1 /* SPDX-License-Identifier: MIT */ 2 /* 3 * Copyright © 2020 Intel Corporation 4 * 5 * Please try to maintain the following order within this file unless it makes 6 * sense to do otherwise. From top to bottom: 7 * 1. typedefs 8 * 2. #defines, and macros 9 * 3. structure definitions 10 * 4. function prototypes 11 * 12 * Within each section, please try to order by generation in ascending order, 13 * from top to bottom (ie. gen6 on the top, gen8 on the bottom). 14 */ 15 16 #ifndef __INTEL_GTT_H__ 17 #define __INTEL_GTT_H__ 18 19 #include <linux/io-mapping.h> 20 #include <linux/kref.h> 21 #include <linux/mm.h> 22 #include <linux/pagevec.h> 23 #include <linux/scatterlist.h> 24 #include <linux/workqueue.h> 25 26 #include <drm/drm_mm.h> 27 28 #include "gt/intel_reset.h" 29 #include "i915_selftest.h" 30 #include "i915_vma_resource.h" 31 #include "i915_vma_types.h" 32 #include "i915_params.h" 33 #include "intel_memory_region.h" 34 35 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 36 37 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT) 38 #define GTT_TRACE(...) trace_printk(__VA_ARGS__) 39 #else 40 #define GTT_TRACE(...) 41 #endif 42 43 #define NALLOC 3 /* 1 normal, 1 for concurrent threads, 1 for preallocation */ 44 45 #define I915_GTT_PAGE_SIZE_4K BIT_ULL(12) 46 #define I915_GTT_PAGE_SIZE_64K BIT_ULL(16) 47 #define I915_GTT_PAGE_SIZE_2M BIT_ULL(21) 48 49 #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K 50 #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M 51 52 #define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE 53 54 #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE 55 56 #define I915_FENCE_REG_NONE -1 57 #define I915_MAX_NUM_FENCES 32 58 /* 32 fences + sign bit for FENCE_REG_NONE */ 59 #define I915_MAX_NUM_FENCE_BITS 6 60 61 typedef u32 gen6_pte_t; 62 typedef u64 gen8_pte_t; 63 64 #define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT) 65 66 #define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len))) 67 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) 68 #define I915_PDES 512 69 #define I915_PDE_MASK (I915_PDES - 1) 70 71 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ 72 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) 73 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 74 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) 75 #define GEN6_PTE_CACHE_LLC (2 << 1) 76 #define GEN6_PTE_UNCACHED (1 << 1) 77 #define GEN6_PTE_VALID REG_BIT(0) 78 79 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) 80 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) 81 #define GEN6_PD_ALIGN (PAGE_SIZE * 16) 82 #define GEN6_PDE_SHIFT 22 83 #define GEN6_PDE_VALID REG_BIT(0) 84 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) 85 86 #define GEN7_PTE_CACHE_L3_LLC (3 << 1) 87 88 #define BYT_PTE_SNOOPED_BY_CPU_CACHES REG_BIT(2) 89 #define BYT_PTE_WRITEABLE REG_BIT(1) 90 91 #define MTL_PPGTT_PTE_PAT3 BIT_ULL(62) 92 #define GEN12_PPGTT_PTE_LM BIT_ULL(11) 93 #define GEN12_PPGTT_PTE_PAT2 BIT_ULL(7) 94 #define GEN12_PPGTT_PTE_PAT1 BIT_ULL(4) 95 #define GEN12_PPGTT_PTE_PAT0 BIT_ULL(3) 96 97 #define GEN12_GGTT_PTE_LM BIT_ULL(1) 98 #define MTL_GGTT_PTE_PAT0 BIT_ULL(52) 99 #define MTL_GGTT_PTE_PAT1 BIT_ULL(53) 100 #define GEN12_GGTT_PTE_ADDR_MASK GENMASK_ULL(45, 12) 101 #define MTL_GGTT_PTE_PAT_MASK GENMASK_ULL(53, 52) 102 103 #define GEN12_PDE_64K BIT(6) 104 #define GEN12_PTE_PS64 BIT(8) 105 106 /* 107 * Cacheability Control is a 4-bit value. The low three bits are stored in bits 108 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. 109 */ 110 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ 111 (((bits) & 0x8) << (11 - 3))) 112 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) 113 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) 114 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) 115 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) 116 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) 117 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) 118 #define HSW_PTE_UNCACHED (0) 119 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) 120 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) 121 122 /* 123 * GEN8 32b style address is defined as a 3 level page table: 124 * 31:30 | 29:21 | 20:12 | 11:0 125 * PDPE | PDE | PTE | offset 126 * The difference as compared to normal x86 3 level page table is the PDPEs are 127 * programmed via register. 128 * 129 * GEN8 48b style address is defined as a 4 level page table: 130 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0 131 * PML4E | PDPE | PDE | PTE | offset 132 */ 133 #define GEN8_3LVL_PDPES 4 134 135 #define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD) 136 #define PPAT_CACHED_PDE 0 /* WB LLC */ 137 #define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */ 138 #define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */ 139 140 #define CHV_PPAT_SNOOP REG_BIT(6) 141 #define GEN8_PPAT_AGE(x) ((x)<<4) 142 #define GEN8_PPAT_LLCeLLC (3<<2) 143 #define GEN8_PPAT_LLCELLC (2<<2) 144 #define GEN8_PPAT_LLC (1<<2) 145 #define GEN8_PPAT_WB (3<<0) 146 #define GEN8_PPAT_WT (2<<0) 147 #define GEN8_PPAT_WC (1<<0) 148 #define GEN8_PPAT_UC (0<<0) 149 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) 150 #define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8)) 151 152 #define GEN8_PAGE_PRESENT BIT_ULL(0) 153 #define GEN8_PAGE_RW BIT_ULL(1) 154 155 #define GEN8_PDE_IPS_64K BIT(11) 156 #define GEN8_PDE_PS_2M BIT(7) 157 158 #define MTL_PPAT_L4_CACHE_POLICY_MASK REG_GENMASK(3, 2) 159 #define MTL_PAT_INDEX_COH_MODE_MASK REG_GENMASK(1, 0) 160 #define MTL_PPAT_L4_3_UC REG_FIELD_PREP(MTL_PPAT_L4_CACHE_POLICY_MASK, 3) 161 #define MTL_PPAT_L4_1_WT REG_FIELD_PREP(MTL_PPAT_L4_CACHE_POLICY_MASK, 1) 162 #define MTL_PPAT_L4_0_WB REG_FIELD_PREP(MTL_PPAT_L4_CACHE_POLICY_MASK, 0) 163 #define MTL_3_COH_2W REG_FIELD_PREP(MTL_PAT_INDEX_COH_MODE_MASK, 3) 164 #define MTL_2_COH_1W REG_FIELD_PREP(MTL_PAT_INDEX_COH_MODE_MASK, 2) 165 166 struct drm_i915_gem_object; 167 struct i915_fence_reg; 168 struct i915_vma; 169 struct intel_gt; 170 171 #define for_each_sgt_daddr(__dp, __iter, __sgt) \ 172 __for_each_sgt_daddr(__dp, __iter, __sgt, I915_GTT_PAGE_SIZE) 173 174 #define for_each_sgt_daddr_next(__dp, __iter) \ 175 __for_each_daddr_next(__dp, __iter, I915_GTT_PAGE_SIZE) 176 177 struct i915_page_table { 178 struct drm_i915_gem_object *base; 179 union { 180 atomic_t used; 181 struct i915_page_table *stash; 182 }; 183 bool is_compact; 184 }; 185 186 struct i915_page_directory { 187 struct i915_page_table pt; 188 spinlock_t lock; 189 void **entry; 190 }; 191 192 #define __px_choose_expr(x, type, expr, other) \ 193 __builtin_choose_expr( \ 194 __builtin_types_compatible_p(typeof(x), type) || \ 195 __builtin_types_compatible_p(typeof(x), const type), \ 196 ({ type __x = (type)(x); expr; }), \ 197 other) 198 199 #define px_base(px) \ 200 __px_choose_expr(px, struct drm_i915_gem_object *, __x, \ 201 __px_choose_expr(px, struct i915_page_table *, __x->base, \ 202 __px_choose_expr(px, struct i915_page_directory *, __x->pt.base, \ 203 (void)0))) 204 205 struct page *__px_page(struct drm_i915_gem_object *p); 206 dma_addr_t __px_dma(struct drm_i915_gem_object *p); 207 #define px_dma(px) (__px_dma(px_base(px))) 208 209 void *__px_vaddr(struct drm_i915_gem_object *p); 210 #define px_vaddr(px) (__px_vaddr(px_base(px))) 211 212 #define px_pt(px) \ 213 __px_choose_expr(px, struct i915_page_table *, __x, \ 214 __px_choose_expr(px, struct i915_page_directory *, &__x->pt, \ 215 (void)0)) 216 #define px_used(px) (&px_pt(px)->used) 217 218 struct i915_vm_pt_stash { 219 /* preallocated chains of page tables/directories */ 220 struct i915_page_table *pt[2]; 221 /* 222 * Optionally override the alignment/size of the physical page that 223 * contains each PT. If not set defaults back to the usual 224 * I915_GTT_PAGE_SIZE_4K. This does not influence the other paging 225 * structures. MUST be a power-of-two. ONLY applicable on discrete 226 * platforms. 227 */ 228 int pt_sz; 229 }; 230 231 struct i915_vma_ops { 232 /* Map an object into an address space with the given cache flags. */ 233 void (*bind_vma)(struct i915_address_space *vm, 234 struct i915_vm_pt_stash *stash, 235 struct i915_vma_resource *vma_res, 236 unsigned int pat_index, 237 u32 flags); 238 /* 239 * Unmap an object from an address space. This usually consists of 240 * setting the valid PTE entries to a reserved scratch page. 241 */ 242 void (*unbind_vma)(struct i915_address_space *vm, 243 struct i915_vma_resource *vma_res); 244 245 }; 246 247 struct i915_address_space { 248 struct kref ref; 249 struct work_struct release_work; 250 251 struct drm_mm mm; 252 struct { 253 struct drm_i915_gem_object *obj; 254 struct i915_vma *vma; 255 } rsvd; 256 struct intel_gt *gt; 257 struct drm_i915_private *i915; 258 struct drm_i915_file_private *fpriv; 259 struct device *dma; 260 u64 total; /* size addr space maps (ex. 2GB for ggtt) */ 261 u64 reserved; /* size addr space reserved */ 262 u64 min_alignment[INTEL_MEMORY_STOLEN_LOCAL + 1]; 263 264 unsigned int bind_async_flags; 265 266 struct mutex mutex; /* protects vma and our lists */ 267 268 struct kref resv_ref; /* kref to keep the reservation lock alive. */ 269 struct dma_resv _resv; /* reservation lock for all pd objects, and buffer pool */ 270 #define VM_CLASS_GGTT 0 271 #define VM_CLASS_PPGTT 1 272 #define VM_CLASS_DPT 2 273 274 struct drm_i915_gem_object *scratch[4]; 275 /** 276 * List of vma currently bound. 277 */ 278 struct list_head bound_list; 279 280 /** 281 * List of vmas not yet bound or evicted. 282 */ 283 struct list_head unbound_list; 284 285 /* Global GTT */ 286 bool is_ggtt:1; 287 288 /* Display page table */ 289 bool is_dpt:1; 290 291 /* Some systems support read-only mappings for GGTT and/or PPGTT */ 292 bool has_read_only:1; 293 294 /* Skip pte rewrite on unbind for suspend. Protected by @mutex */ 295 bool skip_pte_rewrite:1; 296 297 u8 top; 298 u8 pd_shift; 299 u8 scratch_order; 300 301 /* Flags used when creating page-table objects for this vm */ 302 unsigned long lmem_pt_obj_flags; 303 304 /* Interval tree for pending unbind vma resources */ 305 struct rb_root_cached pending_unbind; 306 307 struct drm_i915_gem_object * 308 (*alloc_pt_dma)(struct i915_address_space *vm, int sz); 309 struct drm_i915_gem_object * 310 (*alloc_scratch_dma)(struct i915_address_space *vm, int sz); 311 312 u64 (*pte_encode)(dma_addr_t addr, 313 unsigned int pat_index, 314 u32 flags); /* Create a valid PTE */ 315 dma_addr_t (*pte_decode)(u64 pte, bool *is_present, bool *is_local); 316 #define PTE_READ_ONLY BIT(0) 317 #define PTE_LM BIT(1) 318 319 void (*allocate_va_range)(struct i915_address_space *vm, 320 struct i915_vm_pt_stash *stash, 321 u64 start, u64 length); 322 void (*clear_range)(struct i915_address_space *vm, 323 u64 start, u64 length); 324 void (*scratch_range)(struct i915_address_space *vm, 325 u64 start, u64 length); 326 void (*insert_page)(struct i915_address_space *vm, 327 dma_addr_t addr, 328 u64 offset, 329 unsigned int pat_index, 330 u32 flags); 331 void (*insert_entries)(struct i915_address_space *vm, 332 struct i915_vma_resource *vma_res, 333 unsigned int pat_index, 334 u32 flags); 335 void (*raw_insert_page)(struct i915_address_space *vm, 336 dma_addr_t addr, 337 u64 offset, 338 unsigned int pat_index, 339 u32 flags); 340 void (*raw_insert_entries)(struct i915_address_space *vm, 341 struct i915_vma_resource *vma_res, 342 unsigned int pat_index, 343 u32 flags); 344 dma_addr_t (*read_entry)(struct i915_address_space *vm, 345 u64 offset, bool *is_present, bool *is_local); 346 void (*cleanup)(struct i915_address_space *vm); 347 348 void (*foreach)(struct i915_address_space *vm, 349 u64 start, u64 length, 350 void (*fn)(struct i915_address_space *vm, 351 struct i915_page_table *pt, 352 void *data), 353 void *data); 354 355 struct i915_vma_ops vma_ops; 356 357 I915_SELFTEST_DECLARE(struct fault_attr fault_attr); 358 I915_SELFTEST_DECLARE(bool scrub_64K); 359 }; 360 361 /* 362 * The Graphics Translation Table is the way in which GEN hardware translates a 363 * Graphics Virtual Address into a Physical Address. In addition to the normal 364 * collateral associated with any va->pa translations GEN hardware also has a 365 * portion of the GTT which can be mapped by the CPU and remain both coherent 366 * and correct (in cases like swizzling). That region is referred to as GMADR in 367 * the spec. 368 */ 369 struct i915_ggtt { 370 struct i915_address_space vm; 371 372 struct io_mapping iomap; /* Mapping to our CPU mappable region */ 373 struct resource gmadr; /* GMADR resource */ 374 resource_size_t mappable_end; /* End offset that we can CPU map */ 375 376 /** "Graphics Stolen Memory" holds the global PTEs */ 377 void __iomem *gsm; 378 void (*invalidate)(struct i915_ggtt *ggtt); 379 380 /** PPGTT used for aliasing the PPGTT with the GTT */ 381 struct i915_ppgtt *alias; 382 383 bool do_idle_maps; 384 385 int mtrr; 386 387 /** Bit 6 swizzling required for X tiling */ 388 u32 bit_6_swizzle_x; 389 /** Bit 6 swizzling required for Y tiling */ 390 u32 bit_6_swizzle_y; 391 392 u32 pin_bias; 393 394 unsigned int num_fences; 395 struct i915_fence_reg *fence_regs; 396 struct list_head fence_list; 397 398 /** 399 * List of all objects in gtt_space, currently mmaped by userspace. 400 * All objects within this list must also be on bound_list. 401 */ 402 struct list_head userfault_list; 403 404 struct mutex error_mutex; 405 struct drm_mm_node error_capture; 406 struct drm_mm_node uc_fw; 407 408 /** List of GTs mapping this GGTT */ 409 struct list_head gt_list; 410 }; 411 412 struct i915_ppgtt { 413 struct i915_address_space vm; 414 415 struct i915_page_directory *pd; 416 }; 417 418 #define i915_is_ggtt(vm) ((vm)->is_ggtt) 419 #define i915_is_dpt(vm) ((vm)->is_dpt) 420 #define i915_is_ggtt_or_dpt(vm) (i915_is_ggtt(vm) || i915_is_dpt(vm)) 421 422 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915); 423 424 int __must_check 425 i915_vm_lock_objects(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww); 426 427 static inline bool 428 i915_vm_is_4lvl(const struct i915_address_space *vm) 429 { 430 return (vm->total - 1) >> 32; 431 } 432 433 static inline bool 434 i915_vm_has_scratch_64K(struct i915_address_space *vm) 435 { 436 return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K); 437 } 438 439 static inline u64 i915_vm_min_alignment(struct i915_address_space *vm, 440 enum intel_memory_type type) 441 { 442 /* avoid INTEL_MEMORY_MOCK overflow */ 443 if ((int)type >= ARRAY_SIZE(vm->min_alignment)) 444 type = INTEL_MEMORY_SYSTEM; 445 446 return vm->min_alignment[type]; 447 } 448 449 static inline u64 i915_vm_obj_min_alignment(struct i915_address_space *vm, 450 struct drm_i915_gem_object *obj) 451 { 452 struct intel_memory_region *mr = READ_ONCE(obj->mm.region); 453 enum intel_memory_type type = mr ? mr->type : INTEL_MEMORY_SYSTEM; 454 455 return i915_vm_min_alignment(vm, type); 456 } 457 458 static inline bool 459 i915_vm_has_cache_coloring(struct i915_address_space *vm) 460 { 461 return i915_is_ggtt(vm) && vm->mm.color_adjust; 462 } 463 464 static inline struct i915_ggtt * 465 i915_vm_to_ggtt(struct i915_address_space *vm) 466 { 467 BUILD_BUG_ON(offsetof(struct i915_ggtt, vm)); 468 GEM_BUG_ON(!i915_is_ggtt(vm)); 469 return container_of(vm, struct i915_ggtt, vm); 470 } 471 472 static inline struct i915_ppgtt * 473 i915_vm_to_ppgtt(struct i915_address_space *vm) 474 { 475 BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm)); 476 GEM_BUG_ON(i915_is_ggtt_or_dpt(vm)); 477 return container_of(vm, struct i915_ppgtt, vm); 478 } 479 480 static inline struct i915_address_space * 481 i915_vm_get(struct i915_address_space *vm) 482 { 483 kref_get(&vm->ref); 484 return vm; 485 } 486 487 static inline struct i915_address_space * 488 i915_vm_tryget(struct i915_address_space *vm) 489 { 490 return kref_get_unless_zero(&vm->ref) ? vm : NULL; 491 } 492 493 static inline void assert_vm_alive(struct i915_address_space *vm) 494 { 495 GEM_BUG_ON(!kref_read(&vm->ref)); 496 } 497 498 /** 499 * i915_vm_resv_get - Obtain a reference on the vm's reservation lock 500 * @vm: The vm whose reservation lock we want to share. 501 * 502 * Return: A pointer to the vm's reservation lock. 503 */ 504 static inline struct dma_resv *i915_vm_resv_get(struct i915_address_space *vm) 505 { 506 kref_get(&vm->resv_ref); 507 return &vm->_resv; 508 } 509 510 void i915_vm_release(struct kref *kref); 511 512 void i915_vm_resv_release(struct kref *kref); 513 514 static inline void i915_vm_put(struct i915_address_space *vm) 515 { 516 kref_put(&vm->ref, i915_vm_release); 517 } 518 519 /** 520 * i915_vm_resv_put - Release a reference on the vm's reservation lock 521 * @vm: The vm whose reservation lock reference we want to release 522 */ 523 static inline void i915_vm_resv_put(struct i915_address_space *vm) 524 { 525 kref_put(&vm->resv_ref, i915_vm_resv_release); 526 } 527 528 void i915_address_space_init(struct i915_address_space *vm, int subclass); 529 void i915_address_space_fini(struct i915_address_space *vm); 530 531 static inline u32 i915_pte_index(u64 address, unsigned int pde_shift) 532 { 533 const u32 mask = NUM_PTE(pde_shift) - 1; 534 535 return (address >> PAGE_SHIFT) & mask; 536 } 537 538 /* 539 * Helper to counts the number of PTEs within the given length. This count 540 * does not cross a page table boundary, so the max value would be 541 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. 542 */ 543 static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift) 544 { 545 const u64 mask = ~((1ULL << pde_shift) - 1); 546 u64 end; 547 548 GEM_BUG_ON(length == 0); 549 GEM_BUG_ON(offset_in_page(addr | length)); 550 551 end = addr + length; 552 553 if ((addr & mask) != (end & mask)) 554 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); 555 556 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); 557 } 558 559 static inline u32 i915_pde_index(u64 addr, u32 shift) 560 { 561 return (addr >> shift) & I915_PDE_MASK; 562 } 563 564 static inline struct i915_page_table * 565 i915_pt_entry(const struct i915_page_directory * const pd, 566 const unsigned short n) 567 { 568 return pd->entry[n]; 569 } 570 571 static inline struct i915_page_directory * 572 i915_pd_entry(const struct i915_page_directory * const pdp, 573 const unsigned short n) 574 { 575 return pdp->entry[n]; 576 } 577 578 static inline dma_addr_t 579 i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n) 580 { 581 struct i915_page_table *pt = ppgtt->pd->entry[n]; 582 583 return __px_dma(pt ? px_base(pt) : ppgtt->vm.scratch[ppgtt->vm.top]); 584 } 585 586 void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt, 587 unsigned long lmem_pt_obj_flags); 588 void intel_ggtt_bind_vma(struct i915_address_space *vm, 589 struct i915_vm_pt_stash *stash, 590 struct i915_vma_resource *vma_res, 591 unsigned int pat_index, 592 u32 flags); 593 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 594 struct i915_vma_resource *vma_res); 595 596 dma_addr_t intel_ggtt_read_entry(struct i915_address_space *vm, 597 u64 offset, bool *is_present, bool *is_local); 598 599 int i915_ggtt_probe_hw(struct drm_i915_private *i915); 600 int i915_ggtt_init_hw(struct drm_i915_private *i915); 601 int i915_ggtt_enable_hw(struct drm_i915_private *i915); 602 int i915_init_ggtt(struct drm_i915_private *i915); 603 void i915_ggtt_driver_release(struct drm_i915_private *i915); 604 void i915_ggtt_driver_late_release(struct drm_i915_private *i915); 605 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915); 606 607 static inline bool i915_ggtt_has_aperture(const struct i915_ggtt *ggtt) 608 { 609 return ggtt->mappable_end > 0; 610 } 611 612 int i915_ppgtt_init_hw(struct intel_gt *gt); 613 614 struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt, 615 unsigned long lmem_pt_obj_flags); 616 617 void i915_ggtt_suspend_vm(struct i915_address_space *vm, bool evict_all); 618 bool i915_ggtt_resume_vm(struct i915_address_space *vm, bool all_evicted); 619 void i915_ggtt_suspend(struct i915_ggtt *gtt); 620 void i915_ggtt_resume(struct i915_ggtt *ggtt); 621 622 void 623 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count); 624 625 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64)) 626 #define fill32_px(px, v) do { \ 627 u64 v__ = lower_32_bits(v); \ 628 fill_px((px), v__ << 32 | v__); \ 629 } while (0) 630 631 int setup_scratch_page(struct i915_address_space *vm); 632 void free_scratch(struct i915_address_space *vm); 633 634 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz); 635 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz); 636 struct i915_page_table *alloc_pt(struct i915_address_space *vm, int sz); 637 struct i915_page_directory *alloc_pd(struct i915_address_space *vm); 638 struct i915_page_directory *__alloc_pd(int npde); 639 640 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj); 641 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj); 642 643 void free_px(struct i915_address_space *vm, 644 struct i915_page_table *pt, int lvl); 645 #define free_pt(vm, px) free_px(vm, px, 0) 646 #define free_pd(vm, px) free_px(vm, px_pt(px), 1) 647 648 void 649 __set_pd_entry(struct i915_page_directory * const pd, 650 const unsigned short idx, 651 struct i915_page_table *pt, 652 u64 (*encode)(const dma_addr_t, const enum i915_cache_level)); 653 654 #define set_pd_entry(pd, idx, to) \ 655 __set_pd_entry((pd), (idx), px_pt(to), gen8_pde_encode) 656 657 void 658 clear_pd_entry(struct i915_page_directory * const pd, 659 const unsigned short idx, 660 const struct drm_i915_gem_object * const scratch); 661 662 bool 663 release_pd_entry(struct i915_page_directory * const pd, 664 const unsigned short idx, 665 struct i915_page_table * const pt, 666 const struct drm_i915_gem_object * const scratch); 667 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt); 668 669 void ppgtt_bind_vma(struct i915_address_space *vm, 670 struct i915_vm_pt_stash *stash, 671 struct i915_vma_resource *vma_res, 672 unsigned int pat_index, 673 u32 flags); 674 void ppgtt_unbind_vma(struct i915_address_space *vm, 675 struct i915_vma_resource *vma_res); 676 677 void gtt_write_workarounds(struct intel_gt *gt); 678 679 void setup_private_pat(struct intel_gt *gt); 680 681 int i915_vm_alloc_pt_stash(struct i915_address_space *vm, 682 struct i915_vm_pt_stash *stash, 683 u64 size); 684 int i915_vm_map_pt_stash(struct i915_address_space *vm, 685 struct i915_vm_pt_stash *stash); 686 void i915_vm_free_pt_stash(struct i915_address_space *vm, 687 struct i915_vm_pt_stash *stash); 688 689 struct i915_vma * 690 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size); 691 692 struct i915_vma * 693 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size); 694 695 static inline struct sgt_dma { 696 struct scatterlist *sg; 697 dma_addr_t dma, max; 698 } sgt_dma(struct i915_vma_resource *vma_res) { 699 struct scatterlist *sg = vma_res->bi.pages->sgl; 700 dma_addr_t addr = sg_dma_address(sg); 701 702 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; 703 } 704 705 bool i915_ggtt_require_binder(struct drm_i915_private *i915); 706 707 #endif 708