 	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
931 	 * we are not initializing here).
932 	 *
933 	 * Must keep consistent with virtual_update_register_offsets().
934 	 */
935 
936 	if (inhibit)
937 		memset(regs, 0, PAGE_SIZE);
938 
939 	set_offsets(regs, reg_offsets(engine), engine, inhibit);
940 
941 	init_common_regs(regs, ce, engine, inhibit);
942 	init_ppgtt_regs(regs, vm_alias(ce->vm));
943 
944 	init_wa_bb_regs(regs, engine);
945 
946 	__reset_stop_ring(regs, engine);
947 }
948 
949 void lrc_init_regs(const struct intel_context *ce,
950 		   const struct intel_engine_cs *engine,
951 		   bool inhibit)
952 {
953 	__lrc_init_regs(ce->lrc_reg_state, ce, engine, inhibit);
954 }
955 
956 void lrc_reset_regs(const struct intel_context *ce,
957 		    const struct intel_engine_cs *engine)
958 {
959 	__reset_stop_ring(ce->lrc_reg_state, engine);
960 }
961 
962 static void
963 set_redzone(void *vaddr, const struct intel_engine_cs *engine)
964 {
965 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
966 		return;
967 
968 	vaddr += engine->context_size;
969 
970 	memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
971 }
972 
973 static void
974 check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
975 {
976 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
977 		return;
978 
979 	vaddr += engine->context_size;
980 
981 	if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
982 		drm_err_once(&engine->i915->drm,
983 			     "%s context redzone overwritten!\n",
984 			     engine->name);
985 }
986 
987 static u32 context_wa_bb_offset(const struct intel_context *ce)
988 {
989 	return PAGE_SIZE * ce->wa_bb_page;
990 }
991 
992 /*
993  * per_ctx below determines which WABB section is used.
994  * When true, the function returns the location of the
995  * PER_CTX_BB.  When false, the function returns the
996  * location of the INDIRECT_CTX.
997  */
998 static u32 *context_wabb(const struct intel_context *ce, bool per_ctx)
999 {
1000 	void *ptr;
1001 
1002 	GEM_BUG_ON(!ce->wa_bb_page);
1003 
1004 	ptr = ce->lrc_reg_state;
1005 	ptr -= LRC_STATE_OFFSET; /* back to start of context image */
1006 	ptr += context_wa_bb_offset(ce);
1007 	ptr += per_ctx ? PAGE_SIZE : 0;
1008 
1009 	return ptr;
1010 }
1011 
1012 void lrc_init_state(struct intel_context *ce,
1013 		    struct intel_engine_cs *engine,
1014 		    void *state)
1015 {
1016 	bool inhibit = true;
1017 
1018 	set_redzone(state, engine);
1019 
1020 	if (engine->default_state) {
1021 		shmem_read(engine->default_state, 0,
1022 			   state, engine->context_size);
1023 		__set_bit(CONTEXT_VALID_BIT, &ce->flags);
1024 		inhibit = false;
1025 	}
1026 
1027 	/* Clear the ppHWSP (inc. per-context counters) */
1028 	memset(state, 0, PAGE_SIZE);
1029 
1030 	/* Clear the indirect wa and storage */
1031 	if (ce->wa_bb_page)
1032 		memset(state + context_wa_bb_offset(ce), 0, PAGE_SIZE);
1033 
1034 	/*
1035 	 * The second page of the context object contains some registers which
1036 	 * must be set up prior to the first execution.
1037 	 */
1038 	__lrc_init_regs(state + LRC_STATE_OFFSET, ce, engine, inhibit);
1039 }
1040 
1041 u32 lrc_indirect_bb(const struct intel_context *ce)
1042 {
1043 	return i915_ggtt_offset(ce->state) + context_wa_bb_offset(ce);
1044 }
1045 
1046 static u32 *setup_predicate_disable_wa(const struct intel_context *ce, u32 *cs)
1047 {
1048 	/* If predication is active, this will be noop'ed */
1049 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1050 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1051 	*cs++ = 0;
1052 	*cs++ = 0; /* No predication */
1053 
1054 	/* predicated end, only terminates if SET_PREDICATE_RESULT:0 is clear */
1055 	*cs++ = MI_BATCH_BUFFER_END | BIT(15);
1056 	*cs++ = MI_SET_PREDICATE | MI_SET_PREDICATE_DISABLE;
1057 
1058 	/* Instructions are no longer predicated (disabled), we can proceed */
1059 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT | (4 - 2);
1060 	*cs++ = lrc_indirect_bb(ce) + DG2_PREDICATE_RESULT_WA;
1061 	*cs++ = 0;
1062 	*cs++ = 1; /* enable predication before the next BB */
1063 
1064 	*cs++ = MI_BATCH_BUFFER_END;
1065 	GEM_BUG_ON(offset_in_page(cs) > DG2_PREDICATE_RESULT_WA);
1066 
1067 	return cs;
1068 }
1069 
1070 static struct i915_vma *
1071 __lrc_alloc_state(struct intel_context *ce, struct intel_engine_cs *engine)
1072 {
1073 	struct drm_i915_gem_object *obj;
1074 	struct i915_vma *vma;
1075 	u32 context_size;
1076 
1077 	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1078 
1079 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1080 		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
1081 
1082 	if (GRAPHICS_VER(engine->i915) >= 12) {
1083 		ce->wa_bb_page = context_size / PAGE_SIZE;
1084 		/* INDIRECT_CTX and PER_CTX_BB need separate pages. */
1085 		context_size += PAGE_SIZE * 2;
1086 	}
1087 
1088 	if (intel_context_is_parent(ce) && intel_engine_uses_guc(engine)) {
1089 		ce->parallel.guc.parent_page = context_size / PAGE_SIZE;
1090 		context_size += PARENT_SCRATCH_SIZE;
1091 	}
1092 
1093 	obj = i915_gem_object_create_lmem(engine->i915, context_size,
1094 					  I915_BO_ALLOC_PM_VOLATILE);
1095 	if (IS_ERR(obj)) {
1096 		obj = i915_gem_object_create_shmem(engine->i915, context_size);
1097 		if (IS_ERR(obj))
1098 			return ERR_CAST(obj);
1099 
1100 		/*
1101 		 * Wa_22016122933: For Media version 13.0, all Media GT shared
1102 		 * memory needs to be mapped as WC on CPU side and UC (PAT
1103 		 * index 2) on GPU side.
1104 		 */
1105 		if (intel_gt_needs_wa_22016122933(engine->gt))
1106 			i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
1107 	}
1108 
1109 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1110 	if (IS_ERR(vma)) {
1111 		i915_gem_object_put(obj);
1112 		return vma;
1113 	}
1114 
1115 	return vma;
1116 }
1117 
1118 static struct intel_timeline *
1119 pinned_timeline(struct intel_context *ce, struct intel_engine_cs *engine)
1120 {
1121 	struct intel_timeline *tl = fetch_and_zero(&ce->timeline);
1122 
1123 	return intel_timeline_create_from_engine(engine, page_unmask_bits(tl));
1124 }
1125 
1126 int lrc_alloc(struct intel_context *ce, struct intel_engine_cs *engine)
1127 {
1128 	struct intel_ring *ring;
1129 	struct i915_vma *vma;
1130 	int err;
1131 
1132 	GEM_BUG_ON(ce->state);
1133 
1134 	vma = __lrc_alloc_state(ce, engine);
1135 	if (IS_ERR(vma))
1136 		return PTR_ERR(vma);
1137 
1138 	ring = intel_engine_create_ring(engine, ce->ring_size);
1139 	if (IS_ERR(ring)) {
1140 		err = PTR_ERR(ring);
1141 		goto err_vma;
1142 	}
1143 
1144 	if (!page_mask_bits(ce->timeline)) {
1145 		struct intel_timeline *tl;
1146 
1147 		/*
1148 		 * Use the static global HWSP for the kernel context, and
1149 		 * a dynamically allocated cacheline for everyone else.
1150 		 */
1151 		if (unlikely(ce->timeline))
1152 			tl = pinned_timeline(ce, engine);
1153 		else
1154 			tl = intel_timeline_create(engine->gt);
1155 		if (IS_ERR(tl)) {
1156 			err = PTR_ERR(tl);
1157 			goto err_ring;
1158 		}
1159 
1160 		ce->timeline = tl;
1161 	}
1162 
1163 	ce->ring = ring;
1164 	ce->state = vma;
1165 
1166 	return 0;
1167 
1168 err_ring:
1169 	intel_ring_put(ring);
1170 err_vma:
1171 	i915_vma_put(vma);
1172 	return err;
1173 }
1174 
1175 void lrc_reset(struct intel_context *ce)
1176 {
1177 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1178 
1179 	intel_ring_reset(ce->ring, ce->ring->emit);
1180 
1181 	/* Scrub away the garbage */
1182 	lrc_init_regs(ce, ce->engine, true);
1183 	ce->lrc.lrca = lrc_update_regs(ce, ce->engine, ce->ring->tail);
1184 }
1185 
1186 int
1187 lrc_pre_pin(struct intel_context *ce,
1188 	    struct intel_engine_cs *engine,
1189 	    struct i915_gem_ww_ctx *ww,
1190 	    void **vaddr)
1191 {
1192 	GEM_BUG_ON(!ce->state);
1193 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1194 
1195 	*vaddr = i915_gem_object_pin_map(ce->state->obj,
1196 					 intel_gt_coherent_map_type(ce->engine->gt,
1197 								    ce->state->obj,
1198 								    false) |
1199 					 I915_MAP_OVERRIDE);
1200 
1201 	return PTR_ERR_OR_ZERO(*vaddr);
1202 }
1203 
1204 int
1205 lrc_pin(struct intel_context *ce,
1206 	struct intel_engine_cs *engine,
1207 	void *vaddr)
1208 {
1209 	ce->lrc_reg_state = vaddr + LRC_STATE_OFFSET;
1210 
1211 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags))
1212 		lrc_init_state(ce, engine, vaddr);
1213 
1214 	ce->lrc.lrca = lrc_update_regs(ce, engine, ce->ring->tail);
1215 	return 0;
1216 }
1217 
1218 void lrc_unpin(struct intel_context *ce)
1219 {
1220 	if (unlikely(ce->parallel.last_rq)) {
1221 		i915_request_put(ce->parallel.last_rq);
1222 		ce->parallel.last_rq = NULL;
1223 	}
1224 	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_OFFSET,
1225 		      ce->engine);
1226 }
1227 
1228 void lrc_post_unpin(struct intel_context *ce)
1229 {
1230 	i915_gem_object_unpin_map(ce->state->obj);
1231 }
1232 
1233 void lrc_fini(struct intel_context *ce)
1234 {
1235 	if (!ce->state)
1236 		return;
1237 
1238 	intel_ring_put(fetch_and_zero(&ce->ring));
1239 	i915_vma_put(fetch_and_zero(&ce->state));
1240 }
1241 
1242 void lrc_destroy(struct kref *kref)
1243 {
1244 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1245 
1246 	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1247 	GEM_BUG_ON(intel_context_is_pinned(ce));
1248 
1249 	lrc_fini(ce);
1250 
1251 	intel_context_fini(ce);
1252 	intel_context_free(ce);
1253 }
1254 
1255 static u32 *
1256 gen12_emit_timestamp_wa(const struct intel_context *ce, u32 *cs)
1257 {
1258 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1259 		MI_SRM_LRM_GLOBAL_GTT |
1260 		MI_LRI_LRM_CS_MMIO;
1261 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1262 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1263 		CTX_TIMESTAMP * sizeof(u32);
1264 	*cs++ = 0;
1265 
1266 	*cs++ = MI_LOAD_REGISTER_REG |
1267 		MI_LRR_SOURCE_CS_MMIO |
1268 		MI_LRI_LRM_CS_MMIO;
1269 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1270 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1271 
1272 	*cs++ = MI_LOAD_REGISTER_REG |
1273 		MI_LRR_SOURCE_CS_MMIO |
1274 		MI_LRI_LRM_CS_MMIO;
1275 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1276 	*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(0));
1277 
1278 	return cs;
1279 }
1280 
1281 static u32 *
1282 gen12_emit_restore_scratch(const struct intel_context *ce, u32 *cs)
1283 {
1284 	GEM_BUG_ON(lrc_ring_gpr0(ce->engine) == -1);
1285 
1286 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1287 		MI_SRM_LRM_GLOBAL_GTT |
1288 		MI_LRI_LRM_CS_MMIO;
1289 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1290 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1291 		(lrc_ring_gpr0(ce->engine) + 1) * sizeof(u32);
1292 	*cs++ = 0;
1293 
1294 	return cs;
1295 }
1296 
1297 static u32 *
1298 gen12_emit_cmd_buf_wa(const struct intel_context *ce, u32 *cs)
1299 {
1300 	GEM_BUG_ON(lrc_ring_cmd_buf_cctl(ce->engine) == -1);
1301 
1302 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
1303 		MI_SRM_LRM_GLOBAL_GTT |
1304 		MI_LRI_LRM_CS_MMIO;
1305 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1306 	*cs++ = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET +
1307 		(lrc_ring_cmd_buf_cctl(ce->engine) + 1) * sizeof(u32);
1308 	*cs++ = 0;
1309 
1310 	*cs++ = MI_LOAD_REGISTER_REG |
1311 		MI_LRR_SOURCE_CS_MMIO |
1312 		MI_LRI_LRM_CS_MMIO;
1313 	*cs++ = i915_mmio_reg_offset(GEN8_RING_CS_GPR(0, 0));
1314 	*cs++ = i915_mmio_reg_offset(RING_CMD_BUF_CCTL(0));
1315 
1316 	return cs;
1317 }
1318 
1319 /*
1320  * The bspec's tuning guide asks us to program a vertical watermark value of
1321  * 0x3FF.  However this register is not saved/restored properly by the
1322  * hardware, so we're required to apply the desired value via INDIRECT_CTX
1323  * batch buffer to ensure the value takes effect properly.  All other bits
1324  * in this register should remain at 0 (the hardware default).
1325  */
1326 static u32 *
1327 dg2_emit_draw_watermark_setting(u32 *cs)
1328 {
1329 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1330 	*cs++ = i915_mmio_reg_offset(DRAW_WATERMARK);
1331 	*cs++ = REG_FIELD_PREP(VERT_WM_VAL, 0x3FF);
1332 
1333 	return cs;
1334 }
1335 
1336 static u32 *
1337 gen12_invalidate_state_cache(u32 *cs)
1338 {
1339 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1340 	*cs++ = i915_mmio_reg_offset(GEN12_CS_DEBUG_MODE2);
1341 	*cs++ = _MASKED_BIT_ENABLE(INSTRUCTION_STATE_CACHE_INVALIDATE);
1342 	return cs;
1343 }
1344 
1345 static u32 *
1346 gen12_emit_indirect_ctx_rcs(const struct intel_context *ce, u32 *cs)
1347 {
1348 	cs = gen12_emit_timestamp_wa(ce, cs);
1349 	cs = gen12_emit_cmd_buf_wa(ce, cs);
1350 	cs = gen12_emit_restore_scratch(ce, cs);
1351 
1352 	/* Wa_16013000631:dg2 */
1353 	if (IS_DG2_G11(ce->engine->i915))
1354 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE, 0);
1355 
1356 	cs = gen12_emit_aux_table_inv(ce->engine, cs);
1357 
1358 	/* Wa_18022495364 */
1359 	if (IS_GFX_GT_IP_RANGE(ce->engine->gt, IP_VER(12, 0), IP_VER(12, 10)))
1360 		cs = gen12_invalidate_state_cache(cs);
1361 
1362 	/* Wa_16014892111 */
1363 	if (IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1364 	    IS_GFX_GT_IP_STEP(ce->engine->gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
1365 	    IS_DG2(ce->engine->i915))
1366 		cs = dg2_emit_draw_watermark_setting(cs);
1367 
1368 	return cs;
1369 }
1370 
1371 static u32 *
1372 gen12_emit_indirect_ctx_xcs(const struct intel_context *ce, u32 *cs)
1373 {
1374 	cs = gen12_emit_timestamp_wa(ce, cs);
1375 	cs = gen12_emit_restore_scratch(ce, cs);
1376 
1377 	/* Wa_16013000631:dg2 */
1378 	if (IS_DG2_G11(ce->engine->i915))
1379 		if (ce->engine->class == COMPUTE_CLASS)
1380 			cs = gen8_emit_pipe_control(cs,
1381 						    PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE,
1382 						    0);
1383 
1384 	return gen12_emit_aux_table_inv(ce->engine, cs);
1385 }
1386 
1387 static u32 *xehp_emit_fastcolor_blt_wabb(const struct intel_context *ce, u32 *cs)
1388 {
1389 	struct intel_gt *gt = ce->engine->gt;
1390 	int mocs = gt->mocs.uc_index << 1;
1391 
1392 	/**
1393 	 * Wa_16018031267 / Wa_16018063123 requires that SW forces the
1394 	 * main copy engine arbitration into round robin mode.  We
1395 	 * additionally need to submit the following WABB blt command
1396 	 * to produce 4 subblits with each subblit generating 0 byte
1397 	 * write requests as WABB:
1398 	 *
1399 	 * XY_FASTCOLOR_BLT
1400 	 *  BG0    -> 5100000E
1401 	 *  BG1    -> 0000003F (Dest pitch)
1402 	 *  BG2    -> 00000000 (X1, Y1) = (0, 0)
1403 	 *  BG3    -> 00040001 (X2, Y2) = (1, 4)
1404 	 *  BG4    -> scratch
1405 	 *  BG5    -> scratch
1406 	 *  BG6-12 -> 00000000
1407 	 *  BG13   -> 20004004 (Surf. Width= 2,Surf. Height = 5 )
1408 	 *  BG14   -> 00000010 (Qpitch = 4)
1409 	 *  BG15   -> 00000000
1410 	 */
1411 	*cs++ = XY_FAST_COLOR_BLT_CMD | (16 - 2);
1412 	*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | 0x3f;
1413 	*cs++ = 0;
1414 	*cs++ = 4 << 16 | 1;
1415 	*cs++ = lower_32_bits(i915_vma_offset(ce->vm->rsvd.vma));
1416 	*cs++ = upper_32_bits(i915_vma_offset(ce->vm->rsvd.vma));
1417 	*cs++ = 0;
1418 	*cs++ = 0;
1419 	*cs++ = 0;
1420 	*cs++ = 0;
1421 	*cs++ = 0;
1422 	*cs++ = 0;
1423 	*cs++ = 0;
1424 	*cs++ = 0x20004004;
1425 	*cs++ = 0x10;
1426 	*cs++ = 0;
1427 
1428 	return cs;
1429 }
1430 
1431 static u32 *
1432 xehp_emit_per_ctx_bb(const struct intel_context *ce, u32 *cs)
1433 {
1434 	/* Wa_16018031267, Wa_16018063123 */
1435 	if (NEEDS_FASTCOLOR_BLT_WABB(ce->engine))
1436 		cs = xehp_emit_fastcolor_blt_wabb(ce, cs);
1437 
1438 	return cs;
1439 }
1440 
1441 static void
1442 setup_per_ctx_bb(const struct intel_context *ce,
1443 		 const struct intel_engine_cs *engine,
1444 		 u32 *(*emit)(const struct intel_context *, u32 *))
1445 {
1446 	/* Place PER_CTX_BB on next page after INDIRECT_CTX */
1447 	u32 * const start = context_wabb(ce, true);
1448 	u32 *cs;
1449 
1450 	cs = emit(ce, start);
1451 
1452 	/* PER_CTX_BB must manually terminate */
1453 	*cs++ = MI_BATCH_BUFFER_END;
1454 
1455 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1456 	lrc_setup_bb_per_ctx(ce->lrc_reg_state, engine,
1457 			     lrc_indirect_bb(ce) + PAGE_SIZE);
1458 }
1459 
1460 static void
1461 setup_indirect_ctx_bb(const struct intel_context *ce,
1462 		      const struct intel_engine_cs *engine,
1463 		      u32 *(*emit)(const struct intel_context *, u32 *))
1464 {
1465 	u32 * const start = context_wabb(ce, false);
1466 	u32 *cs;
1467 
1468 	cs = emit(ce, start);
1469 	GEM_BUG_ON(cs - start > I915_GTT_PAGE_SIZE / sizeof(*cs));
1470 	while ((unsigned long)cs % CACHELINE_BYTES)
1471 		*cs++ = MI_NOOP;
1472 
1473 	GEM_BUG_ON(cs - start > DG2_PREDICATE_RESULT_BB / sizeof(*start));
1474 	setup_predicate_disable_wa(ce, start + DG2_PREDICATE_RESULT_BB / sizeof(*start));
1475 
1476 	lrc_setup_indirect_ctx(ce->lrc_reg_state, engine,
1477 			       lrc_indirect_bb(ce),
1478 			       (cs - start) * sizeof(*cs));
1479 }
1480 
1481 /*
1482  * The context descriptor encodes various attributes of a context,
1483  * including its GTT address and some flags. Because it's fairly
1484  * expensive to calculate, we'll just do it once and cache the result,
1485  * which remains valid until the context is unpinned.
1486  *
1487  * This is what a descriptor looks like, from LSB to MSB::
1488  *
1489  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
1490  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
1491  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
1492  *      bits 53-54:    mbz, reserved for use by hardware
1493  *      bits 55-63:    group ID, currently unused and set to 0
1494  *
1495  * Starting from Gen11, the upper dword of the descriptor has a new format:
1496  *
1497  *      bits 32-36:    reserved
1498  *      bits 37-47:    SW context ID
1499  *      bits 48:53:    engine instance
1500  *      bit 54:        mbz, reserved for use by hardware
1501  *      bits 55-60:    SW counter
1502  *      bits 61-63:    engine class
1503  *
1504  * On Xe_HP, the upper dword of the descriptor has a new format:
1505  *
1506  *      bits 32-37:    virtual function number
1507  *      bit 38:        mbz, reserved for use by hardware
1508  *      bits 39-54:    SW context ID
1509  *      bits 55-57:    reserved
1510  *      bits 58-63:    SW counter
1511  *
1512  * engine info, SW context ID and SW counter need to form a unique number
1513  * (Context ID) per lrc.
1514  */
1515 static u32 lrc_descriptor(const struct intel_context *ce)
1516 {
1517 	u32 desc;
1518 
1519 	desc = INTEL_LEGACY_32B_CONTEXT;
1520 	if (i915_vm_is_4lvl(ce->vm))
1521 		desc = INTEL_LEGACY_64B_CONTEXT;
1522 	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
1523 
1524 	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
1525 	if (GRAPHICS_VER(ce->vm->i915) == 8)
1526 		desc |= GEN8_CTX_L3LLC_COHERENT;
1527 
1528 	return i915_ggtt_offset(ce->state) | desc;
1529 }
1530 
1531 u32 lrc_update_regs(const struct intel_context *ce,
1532 		    const struct intel_engine_cs *engine,
1533 		    u32 head)
1534 {
1535 	struct intel_ring *ring = ce->ring;
1536 	u32 *regs = ce->lrc_reg_state;
1537 
1538 	GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
1539 	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1540 
1541 	regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1542 	regs[CTX_RING_HEAD] = head;
1543 	regs[CTX_RING_TAIL] = ring->tail;
1544 	regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1545 
1546 	/* RPCS */
1547 	if (engine->class == RENDER_CLASS) {
1548 		regs[CTX_R_PWR_CLK_STATE] =
1549 			intel_sseu_make_rpcs(engine->gt, &ce->sseu);
1550 
1551 		i915_oa_init_reg_state(ce, engine);
1552 	}
1553 
1554 	if (ce->wa_bb_page) {
1555 		u32 *(*fn)(const struct intel_context *ce, u32 *cs);
1556 
1557 		fn = gen12_emit_indirect_ctx_xcs;
1558 		if (ce->engine->class == RENDER_CLASS)
1559 			fn = gen12_emit_indirect_ctx_rcs;
1560 
1561 		/* Mutually exclusive wrt to global indirect bb */
1562 		GEM_BUG_ON(engine->wa_ctx.indirect_ctx.size);
1563 		setup_indirect_ctx_bb(ce, engine, fn);
1564 		setup_per_ctx_bb(ce, engine, xehp_emit_per_ctx_bb);
1565 	}
1566 
1567 	return lrc_descriptor(ce) | CTX_DESC_FORCE_RESTORE;
1568 }
1569 
1570 void lrc_update_offsets(struct intel_context *ce,
1571 			struct intel_engine_cs *engine)
1572 {
1573 	set_offsets(ce->lrc_reg_state, reg_offsets(engine), engine, false);
1574 }
1575 
1576 void lrc_check_regs(const struct intel_context *ce,
1577 		    const struct intel_engine_cs *engine,
1578 		    const char *when)
1579 {
1580 	const struct intel_ring *ring = ce->ring;
1581 	u32 *regs = ce->lrc_reg_state;
1582 	bool valid = true;
1583 	int x;
1584 
1585 	if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
1586 		pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
1587 		       engine->name,
1588 		       regs[CTX_RING_START],
1589 		       i915_ggtt_offset(ring->vma));
1590 		regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
1591 		valid = false;
1592 	}
1593 
1594 	if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
1595 	    (RING_CTL_SIZE(ring->size) | RING_VALID)) {
1596 		pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
1597 		       engine->name,
1598 		       regs[CTX_RING_CTL],
1599 		       (u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
1600 		regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
1601 		valid = false;
1602 	}
1603 
1604 	x = lrc_ring_mi_mode(engine);
1605 	if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
1606 		pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
1607 		       engine->name, regs[x + 1]);
1608 		regs[x + 1] &= ~STOP_RING;
1609 		regs[x + 1] |= STOP_RING << 16;
1610 		valid = false;
1611 	}
1612 
1613 	WARN_ONCE(!valid, "Invalid lrc state found %s submission\n", when);
1614 }
1615 
1616 /*
1617  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1618  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1619  * but there is a slight complication as this is applied in WA batch where the
1620  * values are only initialized once so we cannot take register value at the
1621  * beginning and reuse it further; hence we save its value to memory, upload a
1622  * constant value with bit21 set and then we restore it back with the saved value.
1623  * To simplify the WA, a constant value is formed by using the default value
1624  * of this register. This shouldn't be a problem because we are only modifying
1625  * it for a short period and this batch in non-premptible. We can ofcourse
1626  * use additional instructions that read the actual value of the register
1627  * at that time and set our bit of interest but it makes the WA complicated.
1628  *
1629  * This WA is also required for Gen9 so extracting as a function avoids
1630  * code duplication.
1631  */
1632 static u32 *
1633 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1634 {
1635 	/* NB no one else is allowed to scribble over scratch + 256! */
1636 	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1637 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1638 	*batch++ = intel_gt_scratch_offset(engine->gt,
1639 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1640 	*batch++ = 0;
1641 
1642 	*batch++ = MI_LOAD_REGISTER_IMM(1);
1643 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1644 	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1645 
1646 	batch = gen8_emit_pipe_control(batch,
1647 				       PIPE_CONTROL_CS_STALL |
1648 				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1649 				       0);
1650 
1651 	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1652 	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1653 	*batch++ = intel_gt_scratch_offset(engine->gt,
1654 					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1655 	*batch++ = 0;
1656 
1657 	return batch;
1658 }
1659 
1660 /*
1661  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1662  * initialized at the beginning and shared across all contexts but this field
1663  * helps us to have multiple batches at different offsets and select them based
1664  * on a criteria. At the moment this batch always start at the beginning of the page
1665  * and at this point we don't have multiple wa_ctx batch buffers.
1666  *
1667  * The number of WA applied are not known at the beginning; we use this field
1668  * to return the no of DWORDS written.
1669  *
1670  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1671  * so it adds NOOPs as padding to make it cacheline aligned.
1672  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1673  * makes a complete batch buffer.
1674  */
1675 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1676 {
1677 	/* WaDisableCtxRestoreArbitration:bdw,chv */
1678 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1679 
1680 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1681 	if (IS_BROADWELL(engine->i915))
1682 		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1683 
1684 	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1685 	/* Actual scratch location is at 128 bytes offset */
1686 	batch = gen8_emit_pipe_control(batch,
1687 				       PIPE_CONTROL_FLUSH_L3 |
1688 				       PIPE_CONTROL_STORE_DATA_INDEX |
1689 				       PIPE_CONTROL_CS_STALL |
1690 				       PIPE_CONTROL_QW_WRITE,
1691 				       LRC_PPHWSP_SCRATCH_ADDR);
1692 
1693 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1694 
1695 	/* Pad to end of cacheline */
1696 	while ((unsigned long)batch % CACHELINE_BYTES)
1697 		*batch++ = MI_NOOP;
1698 
1699 	/*
1700 	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1701 	 * execution depends on the length specified in terms of cache lines
1702 	 * in the register CTX_RCS_INDIRECT_CTX
1703 	 */
1704 
1705 	return batch;
1706 }
1707 
1708 struct lri {
1709 	i915_reg_t reg;
1710 	u32 value;
1711 };
1712 
1713 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1714 {
1715 	GEM_BUG_ON(!count || count > 63);
1716 
1717 	*batch++ = MI_LOAD_REGISTER_IMM(count);
1718 	do {
1719 		*batch++ = i915_mmio_reg_offset(lri->reg);
1720 		*batch++ = lri->value;
1721 	} while (lri++, --count);
1722 	*batch++ = MI_NOOP;
1723 
1724 	return batch;
1725 }
1726 
1727 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1728 {
1729 	static const struct lri lri[] = {
1730 		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1731 		{
1732 			COMMON_SLICE_CHICKEN2,
1733 			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1734 				       0),
1735 		},
1736 
1737 		/* BSpec: 11391 */
1738 		{
1739 			FF_SLICE_CHICKEN,
1740 			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1741 				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1742 		},
1743 
1744 		/* BSpec: 11299 */
1745 		{
1746 			_3D_CHICKEN3,
1747 			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1748 				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1749 		}
1750 	};
1751 
1752 	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1753 
1754 	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1755 	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1756 
1757 	/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1758 	batch = gen8_emit_pipe_control(batch,
1759 				       PIPE_CONTROL_FLUSH_L3 |
1760 				       PIPE_CONTROL_STORE_DATA_INDEX |
1761 				       PIPE_CONTROL_CS_STALL |
1762 				       PIPE_CONTROL_QW_WRITE,
1763 				       LRC_PPHWSP_SCRATCH_ADDR);
1764 
1765 	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1766 
1767 	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1768 	if (HAS_POOLED_EU(engine->i915)) {
1769 		/*
1770 		 * EU pool configuration is setup along with golden context
1771 		 * during context initialization. This value depends on
1772 		 * device type (2x6 or 3x6) and needs to be updated based
1773 		 * on which subslice is disabled especially for 2x6
1774 		 * devices, however it is safe to load default
1775 		 * configuration of 3x6 device instead of masking off
1776 		 * corresponding bits because HW ignores bits of a disabled
1777 		 * subslice and drops down to appropriate config. Please
1778 		 * see render_state_setup() in i915_gem_render_state.c for
1779 		 * possible configurations, to avoid duplication they are
1780 		 * not shown here again.
1781 		 */
1782 		*batch++ = GEN9_MEDIA_POOL_STATE;
1783 		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1784 		*batch++ = 0x00777000;
1785 		*batch++ = 0;
1786 		*batch++ = 0;
1787 		*batch++ = 0;
1788 	}
1789 
1790 	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1791 
1792 	/* Pad to end of cacheline */
1793 	while ((unsigned long)batch % CACHELINE_BYTES)
1794 		*batch++ = MI_NOOP;
1795 
1796 	return batch;
1797 }
1798 
1799 #define CTX_WA_BB_SIZE (PAGE_SIZE)
1800 
1801 static int lrc_create_wa_ctx(struct intel_engine_cs *engine)
1802 {
1803 	struct drm_i915_gem_object *obj;
1804 	struct i915_vma *vma;
1805 	int err;
1806 
1807 	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_SIZE);
1808 	if (IS_ERR(obj))
1809 		return PTR_ERR(obj);
1810 
1811 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1812 	if (IS_ERR(vma)) {
1813 		err = PTR_ERR(vma);
1814 		goto err;
1815 	}
1816 
1817 	engine->wa_ctx.vma = vma;
1818 	return 0;
1819 
1820 err:
1821 	i915_gem_object_put(obj);
1822 	return err;
1823 }
1824 
1825 void lrc_fini_wa_ctx(struct intel_engine_cs *engine)
1826 {
1827 	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1828 }
1829 
1830 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1831 
1832 void lrc_init_wa_ctx(struct intel_engine_cs *engine)
1833 {
1834 	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1835 	struct i915_wa_ctx_bb *wa_bb[] = {
1836 		&wa_ctx->indirect_ctx, &wa_ctx->per_ctx
1837 	};
1838 	wa_bb_func_t wa_bb_fn[ARRAY_SIZE(wa_bb)];
1839 	struct i915_gem_ww_ctx ww;
1840 	void *batch, *batch_ptr;
1841 	unsigned int i;
1842 	int err;
1843 
1844 	if (GRAPHICS_VER(engine->i915) >= 11 ||
1845 	    !(engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
1846 		return;
1847 
1848 	if (GRAPHICS_VER(engine->i915) == 9) {
1849 		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1850 		wa_bb_fn[1] = NULL;
1851 	} else if (GRAPHICS_VER(engine->i915) == 8) {
1852 		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1853 		wa_bb_fn[1] = NULL;
1854 	}
1855 
1856 	err = lrc_create_wa_ctx(engine);
1857 	if (err) {
1858 		/*
1859 		 * We continue even if we fail to initialize WA batch
1860 		 * because we only expect rare glitches but nothing
1861 		 * critical to prevent us from using GPU
1862 		 */
1863 		drm_err(&engine->i915->drm,
1864 			"Ignoring context switch w/a allocation error:%d\n",
1865 			err);
1866 		return;
1867 	}
1868 
1869 	if (!engine->wa_ctx.vma)
1870 		return;
1871 
1872 	i915_gem_ww_ctx_init(&ww, true);
1873 retry:
1874 	err = i915_gem_object_lock(wa_ctx->vma->obj, &ww);
1875 	if (!err)
1876 		err = i915_ggtt_pin(wa_ctx->vma, &ww, 0, PIN_HIGH);
1877 	if (err)
1878 		goto err;
1879 
1880 	batch = i915_gem_object_pin_map(wa_ctx->vma->obj, I915_MAP_WB);
1881 	if (IS_ERR(batch)) {
1882 		err = PTR_ERR(batch);
1883 		goto err_unpin;
1884 	}
1885 
1886 	/*
1887 	 * Emit the two workaround batch buffers, recording the offset from the
1888 	 * start of the workaround batch buffer object for each and their
1889 	 * respective sizes.
1890 	 */
1891 	batch_ptr = batch;
1892 	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1893 		wa_bb[i]->offset = batch_ptr - batch;
1894 		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1895 						  CACHELINE_BYTES))) {
1896 			err = -EINVAL;
1897 			break;
1898 		}
1899 		if (wa_bb_fn[i])
1900 			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1901 		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1902 	}
1903 	GEM_BUG_ON(batch_ptr - batch > CTX_WA_BB_SIZE);
1904 
1905 	__i915_gem_object_flush_map(wa_ctx->vma->obj, 0, batch_ptr - batch);
1906 	__i915_gem_object_release_map(wa_ctx->vma->obj);
1907 
1908 	/* Verify that we can handle failure to setup the wa_ctx */
1909 	if (!err)
1910 		err = i915_inject_probe_error(engine->i915, -ENODEV);
1911 
1912 err_unpin:
1913 	if (err)
1914 		i915_vma_unpin(wa_ctx->vma);
1915 err:
1916 	if (err == -EDEADLK) {
1917 		err = i915_gem_ww_ctx_backoff(&ww);
1918 		if (!err)
1919 			goto retry;
1920 	}
1921 	i915_gem_ww_ctx_fini(&ww);
1922 
1923 	if (err) {
1924 		i915_vma_put(engine->wa_ctx.vma);
1925 
1926 		/* Clear all flags to prevent further use */
1927 		memset(wa_ctx, 0, sizeof(*wa_ctx));
1928 	}
1929 }
1930 
1931 static void st_runtime_underflow(struct intel_context_stats *stats, s32 dt)
1932 {
1933 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1934 	stats->runtime.num_underflow++;
1935 	stats->runtime.max_underflow =
1936 		max_t(u32, stats->runtime.max_underflow, -dt);
1937 #endif
1938 }
1939 
1940 static u32 lrc_get_runtime(const struct intel_context *ce)
1941 {
1942 	/*
1943 	 * We can use either ppHWSP[16] which is recorded before the context
1944 	 * switch (and so excludes the cost of context switches) or use the
1945 	 * value from the context image itself, which is saved/restored earlier
1946 	 * and so includes the cost of the save.
1947 	 */
1948 	return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
1949 }
1950 
1951 void lrc_update_runtime(struct intel_context *ce)
1952 {
1953 	struct intel_context_stats *stats = &ce->stats;
1954 	u32 old;
1955 	s32 dt;
1956 
1957 	old = stats->runtime.last;
1958 	stats->runtime.last = lrc_get_runtime(ce);
1959 	dt = stats->runtime.last - old;
1960 	if (!dt)
1961 		return;
1962 
1963 	if (unlikely(dt < 0)) {
1964 		CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
1965 			 old, stats->runtime.last, dt);
1966 		st_runtime_underflow(stats, dt);
1967 		return;
1968 	}
1969 
1970 	ewma_runtime_add(&stats->runtime.avg, dt);
1971 	stats->runtime.total += dt;
1972 }
1973 
1974 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1975 #include "selftest_lrc.c"
1976 #endif
1977